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Abstract—In this paper we investigate the frame-error cor-
recting performance of two newly developed, non-binary belief
propagation based, soft-in/soft-out decoding algorithms when
decoding Reed-Solomon codes. We present results for the
AWGN channel indicating that non-binary belief propagation
can come close to the performance of the binary adaptive Belief-
Propagation algorithm or even slightly better when decoding
short Reed-Solomon codes.

I. INTRODUCTION

Since their discovery in 1960 [1], Reed-Solomon (RS)
codes have been probably the most widely applied error-
correction codes (ECCs) in many digital communications and
recording systems. Besides numerous applications in the past,
RS codes are still incorporated into today’s state-of-the-art
communications systems such as WiMAX, DVB, DAB and
the newly developed WirelessHD standard [3]. Due to their
ability to correct burst errors and the existence of efficient
hard-decision based algebraic en- and decoding algorithms, RS
codes are still favored over other codes in environments where
delay sensitive services combined with robust communication
become necessary. Moreover, in order to cope with low
latency requirements in multimedia networks, PHY headers
and control messages of MAC protocols demand the usage of
shorter block lengths. With their property of being maximum-
distance-separable (MDS) codes, RS codes therefore provide
good error-correcting performance also at relatively small
block lengths.

As the rediscovery of low-density parity-check (LDPC)
codes in the early 90’s showed, the use of long block codes
(in order of tens of thousands bits) combined with iterative,
message-passing algorithms allows to asymptotically approach
the capacity of the AWGN channel. However, applying the
standard belief propagation (BP) decoding to RS codes leads
to poor error-correcting capability due to many short cycles
in the high-density parity-check (HDPC) matrices. In order
to improve the performance of BP also for HDPC matrices,
Jiang and Narayanan proposed in [4] the iterative, adaptive
belief propagation (ABP) algorithm which operates in GF (2).
This algorithm compares favorably with other soft-decision
decoding algorithms and can be regarded as a fundamental step
towards message passing decoding of RS codes. El-Khamy
and McEliece later concatenated in [6] ABP with the Koetter-
Vardy [7] algebraic soft-decision decoding (ASD) algorithm,

which enabled them to achieve near optimal performance
for relatively short, high-rate codes. In [8] a combination
of ABP and the ordered-statistics-decoding (OSD) was used
to improve the error correcting capability of medium length
codes. However, except for the original proposed ABP decoder
all of them are restricted to provide only hard decisions as
output information (SIHO).

In this paper, we investigate two newly developed soft-
in/soft-out (SISO) decoding algorithms. One of them utilizes
the matrix adaption step while performing belief propagation
decoding in higher order Galois fields (GF-ABP). It has
been demonstrated in [10] that GF-BP based decoding can
improve error correcting performance compared to binary BP
algorithms especially for shorter LDPC codes. As bits are
grouped together in the GF-BP decoding approach, it is quite
reasonable to assume that GF-BP decoding can perform better
than binary decoding on channels with noise bursts. In a
second approach we extend the idea of multiple-bases belief
propagation (MBBP) [12] also to higher order Galois fields
(GF-MBBP). Utilizing MBBP could especially become useful
in next-generation’s many-core based wireless communica-
tions systems as the decoding algorithm can be mapped easily
on several computing cores.

The remainder of this work is organized as follows. Some
preliminaries including the system model are given in Section
II. The investigated algorithms are presented in Section III.
Simulation results and discussions are provided in Section
IV-B. Finally, Section V concludes the paper and suggests
further research directions.

II. PRELIMINARIES

A. Notation and properties of RS codes

Let RS(N,K) be a Reed-Solomon code which is defined
over a finite field GF (2q), q ∈ N and let β be a primitive
element of the field. K represents the number of information
symbols, while the block length N is equal to N = 2q − 1.
Let m = [m1,m2, . . . ,mK ] be a message of K information
symbols. These symbols can be associated with an information
polynomial

m(x) = m1 +m2x+ . . .+mKxK−1, (1)



which is encoded through multiplication by a generator poly-
nomial

g(x) =
N−K∏
j=1

(x− βj) (2)

resulting in the polynomial c(x) = m(x)g(x). By this def-
inition, each codeword c = [c1, c2, . . . , cN ], ci ∈ GF (2q) is
interpreted as a code polynomial c(x). The decoder verifies
the validity of c by evaluating the well known parity-check
equation cHT

q = 0, with Hq being an (N −K)×N dimen-
sional matrix consisting of (N −K) codewords spanning the
dual code of RS(N,K):

Hq =


1 β . . . β(N−1)

1 β2 . . . β2(N−1)

...
...

