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Abstract—In this paper, we introduce a method to use 

written natural language instructions to program assembly 
tasks for industrial robots. In our application, we used a 
state-of-the-art semantic and syntactic parser together with 
semantically rich world and skill descriptions to create high-
level symbolic task sequences. From these sequences, we 
generated executable code for both virtual and physical 
robot systems. Our focus lays on the applicability of these 
methods in an industrial setting with real-time constraints.  
 

Index Terms—High-level programming, industrial 
robots, natural language. 

I.  INTRODUCTION 
Robot programming is time consuming, complex, 

error-prone, and requires expertise both of the task and 
the platform. Within industrial robotics, there are 
numerous vendor-specific programming languages and 
tools, which require certain proficiency. However, to 
increase the level of automation in industry, as well as to 
extend the use of robots in other domains, such as service 
robotics and disaster management, it has to be possible 
for non-experts to instruct the robots.  

Since humans communicate with natural language 
(NL), it is appealing to use speech or text as instruction 
means for robots as well. This is complicated for two 
main reasons: First, NL can be ambiguous and its 
expressivity is richer than that of a typical programming 
language. Secondly, tasks can be expressed as goals as 
well as imperative statements, hence, even if the 
instructions are correctly parsed, the description itself is 
often not enough to create a successful execution. There 
has to be a substantial amount of knowledge in the 
system to translate the high-level language instructions to 
executable robot programs.  

In this paper, we introduce a method for using natural 
language to program robotized assembly tasks and we 
describe a prototype of it. The core idea of the method is 
to use a generic semantic parser to produce a set of 
predicate-argument structures from the input sentences. 
Such predicate-argument structures reflect common 
semantic situations described through language and at the 
same time use a logical representation. Using the 
predicate-argument structures, we can extract the orders 
embedded in a user’s sentences and map them more 
easily onto robot instructions. 

II.  RELATED WORK 
Natural language programming for robots has been 

investigated for both service and navigational robots from 

the early 1970’s. SHRLDU [1] is an oft-cited example of 
the first attempts to give robots conversational 
competences. To interpret and convert a user’s sentences 
into instructions, robotic system often make use of an 
intermediate representation. Examples include [2][3][4], 
where the authors have developed their own domain 
specific sematic representation for navigational robots.  

Tenorth et al. [5] parse pancake recipes in English 
from the World Wide Web and generate programs for 
their household robots. They use the WordNet lexical 
graph [6] with a constituent parser and they map 
WordNet’s synsets to concepts in the Cyc [7] ontology. 
Finally, they add mappings to common household 
objects. 

In order to bridge the sentence to the robot actions, all 
the examples mentioned above seem to use ad-hoc 
intermediate formalisms that are difficult to adapt to other 
domains, languages, or environments. Frame semantics 
[8] is an attempt to provide generic models of logical 
representations of sentences. Frame semantics starts from 
prototypical situations shared by a language community, 
English for instance, and abstracts them into frames. 
While frame semantics is only a theory, FrameNet [9][10] 
is a comprehensive dictionary that provides a list of 
lexical models of the conceptual structures. Commercial 
situations like selling are represented with the 
Commerce_sell predicate-argument structure, where the 
arguments include a buyer, a seller, and goods. Given a 
sentence and a verb belonging to this frame, like vend, 
sell, or retail, a semantic parser will identify the predicate 
and its arguments. 

As of today, FrameNet has not a complete coverage of 
English verbs and nouns. Propbank [11] and Nombank 
[12] are subsequent projects related to FrameNet that 
both developed comprehensive databases of predicate-
argument structures for respectively verbs and nouns and 
annotated large volumes of text with it. As training data 
is essential to the development of statistical semantic 
parsers, most of the current parsers use the Propbank 
nomenclature, as they are easier to train. 

To the best of our knowledge, few robotics systems 
use existing predicate-argument nomenclatures. An 
exception is RoboFrameNet [13], a language-enabled 
robotic system that adopts frame semantics. However, the 
authors wrote their own frames inspired from FrameNet. 
Their model includes a decomposition of the frames into 
a sequence of primitives. They built a semantic parser 
that consists of a dependency parser and rules to map the 
grammatical functions to the arguments. Such techniques 



 

have been used from the early Absity system [14] and are 
known to have a limited coverage. 

In the project, we describe below, we used a 
multilingual high-performance statistical semantic parser 
[15][16] trained on the Penn Treebank and using the 
Propbank and Nombank lexicons. In contrast to 
RoboFrameNet, the parser we adopted can accept any 
kind of sentence. 

