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Abstract 

As a consequence of agricultural intensification, large areas of species-rich grasslands 
have been lost and farmland biodiversity has declined. Previous studies have shown 
that the continuity of grazing management can have a significant influence on the 
environmental conditions and the levels of plant species diversity in grassland 
habitats. The preservation of species-rich grasslands has become a high conservation 
priority within the European Union and the mapping of grazed grassland vegetation 
across wide areas has been identified as a central task for biodiversity conservation in 
agricultural landscapes. The fact that detailed field inventories of plant communities 
are time-consuming may limit the spatial extent of grassland habitat surveys. If 
remote sensing data are able to identify grassland sites characterised by different 
environmental conditions and plant species diversity, then field sampling efforts could 
be directed towards sites that are of potential conservation interest.  

In the thesis, I have examined the potential of hyperspectral and multispectral remote 
sensing imagery to map grassland vegetation at detailed scales in dry grazed grassland 
habitats. Fieldwork included the recording of vascular plant species and 
environmental variables in grasslands plots representing three age-classes within an 
arable-to-grassland succession in an agricultural landscape on the Baltic island of 
Öland (Sweden). Remotely sensed data were acquired with the help of two airborne 
HySpex hyperspectral spectrometers (415–2501 nm) and by the multispectral 
WorldView-2 satellite.  

The results of the thesis show that the soil nutrient and moisture status within 
grassland plots influenced the hyperspectral reflectance. Hyperspectral data had the 
ability to classify grassland plots into different age-classes.  Hyperspectral reflectance 
measurements could be used to predict plant indicator values for nutrient and soil 
moisture in grassland plots. Prediction models developed from hyperspectral data 
were successfully used to assess levels of plant species diversity (species richness and 
Simpsons’s diversity). In addition, between-plot dissimilarities in the satellite spectral 
reflectance were shown to be related to between-plot dissimilarities in the species 
composition in old grassland sites.  

The findings of the thesis demonstrate that remote sensing data are capable of 
capturing detailed-scale information that discriminates between grassland plant 
communities representing different environmental conditions and levels of plant 
species diversity. The results suggest that remote sensing data may have the ability for 
use as a decision-support tool to help conservation planners identify grassland habitats 
in agricultural landscapes that are of high conservation interest.  



Summary 

European dry extensive grasslands are biodiversity hotspots which are severely 
threatened by land use intensification and abandonment. In order to plan efficient 
conservation actions it is necessary to collect information on the current status of 
grasslands, their species diversity and prevailing environmental conditions. Remote 
sensing technology in combination with ground surveys provides an effective tool to 
monitor ecosystem properties continuously across the landscape with high spatial 
precision in a repeatable way. In this thesis, the potential of hyper-and multispectral 
remote sensing imagery to predict grassland ecological parameters, such as grazing 
continuity, plant species diversity and habitat environmental conditions was evaluated 
studying grassland sites on the Baltic island of Öland, Sweden. Different methods 
were compared on the basis of their prediction quality and practical feasibility. The 
findings of this thesis provide a useful guidance for the selection of prediction 
methods of ecological grassland parameter in future studies. Combined with ground 
surveys, remote sensing can serve as time-efficient decision support tool for 
prioritising areas of high conservation value for management actions. 
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Introduction 

Grasslands 

Grassland ecosystems cover about 40.5% of the total land area on earth, which 
corresponds to approximately 52.5 million km2 (White et al. 2000). They can be 
divided into three categories: (a) natural grasslands, (b) semi-natural grasslands, and 
(c) improved grasslands (Hejcman et al. 2013). In natural grasslands, the spread of 
woody vegetation (e.g. forest) is mainly restricted by climatic limitations. The 
succession of semi-natural and improved grasslands into non-grassland vegetation is 
mainly prevented by varying intensities of human land use.  

According to the type of land management, semi-natural and improved grasslands can 
be divided into grazed pastures, regularly cut meadows, and grazed meadows that 
feature a mixture of cutting and grazing (Hejcman et al. 2013). Low-intensity land 
use of semi-natural grasslands dates back to the beginning of the Neolithic period in 
Europe (Hejcman et al. 2013). Semi-natural grasslands in Europe can also represent a 
successional stage of abandoned arable fields and belong to the areas with the highest 
plant biodiversity in Europe (Dengler et al. 2014), featuring a diversity that may 
sometimes exceed that of vascular plants in tropical rainforests, at least at small spatial 
scales (Wilson et al. 2012). Particularly in the Nordic countries, semi-natural 
grasslands are highly significant for the overall biodiversity in agricultural landscapes 
(Cousins and Lindborg 2008). 

Biodiversity represents the variation of all life forms at all levels of biological 
organisation, ranging from genes to ecosystems (Wilson 1988). In the 1960s, 
Whittaker distinguished three scale-related levels of species diversity: alpha, beta, and 
gamma diversity (Whittaker 1960). Alpha diversity is the number of distinct species 
within a particular habitat or ecosystem. Beta diversity describes the difference in 
diversity between two or more habitats, and can be measured either as compositional 
heterogeneity or the turnover of species among different habitats (Tuomisto and 
Ruokolainen 2006, Jurasinski et al. 2009). Gamma diversity is the total number of 
species within a larger region, which is composed of many different habitats. 

The level of biodiversity in grasslands is affected by various properties of the current 
landscape structure, such as topography, landscape context, type of land use, and soil 
properties, or stochastic processes (Hubbell 2001, Öster et al. 2007, Moeslund et al. 
2013), as well as by land use history (i.e. continuity of land use) (Lindborg and 
Eriksson 2004, Reger et al. 2009, Hejcman et al. 2013). For instance, the transition 
of former arable land to semi-natural grasslands strongly depends on past fertiliser 
input, which is regarded as one of the factors preventing the establishment of new 
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grassland species (Marrs 1993). During succession towards semi-natural grasslands, 
abiotic conditions such as a decrease in nutrient availability (Carbajo et al. 2011) lead 
to an increase in grassland plant diversity (Dengler et al. 2014) (Figure 1). 

Current land use is one of the major factors influencing grassland diversity. Herbivore 
grazing in particular can affect grassland diversity in various ways (Olff and Ritchie 
1998, Bakker et al. 2003). Firstly, large grazers can promote the dispersion of 
propagules between sites by carrying seeds attached to their fur or hooves (Rosenthal 
et al. 2012). Secondly, herbivores can influence the availability of resources, such as 
nitrogen or phosphorus, via dung or urine deposition (Olff and Ritchie 1998). 
Finally, biomass removal due to grazing affects the light availability within grassland 
plant communities, thereby affecting competition and growth patterns (McIntyre and 
Strauss 2013). 

 

Figure 1 Examples of sampled grassland sites belonging to three different stages of grassland succession: 
(a) 5-15 years, (b) 16-50 years, and (c) more than 50 years of grazing continuity. 