. . .
...

1 β(N−K) . . . β(N−1)(N−K))

 . (3)

B. System model

Before describing the investigated decoding algorithms for-
mally, we first assume that the encoded symbols cj , (j =
1, . . . , N) are modulated using antipodal BPSK. Therefore,
each symbol cj ∈ GF (2q) is mapped into q binary symbols
(we assume normal basis representation for which the trans-
formation can be found, e.g., in [9]). The binary symbols are
transmitted over an AWGN channel (Fig. 1). On the receiver
side, the input values can be specified by:

rj,t = sj,t + nj,t, (t = 1, . . . , q) (4)

with nj being real valued additive white Gaussian noise.
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Fig. 1. System Model

C. Non-binary belief propagation - GF-BP

The binary BP algorithm as originally proposed in [2] has
found numerous application in the decoding of linear block
codes with sparse graph representations, as, e.g., LDPC codes.
In [14] it was shown that BP decoding for LDPC codes can
approach the Shannon limit for large block lengths. For shorter
ones an error-correcting improvement was first observed in
[10] by extending the BP algorithm to non-binary LDPC
codes. However, this improvement was achieved at the expense
of increased decoding complexity. In [11] a reduced complex-
ity GF-BP algorithm in the order of O(q log2 q) was there-
fore proposed, which is based on Fast-Fourier-Transformation
(FFT), enabling efficient decoding even of non-binary LDPC
codes defined over very large order Galois fields. In the fol-
lowing the Fourier transform decoding algorithm is described.

Suppose a non-binary LDPC code is given, having an
(N − K) × N parity-check matrix Hq. According to [11],

Hq can be described by a graph consisting of N variable and
N − K check nodes that are connected with each other by
edges if the corresponding entry hij ∈ GF (2q) (i being row,
j being column index) in Hq is non-zero. Decoding can be
accomplished by iteratively exchanging reliability information
(called messages) between variable and check nodes. In con-
trast to the binary algorithm each message is now a vector
representing a 2q-point discrete probability set rather than a
single value. Furthermore, these vectors are now permuted
and reordered each time they are sent from variable to check
nodes and vice versa (Fig. 2). Check node messages R

(l)
i→j
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vN

depermuted
permuted

( )l
j i→Q

( )l
i j→R

(0)
1F

F F F F F F
Π

variable nodes

check nodes

( )l
j i→Q ( )l

i j→R

(0)
2F (0)

NF

Fig. 2. Graph of a non-binary LDPC code

and variable node messages Q
(l)
j→i passed along the edges are

calculated in two stages according to the following decoding
equations:

1) Check node update:
a) Permutation and Fourier transform:

R̃
(l+1)
i→j =

∏
j′∈Vi\j

FFT[P (Q
(l)
j′→i)] (5)

b) Inverse Fourier transform and depermutation

R
(l+1)
i→j = P−1(IFFT[R̃(l+1)

i→j ]) (6)

2) Variable node update:

Q
(l+1)
j→i = γij F

(0)
j

∏
i′∈Cj\i

R
(l+1)
i′→j (7)

Notation:
l count index for GF-BP iterations
F

(0)
j initial prior probability vector of symbol j

γij normalization coefficient
Qj→i message vector passed from variable node

j to check node i
Ri→j message vector passed from check node

i to variable node j
Vi\j set of all variable nodes connecting to check

node i except for node j
Cj\i set of all check nodes connecting to variable

node j except for node i
P (.)/P−1(.) permutation / inverse permutation



Due to the structure of the Galois fields, the permutation block

P (Q
(l)
j′→i) can actually be implemented by cyclically shifting

downwards the column vector Q
(l)
j′→i, with the exception of

the first likelihood, which corresponds to the probability of
the coded symbol cj being zero. The number of cyclic shifts
is equal to the power of the primitive element that corresponds
to the entry hij . The

∏
(.)-operation then performs the term-

by-term multiplication of the Fourier transformed probability
values, where FFT(.) is a q-dimension two-point FFT.
After inverse transformation and depermutation (cyclically
upshifting) the results are sent back to the variable nodes.