III.  SYSTEM OVERVIEW 

A.  Architecture 
The central part of the system architecture [17] is the 

knowledge integration framework (KIF). KIF consists of 
a client-server architecture where the server hosts 
ontologies, provides services, and object and skill 
libraries. The ontologies represent the world objects, such 
as robots, sensors, work-pieces and their properties, as 
well as robot skills. The skills are semantically annotated, 
platform-independent state machines, which are 
parameterized for reuse and executed using JGrafchart 
[18]. 

KIF interacts with the engineering system (ES), which 
is the high-level programming interface, and the robot 
controller. The ES is implemented as an extension to the 
programming and simulation environment ABB 
RobotStudio [19]. When creating the robot cell, the 
objects, such as sensors, work-pieces, and trays, can be 
generated or downloaded from KIF together with the 
ontology. Every physical object has an object frame, and 
a number of feature frames related to its object frame. 
These frames are used to express geometrical constraints; 
see Fig. 1.  

A program consists of a sequence of steps, which in 
turn consists of actions, motions, skills, or nested steps. 
The sequence is created using the graphical interface of 
the ES. The steps for picking a printed circuit board 
(PCB) and placing it on a fixture are shown in Fig. 2. To 
execute the sequence, platform specific code (robot code 
or the XML file used by the state machine executor) is 
generated for the motions, actions and skills, and 
deployed on the target platform. 

 
 

Fig. 1. In the object browser, the robots are listed under robots; all 
physical objects are listed under world and each object lists its own 
frames and relations. 
 

 
 

Fig. 2. The visual rendering of a program for picking and placing a 
PCB. 

 
To help the user quickly setup a skeleton sequence of a 

task, we provide a natural-language parsing service on 

Fig. 3. The data flow between the user, the KIF service and the semantic parser. 



 

KIF; see Fig. 3. The service reads the text input, parses 
the text in search of predicate-arguments structures, and 
returns those containing predicates that match the task 
vocabulary. 

On the client side, the predicates are mapped to 
programs; the arguments representing station objects and 
the other parameters are filled with default values or 
geometrical relations taken from the station. The 
programmer can then check the sequence, possibly alter it, 
and finally execute it.  

B.  Predicate-Argument Structures 
An assembly task can be defined as e.g.: Pick the PCB 

from the input tray and place it on the fixture. Then take 
a shield can and insert it on the PCB. These sentences are 
parsed to extract the predicates-argument structures 
pick(PCB, input tray) and place(it, fixture), while the 
agent parameter, robot, is implicit.  

The parser is trained on the Penn Treebank that uses 
the Propbank lexicon [20]. Propbank labels each English 
verb with a sense and defines a set of arguments that is 
specific to each verb. In the sentence: Pick the PCB from 
the input tray and place it on the fixture, both pick and 
place have sense 1 (pick.01 and place.01): 
• Pick.01 has three possible arguments; arg0: agent, 

entity acquiring something, arg1: thing acquired and 
arg2: seller.  

• Place.01 has arg0: putter, arg1: thing put, and arg2: 
where put. 

The parsing output is shown in Fig. 4. As shown in 
this figure, the arg1 and arg2 arguments to pick.01 are 
matched to the PCB and the input tray respectively, while 
the robot (arg0) is implicit. 

 

 
 

Fig. 4. Parsing result from the first sentence. The parser identified two 
predicates, pick and place, and two arguments for each predicate. 

 
Before mapping the identified arguments to the station 

objects, the arguments corresponding to the same entity 
have to be gathered into coreference chains; see Fig. 5. 
The last step links the coreference chains to the entities in 
the station using the object name or type.  

Task Vocabulary 
The vocabulary is currently rather limited. We only 

considered predicates matching programs that the robot 
could generate. Each program has arbitrary language tags 
such as take, insert, put, calibrate, either predefined or 
edited by the user. Possible arguments to the programs 
are the objects in the station, which is a well-defined, 
finite world. 

IV.  HIGH-LEVEL PROGRAMMING PROTOTYPE 
On the highest level, the task is represented by an 

assembly graph [21], which is a partially ordered tree of 

 
Fig. 5. Coreference solving of entities in the first sentence. Mentions 
corresponding to the same entity are gathered into coreference chains. 
 

 
 

Fig. 6. The assembly graph is created by dragging and dropping icons of 
the objects. Here, the first assembly operation involves the base of the 
emergency button (left) and the switch (right). In the second operation 
the lid is added to the subassembly. 
 
assembly operations; see Fig. 6. The graph describes the 
assembly of an emergency stop button box. 