Due to intensification, abandonment, and transformation, the area of grasslands in 
Europe has decreased dramatically during the past century (Dengler et al. 2014). 
Particularly the use of synthetic fertilisers and pesticides led to a transition from 
formerly extensively used grasslands to intensively used high-productivity grasslands 
or arable land, resulting in a decrease in biodiversity. Consequently, extensively used 
grasslands only remain as small and poorly connected fragments within the landscape, 
impairing the likelihood of species dispersing between the remaining grassland 
patches (Zulka et al. 2014). In addition to the loss of biodiversity, agricultural 
intensification can also lead to degradation and erosion of soils (Stoate et al. 2001, 
Freibauer et al. 2004). 

For these reasons, monitoring land use change and grassland diversity are key 
challenges in developing sustainable management and conservation practices for 
existing old grazed grasslands and the restoration of formerly species-rich grasslands 
(Pettorelli et al. 2014, Rose et al. 2014, Sutherland et al. 2014). At the same time, it 
is important to develop tools to forecast the status of ecosystems (e.g. environmental 
conditions), ecosystem functioning, and ecosystem services under different scenarios 

2 



of global change, in order to establish target-oriented conservation and restoration 
actions (Wiens et al. 2009, Andrew et al. 2014). 

In ecological research and conservation management, plant species preferences for 
certain habitat conditions are often used as proxies for prevailing environmental 
conditions. The Ellenberg indicator values (Ellenberg 1991) represent a commonly 
applied plant indicator system in central Europe (Diekmann 2003). Ellenberg 
indicator values express the affinity of species to certain environmental factors (e.g. 
soil pH, nutrient availability, moisture availability). The plant species are usually 
ranked with ordinal-scale numbers from 0 (indicating low affinity) to 9 (indicating 
high affinity) (Diekmann 2003). The information about Ellenberg values for many 
species within a habitat can be used to describe the prevailing environmental 
conditions in the habitat (Diekmann 2003). A limitation of using Ellenberg indicator 
values as proxies for environmental conditions is the limited area in which the 
vegetation field-sampling is usually carried out (Schmidtlein 2005). Such information 
cannot easily be used to extrapolate environmental conditions over larger geographic 
areas, which is often required in ecological research. 

Remote sensing offers multiple advantages over traditional field mapping techniques, 
such as time-efficient map production, insight into inaccessible terrain, and improved 
repeatability of the mapping process (Vanden Borre et al. 2011). In certain fields of 
ecological research the potential of remote sensing was recognised some decades ago, 
and has been adopted in the operational workflow, such as the visual interpretation of 
aerial photographs (Vanden Borre et al. 2011). However, until now the great 
potential remote sensing can hold for grassland research has not been fully explored. 

Remote sensing 

Remote sensing began in the early 1970s with the first field spectral measurements 
(Goetz 2009). The first multispectral satellite scanner (Landsat-1) was launched in 
1972, and the first airborne imaging spectrometer was developed in 1979 (Goetz 
2009). Due to technical restrictions at that time, analysis of reflectance information 
was difficult and not easily repeatable. The development of a new programming 
language, IDL (Gumley 2001), and the introduction of new computer software (e.g. 
ENVI, ERDAS imagine, BEAM, E Cognition) open up this field of research to a 
broader scientific community. 

Remote sensing refers to the detection of electromagnetic energy from a surface with 
the help of aircrafts or satellites (Turner et al. 2003). Spectral sensors can be divided 
into two groups depending on the number of wavebands with which they measure 
spectral reflectance: (a) multispectral sensors, which acquire the reflectance 
information in a few (3-10) broad wavebands exclusively in the visible and near-
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infrared spectral regions (400-1100 nm) with little effect of atmospheric scattering 
(Goetz 2009), and (b) hyperspectral sensors, which acquire the reflectance 
information virtually continuously (several hundred wavebands) in the visible to 
infrared spectral region of the electromagnetic spectrum (400-2500 nm). 

While the first available satellite sensors were characterised by a rather coarse spatial 
resolution of 30 metres (i.e. size of a pixel within the sensor picture), the newer 
generation of high spatial satellite sensors offers a multispectral spatial resolution of 
about 2 metres (e.g. WorldView-2, QuickBird, IKONOS) (Wang et al. 2010). 
Sensors mounted on flying vehicles (e.g. aircraft, unmanned aerial vehicles) can even 
offer a spatial resolution of less than one metre. Airborne sensors are more flexible 
than satellite-based sensors, for instance in terms of adjusting time schedules to 
current weather conditions. However, satellite sensors can measure the radiance faster 
and cheaper for large area coverages than airborne sensors (Qi et al. 2011). The 
development of new technologies such as high spatial and hyperspectral sensors made 
it necessary to develop a range of new methods, such as multivariate statistical 
methods, to analyse this type of data (Numata 2011). 

Methods used for studying vegetation properties with remote sensing can be divided 
into physical methods, empirical methods, and a mixture of both (Liang 2005). 
Physical methods are mostly based on the radiative transfer theory, and simulate 
plant-light interactions with the help of simulation models (Jacquemoud et al. 2009). 
Empirical methods are based on the statistical relationship between in-situ measured 
vegetation properties and the reflectance information of the vegetation (Ustin et al. 
2009). 

A widely applied approach for finding empirical relationships between vegetation 
properties and spectral reflectance involves combining the reflectance information of 
two or more individual spectral wavebands to form a vegetation index (VI). For 
instance, the normalised difference vegetation index (NDVI) uses the information 
from the low reflectance in the red and high reflectance in the near-infrared (Rouse et 
al. 1974). NDVI has been used for decades to estimate various vegetation parameters, 
such as productivity and biomass, from local to global scales (He and Zhang 2009, 
Feilhauer et al. 2012, Hall et al. 2012). Also physically-based vegetation indices 
related to vegetation biophysical properties have been developed (e.g. Jin and 
Eklundh 2014). Another method involves combining many spectral wavebands into 
one empirical model using multivariate statistical techniques (Wold et al. 1994, Chen 
and Hay 2011, Adam et al. 2014). The empirical models can be further divided into 
linear (e.g. partial least squares regression, PLSR) and nonlinear (e.g. support-vector 
machines, SVM) models. 

Empirical methods are computationally fast and summarise local data effectively, but 
they also have several disadvantages. These methods often lack cause-effect 
relationships, making it difficult to transfer a certain model to a different location, to 
apply it at a different time, or even to another spectral sensor without thoroughly re-
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calibrating it. The limitations of empirical methods can be partly overcome by using 
physical methods. However, physical methods are computer-intensive, sometimes 
require many input variables for parameterisation, and require an intensive calibration 
before they can be applied (Liang 2005). 

