
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Managing quality requirements in software product development

Berntsson Svensson, Richard

2009

Link to publication

Citation for published version (APA):
Berntsson Svensson, R. (2009). Managing quality requirements in software product development. [Licentiate
Thesis, Department of Computer Science]. Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/28e5c635-7730-45ca-b658-989031cb7a68

Managing Quality
Requirements in Software
Product Development

Richard Berntsson Svensson

Licentiate Thesis, 2009

Department of Computer Science
Lund University

Faculty of Engineering

ISSN 1652-4691
Licentiate Thesis 10, 2009
LU-CS-LIC:2009-2

Department of Computer Science
Faculty of Engineering
Lund University
Box 118
SE-221 00 Lund
Sweden

Email:

Abstract

Software product development companies experience different challenges
in managing quality requirements compared to functional requirements.
In this context, quality requirements are defined as requirements that de-
scribe a restriction on the system, and specify how well the system per-
forms its functions. In a market–driven development context with large
markets, potential customers, and strong competitors push the software
product development companies to release the software product to a cer-
tain market segment at the right time with higher level of quality than the
competitors.
This thesis focuses on techniques and methods that support software
product development companies that release their product to an openmar-
ket. The goals are to find means to improve the ability to make early es-
timates of quality requirements with adequate accuracy, such as perfor-
mance, in order to enhance high–level decision–making.
This thesis is based on empirical research, including both quantitative
and qualitative research design. The research results include a system-
atic literature review of empirical studies on quality requirements, which
presents the state of research. The results show that there is a gap in the
research literature of how cost estimation of quality requirements is con-
ducted. How quality requirements are handled in practice is discovered
and described in a survey in requirements engineering for embedded sys-
tems. From the survey, issues emerge such as when the quality level is
good enough, and how to get quality requirements into projects when
functional requirements are prioritized. A case study within the embed-
ded software domain investigates how quality requirements metrics are
used in an industrial context, which concludes that for a method to be suc-
cessful, it is important that it is flexible enough to handle the diverse nature
of quality requirements. Finally, a model for cost–benefit analysis of qual-
ity requirements, called QUPER, was set into operation in a case study.
The intent was to evaluate and improve the model for supporting require-
ments prioritization and quality requirements roadmapping at early stages
of release planning.

i

ii

Acknowledgements

The work presented in this thesis was funded by the Swedish Governmen-
tal Agency for Innovation Systems under the grant for MARS, Methods for
early analysis and specification of non–functional system requirements on
mobile terminals.

I would like to extend my sincere gratitude to my supervisor and collabo-
rator Professor Björn Regnell, for giving me the opportunity to be part of
the Software Engineering Research Group, and for his guidence and ad-
vice. I would also like to thank my assistant supervisor, Dr. Martin Höst,
for his support and advice.
The research presented in this thesis was conducted in close cooperation
between academia and industry. I would like to thank everyone involved
at Sony Ericsson Mobile Communication AB for their commitment, in par-
ticular Thomas Olsson. I would also like to thank all participants and their
companies who have helped in making the data collection possible for this
thesis. The industry cooperation has been a valuable learning experience,
and I would like to thank all involved for their help and patience.
I am grateful to the co–authors of my papers and others who have con-
tributed. I would like to thank my colleagues in the Software Engineer-
ing Research Group, for an inspiring and supporting atmosphere. I would
also like to mention the colleagues at the Department of Computer Science,
thanks for providing an excellent environment to work in.
Last but not least I would like to thank my family for their understand-
ing and support, and Najia for always believing in me and making me
happy every single day.

Richard Berntsson Svensson
April 2009

iii

iv

Contents

Introduction 1
1 Background . 5

1.1 The QUPER Model . 5
1.2 Case Study . 9
1.3 Discussion of Case Study Findings 12
1.4 Summary . 13

2 Research Focus . 13
2.1 Research Goals . 14

3 Related Work . 16
3.1 Quality Requirements 16
3.2 Market–Driven Requirements Engineering 19
3.3 Requirements Prioritisation 20
3.4 Release Planning and Roadmapping 23

4 Research Methodology . 25
4.1 Research Design . 25
4.2 Research Strategies . 26
4.3 Research methods . 28
4.4 Research Classification 28
4.5 Validity . 30

5 Research Results . 31
6 Further Research . 35
References . 39

Paper I: Managing Quality Requirements: A Systematic Review 45
1 Introduction . 47
2 Background and Related Work 48

2.1 Quality Requirements 48
2.2 Related Work . 49

3 Review Method . 51
3.1 Planning the Review 51
3.2 Research Questions . 51
3.3 Search Strategy and Search 51
3.4 Selection of Studies . 54

v

3.5 Quality Assessment 55
3.6 Data Extraction and Synthesis 58
3.7 Threats to Validity . 58

4 Results . 59
4.1 General Analysis of Primary Studies 61
4.2 Elicitation . 63
4.3 Dependencies . 66
4.4 Metrics . 70
4.5 Cost Estimation . 71
4.6 Prioritization . 72
4.7 Software Product Management 73

5 Discussion . 74
5.1 Benefits and limitations 75
5.2 Strength of evidence 76

6 Conclusion . 77
References . 79

Paper II: Quality Requirements in Practice: An Interview Study in
Requirements Engineering for Embedded Systems 85
1 Introduction . 87
2 Background and Related Work 88
3 Research Method . 89

3.1 Research Design and Data Collection 89
3.2 Validity . 91

4 Results and Analysis . 93
4.1 Important Quality Aspects (RQ1) 93
4.2 Interdependencies (RQ2) 95
4.3 Quantification of Quality Requirements (RQ3) 98
4.4 Dismissal of Quality Requirements (RQ4) 99
4.5 Quality Requirement Challenges (RQ5 and RQ6) . . . 101

5 Conclusions . 102
References . 105

Paper III: Non–functional requirements metrics in practice – an em-
pirical document analysis 109
1 Introduction . 111
2 Case study analysis . 112

2.1 Research methodology 112
2.2 Description of the case 114
2.3 Coding scheme . 114
2.4 Data analysis . 116

3 Discussion of findings . 120
4 Related work . 124
5 Conclusion . 125
References . 127

vi

Paper IV: Supporting Roadmapping of Quality Requirements 129
1 Introduction . 131
2 Related Techniques . 131
3 QUPER . 132

3.1 Basic concepts . 133
3.2 Quper steps . 135

4 Lessons learned . 137
4.1 Quality indicators . 137
4.2 Breakpoints . 138
4.3 Barriers . 138
4.4 Benefits . 139

5 Summary . 139
References . 141

Paper V: Introducing Support for Release Planning of Quality Re-
quirements – An Industrial Evaluation of the QUPERModel 143
1 Introduction . 145
2 QUPER . 146
3 QUPER tailoring . 148
4 Case study description . 149
5 Evaluation methodology . 150

5.1 Step 1 – Interview (part 1) 151
5.2 Step 2 – Workshop . 151
5.3 Step 3 – Interview (part 2) 152
5.4 Validity evaluation . 153

6 Evaluation results . 153
7 Related work . 157
8 Conclusions . 158
References . 161

vii

viii

Introduction

Software continually becomes more important and compose a large share
of today’s products. Many domains need to handle software development,
e.g. developers of IT systems in banking, the automotive industry, telecom-
munication systems, and developers of commercial products. One exam-
ple of a commercial product is the mobile phone. As software becomes
more important, the complexity of the software products increases. The
complexity is determined partly by functionality and partly by quality re-
quirements, such as performance and usability (Chung et al. 2000). Ma-
jor challenges are related to management and requirement aspects (Ebert
1998). Requirements engineering is important for ensuring that the right
software product is developed within budget and the given time frame
(Berntsson Svensson and Aurum 2006).
Even if a software product is developed on time and within budget, it
may be seen as a failure due to poor quality, and end–users are often dis-
satisfied with software quality (Jung et al. 2004). In order to improve the
overall quality of a software product, it is not enough to fulfill the func-
tional requirements. For example, even if the product works, it may be dif-
ficult to use, or showing too many failures (Ebert 1998). Therefore, quality
requirements play a critical role in software product development, and not
dealing with quality requirements may lead to more expensive software
products and longer–time–to–market (Cysneiros and Leite 2004). Despite
their importance, quality requirements are often poorly understood, gen-
erally stated informally during requirements analysis, often contradicting,
and difficult to validate when the software product has been developed
(Chung et al. 2000).
The handling and balance of quality requirements are an important and
difficult part of the requirements engineering process (Jacobs 1999). How-
ever, in market–driven development, the situation is even more complex
(Aurum andWohlin 2005) due to the continuous flow of requirements. The
continuous flow of requirements is not limited to one project, and the re-
quirements are generated from internal (e.g., engineers) and external (e.g.,
customers) sources (Gorschek and Wohlin 2006). Furthermore, to achieve
high–quality in embedded software products, a combination of experience
and knowledge from different disciplines is needed (Kusters et al. 1999).

1

INTRODUCTION

This may lead to communication difficulties and difficulties in achieving
the required quality level (Kusters et al. 1999).
The main goal of the research presented in this thesis is to increase the
awareness and understanding of quality requirements and to enhance high-
level decisions–making with regards to quality requirements in software
product development. By developing and applying efficient methods for
early analysis of quality requirements, release planning and roadmapping
of quality requirements is expected to improve. The main contributions
are: an investigation of the state of research in the area of quality require-
ments based on a systematic review (Kitchenham 2007), increased under-
standing of quality requirements in practice based on a qualitative sur-
vey, and amethod for release planning and roadmapping decision–making
evaluated in case studies.
The first part of this thesis is an introduction to the research area and
the research focus. The introduction is organized as follows: in Section 1,
the quality performance model, the model that is further evaluated in pa-
per IV and V, is described. Section 2 describes the research focus, while
related work related to the thesis is presented in Section 3. In Section 4, the
research methodology used in this thesis is discussed. The main contribu-
tions of this thesis is presented in Section 5 together with threats of validity.
Section 6 presents further research opportunities. The second part of this
thesis contains the included papers of the thesis.