Each operation specifies the desired geometrical 
relations of the involved objects and the skill type for the 
assembly. Examples of skill types in the ontology are 
screw, glue and peg-in-hole, where each type can have 
several different implementations. The assembly 
operations are subgoals, and the root node represents the 
final goal of the task. The motivation for the assembly 
graph is to have a platform independent task description, 
so that different implementations can be compared and 
reasoned about. 

The assembly graph is realized by sequences of actions 
and motions for each robot. The sequence can be: 1) 
created manually by adding actions and motions one by 
one and editing their properties, 2) generated from the 
assembly graph or 3) created by using a natural language 
interface. An example of the latter is shown in Fig. 7: two 
assembly steps of a stop button box assembly are 
described by natural language. 



 

Fig. 8 shows the parsed result from Fig. 7. Each 
predicate is mapped to a type of skill. For example, a pick 
or take consist of a sequence of primitive actions: 
approaching the object to be picked, opening the gripper, 
moving slowly to a grasp position, closing the gripper, 
and then retracting. The mapping of the objects are 
rudimentary: by name (ignoring space and case) or, if this 
is unsuccessful, by the ontology type (e.g. fixture, tray or 
pin). When generating the motions for picking and 
placing the objects, the application uses the existing grasp 
positions and relations between the work-pieces as 
default values. If no relations exist, a new one is created 
with zero offset. The actions for opening and closing the 
gripper are taken from the selected tool, since each tool 
describes its own procedures. The resulting sequence is 
shown in Fig. 9. 

 

 
 

Fig. 7. The commands are written into a simple text field, the narrative 
is then sent to the KIF service that facilitates semantic parsing. 
 

Using reasoning services available from KIF, the 
generated sequence can then be checked for 
inconsistencies and additional skills are suggested to 
solve missing constraints (e.g. an object has to be placed 
in a fixture before an assembly or a tool needs to be 
exchanged between drilling and picking).  

The code generated from the sequence is executable on 
both virtual and physical robots; see Fig. 10. To expand 
the vocabulary, the user can add natural language tags to 
existing steps and upload them to KIF.  
 

 
 

Fig. 8. The result the parsed predicates along with their arguments. 

 
Fig. 9. The generated sequence for inserting a switch on the base of a 
stop bottom and putting the top of the box on the base. 
 

 
 
Fig. 10. The sequence from Fig. 8 executed on a physical robot. 



 

V.  CONCLUSIONS 
In this paper, we have presented a system to describe 

robot assembly tasks in the RobotStudio environment 
using natural language. From an input sentence, the 
processing pipeline applies a sequence of operations that 
parses the sentence and produces a set of predicate-
argument structures. The semantic module uses statistical 
techniques to extract automatically these structures from 
the grammatical functions. 

The NLP pipeline is designed so that it reaches high 
accuracies and has short response times required for user 
interaction. Parsing a sentence takes from 10 to 100 
milliseconds. Drawing from the frame semantics theory, 
the semantic parser uses a standardized inventory of 
structures and can be applied to unrestricted text. This 
makes the pipeline more easily adaptable to new tasks 
and new environments. 

As second step, the system maps the predicate and the 
arguments extracted from the sentence to robot actions 
and objects of the simulated world. These objects and 
actions are stored in a unified architecture, the knowledge 
integration framework that represents and manages the 
entities, services, and skill libraries accessible to the 
robot. 

Making the application part of a tool already used by 
industry is a conscious choice: high-level natural 
language programming is convenient to get an application 
up and running quickly. However, when tuning the 
parameters of a task, the programmer can still use the 
traditional tools, e.g. to edit the generated code directly. 
Also, because of the industrial focus, we have real-time 
performance on the underlying sensor and control 
systems, which is necessary for many manipulation tasks 
in assembly operations. 

Unlike previously reported results, our approach 
supports both a command-like interface and parsing of 
longer texts, yielding multistep programs. 

VI.  FUTURE WORK 
The obvious drawback of this implementation is the 

lack of speech as an input modality. However, since 
many smartphones have sufficient speech recognition for 
our purposes, this was not our main scientific concern. 
Rather, we wanted to extend the skill library with 
relevant and generic assembly skills. We plan to extend 
our application with tools that make it simple to extract 
the natural language predicate-argument structures given 
a skill, its parameters (objects, velocities, forces), and a 
textual description of the skill. Another extension is to 
automatically search after suitable implementations that 
are tagged with synonyms to the used words.  
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