 

Figure 2 Typical spectral reflectance curve (black line) for grassland vegetation in the study area (re-
drawn from Breyer 2009). Coloured areas represent the coastal blue (400-450 nm), blue (450-510 nm), 
green (510-581 nm), yellow (585-625 nm), red (630-690 nm), red-edge (705-745 nm), first near-
infrared (770-895 nm), and second near-infrared (860-1040 nm) wavebands from the WorldView-2 
satellite sensor. 

Remote sensing of grassland vegetation 

The interaction between incoming sunlight and vegetation is a multifaceted process 
comprising absorption, reflection, and transmission. Vegetation reflectance is 
considered to be primarily a function of: (a) optical properties of tissue, leaves, and 
plant litter, (b) canopy biophysical properties (e.g. leaf area, leaf orientation), (c) 
vegetation density, (d) illumination conditions, and (e) viewing geometry (Asner 
1998). With an appropriate BRDF (bidirectional reflectance distribution function) 
correction, the effect of the latter two can be minimised (Schaepman-Strub et al. 
2006). The remaining factors, through their biophysical and biochemical 
characteristics, are the variables that are likely to influence the spectral signature of 
grassland vegetation. 
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Figure 2 shows a typical vegetation reflectance spectrum from the visible blue (400-
500 nm), green (500-600 nm), and red (600-700 nm) to the near infrared (NIR: 
700-1300 nm) and shortwave infrared wavelengths (SWIR: 1300-2500 nm). The 
strong absorption in the visible spectral region is mainly due to strong absorption by 
leaf pigments in these wavebands (e.g. chlorophyll, anthocyanins, carotenoids) 
(Ollinger 2011). Chlorophyll, the major light-harvesting compound in plants, 
absorbs strongly in the blue and red and less in the green spectral region. As 
chlorophyll is the most abundant plant pigment in healthy vegetation, it often masks 
the effect of other plant compounds on the reflectance. The scattering of the photons 
at the air-cell interfaces within the leaf mesophyll is responsible for higher reflectance 
in the NIR spectral region (Woolley 1971). In the SWIR, leaf spectra are dominated 
by water absorption and non-pigment plant compounds such as nitrogen and lignin 
(Asner 1998). Although the basic interaction between leaves and incoming radiance is 
well understood (Asner 1998, Kumar et al. 2001, Ollinger 2011), the interpretation 
of canopy reflectance is more complicated due to the interaction between multiple-
layered vegetation and its background (Homolová et al. 2013). 

A problem arising when interpreting vegetation-reflectance relationships in grasslands 
is the mixed pixel problem (Boyd and Foody 2011), which describes the case when 
the object, from which the reflectance is measured, is smaller than the spatial 
resolution of the sensor. In this case, the reflectance in the pixel represents a mixture 
of several sources (e.g. several plant species in grasslands). In forest ecosystems, the 
problem can be partly circumvented by using high spatial resolution data (e.g. 
WorldView-2), where several pixels are used for individual tree crowns, but high 
spatial resolution airborne measurements for grasslands are still too coarse to detect 
the reflectance of individual plants, which complicates the interpretation of 
reflectance patterns. 

Preserving biodiversity has frequently been recognised as an urgent task of today’s  
society (Butchart et al. 2010). The EU Habitats Directive requires member states to 
report on the status of habitat conservation every six years (Vanden Borre et al. 2011). 
The member states have to submit information on habitat area, range, indicators of 
habitat quality and future prospects for habitat protection (Nagendra et al. 2013). To 
accomplish this task, remote sensing can offer powerful tools to monitor and map 
biodiversity and other grassland properties (Kuenzer et al. 2014, Sutherland et al. 
2014). 

In grassland research, remote sensing has been used in many regions of the world. 
Investigations using multiple sensors at various scales have been successfully 
conducted to assess standing biomass, soil cover, vegetation chlorophyll content, field 
layer height, but also floristic composition, plant functional types, and ecosystem 
services (Lobell et al. 2001, Schmidtlein and Sassin 2004, Chen et al. 2009, Hall et al. 
2010, Schmidtlein et al. 2011, Jin et al. 2013, Homolová et al. 2014, Schellberg and 
Verbruggen 2014). 
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Approaches for estimating diversity with the help of remote sensing tools can be 
categorised into two groups: 

a) direct methods relating spectral reflectance to individual organisms or 
communities, and  

b) indirect methods, which rely on environmental parameters as proxies for 
diversity (Turner et al. 2003). They can be divided into four main research 
areas (Duro et al. 2007): (i) predicting diversity as a function of climate and 
topography, (ii) predicting diversity through the diversity-productivity 
relationship, (iii) classifying and categorising habitats and analysing their 
spatial arrangement, and (iv) focusing on environmental heterogeneity as a 
result of disturbances. 

Most existing studies estimating diversity with remote sensing techniques focused on 
mapping species distribution and alpha diversity (Carter et al. 2005, Fava et al. 2010, 
Hall et al. 2010, Psomas et al. 2011), while the estimation of beta diversity has 
received less attention (Rocchini 2007, Rocchini et al. 2010, Hall et al. 2012), 
particularly in non-woody vegetation sites. A few studies attempted to estimate alpha 
and beta diversity by relating the spectral variation of a site to the ecosystems’ 
heterogeneity (spectral variation hypothesis, SVH, proposed by Palmer et al. 2002) at 
different spatial scales and in different habitat types (Rocchini et al. 2004, Rocchini et 
al. 2010). The reasoning behind this approach is that environmental heterogeneity 
and high biological diversity are interconnected, because heterogeneous areas are 
likely to harbour more species due to a higher number of available ecological niches 
(Gaston 2000). It is assumed that different habitats with different levels of 
environmental heterogeneity favour different species, leading to a higher beta-
diversity or species turnover between two habitats (Nekola and White 1999, Bruun 
2000). Consequently, spectral heterogeneity, via environmental heterogeneity, can be 
used as a proxy for alpha and beta diversity. 

Grasslands belonging to different successional stages can vary in terms of soil 
conditions, such as nutrient availability and soil moisture. For instance, the longer the 
continuity of grazing, the lower the availability of soil nutrients (Pykälä et al. 2005). 
A low soil nutrient availability in turn coincides with low soil moisture availability 
(Misra and Tylor 2000). Differences in the availability of soil nutrients and moisture 
between grassland habitats can be accompanied by differences in the biochemical and 
biophysical properties of the associated plant communities (e.g. above-ground 
biomass, field layer height, or vegetation chlorophyll content), which can affect the 
vegetation reflectance. 