Included papers

The following five papers are included in the thesis:

I Managing Quality Requirements: A Systematic Review
Richard Berntsson Svensson, Martin Höst, and Björn Regnell
Submitted to Information and Software Technology, 2009

II Quality Requirements in Practice: An Interview Study in Require-
ments Engineering for Embedded Systems
Richard Berntsson Svensson, Tony Gorschek, and Björn Regnell
Accepted for publication at the 15th International Working confer-
ence on Requirements Engineering: Foundation for SoftwareQuality
(REFSQ09), 2009

III Non–functional requirementsmetrics in practice – an empirical doc-
ument analysis
Thomas Olsson, Richard Berntsson Svensson, and Björn Regnell
Workshop on Measuring Requirements for Project and Product Suc-
cess (MeReP07), 2007

IV Supporting Roadmapping of Quality Requirements
Björn Regnell, Richard Berntsson Svensson, and Thomas Olsson
IEEE Software Vol. 25, no. 2, pp 42–47, 2008

2

CONTENTS

V IntroducingSupport for ReleasePlanning ofQualityRequirements
– An Industrial Evaluation of the QUPERModel
Richard Berntsson Svensson, Thomas Olsson, and Björn Regnell
Second International Workshop on Software Product Management
(IWSPM08), 2008

Contribution Statement

Mr. Berntsson Svensson is the main author for three of the included pa-
pers (paper I, II and V). This means responsibility for running the research
process, dividing the work between co–authors, and conducting most of
the writing. The research in paper I and V was performed mainly by Mr.
Berntsson Svensson, who designed and conducted most of the work, as
well as reported on the studies. For paper I and V, Mr. Berntsson Svensson
wrote most of the paper with assistance from Dr. Martin Höst, and Profes-
sor Björn Regnell respectively. Paper II was produced in cooperation with
another university. Most of the design was performed together with the
co–authors, while most of the analysis, writing, and division of work was
performed primarily by Mr. Berntsson Svensson.
For paper III, Mr. Berntsson Svensson’s contribution is part of coding
quality requirements, which was performed in parallel by all authors. All
authors contributed in the discussions and writing; however, the first au-
thor contributed with more than half of the research effort, while the re-
maining authors’ work was equally distributed. In paper IV,Mr. Berntsson
Svensson’s contribution is the development of the practical application of
the QUPER model. In terms of writing, the authors contributed to an ex-
tent corresponding to the order of the author’s names.

Related publications

The following papers are related but not included in the thesis:

VI Can We Beat the Complexity of Very Large–Scale Requirements
Engineering?
Björn Regnell, Richard Berntsson Svensson, and Krzysztof Wnuk
14th International Working conference on Requirements Engineer-
ing: Foundation for Software Quality (REFSQ08), 2008
(This paper presents challenges faced in very–large–scale require-
ments engineering, which is the context of the included papers.)

VII A Quality Performance Model for Cost–Benefit Analysis of Non–
functional Requirements Applied to the Mobile Handset Domain
Björn Regnell, Martin Höst, and Richard Berntsson Svensson
13th International Working conference on Requirements Engineer-
ing: Foundation for Software Quality (REFSQ07), 2007

3

INTRODUCTION

(This paper is summarised in the Introduction, Section 1. The paper
presents the QUPER model, which is further evaluated in paper IV
and V.)

VIII Successful Software Project and Products: An Empirical Investiga-
tion Comparing Australia and Sweden
Richard Berntsson Svensson, Aybüke Aurum, Claes Wohlin, and Ganglan
Hu
17th Australian Conference on Information Systems (ACIS06), 2006
(See paper IX)

IX Successful Software Projects and Products
Richard Berntsson Svensson, and Aybüke Aurum
IEEE/ACM 5th International Symposium on Empirical Software En-
gineering (ISESE06), 2006
(The results show the importance of requirements engineering, which
arousedmy interest in this field and encouraged me to start my PhD.
studies.)

4

1. BACKGROUND

1 Background

This section presents the theoretical background of a conceptual model
called QUality PERformance (QUPER) for cost–benefit analysis of qual-
ity requirements, which incorporates quality as a dimension in addition to
the cost and value (benefit) dimensions used in prioritization approaches
for functional requirements. The QUPERmodel is the foundation of paper
IV and V in this thesis. Therefore, it is important to understand the main
concepts of the model. The reminder of this section is based on Regnell
et al. (2007).
In the context of market–driven requirements engineering (see Section
3.2), products are often developed using a product–line approach (Dikel
et al. 1997) applying various types of upstream decision–making (Ebert
2005) that combine market considerations with implementation concerns
in activities such as roadmapping (Regnell and Brinkkemper 2005), release
planning (Carlshamre and Regnell 2000) and platform scoping (deBaud
and Schmid 1999). There are approaches that address requirements prior-
itization in a market–driven context (see section 3.3); however, despite the
importance of quality requirements in market–driven requirements engi-
neering (Jacobs 1999), focus is often on functional aspects (Regnell et al.
2007). Therefore, the QUPER model was developed with the general ob-
jective to support management of quality requirements.
The model was developed based on findings from the requirements en-
gineering interface between two case companies (Regnell et al. 2006), but in
addition to these findings the need for a cost–benefit model including qual-
ity aspects to support roadmapping and scoping was identified. High–
level goals were elicited in order to capture the conjectures on what would
make such a model successful.

1.1 The QUPERModel

The QUPER model aims to support requirements prioritization and road-
mapping of quality requirements at early stages of release planning when
making high–level scoping decisions and creating roadmaps. The model
is based on two hypotheses:

• Quality is continuous: Quality aspects are assumed to have the poten-
tial of being measured with a value on a continuous scale rather than
being either included or excluded for a certain release.

• Quality is non–linear: For a quality aspect such as response time in
a specific use case, different variants of the following questions re-
garding changes in quality level are relevant: Would a little faster be
almost as valuable from a market perspective? Would a little slower
be very much cheaper to implement? It is assumed that a change in
quality level result in non–linear changes to both cost and benefit.

5

INTRODUCTION

Based on the results reported in (Regnell et al. 2006), the need for a
cost–benefit model including quality aspects to support roadmapping and
scoping, and discussions with domain experts, the following goals for the
QUPER model were selected as a guide to the model development step:

• Robust to uncertainties. In practical cases, the relations among quality
attributes and their market value and implementation cost may be
very complex and difficult to estimate with high accuracy. Although
it may be possible to define release planning as a mathematical opti-
mization problem, it may not be worthwhile to apply complex math-
ematics, if the input data is highly uncertain.

• Easy to use. The model should include only a few concepts that are
easy to learn, remember, understand and use by practitioners with-
out requiring mathematical skills.

• Domain–relevant. The model should be possible to combine with ex-
isting practice and possible to tailor to a particular domain. In a
practical setting, a model for quality attribute roadmapping should
be feasible to include as an add–on to the working practice without
costly interference with existing processes, techniques and methods.

The QUPER model has two main concepts, breakpoints and barriers. A
breakpoint is an important aspect of the non–linear relation between qual-
ity and benefit, while a barrier represents an interesting aspect of the non–
linear relation between quality and cost. The two concepts of breakpoints
and barriers form the basis of QUPER’s three views: (1) the benefit view, (2)
the cost view, and (3) the roadmap view. The three views are illustrated in
Figures 1–3 respectively and subsequently described.
The QUPER benefit view (Figure 1) includes three breakpoints indicat-
ing principal changes in the benefit level with respect to user quality per-
ception and market value. The three breakpoints are:

• Utility breakpoint. Represents the border between a quality level that
is so low that a product is not accepted on the market as users find the
quality level useless, and the level where a product starts to become
useful and thus have a potential market value.

• Differentiation breakpoint. Marks the shift from the useful quality range
to a quality level which only a few products (currently) reach, which
makes them having a competitivemarket proposition.

• Saturation breakpoint. Implies a change in quality level from competi-
tive to excessive, where higher quality levels have no practical impact
on the benefit in the particular usage context considered.

The QUPER cost view (Figure 2) includes the notion of cost barriers to
represent the non–linear nature of the relation between quality and cost. A

6

1. BACKGROUND

Useful

Useless

Competitive
advantage

Excessive

Utility breakpoint

Differentiation breakpoint

Quality level

Benefit

Saturation breakpoint

Figure 1: The QUPER benefit view

cost barrier occurs when the cost characteristic shifts from a plateau–like
behavior where an increase in quality has a low cost penalty, to a sharp rise
behavior where an increase in quality has a high cost penalty. Costs can
e.g. be investments in development effort or cost per unit of hardware. A
typical cost barriermay be the result of that a quality increase is not feasible
without a large reconstruction of the product architecture, while a typical
cost plateau is exemplified by the case where comparatively inexpensive
software optimizations may result in high gains of performance.
The QUPER roadmap view (Figure 3) combines the benefit and cost
views by position the breakpoints and barrier together ordered on the same
scale. This view enables visualisation of benefit breakpoints and cost bar-
riers in relation to the current quality level of a product and the qualities of
competing products. This view also combine the notion of targets for coming
releases with the aim of supporting roadmapping.
The quality levels on the horizontal axis of all three views are measured
by quality indicators that may be specific with respect to different entities
such as feature, use case, and market segment. The definition of quality
indicators is the main issue in tailoring the QUPER model for a certain
domain and for a certain (set of) products.
When applying the QUPER model in non–functional requirements pri-
oritization and roadmapping, the following steps are envisioned:

1. Define quality indicators
2. For each quality indicator, and for each relevant qualifier (feature,
use case, segment) make estimations of (a) benefit breakpoints and
(b) cost barriers

7

INTRODUCTION

Quality level

Cost

barrier

Figure 2: The QUPER cost view

Current Questionable Target

Quality Indicator
(Feature X, Segment Y)

Target release n1

Competitor B

Competitor A

Target release n2

Utility Differentiation Saturation

Figure 3: The QUPER roadmap view

3. Estimate the current quality of own product (for a given release) and
the quality of competing products (at present or envisioned)

4. Visualize estimations, discuss and decide targets for coming releases
5. Communicate roadmaps as a basis for further requirements engi-
neering

6. Revise roadmaps and iterate as estimates becomemore certain or cir-
cumstances change

8

1. BACKGROUND

1.2 Case Study

The feasibility and relevance of the QUPER model has been validated in
the mobile handset domain through a series of interviews with experts
(Regnell et al. 2007). The study is based on six cases in selected sub–
domains representing examples of important parts of the different tech-
nology areas that are included in the mobile handset domain.
Local Connectivity. The local connectivity sub–domain includes the ca-
pabilities of a mobile phone to connect to local devices such as a personal
computer while not requiring access to the mobile network. The following
findings were made for this sub–domain:

• Quality indicators. The data–transfer–rate is an important quality indi-
cator measured in bits per second. Interoperability, usability, security
and reliability are also important quality aspects. One example of us-
ability indicator is the connection–setup–time.

