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I.INTRODUCTION

I11-V based complementary metal-oxide-semiconductor
(CMOS) circuits require additional development to achieve
competitive p-type performance [1]. Antimonide-based ma-
terials such as GaSbh demonstrate high hole mobility, and
should be a viable alternative as channel material [2]. How-
ever, GaSb-transistor performance is currently limited by
the gate-stacks [3]. Combinations of more traditional p-type
SiGe channel combined with n-type 111-V InGaAs channel
has been suggested as an alternative to current CMOS tech-
nology [4]. To integrate this material system is not straight-
forward, mainly due to strong material selectivity during
processing. InGaAs based circuits has gained traction for
RF applications [5], thus all-11l-vV CMOS circuits are nec-
essary for seamless integration with logic capabilities.

Here we co-integrate GaSb p-type and InAs n-type verti-
cal nanowire MOSFETSs with gate-all-around, using a com-
mon gate-stack. Specifically, the MOSFETS are based on
vapor-liquid-solid (VLS) [6] grown InAs-GaSb heterojunc-
tion nanowires with a, highly doped, overgrown InAs shell
for improved etch selectivity and contacts. The overgrowth
enables fabrication with hydrogen silsequioxane (HSQ)
spacers that are used for development of a self-aligned,
gate-last, process compatible with vertical antimonide
based structures. During processing, the shell is strategi-
cally removed to restore the proper channel material,
namely the InAs or GaSh core material. All devices are
heavily scaled with sub-100 nm gate lengths and gate diam-
eters down to 20 nm, for the n-type device.

1 cm? p-type silicon (111) substrates with a 260 nm epi-
taxially grown, highly doped, InAs layer [7] are used for
device fabrication. Subsequently, 15-nm-thick Au seed par-
ticles patterned by electron beam lithography (EBL) are uti-
lized for growth of InAs-GaSh heterostructure nanowires.
The nanowires are in-situ n- and p-doped by Sn and Zn re-
spectively. 24 nm and 28 nm diameter Au dots are used for
growing n-type wires and 44 nm for p-type wires [8].

I.LRESULTS

Combined transfer and output characteristics for the
n-type and p-type device are presented in Fig. 1.
Transconductance gmpeak Of 1.2 mS/um for n-type and
74 uS/um for p-type is reached while showcasing min-
imum subthreshold slope SSiin of 74 and 271 mV/dec.
The devices display enhancement mode operation
with Vr = 0.08 and -0.02 V. Drain tunnelling, limiting
the off-state, performance can be attributed to the nar-
row bandgap of InAs [9]. However, for the p-type
GaSb device the large, gate-segment, diameter (40
nm) in combination with a non-optimal high-k inter-
face degrades the off-state.

I11.CONCLUSIONS
A co-integration process compatible with both InAs (n-

type) and GaSb (p-type) MOSFETs has been developed.
Highly scaled devices with sub-100 nm gate-lengths have
been demonstrated using a common gate-stack, giving a
Om,peak OF 1.2 mS/um. P-type devices, demonstrating gmpeak Of
74 uS/um, are also co-integrated on the same sample. Addi-
tional optimization of the GaSh gate-stacks combined with
diameter scaling will improve the balance for the III-V
CMOS.
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Fig. 1. Falsely colored FIB cross-section depicting single nanowires in-
side a p-type and n-type structure for, emphasizing the varied HSQ thick-
ness. Transfer and output characteristics are presented for a selected p-
and n-type device. The n-type device is comprised of 184 nanowire array
with a pitch of 300 nm, diameter of 20 nm, and Lg = 50 nm . The p-type
consists of 144 nanowires with a pitch of 350 nm, diameter of 40 nm, and
Lg=70 nm.
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