As mentioned previously, a common approach for estimating environmental 
conditions in conservation ecology is to assign Ellenberg indicator values to plant 
species present in an area (Diekmann 2003). Previous studies have demonstrated a 
relationship between vegetation reflectance and Ellenberg indicator values in various 
ecosystems – managed meadows (Schmidtlein and Sassin 2004), mountain pastures 
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(Schmidtlein 2005), and mixed systems (Hardy et al. 2012). However, a systematic 
evaluation of different remote sensing-based prediction methods for estimating 
relevant Ellenberg values is still lacking. 
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Study aims 

The overall aim of this thesis is to evaluate the potential of remote sensing imagery to 
estimate ecological grassland parameters, such as grazing continuity, species diversity 
(alpha and beta), and habitat environmental conditions. 

The specific aims of the thesis are to: 

Evaluate the potential of remote sensing imagery to estimate plant diversity in dry 
grasslands (Paper I: alpha diversity, and Paper II: beta diversity). 

Evaluate the potential of different remote sensing-based prediction methods to 
estimate Ellenberg indicator values as proxies for environmental conditions (soil 
nutrients and moisture) in grassland vegetation (Paper III). 

Discriminate between grassland vegetation belonging to different stages of arable-to-
grassland succession with the help of hyperspectral airborne imagery (Paper IV). 
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Material and methods 

Study area 

The study area is located in the south-east of Sweden on the Baltic island of Öland 
(centred on 56°40ʹ49ʺ N, 16°33ʹ58ʺ E) and covers approximately 22.5 km2 (Figure 
3). During the Cambrian and Ordovician geological periods, the bedrock was formed 
by sedimentation, with limestone consequently being the most common rock in the 
glacial deposits (Sterner 1938). The area is characterised by generally flat topography 
with a few low ridges. Mean annual temperature is 7 °C and mean annual 
precipitation is 468 mm (Forslund 2001). The majority of the grasslands are grazed 
by cattle at varying intensity. The sampled grassland sites are characterised by 
different successional stages, from recent and species-poor arable sites to old species-
rich semi-natural grasslands with a 300-year grazing history (Johansson et al. 2008). 

Vegetation data 

With the help of aerial photographs, present-day land use maps, and field inventories, 
299 grazed grassland sites were identified in the study area (Figure 3). The sites were 
categorised into three grassland age classes on the basis of their grazing continuity: 5-
15 years (young grasslands), 16-50 years (intermediate-aged grasslands), and >50 years 
(old grasslands). From these 299 sites, 60 sites (20 per grassland age) were randomly 
selected. The sampling was limited to sites with dry grassland vegetation, from which 
a total of 52 grassland sites (17 young, 18 intermediate, and 17 old) matched these 
criteria and were used for vegetation and remote sensing sampling in Papers I, III, and 
IV. In Paper II, the 17 grassland sites representing old grasslands were used (Figure 
3). 

In each selected grassland site, two sampling points were randomly positioned in open 
grassland vegetation (not covered by shrubs or trees), with the condition that they 
should at least be 25 m apart, 13.5 m from the site boundary, and 13.5 m from 
shrubs or trees higher than 0.5 m. This selection process led to a total of 104 plots in 
Papers I, III, and IV and 34 plots in Paper II. 

For all studies, the vegetation sampling was carried out between May and July 2011. 
In Papers I and III, a 4 m × 4 m sampling area was centred over each sampling point. 
Each of the plots was divided into a grid of 16 (1 m × 1 m) sub-plots within which all 
non-woody vascular plant species were recorded. In Paper IV, a 1 m × 1 m sampling 
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area was centred over each sampling point, which was divided into a grid of 100 (0.1 
m × 0.1 m) sub-plots. For Paper II, two sizes of sampling areas were centred over each 
coordinate point: (a) a 2 m × 2 m sampling area nested within (b) a 4 m × 4 m 
sampling area. For an overview of the sampling sizes, see Table 1. 

 

Figure 3 (a) The study area is located in the south-east of Sweden on (b) the Baltic island of Öland. (c) 
A total of 299 grassland sites were identified in the study area (green) from which 52 were selected for 
vegetation and remote sensing sampling (red). 

Remote sensing data 

WorldView-2 

In Paper II, data from the multispectral high spatial WorldView-2 satellite was used. 
The data were acquired on 21 May 2011. The satellite delivers eight-band 
multispectral imagery: 400-450 nm (coastal blue), 450-510 nm (blue), 510-581 nm 
(green), 585-625 nm (yellow), 630-690 nm (red), 705-745 nm (red edge), 770-895 
nm (NIR1), and 860-1040 nm (NIR2), with a spatial resolution of 2 m. The image 
was ortho-rectified and geometrically corrected by the satellite data providers 
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(DigitalGlobe). The pixel digital numbers (DNs) were converted to top-of-
atmosphere (TOA) band averaged reflectance according to Updike and Comp 
(2010). 

HySpex 

In Papers I, III, and IV, the remote sensing data were acquired on 9 July 2011 using 
two HySpex hyperspectral spectrometers (Norsk Elektro Optikk AS, Lörenskog, 
Norway). Twenty-five flight lines were recorded in a push-broom scanning mode at 
an approximate flight altitude of 1500 m. In order to minimise illumination effects, 
all flight lines were conducted either from north to south or from south to north. The 
two HySpex spectrometers (VNIR-1600 operating over the 414-991 nm range and 
the SWIR-320m-e operating over the 966-2501 nm range) measured the reflectance 
in 416 wavebands with a spectral resolution (i.e. bandwidth of spectral channels) of 
3.7 nm (VNIR-1600) and 6.0 nm (SWIR-320m-e). The image data were 
geometrically corrected by the data providers (Terratec AS, Lysaker, Norway) using 
the PARGE software (Schläpfer and Richter 2002) with an approximate accuracy of 
0.3 m. The imagery was also atmospherically and topographically corrected using the 
ATCOR-4 software (Richter and Schläpfer 2002). The conversion of radiance into 
reflectance was based on the Fontenla-2011 solar irradiance spectrum (Fontenla et al. 
2009, Fontenla et al. 2011). In order to match the sensor characteristics (i.e. spatial 
and spectral resolution) between the two HySpex sensors, the VNIR-1600 imagery 
data were spectrally resampled to 6.0 nm and spatially resampled to 1 m × 1 m. This 
led to 353 wavebands. From the 353 wavebands 108 wavebands (Paper I and III) and 
147 wavebands (Paper IV) were deleted, because of strong atmospheric interferences 
or detector overlap, leading to a total number of 245 wavebands used in Papers I, III, 
and 269 wavebands used in Paper IV. 

In Paper II, spectral data were extracted from six different pixel windows for each 
sampling point, ranging from 1 × 1 pixel to 11 × 11 pixels using the WorldView-2 
imagery. The mean spectral value of each single WorldView-2 waveband was 
calculated for all pixels falling within the individual pixel windows (Table 1). 

For Papers I and III, a pixel window of 8 × 8 pixels was centred on each of the 104 
sampling points. The mean spectral value for all pixels falling within each pixel 
window was extracted for each waveband (Table 1). 