• Benefit breakpoints. Benefit breakpoints can be identified for several
different use cases, such as transfer music and synchronizing calen-
dar. Often there is a discrepancy between the theoretical maximum
data–transfer–rate and what may be achievable in practice. Benefit
breakpoints are dependent on market segments.

• Cost barriers. Different transfer technologies have different costs and
achieving the next level often requires development efforts and/or
application specific hardware with attractive cost–size–performance
trade–off.

Positioning. The positioning sub–domain includes the capabilities of a
mobile phone to know its geographical position and to provide services
that are based on its position. The following findings were made for this
sub–domain:

• Quality indicators. An important quality indicator is time–to–first–fix,
defined as the time from initiation of a positioning request until loca-
tion data is provided, and measured in seconds. Another important
quality indicator is position–accuracy, defined as the error margin in
the given positioning data measured in meters.

• Benefit breakpoints. The utility, differentiation and saturation break-
points depend on which use case is considered. E.g., for finding
places in a city, the time–to–first–fix utility breakpoint is more de-
manding than compared to navigation support on the sea. Utility
and saturation is in some cases based on physical constraints such as
distances between streets in a city.

• Cost barriers. Costs are dependent on both hardware and software is-
sues. Development investments in network infrastructure to increase

9

INTRODUCTION

performance also impact cost barriers. Anther cost factor in this do-
main is related to energy consumption that has impact on battery life.

Java Platform. The java platform enables a mobile device to run java
applications that can be downloaded via local connectivity or over the net-
work. The following findings were made for this sub–domain:

• Quality indicators. Real–time performance is a very important quality
indicator that can bemeasured inmanyways, for example application-
start–up–time, data–save–time, etc. and can be measured in seconds.
Also quality indicators such as 3D–graphics–frame–rate and number–
of–polygons–per–second are important. Reliability is also important
and is measured in number–of–software–crashes–per–time–unit.

• Benefit breakpoints. For graphics and streaming the benefit break-
points can easily be identified. Also application–start–up–time has
clear utility, differentiation and saturation breakpoints. Reliability
and compatibility is more difficult to measure, however, by testing
competing products it is possible to get a general picture.

• Cost barriers. Cost barriers in quality requirements are often related
to development efforts directed towards performance optimization.
It is often easy to detect existence of performance problems but not
always easy to identify the best solution. A major challenge is to esti-
mate the relation between invested performance optimization effort
and the effect in terms of improved performance.

Mobile TV. Mobile TV is an area that is of strategic importance for future
mobile products. Mobile TV is enhanced with interactivity that enables
users to watch streamed TV programs live and interact with the show, with
voting and chatting capabilities. The following findings weremade for this
sub–domain:

• Quality indicators. Quality indicators related to user experience of
video streaming are central in this sub–domain. Typically, quality
is indicated by video–frame–ratemeasured in number of image frames
per second, but the subjective user experience is dependent on many
factors, such as performance of coding and decoding including com-
pression, error correction and radio reception sensitivity.

• Benefit breakpoints. Benefit breakpoints can be identified rather eas-
ily for mobile TV and depends on market segment and the nature
of the streamed content. Some quality indicators related to perfor-
mance tend to have a more either–or–nature in terms of the utility–
differentiation–saturation scale.

• Cost barriers. Cost barriers are related both to dedicated hardware
and optimization of software–implemented algorithms. Typically,

10

1. BACKGROUND

performance issues are central to development investments and pass-
ing utility breakpoints often requires breaking a cost barrier. Some-
times differentiation can be reached through software optimizations
and sometimes dedicated technology platform support is needed.

Memory. Memory technology is central to many applications in mobile
handsets. Memory is used not only for software that runs operating sys-
tems and applications but also for content such as personal information
management, music, images, video and other files. The following findings
were made for this sub–domain:

• Quality indicators. There are many different memory technologies
and they differ with respect to quality indicators such as memory–
density measured in bytes, physical–size–of–packagemeasured in mil-
limeters in three dimensions andmemory–data–transfer–ratemeasured
in bits per second.

• Benefit breakpoints. he benefit breakpoints are dependant on the ac-
tual use case. For example, multishot (consecutive photographing)
require higher data transfer rates. Memory hardware needs to be
planned far in advanced to be able to manage sourcing and supply
as well as to enable integration into the technical platform. Mem-
ory is cutting cross many different use cases and other sub–domains
are heavily dependent on memory qualities, which in turn affects the
breakpoint levels in that they need to be qualified with use case and
segment.

• Cost barriers. Cost is mainly related to hardware costs, although de-
velopment costs for integrating new memory technologies into the
technical platform is related to engineering effort and involves both
hardware and software interfacing.

Radio Network Access. This sub–domain thus involves standardiza-
tion issues and requirements on the technical platform that implements
the access to the radio network. The following findings were made for this
sub–domain:

• Quality indicators. Primary quality indicators are the downlink– and
uplink–data–transfer–rate, as well as the packet–latency affecting quality
of real–time data such as voice and video conferencing.

• Benefit breakpoints. Different use cases have very different character-
istics in terms of benefit breakpoints. Also, different segments have
different demands although shifting as new technology generations
arrive.

• Cost barriers. The costs are connected to cost–per unit for hardware
and protocol software, together with license fees. Another type of

11

INTRODUCTION

cost is related to the risk of lost market opportunities, should techni-
cal platforms be delayed.

1.3 Discussion of Case Study Findings

In general, it was possible to define benefit breakpoints and cost barriers
for all six sub–domains, supporting the relevance of the model. The inter-
viewees acknowledged the usefulness of the model, although open issues
where pointed out:

• How many and which quality indicators should be managed? This
is a challenge on how to keep balance between the benefit of the in-
formation and the effort involved in acquiring and maintaining the
information. It also deals with the challenge of tailoring the QUPER
model to particular domains. The set of managed quality indicators
of course depend on the domain, the products and its strategic use
cases.

• How to combine different quality indicators and trade–off among
them? This is a challenge of making prioritization among several
quality indicators, possibly by using existing prioritization methods
but for discrete values of the quality indicator, and possibly by using
the breakpoints of different quality indicators and comparing them
with other breakpoints of other quality indicators.

There were a number of factors encountered that where relevant to the
qualification of quality metrics and affected the positions of breakpoints:

• Use case. Different use cases often have different quality demands.

• Market segment. Different market segments, e.g. comparing low–end
to high–end, have different demands on quality.

• Feature maturity. As the products and markets mature and users get
familiar with features, expectations on quality often rise.

A number of different types of costs were identified in the six cases:

• Development effort (software and hardware).

• Cost per unit (hardware and indirectly software).

• Footprint, physical size (hardware and indirectly software).

• Energy consumption (hardware and indirectly software).

• Missed market opportunities vs. competitors (potential earnings).

12

2. RESEARCH FOCUS

In general, cost seems to have a non–linear relationship to the level of
quality, which supports the relevance of the QUPER cost model with its
barriers. However, it seems as the nearest barrier often is easier to identify
than the barriers beyond. It is not until a certain barrier is reached and
passed that a more accurate location of the next barrier can be determined.
Many quality indicators are often related to standardized levels, which
makes a continuous scale transformed into a set of ordered discrete lev-
els. Taking standards into account in the definition of quality indicators
seem inevitable in the telecommunications domain. However, the relation
between a technical quality defined by a standard level and the perceived
user experience in a real–life usage situation is not always straight forward.
When introducing prioritization techniques and roadmapping method-
ology it is stressed by informants that application of techniques andmetho-
dology needs to be simple and easy to learn and understand.

1.4 Summary

The goal of the QUPER model is to be useful by being simple and ro-
bust and yet relevant to high–level decision–making in activities such as
roadmapping, release planning and scoping.
The contribution of the QUPER model is based on our observation that
quality aspects and non functional metrics are often specified without ex-
planation or rationale in existing practices. Lehtola and Kauppinen (2006)
found that communication problems were a difficulty for understanding
the importance of a requirement. Managers need to have an understand-
ing of the whole picture of requirements priorities. QUPER addresses this
challenge aiming at enriching the over all picture through a better under-
standing also of non–functional requirements.
The feasibility and relevance of the QUPER model is validated through
interviews with experts in six cases representing sub–domains of the mo-
bile handset domain. The validation indicates that QUPER is feasible and
relevant to the selected domain.
The QUPER model formed the foundation of this thesis research focus,
which is presented in the following section.

2 Research Focus

The research presented in this thesis is in the field of requirements engi-
neering. Requirements engineering is a critical activity when developing
software–intensive products (Castro et al. 2002). Software products con-
sists of both hardware and software, such as embedded products (for ex-
ample, mobile phones), or a software product can be pure software appli-
cations (Thayer 2002). According to Konrad and Gall (2008), the higher
the complexity of the product under development, the more important re-

13

INTRODUCTION

quirements engineering becomes. Several studies ((Wohlin et al. 2000b),
(Boehm and Basili 2000), (Berntsson Svensson and Aurum 2006), (Bernts-
son Svensson et al. 2006)) have identified the importance of requirements
engineering, the quality of the product, and customer satisfaction. The
ability to develop a software product that meets customers’ requirements,
and offer high value to both their own business and to the customer in-
crease the chance of market success (Barney et al. 2008). However, this
provides that the software product is released to the market at the right
time, and offers a higher level of quality than the competitors’ products
(Barney et al. 2008). The value of a software product is related to quality
requirements (Barney et al. 2008), and is increased in direct proportion to
the advantage over competitors’ products (Alwis et al. 2003).
The research in this thesis is more specifically concerned with manag-
ing quality requirements when developing software products in relation to
market–driven requirements engineering, software product management
activities, and requirements prioritization, which is illustrated in Figure 4.
The different research areas in Figure 4 are further explained in the re-
lated work section (Section 3).