Before the algorithm iterates on a matrix Hq, variable
node messages Q

(l)
j→i are initialized by the current symbol-

reliability values. In the first iteration of GF-BP decoding these
probabilities are given by the channel values:

F
(0)
j =


p(vj |cj = 0)
p(vj |cj = β0)

...
p(vj |cj = β2q−2)

 . (8)

As we assume BPSK transmission and all transmitted bits
being independent, they can be computed by:

p(vj |cj = x) =

q∏
t=1

p(rj,t|cj,t = xt) (9)

p(rj,t|cj,t = 1) ∝ e−
(rt−α)2

2σ2 , p(rj,t|cj,t = 0) ∝ e−
(rt+α)2

2σ2

(10)
with xt being the tth bit of the binary representation of
x, x ∈ GF (2q). The value of α is assumed to be known to the
receiver. During the last iteration (or meanwhile each variable
node update) posterior symbol-reliability values are calculated
according to:

F
(k+1)
j = γj F

(k)
j

∏
i′∈Cj

R
(l+1)
i′→j . (11)

The normalization factor γj ensures that∑
x∈GF(2q)

p(vj |cj = x)
.
= 1. (12)

Based on these posterior likelihoods a tentative decoding
decision can be made such that

ĉ
(k+1)
j = arg max

x∈GF(2q)
p(vj |cj = x). (13)

If ĉHT
q = 0 decoding stops and outputs ĉ; otherwise a new

iteration starts until a valid codeword is found or a maximum
number lmax of iterations is reached.

III. ITERATIVE DECODING OF REED-SOLOMON CODES
UTILIZING NON-BINARY BELIEF PROPAGATION

A. Non-binary adaptive belief propagation - GF-ABP

Due to the high density that parity-check matrices of RS
codes possess, off-the-shelf BP based decoding leads to poor
error-correcting performance as the large number of short

cycles counteracts the independence of messages exchanged
between variable and check nodes. To overcome this problem,
in [4] a modified version of the binary BP algorithm - namely
ABP - was proposed. Using ABP, the binary parity-check
sub-matrix corresponding to the (N − K)q least reliable
bits (LRBs) in Hb is reduced into an identity matrix before
standard BP decoding is applied. Hence, error propagation
from the unreliable bits is effectively reduced, which facilitates
ABP decoding also to improve the decoding performance of
linear block codes having HDPC matrices. Here we extend
the idea of adaptively changing the parity-check matrix to the
non-binary BP algorithm.

As pictured in Fig. 3 we are now separating between inner
GF-BP iterations indexed by l and outer matrix adaption steps
indexed by k. The maximum number of iterations therefore
amounts to kmaxlmax. Before GF-BP is going to be applied,
the kth parity-check matrix H

(k)
q is adapted in order to mini-

mize the adverse influence of less reliable symbols onto belief
propagation. This is accomplished by diagonalization of the
sub-matrix corresponding to the N −K least reliable symbols
(LRS), (as the matrix Hq has full rank it is always possible to
eliminate exactly N−K columns). Each of the LRS therefore
participates only in one parity-check equation, which improves
extrinsic information exchange originating from the more
reliable symbols. One general method to perform diagonaliza-
tion is to employ standard Gaussian-elimination over GF (2q)
having a polynomial complexity of O((N−K)N2). A second,
and more powerful method in particular for RS codes, is to
employ erasure decoding of the dual code RS⊥(N,N −K)
of a RS(N,K) code. As we know N −K positions in each
of the N − K parity check rows (corresponding to the LRS
part), the missing K positions can be determined using the
dual. Hence, each codeword found by dual code can serve as
a row in the parity-check matrix of RS(N,K). This method
provides a beneficial way for high throughput implementations
since all rows can be determined in parallel employing, e.g.,
the Forney algorithm [5].