In Paper IV, a pixel window of 3 × 3 pixels was centred on each of the sampling 
points and the mean spectral value for each waveband was extracted. For an overview 
see Table 1. 
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Additional data 

In order to acquire information about local environmental conditions, additional data 
were gathered for each sampling area manually in the field. For Paper IV, each 
vegetation sampling area (1 m × 1 m) was divided into four 0.5 m × 0.5 m sub-plots, 
in which the grass cover was estimated. Subsequently, a mean within-plot value for 
grass cover was calculated for each sampling area. For Paper I, the average cover 
fraction of litter and soil was calculated from the estimated cover values for each 1 m 
× 1 m sub-plot within the 4 m × 4 m sampling area (Table 1). 

Field layer height (FLH) measurements were also used in Paper I. FLH measurements 
were conducted in one 1 m × 1 m sub-plot within the sampling area by measuring 
the height of the vegetation at 100 points within a regular grid with a 0.1 m grid cell 
size (Table 1). 

In Paper IV, values for specific leaf area (SLA) were assigned to each plant species 
recorded in the 1 m × 1 m sampling areas. The trait information was compiled from 
the LEDA trait data base (Kleyer et al. 2008) and missing values (approx. 9% of the 
species) were obtained using the multivariate imputation by chained equation 
method, MICE (Taugourdeau et al. 2014). 

In Papers I, III, and IV, Ellenberg indicator values for soil nutrient (Ellenberg N) and 
moisture (Ellenberg M) availability were assigned to each plant species (Table 1). The 
information was extracted from the JUICE data base (Tichý 2002). Four species were 
missing in the data base, so we took the information from the original source 
(Ellenberg et al. 1991). 

Analyses 

Preparation of vegetation data 

A frequency-weighted mean value, CWM, (Garnier et al. 2004) was calculated for 
SLA (Paper IV) and for both Ellenberg indicator values (Ellenberg N, Ellenberg M) 
for each plant community (Paper I and III): 

 

𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥) = ∑ 𝑝𝑝𝑖𝑖 × 𝑥𝑥𝑖𝑖𝑖𝑖   

where pi is the relative frequency of the ith species and xi is Ellenberg index value of 
the ith species. 
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Table 2 Overview of data and methods used in Papers I-IV 

Paper I Paper II Paper III Paper IV 

Spectral sensor HySpex WorldView-2 HySpex HySpex 

Vegetation sampling area 4m × 4m 2m × 2m 
4m × 4m 

4m × 4m 1m × 1m 

Spectral sampling area 8m × 8m 3m × 3m 
5m × 5m 
7m × 7m 
9m × 9m 
11m × 11m 

8m × 8m 3m × 3m 

Dependent variable SR 
iSDI 

Bray-Curtis dissimilarity Ellenberg mN 
Ellenberg mM 

Grassland successional stages 

Explanatory variable Spectral heterogeneity 
Spectral reflectance 

Difference in NDVI 
Difference in reflectance of 
single wavebands 

Predefined VIs 
Waveband-selected VIs 
Spectral reflectance 

Spectral reflectance 

Method OLSR 
PLSR 

OLSR 
PLSR 

OLSR 
PLSR 

PLS-DA 

Resulting variable Prediction quality (RMSEP, 
R2Val) 

Prediction quality (RMSEP, 
R2Val) 

Prediction quality (RMSEP, 
R2Val) 

Classification accuracy (kappa, 
overall accuracy) 
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In Papers I and IV, species richness (SR) was calculated as the sum of all species 
present in a vegetation sampling area (1 m × 1 m in Paper I, 4 m × 4 m in Paper IV). 
In Paper I, the inverse Simpson’s diversity index (iSDI) was also calculated for each 
plant community as: 

 

iSDI= 1 ∑ pi
2S

i=1⁄   

with S being the number of species in a sampling area, and pi the proportion of the 
ith species in a sample (Simpson1949). 

 

For Paper II, the abundance-based Bray-Curtis dissimilarity index was calculated to 
quantify the dissimilarity in species composition between all pairs of plots (Clarke et 
al. 2006): 

 

∑�𝑎𝑎𝑎𝑎𝑎𝑎�𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑖𝑖𝑖𝑖�� �𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑖𝑖𝑖𝑖��   

with x being the number of species i in plot j and k. The Bray-Curtis index was 
calculated for each pair of vegetation sampling areas in Paper II (2 m × 2 m, 4 m × 4 
m). 

Preparation of spectral data 

In Papers I, II, and III, spectral vegetation indices (VIs) were calculated from the 
HySpex data (Papers I and III) and WorldView-2 data (Paper II). A spectral 
vegetation index can provide an approximate measure of the vegetation parameter of 
interest by combining data from one or more spectral wavebands into a single value 
(Dorigo et al. 2007). 

In Paper I, the NDVI was calculated from one waveband in the red (740 nm) and 
one from the NIR (860 nm) spectral region (Rouse et al. 1974). In Paper II, three 
normalised difference-based VIs were calculated: (a) NDVI1 based on the NIR 1 and 
red wavebands, (b) NDVI2 based on the NIR 2 and red wavebands, and (c) NDRE 
based on the red-edge and red wavebands. For Paper III, two main categories of VIs 
were used: (a) predefined VIs and (b) waveband-selected VIs. For the first category, 
23 predefined VIs were selected (Table 2 in Paper III) that have previously shown a 
good capability to predict various vegetation properties (Huete et al. 2002, 
Thenkabail et al. 2002, Roberts et al. 2011, Thenkabail et al. 2013). The second 
category consists of three families of waveband-selected VIs (Table 2 in Paper III), 
which are calculated using all possible two-paired combinations of the HySpex 
wavebands (29,890 combinations). 
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In Paper I, the spectral variability for each sample was derived by conducting a 
principal component analysis for all pixels (n = 64) falling within a spectral sampling 
area (Singh and Harrison 1985). The spectral variability was calculated by using the 
mean Euclidean distance from the centroid for the first five principal components. 

In Paper II, the Euclidean spectral difference for each individual waveband and VI 
between all pairs of same-sized pixel windows (2 m × 2 m, 4 m × 4 m) were 
calculated (Table 1). 

Statistical analysis 

For Papers I-IV, the vegetation and spectral data sets were equally split into a 
calibration data set (also called training data set) and a validation data set. The 
calibration data set was used for calibrating the corresponding model, while the 
validation data set was used to test the calibrated model on an independent data set. 

In Papers I-III, univariate regression approaches were used to calibrate linear 
regression models. In Paper I the relationship between spectral heterogeneity and 
species richness and Simpson’s diversity was tested. For Paper II, the difference in the 
NDVI vegetation index was related to Bray-Curtis species dissimilarity (Paper II) and, 
in Paper III, predefined and band-selected vegetation indices were related to Ellenberg 
indicator values for nutrient and moisture availability. In these three papers the 
calibration models were validated using a reduced major axis regression RMA (Cohen 
et al. 2003), which is a Type-II regression modelling approach. 