2.1 Research Goals

The goal of this research is to find means for improving the ability to make
early estimates with adequate accuracy of quality requirements such as
performance in order to enhance high–level decision–making. The main
research questions that have been investigated are:

RQ1. What empirical evidence of managing quality requirements exist in the
literature?

RQ2. Which are the current quality requirement challenges that need further
investigation?

RQ3. How can QUPER be transferred to industry practice?

RQ4. To what extent does the use of QUPER as a part of release planning
of quality requirements result in improvements with regards to high–level
decision–making?

The relation between the research questions is illustrated in Figure 5.

RQ1was posed in order to discover what empirical evidence exists of man-
aging quality requirements in industry, and what areas need further in-
vestigation. Among the found evidence in the systematic review, issues
regarding prioritization of quality requirements and how quality require-
ments are handled in software product management emerged.

14

2. RESEARCH FOCUS

Figure 4: Research focus

RQ2 aims at discovering and understanding how quality requirements are
managed by practitioners in industry. The results from RQ1 were used
to create an interview instrument to identify how quality requirements
are handled in practice, and discovering possible challenges. Two major
challenges of handling quality requirements are identified, (1) how to get
quality requirements into projects, and (2) when is the quality level good
enough?

RQ3 examined how the QUPER model could be applied in practice. A set
of guidelines including a step–by–step practical application is developed.
The results were used to adapt the QUPERmodel to the case study in RQ4.

RQ4 aims at evaluating and improving the ability to make early estimates
of performance requirements as input to release planning through the QU-

15

INTRODUCTION

Figure 5: The main parts of this thesis

PER model. The QUPER model is applied in one case study to investigate
its possibilities and limitations.

The used research methodology in each research question is presented
in Section 4, and the results in relation to the research questions are dis-
cussed in Section 5. In the following subsection, related work relevant to
the research focus is discussed.

3 Related Work

In this section, some theoretical background to the market–driven require-
ments engineering and quality requiremetns areas are provided, and the
context of the research in this thesis is described.

3.1 Quality Requirements

In the literature, different types of requirements are discussed, and of-
ten classified as functional or non–functional requirements. These non–
functional requirements are subsequently called quality requirements (QR).
Functional requirements are defined as:

”Requirements that specify the functions of the system, how it records,
computes, transforms, and transmits data”

(Lauesen 2002)

There are many definitions of quality requirements in the literature, the
following presents a selection of definitions.

16

3. RELATED WORK

”Quality requirements specify how well the system performs its in-
tended functions”

(Lauesen 2002)

”Quality requirements put restrictions on the system. That is, quality
requirements or constraints describe a restriction on the system that
limits our choices for constructing a solution to the problem”

(Pfleeger 2001)

”Quality requirements are not directly concerned with the specific
functions delivered by the system. They may relate to emergent sys-
tem properties such as reliability and response time. Alternatively,
they define constraints on the system such as capabilities of I/O de-
vices and the data representations used in system interfaces”

(Sommerville 2007)

”In software engineering, a software requirement that describes not
what the software will do, but how the software will do it, for example,
software performance requirements”

(Thayer and Dorfman 1990)

In Sommerville’s definition, what data that should exists in the inter-
faces may be seen as data requirements, which is a subgroup of functional
requirements (Lauesen 2002). Based on this, our definition of quality re-
quirements does not include Sommervilles. In addition, Thayer and Dorf-
man define quality requirements as requirements that describe how the
software will do it. We believe that how certain aspects should be done
is more related to the design of software than requirements engineering.
Therefore, Thayer and Dorfman’s definition is not incorporated into ours.
In this thesis, we define quality requirements as: ”Quality requirements de-
scribe a restriction on the system, and specify how well the system performs its
functions”, which is a combination of (Lauesen 2002) and (Pfleeger 2001)
defintions.
In the literature, quality requirements have been categorized based on
different characteristics. However, there is no formal definition, nor a com-
plete list of quality requirements (Chung et al. 2000). Neither is there a
universal classification of quality requirements characteristics, and differ-
ent people use different terminologies (Chung et al. 2000). In 1976, Boehm
et al. (1976) presented a tree of software quality characteristics. Fulfilling
the parent quality characteristics in the quality tree, implies that the child
quality characteristics are also fulfilled. Examples of parent quality re-
quirements are reliability, modifiability, and human engineering. Later on,

17

INTRODUCTION

Table 1: Characteristics and subcharacteristics in ISO/IEC 9126

Characteristics subcharacteristics
Functionality Suitability, accuracy, interoperability, security, func-

tionality compliance
Reliability Maturity, fault tolerance, recoverability, reliability

compliance
Usability Understandability, learnability, operability, attrac-

tiveness, usability compliance
Efficiency Time behavior, resource utilization, efficiency com-

pliance
Maintainability Analyzability, changeability, stability, testability,

maintainability compliance
Portability Adaptability, installability, replaceability, coexis-

tence, portability compliance

in 1985, Roman (1985) classified quality requirements into several classes
such as performance constraints, life–cycle constrains, and economic con-
strains. Each class of quality requirements had several subclasses. Another
classification divides quality requirements into three general groups: orga-
nizational, product, and external requirements (Sommerville 2007). An ex-
ample of organizational requirements is delivery requirements, while leg-
islative requirements belongs to the external group. For further elaboration
of classifications of quality requirements, see Chung et al. (2000).
In addition to the classifications of quality requirements, several stan-
dards have been published, such as the ISO/IEC 9126 (9126-2001 E), Mc-
Call and Matsumoto (1980), and 830 (1998). In this thesis, the ISO/IEC
9126 standard has been used. The ISO/IEC 9126 standard defines a qual-
ity model that comprises of six characteristics and 27 sub–characteristics
(see Table 1). Standards for quality requirements are described in (Lauesen
2002) and (Thayer and Dorfman 1990).

Why are quality requirements critical and difficult to manage?
Quality requirements address the issue of quality for software products.
Not dealing, or ineffectively with quality requirements may result in a
software product with poor quality, unsatisfied users, and more expensive
software (Chung et al. 2000). Chung et al. (2000) identifies three aspects of
quality requirements, first, QR can be subjective, which means that the qual-
ity requirement can be evaluated and interpreted differently. Some people
may consider the QR to be accomplished, while others do not. Second,
quality requirements can be relative, meaning that a some level of quality
has been reached. For example, the system may have slow response time,
medium response time, or high response time. Third, quality requirements

18

3. RELATED WORK

can be interacting, by accomplishing one quality requirement can have a
positive or negative affect on other quality requirements. For example, im-
proved security may affect the usability in a negative way. Difficulties to
manage quality requirements are investigated by Borg et al. (2003) in two
development organizations. Borg et al. (2003) found that quality require-
ment related problems occur throughout the entire development process.
The results show that quality requirements are discovered too late, or not
discovered at all; difficulties in prioritization of quality requirements; and
difficulties to estimate cost and measures of quality requirements.

3.2 Market–Driven Requirements Engineering

Requirements engineering is a process that involves activities that are re-
quired to gather, create, and maintain a software product’s requirements
specification. According to Sommerville (2007), the requirements engineer-
ing process is defined by four high–level activities, as illustrated in Figure
6. For more details regarding the requirements engineering process, see
Sommerville (2007).

Figure 6: The requirements engineering process

A software product can be developed by two different approaches de-
pending on the type of market, customer specific development (also called
bespoke or contract–driven) or market–driven software product develop-
ment (also called packaged software or commercial off–the–shelf). In cus-

19

INTRODUCTION

tomer specific development, a supplier develops and delivers a software
product to the customer. The requirements specification and a contract
are negotiated and specify what the supplier shall deliver. The customer–
specific requirements engineering process,thus covers the four activities of
requirements engineering proposed by Sommerville (2007).
In market–driven development, the software product is developed for
an open market instead of a single customer. The market–driven require-
ments engineering (MDRE) process consists of the same four activities in
Figure 6. In addition, the MDRE process consists of specific activities such
as release management and market analysis (Regnell and Brinkkemper
2005). Moreover, MDRE is often under the pressure of competitors’ prod-
ucts and the evolvement of themarket and product (Regnell and Brinkkem-
per 2005).
There is no clear distinction betweenmarket–driven and customer–spec-
ific development, for example, it is not unusual for a supplier to provide
products to an openmarket and at the same time customizing their product
for specific customers. The distinguishing features ofMDRE in comparison
to customer–specific RE is illustrated in Table 2, which is adapted from
Regnell and Brinkkemper (2005) and Carlshamre (2002b).
Karlsson et al. (2007) published a study that focused on challenges in
market–driven software development. Even though the study does not
have a focus on quality requirements, challenges related to quality require-
ments are identified, including the handling of interdependencies of qual-
ity requirements. Moreover, problems with considering quality require-
ments in release planning are identified.
Thus, challenges of quality requirements inMDRE are identified; a study
with main focus on quality requirements in practice at companies using
market–driven development is conducted to increase the understanding of
quality requirements specifically. How quality requirements are handled
in practice is provided in Paper II.