Prior to the matrix adaption step, the set of LRS has to
be identified. For this purpose the most likely value of each
symbol

pj,max = max
x∈GF (2q)

p(vj |cj = x) (14)

is used for determining the overall order of the N symbols.
Employing appropriate sorting algorithms the complexity of
this step amounts to O(N log2 N). Different from GF-BP
presented in Section II-C we introduce two additional damping
coefficients δ and θ for GF-ABP. As the GF-BP algorithm is
only suboptimal when decoding dense parity-check matrices,
the additional parameters δ and θ attenuate the influence of
the extrinsic information. This is different from LDPC codes,
where both parameters are usually set to one as the GF-BP
decoding is considered to be optimal due to ideally nonexisting
short cycles.
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Fig. 3. Non-binary adaptive belief propagation (GF-ABP)

B. Non-binary multiple-bases belief propagation - GF-MBBP

Although from a practical implementation point of view
the different decoding steps of GF-ABP can be pipelined,
the MBBP approach introduced in [12] appears suitable for
efficient parallel implementations in next-generation many-
core systems. Instead of adapting H

(k)
q in a sequential manner,

MBBP employs BP decoding on k parallel parity-check ma-
trices. From the so generated list of codewords one is finally
selected by some metric criterion. In order to distinguish
different parity-check matrices [12] introduces the so called
cyclic group generators (CGG). A CGG is representative of
one group, which allows the generation of all other codewords
in this group by multiplication or shifting operations. The
CGG description can also be extended to RS codes. As they are
cyclic codes, the dual code is also cyclic. This means we can
construct an (N−K)×N full-rank parity-check matrices over
GF (2q) just by cyclically shifting a codeword belonging to the
dual of RS(N,K). Each row of the matrix then corresponds
to a different shift of the selected codeword. In [12] it was
observed that the use of redundant rows can not only be
advantageous for the BEC but also for the AWGN channel.
We therefore employed N × N matrices, where each row
represents one of the N possible shifts of the CGG. Employing
this method equal error protection is assured. Note that other
matrices of one group can be generated by multiplying the
CGG with elements from GF (2q)\{0}. However, for GF-BP
decoding purposes they are equivalent with each other, as the
multiplication implies a simply common downward/upward
shifting operation of the corresponding message vectors par-
ticipating in a parity-check equation.

The optimal choice of concurrent parity-check matrices for
GF-MBBP decoding is an open research problem. Recent
results for binary codes in [13] indicate that the stopping
set size of a parity-check matrix should be small in order
to obtain good error-correcting performance. Nevertheless,
finding stopping sets is a difficult task, in particular for codes
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defined over GF (2q). For the codes investigated within this
paper, we therefore focused on parity-check matrices generated
by CGGs from the dual, having smallest minimum distance
d⊥min = K + 1. Employing this restriction, the constructed
matrices have a small number of short cycles, which improves
BP decoding. Beside decoding aspects, the use of matrices
constructed by CGGs also saves significant amount of storage
memory since only one row (corresponding to N symbols in
GF (2q)) has to be stored for each matrix. As metric criterion
we selected the final codeword to be the most frequent one
from the list of codewords provided by the k concurrent GF-
BP decoders.

C. Extension by RS hard-decision decoder

In order to further improve decoding performance, [4] sug-
gested to extend the ABP algorithm with an additional, con-
catenated RS hard-decision decoder, as, e.g., the Berlekamp
Massey algorithm. This second decoder operates on an input



list of words assembled from the outputs of the ABP decoder
after each BP iteration. The final codeword ĉ is selected from
this newly generated list by comparing the Euclidean distances
(Fig. 5). Although such a decoder looses the desired soft-
output property, we also provide frame error rate curves for a
corresponding GF-ABP-BM decoder.

IV. RESULTS AND DISCUSSION

A. Cyclic group generators

In order to find the CGGs of a particular RS code, we
applied a modified brute-force search to the dual code. Instead
of comparing each and every value of a codeword while
searching the space of 2q(N−K) codewords of the dual, we
compared only the positions of the zero values of the current
indexed word (for each such zero-pattern one codeword as a
representative - which is the CGG - has to be stored). As
described in the previous section, all other codewords can
be computed from this CGG by shift and/or multiplication
operations. Employing this method, we were able to search
even the large space of approximately 109 codewords for the
dual of a RS(31, 25) code within one day. Table I summarizes
the results for the N × N parity-check matrices constructed
from these CGGs.

code rate #parity-check matrices #length-4 cycles
RS(7,5) 0.71 1 210

RS(15,11) 0.73 24 4185
RS(31,25) 0.81 546 104160

TABLE I
CONSTRUCTED PARITY-CHECK MATRICES FOR GF-MBBP

As for the RS(7, 5) only one N×N matrix exists, we inves-
tigated a second approach employing 7 parallel (N −K)×N
matrices. Each of them corresponds to one of the 7 possible
shifts of the matrix:

H(0)
q =

[
0 2 7 2 7 5 5
5 0 2 7 2 7 5

]
, (15)

and posses 10 length-4 cycles.