Another modelling approach used in all four papers is partial least squares regression, 
PLSR (Wold et al. 1994). PLSR allows data sets with many highly correlated 
explanatory variables to be statistically analysed, and is suitable when the number of 
explanatory variables exceeds the number of samples in the data set (Cramer 1993, 
Carrascal et al. 2009, Dormann et al. 2013). PLSR is based on the assumption that 
only a few variables influence the process that is being studied. Information regarding 
the explanatory variables is summarised into a few latent variables (LV) by finding the 
loading weights for each explanatory variable that maximise the covariance between 
the explanatory variables and the dependent variable. In Papers I, III, and IV, the 
explanatory matrix consists of wavebands from the HySpex imagery while, in Paper 
II, the explanatory matrix is constructed by the between-plot spectral differences for 
all WorldView-2 wavebands. Whereas in Papers I-III the dependent variable is of 
continuous character, in Paper IV the dependent variable is of binary character. For 
binary variables, PLSR can be used for discriminatory purposes (i.e. partial least 
squares discriminant analysis, PLS-DA; Barker and Rayens 2003). 
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Results and discussion 

Plant diversity 

In Paper I and II, I have examined the extent to which remote sensing imagery can be 
used to predict plant species alpha diversity in dry grazed grasslands belonging to 
different stages in the arable-to-grassland succession (Paper I), and plant species beta 
diversity in old semi-natural grasslands (Paper II). The results of Paper I show that 
alpha diversity (measured as species richness, Simpson’s diversity) can successfully be 
predicted using hyperspectral remote sensing imagery based on information from all 
wavebands and based on a subset of wavebands. In Paper II the beta diversity in old 
semi-natural grasslands could successfully be predicted by spectral dissimilarity based 
on multispectral satellite data. 

Alpha diversity 

Significant correlations (R2
P) between the predicted and field-observed plant diversity 

measures were found for both (a) the models based on spectral reflectance from all 
wavebands (Figure 4 a,b), and (b) the models based on spectral reflectance from a 
subset of wavebands (Figure 4 c,d). The relative prediction error (RMSEP) for all four 
models (Figure 4) was approximately 20%. However, a slight decrease in prediction 
quality (R2

P, RMSEP) occurred for both alpha diversity measures when the reduced 
spectral dataset (Figure 4, c,d) was used. 

Although Fava et al. (2010) reported an improvement of the prediction quality by 
reducing the number of wavebands, the results of Paper I are not in line with these 
findings. Using a subset of wavebands may have led to a loss of information on the 
environmental variables influencing the alpha diversity, which may have led to a 
slightly worse prediction quality compared with the full set of wavebands. 

Spectral variability as measure for environmental heterogeneity did not result in a 
successful prediction model for both alpha diversity measures. The correlation 
between predicted and field-observed diversity measures was not significant, and the 
prediction error was above 30% for both species richness and Simpson’s diversity. 

The poor relationship between spectral heterogeneity and species alpha diversity may 
be associated with the  spatial resolution of the spectral data (1 m × 1 m) being too 
coarse to characterise the environmental heterogeneity influencing the fine-scale alpha 
diversity in dry grasslands. Another reason for the poor relationship may be the 
discrepancy in the vegetation (4 m × 4 m) and spectral sampling area (8 m × 8 m). 
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Figure 4 Correlations between predicted and field-observed (a, c) log (species richness) (SR) and (b, d) 
inverse Simpson’s diversity (iSDI). The predictions are based on spectral reflectance: (a, b) predicted 
versus field-observed correlations for the PLSR model based on all wavebands (n = 245); (c, d) predicted 
versus field-observed correlations for the model based on selected important wavebands (n = 25 for SR or 
35 for iSDI). The normalised prediction error (RMSEP) indicates the quality of the models in predicting 
the observed alpha diversity measures from sites that were not included in the calibration procedure of 
the model. The squared correlation coefficient (R2P) indicates the fit between the predicted and observed 
values of the validation. Values are based on the validation subset (n = 51). The successional stage of the 
grassland plots is also displayed (○ young, ∆ intermediate, and + old). Black lines indicate the 
relationship between the predicted and the field-observed values. 
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Beta diversity 

Positive associations between fine-scale plant species beta diversity and spectral 
dissimilarity in NDVI values were found for both tested vegetation sampling areas (2 
m × 2 m, 4 m × 4 m) (Figure 2 in Paper II). Significant positive correlations between 
the predicted and observed species beta diversity were found for both vegetation 
sampling areas and all tested spectral sampling areas (Figure 5 and Table 2 in Paper 
II). For larger vegetation sampling areas, the relationships between spectral 
dissimilarity and species beta diversity were stronger than for the smaller spectral 
sampling areas. The results in Paper II also show that the ability of spectral data to 
predict species beta diversity decreases when the ratio of spectral sampling area to 
vegetation sampling area increases (Figure 5). 

The results from Paper II suggest that spectral sampling areas of approximately the 
size of the vegetation sampling areas are most suitable for characterising the 
environmental conditions shaping the pattern of species composition at fine scales. 
Spectral reflectance from increasingly larger spectral sampling areas may have been 
influenced by an increasing environmental heterogeneity, leading to an attenuation of 
the relationship between spectral dissimilarity and plant species beta diversity in old 
semi-natural grasslands. 

 

Figure 5 The correlation between predicted and observed plant species beta diversity (measured as Bray-
Curtis dissimilarity) for the 2 m × 2 m (circle) and the 4 m × 4 m (square) vegetation sampling areas. 
The predicted values are based on linear regression models using differences in NDVI values (open 
symbols) between samples and partial least squares regression models using the differences in all single 
wavebands (filled symbols) of the WorldView-2 satellite sensor. 
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Environmental conditions in grassland habitats 

In Paper III, I evaluated the potential of airborne hyperspectral imagery to estimate 
Ellenberg indicator values as proxies for environmental conditions in grassland 
vegetation. The prediction quality of three different models (based on predefined VIs, 
waveband-selected VIs, and full set of hyperspectral wavebands) was compared using 
OLSR and PLSR modelling. 

Significant associations were found between predefined VIs and both the Ellenberg 
indicator values for soil nutrient availability, and moisture availability (Figure 6a). 
However, waveband-selected VIs performed much better for both Ellenberg 
indicators (Figure 6b). The prediction models using the full set of wavebands 
performed best (Figure 6c). Methods based on the the full set of wavebands might be 
less sensitive to sensor noise than methods based on a small number of wavebands 
(e.g. VIs) (Atzberger et al. 2010). While the difference in prediction quality between 
the model based on the full set of wavebands and that based on waveband-selected 
VIs is only minor, the model complexity increased dramatically using the full set of 
wavebands. An analysis of the VIP values for the full set of wavebands showed that 
wavebands from the full visible to shortwave infrared electromagnetic spectrum are 
important for predicting Ellenberg indicator values for nutrient and moisture 
availability in dry grazed grasslands (Figure 6 in Paper III). 