3.3 Requirements Prioritisation

A product’s quality is often determined by the ability to satisfy the needs
of the customers/users (Bergman and Klefsjö 2003), (Schulmeyer and Mc-
Manus 1999). All stakeholders and their requirements need to be identified
and their conflicting preferences and expectations (Karlsson et al. 1997).
When developing a software product for an open market (MDRE), it is
not possible to involve all stakeholders to prioritize requirements. The re-
quirements are generated from internal (e.g., engineers) and external (e.g.,
customers) sources (Gorschek and Wohlin 2006). Conflicting prioritize be-
tween stakeholders is an issue that is addressed by many software product
managers (Berander andAndrews 2005). In these situations, it is important
to handle different stakeholders in a structured way. Regnell et al. (2001a)
suggest adjusting each stakeholder’s influence by prioritizing different as-

20

3. RELATED WORK

Table 2: Overview of customer–specific RE and MDRE (Regnell and
Brinkkemper 2005) and (Carlshamre 2002b)

Customer–specific RE MDRE
Objective Fulfillment of a contract

and compliance to the re-
quirements specification

Deliver the right product
at the right time

Success Customer satisfaction and
user acceptance

Determined by sales, mar-
ket share, and product re-
views

Life cycle First development, then
maintenance. Often one
major release

Long series of releases
and the product is under-
going continuous evolu-
tion

Elicitation Collects information from
one customer

Innovation of new re-
quirements and market
analysis

Specification More formal Less formal
Negotiation Negotiation and conflict

resolution
Focused on prioritization,
cost estimation, and re-
lease planning

Validation Continuously through the
contract

Delayed until late stage in
the development

21

INTRODUCTION

pects. Which aspects depend on the strategy that is most suitable in the
current market segment (Regnell et al. 2001a).
In most software product development, there are more candidate re-
quirements than are possible to implement within the time and budget
constrains (Berander 2004). Hence, the objective of requirements prioriti-
zation is to select and implement a sub–set of these requirements based on
effort and value estimates, and still meet the stakeholders needs and to sat-
isfy the customers (Karlsson and Ryan 1997). In addition, requirements in-
terdependencies and the product’s scope should also be taken into account.
Moreover, requirements are often specified at different levels of abstraction
(Gorschek and Wohlin 2006), and deciding on what level of abstraction
should be used can be difficult. In small–scale or even in medium–scale
requirements engineering (Regnell et al. 2008b), it may be possible to pri-
oritize requirements on a low level of abstraction. However, in very large–
scale requirements engineering (Regnell et al. 2008b) there are often too
many requirements to prioritize. Regnell et al. (2001a) suggest grouping
the requirements to make the prioritization easier.
Dependencies have an enormous impact on requirements prioritization,
which makes the requirements prioritization process even more complex
when including quality requirements. The increased complexity of priori-
tizing quality requirements is related to difficulties to trace quality require-
ments since they tend to have a global impact on the whole system, and
an extensive network of interdependencies between them (Cleland-Huang
et al. 2005). In addition, quality requirements can be in conflict with each
other; therefore, trade–offs need to be made.
There are several prioritization techniques introduced in the literature.
Karlsson et al. (1998) evaluated different methods for prioritizing software
requirements involving pair–wise comparisons. The study concluded that
the Analytical Hierarchical Process (AHP) (Saaty 1980) is superior but also
time–consuming. In addition, AHP assumes that requirements are inde-
pendent, even though that is seldom the case (Regnell et al. 2001b). Karls-
son and Ryan (1997) suggested using a cost–value approach based on the
AHP. This approach supports trade–off analysis, but is mainly used for
functional requirements. However, quality requirements can be included
as objects of prioritization in AHP. Quality Function Deployment (QFD)
(Karlsson 1997) is a comprehensive, and customer and user oriented ap-
proach for requirements prioritization. To fully implement QFD, customers
and users need to be visible; however, not all market–driven projects have
access to their customers.
Thus, there are several requirements prioritization techniques that may
support quality requirements, some more than others. A comparison of the
QUPER model and other techniques is provided in paper IV and V, and in
the related publication paper VII.

22

3. RELATED WORK

3.4 Release Planning and Roadmapping

Software product development is more and more commercialized as stan-
dard products (van de Weerd et al. 2006b), and less customized software is
developed (van de Weerd et al. 2006a). At the same time, market–driven
product development gains greater acceptance (AlBourae et al. 2006); there-
fore, a new role within software companies emerged, namely that of prod-
uct manager (van de Weerd et al. 2006a). However, product management
is not a new domain; it has been established in other sectors, such as man-
ufacturing since the 19th century (Kilpi 1997). Only recently has software
product management (SPM) received attention in the software industry
(van de Weerd et al. 2006b). Software product management has specific
challenges compared to product management in other sectors. van de
Weerd et al. (2006b) identifies five specific challenges in software product
management:

• Manufacturing and distributing of extra copies do not require extra
cost

• Software can be changed easily, sold products can be updated by re-
lease updates

• Organization of requirements and tracing of changes in design is
complex

• Software products have a high release frequency due to the ease of
changing

• The software product manager has many responsibilities, but has no
authority over the development team

The role of software productmanager has emerged over recent years and
appears to be of value; however, the role is complex to execute. The prod-
uct manager has several important tasks, such as managing requirements,
release planning, and launching products (van de Weerd et al. 2006a). The
research in this thesis has been conducted in relation to two activities in
software product management, namely, roadmapping and release plan-
ning. The relation between roadmapping, release planning, and require-
ments prioritization is illustrated in Figure 7. For further elaboration of
SPM activities, see van de Weerd et al. (2006a) and van de Weerd et al.
(2006b).
Regnell and Brinkkemper (2005) defines a roadmap as a document that
provides a layout of the product release to come over a time frame of three
to five years. There are many types of roadmaps described in the litera-
ture (Schalken and Brinkkemper 2004), and the one used in MDRE release
planning is the Product–Technology Roadmaps, where the purpose is to
map and align efforts towards a common goal. Roadmapping is a complex

23

INTRODUCTION

Figure 7: Software product management activities

activity due to the dependencies between the product and the related ones.
A roadmap should communicate several aspects such as themes of a cer-
tain release (e.g. improving quality, performance), goals, and milestones
(for releases).
Release planning is a process in software product management (as de-
scribed in Figure 7). The software product manager is responsible for the
release process (Regnell and Brinkkemper 2005). Release planning is a pro-
cess applying various types of upstream decision–making that combine
market considerations with implementation concerns (Regnell et al. 2007).
Release planning involves activities such as selecting what features and
requirements should be in a certain release (requirements prioritization),
when it should be released, and at what cost (Ullah and Ruhe 2006). Thus,
it is a major determinant of the success of a software product (Carlshamre
2002a). Figure 8 illustrates the release planning process, which is adapted
from (van de Weerd et al. 2006b).

Figure 8: Release planning activities

Wohlin and Aurum (2005) identified relevant criteria for release plan-
ning, one criterion that is regarded relevant for all participants is the cost–
benefit trade–off for implementing a requirements. This is similar to the
cost–value approach byKarlsson andRyan (1997) and to the QUPERmodel
((Regnell et al. 2007), (Regnell et al. 2008a), and (Berntsson Svensson et al.
2008)). Determining what requirements to include in a certain release is
a complex process (Regnell and Brinkkemper 2005) due to that require-
ment needs to be collected from various sources. The selected product
requirements are then input for the development process, which results in

24

4. RESEARCH METHODOLOGY

a software product. According to (Ullah and Ruhe 2006), lacking of good
release planning practicesmay results in unsatisfied customers andmarket
loss, which makes release planning a major determinant of the success of a
product.
Much research has been conducted about the actual process of deter-
mining requirements for a certain release. For example, by Carlshamre
and Regnell (2000) in the use of the REPEAT process (Requirements En-
gineering Process At Telelogic). REPEAT is based on fixed release dates
and intervals, which allows the requirements to be allocated to lists with
a ”must” part and a ”wish” part. For further elaboration of the REPEAT,
see Regnell et al. (1998). Other examples of release planning processes
includes, the AHP (described in Section 3.3), stakeholders’ opinions on
requirements importance (Ruhe and Saliu 2005), and Carlshamre (2002a)
used linear programming on which requirements interdependencies are
added.

4 Research Methodology

This section gives an overview of the methodological approaches that are
used in this thesis. Furthermore, the research strategies and methods used
in the studies in this thesis are described. In addition, threats to validity of
the results in this thesis are discussed.

4.1 Research Design

There are two main approaches to research: the fixed and the flexible re-
search design (Robson 2002). The fixed research design, which is also
called quantitative, is a highly pre–specified research design. In order to
know in advance what to do, and how to do it, fixed design requires a con-
ceptual framework or theory to be developed before getting into the main
part of the research study. The researcher needs to collect all data before
starting to analyze it. The fixed research design often quantifying a rela-
tionship or comparing two or more groups, where a solution or method is
suggested as more appropriate than others.
The flexible research design, which is also called qualitative, is a less pre–
specified research design than the fixed approach. Flexible research design
evolves during the research process, and the data collection and analysis
are intertwined. Qualitative data are typically non–numerical, instead, the
data is mainly focused on words. However, qualitative data may include
numbers. The flexible design studies objects in their natural setting, where
issues of the real world are described.
In this thesis, both fixed and flexible research designs are used (see Table
3). Fixed and flexible research design can be further classified into research
strategies. The following sub–section describes the used research strategies

25

INTRODUCTION

in this thesis. Surveys and case studies can both be classified as fixed and
flexible research design (Wohlin et al. 2000a).

4.2 Research Strategies

This section describes the used research strategies in this thesis, which are
systematic review, surveys, case study, and action research.