B. Simulation results

In Fig. 6-8 we compare the FER performance of the
ABP, GF-ABP and GF-MBBP decoding algorithms. In all
simulations the maximum number of outer iterations kmax was
set to 50. For the smaller RS(7, 5) code (=̂21 bits blocklength)
we can observe almost no difference between ABP and GF-
ABP when the number of inner iterations is lmax = 1.
Increasing the number of inner iterations to lmax = 5 leads
to an improvement of ≈ 0.2 dB for the GF-ABP approach.
Employing the GF-MBBP algorithm on the unique N × N
matrix degrades the performance compared to the GF-ABP
approach by ≈ 0.2 dB. However, observe that the 7 parallel
(N −K) × N matrices formed from equation (15) facilitate
the same good error-correcting capability as the GF-ABP with
lmax = 5.
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decoding applied to a RS(7,5) code using AWGN channel

Considering the RS(15, 11) code (=̂60 bits blocklength),
the GF-ABP algorithm is not able to provide the same FER
as the binary counterpart in FER regions above 10−6. As can
be observed, the extension of ABP by a hard-decision decoder
improves the error-correcting capability especially in lower
FER regions. Nevertheless, for the GF-ABP extended version
(GF-ABP-BM) we could not observe that large improvements.
Again, the GF-MBBP approach employing now 24 parallel
matrices gives the best FER performance without the usage
of an additional second decoder. Employing only half of
the matrices still provides comparable results with the ABP
decoder. Particularly the promising results in low FER regions
give rise to the question if the GF-MBBP decoding will exhibit
the same error-floor as it was observed for the ABP algorithm,
e.g., in [4].

For the RS(31, 25) code (=̂155 bits blocklength) neither
the GF-ABP nor the GF-MBBP decoder are able to reach the
ABP error-correcting performance. Compared with ABP the
coding gain of the GF-ABP decoder decreases by ≈ 1 dB and
for the GF-MBBP by ≈ 0.2 dB. Due to long term simulations
for the huge amount of 546 concurrent matrices, we are not
yet able to provide results in lower FER regions for that code.
However, we would like to point out here, that GF-BP based
decoding is much faster than the binary case. This can be
justified by two facts. First, employing higher order GF-BP
demands less permutations for the check-node operations as
the absolute number of entries in the parity check matrix is
much lower. Secondly, this lower number of permutations fa-
cilitates more localized operations like the FFT/IFFT operation
on each variable-to-check/check-to-variable node message. For



2 3 4 5 6 7 8 9
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

F
E

R

BM
ABP, 50/1
ABP−BM, 50/1
GF−ABP, 50/1
GF−ABP−BM, 50/5
GF−MBBP, mat=12 (NxN), max occ, 50/1
GF−MBBP, mat=24 (NxN), max occ, 50/1
ML simulation [4]

Fig. 7. Comparison of FER for BM, ABP, GF-ABP and GF-MBBP
decoding applied to a RS(15,11) code using AWGN channel

2 3 4 5 6 7 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/No (dB)

F
E

R

BM
ABP, 50/1
ABP−BM, 50/1
GF−ABP, 50/1
GF−ABP−BM, 50/5
GF−MBBP, dec7, mat=10 (NxN), 50/1
GF−MBBP, dec7, mat=546 (NxN), 50/1

Fig. 8. Comparison of FER for BM, ABP, GF-ABP and GF-MBBP
decoding applied to a RS(31,25) code using AWGN channel

practical VLSI implementations this property is quite useful.
Instead of routing each message in an individual way as for
the binary case, now, message vectors of size 2q are routed
the same way. Hence, the permutation network can be more
simplified and structured.

V. CONCLUSION

In this paper, we investigated the newly developed GF-ABP
and GF-MBBP algorithm for the SISO decoding of RS codes.
We compared them with the binary ABP decoder and showed
that the GF-MBBP approach provides very good results at
least for small blocklengths. We believe that the GF-MBBP
decoding approach is also very attractive for future many-core
systems, as it provides an inherent way for parallelization.
Moreover, employing GF-BP based decoding might be an
efficient way for coded modulation techniques when non-
binary modulation as, e.g, 64-QAM for bandwith efficient
communication is desired. Future research directions may also
consider the concatenation of the presented decoders with the
Koetter-Vardy [7] algebraic soft-decision decoding algorithm.
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