Overall, Ellenberg indicator values for nutrient and moisture availability could be 
successfully predicted by hyperspectral measurements in dry grazed grassland habitats. 
The results also demonstrate that a comparably high prediction quality can be 
achieved with a less complex model (waveband-selected VIs), which can be desirable 
for situations when computer resources are not sufficient for applying more complex 
models. 
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Figure 6 Field-observed versus predicted community-weighted mean Ellenberg indicator values for 
nutrient (Ellenberg mN) and moisture (Ellenberg mM) availability in grasslands representing different 
stages in the arable-to-grassland succession using (a) predefined VIs, (b) band-selected VIs, and (c) the 
full set of 245 HySpex wavebands for the validation subset (n =51). 
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Grassland successional stages 

In Paper IV, I tested whether grasslands belonging to different stages of the arable-to-
grassland succession (young, intermediate-aged, and old) can be spectrally 
discriminated with the help of hyperspectral imagery, using PLS-DA, a recently 
introduced method in remote sensing-based classification of vegetation. 

The PLS-DA model based on the full set of wavebands resulted in an overall accuracy 
of 77% (Figure 7). The VIP values as indicators of the relative importance of single 
wavebands in the PLS-DA models were used to identify 177 out of the 269 
wavebands that are most influential for the discrimination (Figure 4 in Paper IV). 
These wavebands were used in a second PLS-DA model, which resulted in an overall 
accuracy of 85% (Figure 7). 

Overall, grasslands belonging to different stages of the arable-to-grassland succession 
were successfully identified by their spectral reflectance. The results also suggest that a 
careful pre-selection of wavebands can improve the accuracy of the spectral 
discrimination. 

 

Figure 7 Accuracy measurements for the partial least squares discriminant analysis using all HySpex 
wavebands (dark grey) and a subset of wavebands (light grey) for grasslands belonging to three grassland 
successional stages, represented by young, intermediate aged, and old grassland plots. The producer 
accuracy represents the probability that an age class is correctly classified. The user accuracy represents 
the probability that a classified age class is correct. The kappa statistic value assesses the inter-classifier 
agreement.
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General discussion 

Heterogeneity 

European dry grazed grasslands exhibit a high degree of environmental heterogeneity 
(Habel et al. 2013, Dengler et al. 2014). Environmental heterogeneity as an 
important driver of grassland diversity can act at different spatial scales. For example, 
heterogeneity of landscape elements surrounding grasslands (~1 km2) are important 
for local diversity, as they serve as stepping stones for dispersing species (Fjellstad et al. 
2001, Rocchini et al. 2009, Dengler et al. 2014). Environmental heterogeneity at 
local scales (~1 m2) resulting from grazing (trampling, biomass removal) has been 
identified as an important factor for fine-scale diversity in grasslands (Dengler et al. 
2014, Reitalu et al. 2014). 

In Paper I, I used spectral heterogeneity as a proxy for environmental heterogeneity 
(Palmer et al. 2002) in order to predict fine-scale diversity, but this approach did not 
result in a successful model. A likely reason for this outcome is the discrepancy in 
grain size of the remote sensing and vegetation sampling areas. Testing at four 
different scales, Costanza et al. (2011) showed that the relationship between spectral 
heterogeneity (measured as NDVI) and species richness can vary greatly. A strong 
dependency of the environmental and spectral heterogeneity relationship on the 
actual sampled area has also been observed in other studies (Viedma et al. 2012, 
Rocchini et al. 2014). 

In Paper II, I illustrated the effect of vegetation and spectral sampling area and the 
strength of the relationship between an ecological parameter (here: plant species beta 
diversity) and spectral variables (here: spectral dissimilarity). The relationship between 
the ecological and spectral variables was positive, which is in line with the results of 
previous studies (Rocchini 2007, Hall et al. 2012, Hernández-Stefanoni et al. 2012, 
Rocchini et al. 2014). I also showed that larger spectral sampling areas are better for 
estimating plant species beta diversity than smaller spectral sampling areas, 
corroborating the results from Rocchini et al. (2010). One explanation could be the 
larger effect of random disturbances in smaller spectral sampling areas, leading to the 
weaker relationships between spectral dissimilarity and beta diversity (Rocchini et al. 
2010). 

In Paper II, I found no significant difference in prediction qualities between small 
and large vegetation sampling areas, possibly due to the nested vegetation sampling 
(small sampling area within a large sampling area). Besides environmental 
heterogeneity, many other variables such as grassland age (Johansson et al. 2008), soil 
nutrient availability (Reitalu et al. 2014), or management scheme (e.g. type of 
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livestock; Grant et al. 1985) are important drivers of fine-scale plant diversity. This 
may limit the use of a single spectral measure (i.e. spectral heterogeneity) as predictor 
for grassland plant diversity. 

Explanatory variables 

In all studies in this thesis, I found strong relationships between ecological grassland 
parameters and spectral reflectance. Although the variables of interest (i.e. plant 
diversity, habitat environmental conditions, grassland successional stage) were 
different in the four papers, the potential factors contributing to a successful 
estimation of them were similar. 

The factors causing differences in reflectance among our sampled areas can be divided 
into four broad categories: (a) biophysical, (b) biochemical, (c) environmental, and 
(d) species compositional drivers. Biomass, leaf area, field layer height, specific leaf 
area, and leaf dry matter content belong to the first category. The second category 
includes plant water content and leaf chlorophyll content, while soil nutrient and 
moisture availability, cover of bare ground and plant litter belong to the third 
category. Finally, differences in species richness and composition can be assigned to 
the last category. All these grassland vegetation characteristics were assumed to differ 
between our sampled grassland plots, and are known to affect spectral reflectance of 
grasslands directly (e.g. chlorophyll content) or indirectly (e.g. species richness). 