Systematic Review: A systematic review is a method that enables assess-
ment and interpretation of all available research that is relevant to a partic-
ular research question, topic area, or phenomena of interest (Kitchenham
2007). Reasons for carrying out a systematic review include, but are not
limited to (Kitchenham 2007): to review existing literature in relation to a
treatment or technology, to identify a gap in the existing literature, and to
provide a context to appropriately place new research activities.
Systematic review is of fixed research design. There are two main rea-
sons for classifying systematic review as fixed research design. First, in
fixed design a conceptual framework or theory needs to be developed be-
fore getting into the main part of the research. Prior to undertake a system-
atic review, it is necessary to identify the needs for the review, define re-
search questions, produce a review protocol including defined review pro-
cedures (planning), and predefined search strategy should be created. Sec-
ond, fixed research design often quantifying a relationship. A systematic
review summarizes the existing evidence concerning a treatment, which is
about quantifying a relationship. A systematic review comprises of three
main phases: planning the review, conducting the review, and reporting
the review. For further elaboration, see Kitchenham (2007).
The advantages with systematic reviews are, a well–defined methodol-
ogy, provides information about the effects of a phenomena across a va-
riety of contexts and empirical methods, and the possibility to combine
data using meta–analytic techniques. One disadvantage is that systematic
reviews require considerablymore effort that traditional literature reviews.

Surveys: Surveys can be both flexible and fixed. The classification depends
on the design of the questionnaire (which data is collected) and if it is pos-
sible to apply statistical methods (Wohlin et al. 2000a). Surveys includes
anything from open–ended interviews to questionnaires with closed ques-
tions. Questionnaires can reach a large set of population and provide easy
to analyze data. One disadvantage with questionnaires is low response
rate. Moreover, questionnaires have a risk of being misunderstood. Inter-
views have a higher response rate, and provides the interviewer with the
possibility to explain and clarify misunderstandings. However, interviews
have the disadvantage of being more time consuming and may introduce
researcher bias.
The purpose of surveys is to understand, describe, and explain the pop-

26

4. RESEARCH METHODOLOGY

ulation, from which a sample is selected (Wohlin et al. 2000a). Surveys are
common in other research areas, such as social science, for example, for an-
alyzing voting interests. The collected data from surveys are analyzed to
be generalized to the population, from which the sample is drawn. How-
ever, the results from one organization may be difficult to generalize to
other organizations.

Case study: A case study methodology is suited for many kinds of soft-
ware engineering research (Runeson and Höst 2009). In addition, Wieringa
andHeerkens (2007) lists case study as a well suited researchmethodology
for requirements engineering research. However, the use of the term case
study in software engineering research is of varying quality (Runeson and
Höst 2009). The reported studies range from ambitious studies to small toy
examples. There are several definitions of case study research in the litera-
ture, and in this thesis we use the following: "investigating contemporary
phenomena in their context" (Runeson and Höst 2009).
A case study is of flexible research design; however, good planning is
crucial for its success. A case study focus on the situation, individual,
project, or organization that the researcher is interested in. The researcher
collects detailed information and different data collection methods may
be applied. Case studies differ from experiments in terms of identifying
causal relationships; however, case studies provide a deeper understand-
ing of the phenomena (Runeson and Höst 2009). The results from case
studies are more difficult to interpret and generalize than the results from
experiment (Wohlin et al. 2000a).

Action Research: Wieringa and Heerkens (2007) classifies research meth-
ods that can be used in requirements engineering research. One of the
methods is action research. In action research, the researcher enters a project
where tasks are performed by using the researchers technique/method.
The purpose is to influence or change some aspects of the research focus.
Moreover, action research aims to improve: practice, the understanding of
practitioners, and the situation in which the practice takes place (Robson
2002).
The cycle of action research comprises of four steps (Robson 2002): (1)
plan to improve current practice, (2) implementation of the plan (action),
(3) observe effects, and (4) reflection. In fact, after the reflection step, the
researcher evaluates the performance of the used technique or method and
draws conclusions, which may lead to improvements of the technique or
method. The emphasis on the situation and improving practice in a par-
ticular context, and to produce a change in that particular context, palace
action research in the strategy of case studies (Robson 2002).

27

INTRODUCTION

4.3 Research methods

Without proper data collection and analysis methods, the essence of the
collected data may not be revealed nor possible to communicate. There are
a variate of researchmethods to choose from, and the researcher’s choice is
dependent on the information sought after (Robson 2002). The following
Section focus on the research methods used in this thesis.

Content analysis: The first method for data collection and analysis is re-
view of written documents. The focus of content analysis is to gather in-
formation and generate findings. The gathered information (content) can
be any written information. After the content has been gathered, it is ana-
lyzed and conclusions based on the content is reported. Content analysis
differs from interviews (interviews are described below) in terms of being
indirect. This means that the observer does not affect the documents.
In this thesis, papers I and III have collected data from existing docu-
ments. However, content analysis also includes analyzing the content from
interviews, and content analysis has been used for this purpose in papers
II, IV and V.

Interviews: In interviews, the researcher is the instrument for data collec-
tion. One advantage with interviews is the flexibility. The interviewer has
the possibility to follow up answers, interpret the tone of the voice, ex-
pressions and intonations of the interviewee, which documents or written
answers cannot reveal. One disadvantage with interviews is that they are
rather time consuming.
Interviews can be classified into three interview types, fully structured,
semi–structured, and unstructured (Robson 2002). Semi–structured inter-
views has predetermined questions; however, the interviewer can change
the order and the wording of the questions. For elaboration of fully struc-
tured and unstructured interviews, see Robson (2002).
The interviews performed in this thesis have been of the semi–structured
interview type (papers II, IV and V).

4.4 Research Classification

The results in this thesis have been reached through the use of the pre-
sented research strategies and methods. Table 3 provides a mapping be-
tween the presented papers, research questions, research strategies, re-
search designs, and research methods.
In paper I, systematic review is chosen as research strategy. A reason to
use systematic review is related to RQ1, ”what empirical evidence of man-
aging quality requirements exists in the literature”. Since one of the main
reasons for undertake a systematic review is to summarize the existing ev-
idence concerning a treatment, in this research, quality requirements, this

28

4. RESEARCH METHODOLOGY

Table 3: Research classification

Research Research Research Research
Paper Question Design Strategy Method
I RQ1 fixed systematic review content analysis
II RQ2 flexible survey interviews
III RQ2 flexible case study content analysis
IV RQ3 flexible action research interviews
V RQ3, RQ4 flexible action research interviews

research strategy’s purpose is well aligned with RQ1. One may argue that
a literature review, which most research starts with, could have been used
instead. However, unless the literature review is thorough, it is of less
scientific value. A systematic review synthesizes existing work in a man-
ner that is thorough and fair, and a predefined search strategy is used. In
addition, the methodology in systematic reviews is well–defined and min-
imizes the risk of literature bias. The used research method in paper I is
content analysis. The main reason for using this method is that the col-
lected data (publications in this study) is already produced, which makes
the indirect method of content analysis (instead of direct observing or in-
terviewing for the purpose of the study) well suited in paper I.
A Survey is used as research strategy in paper II. The reason for using
a survey strategy is that the aim of paper II is to understand and describe
how quality requirements are handled in practice, which is aligned with
the purpose of surveys. In addition, surveys aim to explain the popula-
tion, which is more difficult in an experiment since it is not possible to
generalize the results outside the controlled conditions. Case studies focus
on the situation or organization and provide a deep understanding; how-
ever, the results are difficult to generalize, thus the case study strategy is
not well suited for the study in paper II. Interviews were used as research
method approach because of the ability to interpret the tone of the voice,
expressions, and intonations of the interviewee. Moreover, interviews pro-
vide the researcher with the ability to explain questions (if misunderstood)
and to follow up answers.
The aim of paper III is to analyze a quality requirements specification in
practice in an industrial context and to classify quality requirements that
are used in industry. An in–depth analysis of a single case helps to un-
derstand the details of a specific context, therefore, case study is chosen
as research strategy. The analyzed data is a real requirements specifica-
tion with 2113 requirements from a case company, which was already pro-
duced. Considering the collected data and the aim of paper III, content
analysis is the most suitable research method as it is an indirect method.
Action research was used as research strategy in both paper IV and V.

29

INTRODUCTION

The aim of paper IV and V was to evaluate the introduction of a new
method and to improve the situation of managing quality requirements.
Action research aims to influence or change some aspects of the research
focus, and the improvement of practice and the situation in which the prac-
tice takes place. In paper IV and V, we were involved in several steps to
improve the practice of release planning of quality requirements by intro-
ducing the QUPER model. To apply QUPER in practice, the guidelines in
paper IV were developed in cooperation between industry and academia.
Moreover, the tailoring of the model (paper V) was carried out by the re-
searchers together with practitioners at the case company. We participated
in the process to set the QUPER model into operation, and introduced
how to use the model in practice to the practitioners in several workshops.
To evaluate the introduction of QUPER, interviews were used as research
method approach because of the ability to interpret the tone of the voice,
expressions, and intonations of the interviewee.

4.5 Validity

Even though the research in this thesis has been conducted with reliable,
and well–known strategies, and methods, the result should be questioned
and evaluated. The validity of the result should always be addressed. In
this thesis, four perspectives of validity and threats as presented in Wohlin
et al. (2000a) are considered: conclusion, internal, construct, and external
validity. An overview of these validity threats is presented below.

Conclusion validity arise from the ability to draw accurate conclusions, i.e.
the reliability of the results (Wohlin et al. 2000a). Conclusion validity is
related to the repeatability of the study, such as the data collection proce-
dures. That is, if the same study is repeated, and the results are the same,
then the study has a high degree if reliability (Yin 2003).

Internal validity is related to issues that may affect the causal relationship
between treatment and outcome, for example, a change in the subjects en-
vironment may affect the outcomewithout the researcher knowing about it
(Wohlin et al. 2000a). If the researcher incorrectly concludes that the treat-
ment affects the outcome without knowing that a third factor has caused
the outcome, then the study has a low degree of internal validity (Yin 2003).
Internal validity is a large threat to case studies due to that industrial envi-
ronment changes over time (Yin 2003).

Construct validity is concerned with the relation between theories behind
the research and the observations. The use of multiple sources of evidence
and establish a chain of evidence may increase construct validity (Yin 2003)
and ensure that the result is an effect of the treatment.

30

5. RESEARCH RESULTS

External validity is concerned with the ability to generalize the findings be-
yond the actual study. Results obtained in the context of a unique environ-
ment, or with a specific group of subjects may not be fully generalizable
to other contexts and environments. However, qualitative studies rarely
attempt to generalize beyond the actual setting since they are more con-
cerned with explaining and understanding a phenomena.