In Papers I, III, and IV, wavebands in the visible part of the electromagnetic spectrum 
were identified as important for the predictive models. As stated in the chapter 
‘Remote sensing of grassland vegetation’, this spectral region is sensitive to changes in 
plant pigment content, and particularly plant chlorophyll content. The continuous 
removal of nutrients due to grazing leads to a strong gradient in soil nutrient 
availability in our study system (Prentice et al. 2007), which can cause variations in 
vegetation chlorophyll content (Filella and Peñuelas 1994). Furthermore, a decrease 
in soil nutrient availability leads to a decrease in vegetation biomass during the arable-
to-grassland succession (Chen et al. 2009, Klaus et al. 2012), which could explain the 
importance of wavebands in the NIR spectral region in Papers I-IV. For instance, in 
meadows with high vegetation cover, the effective portions of spectra for estimating 
aboveground biomass are within the red-edge and NIR spectral regions (Chen et al. 
2009). The identified wavebands in the SWIR spectral region in Papers I, III, and IV 
also indicate that the grassland sites have different levels of canopy water content, as 
the SWIR spectral region is particularly sensitive to changes in plant water content 
(Riaño et al. 2005, Psomas et al. 2011). Differences in leaf nitrogen concentration, 
caused by soil nutrient availability, also affect grassland spectral responses in the 
SWIR spectral regions (Mutanga et al. 2004, Klaus et al. 2012). 
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Besides the above mentioned grassland characteristics, other factors may also be 
related to the variables of interest in Papers I-IV. A reduction in management 
intensity (grazing or mowing) is followed by an increase in field-layer height and 
altered light conditions in the vegetation (e.g. Werger et al. 2002). Such changes can 
effect species composition (Kull and Zobel 1991, Luoto et al. 2003) leading to 
dominance of competitive species. An increasing difference in grazing intensity 
between plots may be accompanied by an increasing between-plot difference in 
spectral reflectance, which may explain the relationships between plant species beta 
diversity and spectral dissimilarity found in Paper II. A decrease in grazing intensity 
can increase the accumulation of litter within grasslands (Jensen and Gutekunst 
2003), which may affect the spectral response of vegetation canopies (Asner 1998). 

Prediction quality 

The spectral reflectance of vegetation canopy is always jointly affected by plant species 
composition and additional site properties not related to species composition 
(Feilhauer and Schmidtlein 2011). Hyperspectral reflectance data are complex and 
not easy to analyse with univariate regression methods, as the wavebands are highly 
correlated to each other and certain wavebands contain a high degree of random 
noise. Another difficulty arising from the use of hyperspectral reflectance data is the 
dimension problem, which describes the problem of having more explanatory 
variables p (e.g. wavebands) than measured samples n (Mehmood et al. 2012). PLSR 
represents a multivariate method able to deal with such problems, but a very large p 
and small n can still decrease the prediction quality of PLSR (Mehmood et al. 2012). 
From a prediction perspective, a large number of irrelevant variables may result in a 
low prediction accuracy (Höskuldsson 2001) and may complicate model 
interpretation. 

As presented in Paper I, although a pre-selection of wavebands slightly decreased the 
prediction quality of the models, the model complexity dropped significantly. A lower 
model complexity makes the developed models more parsimonious and potentially 
more replicable. In line with this, as presented in Paper III, prediction models based 
on only a small subset of wavebands (here: waveband-selected VIs) can predict habitat 
environmental conditions almost as precisely as models based on many spectral 
wavebands but with a much lower model complexity. In addition, in Paper IV, it is 
shown that pre-selecting wavebands leads to better classification results when using 
hyperspectral data. A classification improvement of about 8% was reached by 
reducing the number of wavebands by more than 30%, thereby reducing model 
complexity. These results are in line with previous studies, which found prediction 
quality improved when the full spectral information was used instead of VIs, or when 
only relevant wavebands were selected from the spectrum of wavebands (Hansen and 
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Schjoerring 2003, Darvishzadeh et al. 2008, Peerbhay et al. 2013, Li et al. 2014, 
Ullah et al. 2014, Yi et al. 2014). However, results from Paper III illustrate that 
differences in prediction accuracy of models based on waveband-selected VIs can be 
marginally lower, but show a much lower model complexity. This may have 
implications for the selection of prediction methods for ecological parameter in the 
future, since it is desirable to find the balance between model complexity and model 
accuracy. 
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Thesis conclusion 

This thesis shows that remote sensing is a valuable tool in grassland research. I was 
able to predict key ecological grassland parameters, and identified the most suitable 
prediction methods for each parameter. These findings can give useful guidance for 
the selection of prediction methods in future studies. However, there are still many 
uncertainties and undiscovered variables in both ecological and remote sensing 
research, which need to be investigated in order to fully establish this interdisciplinary 
approach in grassland research. Technical and analytical developments in recent years 
allow ecologists and remote-sensing scientists to develop integrative projects in order 
to explore the full potential of remote sensing data for grassland research in future 
studies. 

The specific conclusions for each of the study aims and the corresponding papers in 
which they were addressed are as follows: 

• The results from Papers I and II revealed that both hyperspectral airborne 
and high spatial multispectral satellite data are able to predict grassland 
diversity. Paper I showed that models based on the spectral information from 
many wavebands deliver better prediction qualities than models based on 
spectral heterogeneity. The results from Paper II revealed a significant 
positive association between spectral dissimilarity and fine-scale plant species 
beta diversity, suggesting that WorldView-2 satellite data may contribute to 
the development of improved methods in basic ecological grassland research. 

• In Paper III, three different hyperspectral remote sensing approaches were 
evaluated to predict Ellenberg indicator values. The results suggest that, when 
combined with field-based inventories, hyperspectral remote sensing data has 
the potential to serve as a decision-support tool helping conservation planners 
to estimate grassland Ellenberg indicator values over wide areas in agricultural 
landscapes. 

• In Paper IV, I demonstrated that hyperspectral remote sensing data can be 
used to discriminate between dry grazed grassland vegetation belonging to 
different stages of arable-to-grassland succession. The results indicate that the 
applied approach (i.e. PLS-DA) may have potential for the remote sensing-
based mapping of grasslands belonging to different successional stages over 
larger areas. 
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Outlook 

Remote sensing of vegetation is a broad research field in which significant progress 
has been made in recent decades. However, the complexity of interactions between 
the vegetation canopy and the solar irradiation is not yet fully explored. This thesis 
focused on the potential of remote sensing imagery to estimate and predict ecological 
parameters in grassland ecosystems. Although the results are promising, several major 
challenges remain, which need to be addressed in order to improve the strength of 
ecological remote sensing (Roughgarden et al. 1991, Turner et al. 2003, Staenz 2009, 
Wang et al. 2010, Kuenzer et al. 2014, Turner et al. 2015).  

Firstly, there are still interdisciplinary knowledge gaps between remote sensing 
specialists, grassland practitioners and conservationists, and the common 
understanding among the disciplines has to be deepened. 

Secondly, although the technical development of the sensors, data handling, and data 
processing has been improved, further work is needed. For instance, remote sensing 
data provided must be pre-processed in such a way that researchers not skilled in 
remote sensing can use them. Automated processing and analysis tools must also be 
developed for the same reason. 

Thirdly, the trend towards open access of remote sensing data that can be observed in 
the USA should be continued, and the spread of such data should be promoted across 
national borders. The freely available data from the upcoming Sentinel satellite 
missions are a big step in this direction. 

Finally, in order to be able to predict future ecosystem changes, sensor data must be 
collected over long time series and large spatial coverage, which needs to be assured by 
policy makers. 
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