Threats to validity of the result in this thesis are discussed in conjunction
with research results in Section 5 and separately in each of the included
papers.

5 Research Results

This section presents the main contributions of this thesis related to each
research question. The discussed contributions are based on the conclu-
sions from the results of the included papers. In addition, the main threats
to validity to these conclusions related to each research question are sum-
marized. Detailed contributions and threats to validity of each paper in
this thesis can be found in the respective papers.

Main contributions of RQ1. What empirical evidence of managing qual-
ity requirements exist in the literature?

The first research contribution is the systematic review, which is described
in paper I. The systematic review seeks to collect and compare existing em-
pirical evidence on quality requirements in relation to the software product
management domain. The systematic review generated research questions
and laid the basis for studies regarding research question two (RQ2).
The systematic reviewpresents the state of research in six areas of quality
requirements. It also provides a basis for further research opportunities.
One of the empirical evidence that is encountered is a gap in the research
literate of how cost estimation of quality requirements is conducted. The
results show that only one study is related to this area. However, the study
does not address how cost estimation of quality requirements is conducted;
instead, the study relates to the identification of foreseen cost barriers.
Another area that lacks empirical evidence is prioritization of quality
requirements. None of the identified studies investigates how quality re-
quirements are, and should be prioritized. Other encountered empirical
evidence includes six different techniques for handling interdependencies
among quality requirements, and six different techniques for eliciting qual-
ity requirements.

Main validity issues of RQ1
One major threat to construct validity is the exclusion of relevant empiri-

31

INTRODUCTION

cal studies, which may influence the identified state of research. This threat
was countered by a defined stringent search strategy, and that the second
and third author, each reviewed a set of 20 percent of all excluded papers.
Threats to conclusion validity might affect the conclusions drawn by in-
troducing author bias. To minimize this threat, inclusion and exclusion
criteria were explicitly defined.

Main contributions of RQ2. Which are the current quality requirement
challenges that need further investigation?

The second contribution is described in two papers. Paper II describes an
industrial survey conducted at five Swedish embedded software–developi-
ng companies. The survey gives insights into how quality requirements
are handled in the studied companies, and the challenges they face. More-
over, what quality requirements aspects do the companies feel confident
as being adequately handled are discovered. Paper II generated further re-
search opportunities, which is described in Section 6, and in the paper. Pa-
per II presents challenges managed bymarket–driven software developing
companies, both from a product and project perspective. Some of the chal-
lenges encountered are: when is the quality level good enough, and how
to get quality requirements into projects when functional requirements are
prioritized?
Another challenge is that there seems to be a bespoke developmentmind-
set where the immediate project gets a higher priority than the long–term
evolution of the product. This is confirmed by the implicit management of
quality requirements, and the dismissal off–hand of quality requirements
with little or no consequence analysis. However, the main problem is that
quality requirements are not taken into consideration during product plan-
ning and thus not included as hard requirements in the projects.
Paper III regards how quality requirements metrics are used in an in-
dustrial context. Paper III describes a case study within the embedded
software domain where an in–depth analysis gave an understanding of
details of a quality requirements specification in a specific context. The
results show that 40 percent of the 2113 requirements are quality require-
ments. Furthermore, references to various standards are commonly used
for quality requirements. About half of the quality requirements are quan-
tified in the requirements specification, which seems to confirm the find-
ings in paper II. Paper III concludes that for a method to be successful, it is
important that it is flexible enough to handle the diverse nature of quality
requirements. This impacts all areas of requirements engineering, starting
with elicitation and analysis to specification and validation.

Main validity issues of RQ2
In the two quality requirements studies in paper II and III, the major threat
is concerned with external validity, i.e. whether the results are general-

32

5. RESEARCH RESULTS

izable to other contexts. The study in paper III only covers one specific
case company, therefore, the generalizabilitymay be questioned. However,
qualitative studies rarely attempt to generalize beyond the actual setting
since it is more concernedwith explaining and understanding the phenom-
ena. In addition, paper II seems to confirm part of the results discovered in
paper III, by a qualitative survey from five companies. This increases the
possibility to generalize the results beyond a specific context.

Main contributions of RQ3. How can QUPER be transferred to industry
practice?

The third contribution is also investigated in two papers. Paper IV presents
a general set of guidelines of applying QUPER in practice, which is de-
veloped in a case company. The guidelines involves six steps and a tem-
plate for documenting the results of QUPER’s steps. The QUPER model is
proposed to be aligned with the case company’s current scoping process,
which uses pair–wise comparisons of features in cost–benefit analysis. The
general set of guidelines is used as input to the adaption and evaluation of
the QUPER model in paper V.
QUPER as presented in Section 1 and paper IV is generic in nature.
Therefore, in paper V, an adaption of the six steps in applying QUPER
in practice (paper IV) needed to be addressed prior to the model being
evaluated in a case study (the contribution of the evaluation is presented
below in RQ4). The adaption only includes the first four steps from paper
IV. The reason is that the case company considered these steps as the most
important ones to start with. A modification of the steps from paper IV is
addressed, and the order is changed. The tailored QUPER steps envisions
the following practical steps: (1) define quality aspects, (2) Estimate your
product’s current quality (for a given release) and the competing products’
quality (at present or envisioned), (3) for each quality aspect and for each
relevant qualifier, estimate the breakpoints, and (4) estimate candidate tar-
gets and discuss and decide on actual targets for coming releases.

Main validity issues of RQ3
A major threat of the practical application of QUPER is concerned with
external validity. The development of the guidelines has been conducted
in two case studies; however, the case company is the same. We believe
that the general concepts of applying QUPER in practice are transferable
to requirements engineering for other domains of market–driven software
product development, but this needs to be investigated in further research
by applying the same set of guidelines in other companies.

Main contributions of RQ4. To what extent does the use of QUPER as a
part of release planning of quality requirements result in improvements
with regards to high–level decision–making?

33

INTRODUCTION

The fourth contribution is an evaluation and improvement of QUPER. Pa-
per V reports on findings of the practical use of the QUPER model from
interviews with four experts in one case study. The model is applied in
four different areas within the case company and both possibilities and
limitations are discovered.
The general view of QUPER is related to the saturation breakpoint, the
subjects expressed that it is good to knowwhen to stop improving the qual-
ity. Furthermore, the relation to the real world, that is, comparing their
own product’s quality against the competitors level of quality is one of
the beneficial aspects of the QUPER model. This comparison provides a
more extensive view of the quality requirements and therefore, provides
a better basis and understanding of the rationale behind a certain level of
quality. With regards to high–level decision–making, QUPER is found to
provide more knowledge of the current market situation, which leads to
more informed decisions. Moreover, due to a better overview of the mar-
ket situation, QUPER is found to improve the decision–making, particular
when introducing new products on a certain market.
However, the results encountered some limitations of the model. The
limitations include difficulties to identify the differentiation and saturation
breakpoints, and different peoplemay interpret the breakpoints differently.
In addition, the introduction of the QUPER model required more time to
quantify quality requirements compared with the previous used process.

Main validity issues of RQ4
In paper V, one threat is concerned with internal validity, i.e. whether the
causal relationship between treatment and outcome has been affected. The
interview subjects’ answers were recored by the researcher, which may
have constrained the subjects in their answers. This threat was countered
by guaranteeing complete anonymity.
Another threat is related to conclusion validity, that is, the ability to
draw correct conclusions. To minimize this threat, the interviews were
conducted at different departments and different geographical locations
within the case company. Each interview was conducted in one work ses-
sion, thus, answers were not influenced by internal discussions. Moreover,
the relative small sample of interview subjects may affect the drawn con-
clusions and may not be representative for the whole case company.
A major threat is related to external validity, in this study, the applica-
bility of QUPER in industry at companies other than the case company.
Some of the discovered limitations and possibilities could to some extent
be general for organizations that are developing products for markets.

34

6. FURTHER RESEARCH

Table 4: Research plan

Further Research
Research Description Approach

FR1
Development and
evaluation of QUPER’s
cost view in an
educational and
industrial environment

Data collection: literature
study, interviews
Evaluation: interviews,
questionnaires, controlled
experiment

FR2 Development and evaluation
of QUPER’s roadmap view

Data collection: literature
study, interviews

FR3 How to incorporate depen-
dencies into the QUPER
model

Data collection: inter-
views with experts

FR4 Create a deeper understand-
ing of quality requirements
challenges

Data collection: inter-
views

FR5 A deeper understanding of
the characteristics of quality
requirements

Data collection: content
analysis

6 Further Research

This section describes how the research can be continued in the future,
and a research plan is presented. All included papers have possibilities
of further research, which are presented and discussed in relation to each
paper. Our research is intended to continue with the same focus as in this
thesis, namely improvement of managing quality requirements, with fo-
cus on further evaluating and developing the QUPER model. The main
goal is to provide methods and guidelines that can be incorporated into
the QUPER model, where the specific research goals are: (1) to investigate
cost estimations of quality requirements, and (2) to improve the support of
quality requirements with regards to high–level decision making. In addi-
tion, another goal is to continue the studies in this thesis. These goals could
be realized through empirical studies with both qualitative and quantita-
tive approaches. A plan for further research opportunities of interest is
outlined below, and the research plan is summarized in Table 4.

FR1: Cost estimations of quality requirements
The QUPER model described in the background section consists of three
views. In paper IV and V guidelines and an evaluation of the benefit view
were conducted. One research opportunity is to develop practical guide-

35

INTRODUCTION

lines and conduct an evaluation of the QUPER cost view. Data could be
collected by a literature study and interviews. The purpose would be to
investigate what cost estimation models have been empirically validated
and what challenges and needs are faced in industry. Based on the col-
lected data, guidelines of how to use the cost view in a practical setting
could be developed.
It is of interest to investigate to what extent the practical guidelines for
the QUPER cost view can assist practitioners in high–level decision mak-
ing. Therefore, the cost view could be evaluated regarding its usefulness as
prediction of cost estimations of quality requirements. Data could be col-
lected by questionnaires and interviews to obtain opinions from require-
ments engineers. In addition, two experiments could be conducted as a
complement to the questionnaires and interviews. One experiment may
use students as subject while the second may use practitioners from indus-
try as subjects. The treatment could be arranged as follows: one group
could have access to the cost view when estimating the cost of quality re-
quirements, while the other groupmay not have any assistance during cost
estimations.

FR2: Predicting future market trends/needs for quality requirements
In addition to QUPER’s cost view (FR1), QUPER’s roadmap view is to
predict future quality levels based on a snapshot of today’s market situ-
ation for products that are released in one, two, or even three years time.
To further develop the QUPER model, the roadmap view is an important
part. One research opportunity would be to develop a practical application
guide and conduct an evaluation of the QUPER roadmap view. Data could
be collected by a literature study with a focus on what marketing models
and tools exist, and are applicable to the software engineering industry. In
addition, an interview study with the purpose to identify how the industry
predicts future market needs in terms of quality levels could be conducted.

FR3: Dependencies and quality requirements
As mentioned in Section 3.3, dependencies can have a major impact on
requirements prioritization. In addition, requirements interdependencies
has an important role in release planning (Carlshamre et al. 2000). In re-
lease planning, the selection of of requirements are usually based on the
requirements prioritization process. However, the selection of one require-
ment may imply that other requirements may be selected as well (Dahlst-
edt and Persson 2005). The interdependencies may also affect the develop-
ment cost for other requirements, for example, the performance of feature
A should not be longer than 3 seconds. This requirement may increase the
cost of implementing other requirements (Dahlstedt and Persson 2005). In-
terdependencies can have an impact on other requirements value, for ex-
ample, an on–line manual may decrease the customer value of a printed
manual.

36

6. FURTHER RESEARCH

In the QUPER model, requirements dependencies have not been taken
into consideration during the implementation of the benefit view. Cur-
rently, the most important dependencies are managed on the basis of ex-
pert judgment in particular crucial cases (Regnell et al. 2008a). Trying to
estimate all dependencies inevitably lead to a combinatorial explosion. It
is important to understand more about quality requirements interdepen-
dencies before it is possible to find heuristics to efficiently support and
incorporate them into the QUPER model.

FR4: Deeper analysis of challenges with quality requirements
Paper II takes a first step towards a deeper understanding of faced chal-
lenges in relation to quality requirements in industry. We intend to con-
tinue the investigation with a larger sample size that consists of 25–30 in-
terviews (including the interviews in paper II). This would result in a more
comprehensive understanding of faced challenges whenmanaging quality
requirements. Since paper II was written, data collection from additional
interviews and companies have taken place.

FR5: Deeper analysis of quality requirements metrics
Paper III takes a first step towards understanding how quality require-
ments are specified, in particular which metrics are used in an industrial
setting. We intend to continue the investigation by a deeper analysis of the
collected data. In addition, one possibility is to map the collected quality
requirements to the ISO 9126 standard (9126-2001 E). This would result in
a more comprehensive understanding of the characteristics of quality re-
quirements and how reliable the ISO 9126 classification is in a particular
case.

37

INTRODUCTION

38

REFERENCES

References

ANSI/IEEE Std. 830. Guide to software requirements specification, 1998.

ISO/IEC 9126-2001(E). Software engineering – product quality – part 1:
Quality model, 2001.

T. AlBourae, G. Ruhe, and M. Moussavi. Lightweight replanning of soft-
ware product releases. In Proceedings of the 1st International Workshop on
Software Product Management, pages 27–34, 2006.

D. Alwis, V. Hlupic, and R. Fitzgerald. Intellectual capital factors that im-
pact of value creation. In Proceedings of the 25th International Conference
on Information Technology Interfaces, pages 411–416, 2003.

A. Aurum and C. Wohlin. Engineering and Managing Software Requirements.
Springer, 2005.

S. Barney, A. Aurum, and C. Wohlin. A product management challenge:
Creating software product value through requirements selection. Journal
of Systems Architecture, 54(6):576–593, 2008.

P. Berander. Using students as subjects in requirements prioritization.
In Proceedings International Symposium on Empirical Software Engineering,
pages 167–176, 2004.

P. Berander and A. Andrews. Engineering and Managing Software Require-
ments, chapter Requirements Prioritization, pages 69–94. Springer, 2005.

B. Bergman and B. Klefsjö. Quality from Customer Needs to Customer Satis-
faction. Studentlitteratur, 2003.

R. Berntsson Svensson and A. Aurum. Successful software projects and
products. In IEEE/ACM 5th International Symposium on Empirical Software
Engineering, 2006.

R. Berntsson Svensson, A. Aurum, C. Wohlin, and G. Hu. Successful soft-
ware project and products: An empirical investigation comparing aus-
tralia and sweden. In 17th Australian Conference on Information Systems,
2006.

R. Berntsson Svensson, T. Olsson, and B. Regnell. Introducing support
for release planning of quality requirements – an industrial evaluation
of the quper model. In 2nd International Workshop on Software Product
Management, 2008.

B.W. Boehm and V. Basili. Gaining intellectual control of software devel-
opment. Computer, 33(5):27–33, 2000.

39

REFERENCES

B.W. Boehm, J.R. Brown, and M. Lipow. Quantitative evaluation of soft-
ware quality. In Proceedings 2nd International Conference on Software Engi-
neering, pages 592–605, 1976.

A. Borg, A. Yong, P. Carlshamre, and K. Sandahl. The bad conscience of
requirements engineering: An investigation in real–world treatment of
non–functional requirements. InProceedings of the third Conference on Soft-
ware Engineering and Practice in Sweden, pages 1–8, 2003.

P. Carlshamre. Release planning in market–driven software product devel-
opment: Provoking an understanding. Requirements Engineering Journal,
7(3):139–151, 2002a.

P. Carlshamre. A usability perspective on requirements engineering – From
methodology to product development. PhD thesis, Linköping University,
Sweden, 2002b.

P. Carlshamre and B. Regnell. Requirements lifecycle management and
release planning in market–driven requirements engineering processes.
In Proceedings 11th International Workshop on Database and Expert Systems
Applications, pages 961–965, 2000.

P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och Dag. An
industrial survey of requirements interdependencies in software prod-
uct release planning. In Proceedings 5th IEEE International Symposium on
Requirements Engineering, pages 84–91, 2000.

J. Castro, M. Kolp, and J. Mylopoulos. Towards requirements–driven in-
formation systems engineering: the tropos project. Information Systems,
27(6):365–389, 2002.

L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. NFR in Software Engineer-
ing. Kluwer Academic Publishers, 2000.

J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, and
S. Christina. Goal–centric traceability for managing non–functional re-
quirements. In Proceedings 27th International Conference on Software Engi-
neering, pages 362–371, 2005.

L.M. Cysneiros and J.C.S.P. Leite. Nonfunctional requirements: From elic-
itation to conceptual models. IEEE Transactions on Software Engineering,
30(5):328–349, 2004.

Ȧ.G. Dahlstedt and A. Persson. Engineering and Managing Software Require-
ments, chapter Requirements Interdependencies: State of the Art and Fu-
ture Challenges, pages 95–116. Springer, 2005.

J.M deBaud and K. Schmid. A systematic approach to derive the scope of
software product lines. In Proceedings of the 21st International Conference
on Software Engineering, pages 34–43, 1999.

40

REFERENCES

D. Dikel, D. Kane, S. Ornburn, W. Loftus, and J. Wilson. Applying software
product–line architecture. Computer, 30(8):49–55, 1997.

C. Ebert. Requirements before the requirements: understanding the up-
stream impacts. In Proceedings 13th IEEE International Conference on Re-
quirements Engineering, pages 117–124, 2005.

C. Ebert. Putting requirement management into praxis: dealing with non-
functional requirements. Information and Software Technology, 40(3):175–
185, 1998.

T. Gorschek and C. Wohlin. Requirements abstraction model. Requirements
Engineering Journal, 11:79–101, 2006.

S. Jacobs. Introducing measurable quality requirements: a case study. In
Proceedings 4th IEEE International Symposium on Requirements Engineering,
pages 172–179, 1999.

H-W. Jung, S-G. Kim, and C-S. Chung. Measuring software product qual-
ity: A survey of iso/iec 9126. IEEE Software, 21(5):88–92, 2004.

J. Karlsson. Managing software requirements using quality function de-
ployment. Software Quality Journal, 6(4):311–325, 1997.

J. Karlsson and K. Ryan. A cost–value approach for prioritizing require-
ments. IEEE Software, 14(5):67–74, 1997.

J. Karlsson, S. Olsson, and K. Ryan. Improved practical support for large–
scale requirements prioritising. Requirements Engineering, 2:51–60, 1997.

J. Karlsson, C. Wohlin, and B. Regnell. An evaluation of methods for pri-
oritising software requirements. Information and Software Technology, 39
(14–15):939–947, 1998.

L. Karlsson, Ȧ.G. Dahlstedt, B. Regnell, J. Natt och Dag, and A. Persson.
Requirements engineering challenges in market–driven software devel-
opment – an interview study with practitioners. Information and Software
Technology, 49:588–604, 2007.

T. Kilpi. Product management challenge to software change process: Pre-
liminary results from three smes experiments. Software Process Improve-
ment and Practice, 3(3):165–175, 1997.

B.A. Kitchenham. Guidelines for performing systematic literature reviews
in software engineering version 2.3. Technical report, Keele University
and University of Durham, 2007.

S. Konrad and M. Gall. Requirements engineering in the development of
large–scale systems. In Proceedings of the 16th IEEE International Require-
ments Engineering Conference, pages 217–222, 2008.

41

REFERENCES

R.J. Kusters, R.V. Solingen, and J.J.M. Trienekens. Identifying embedded
software quality: Two approaches. Quality and Reliability Engineering In-
ternational, 15:485–492, 1999.

S. Lauesen. Software Requirements – Styles and Techniques. Addison–Wesley,
2002.

L. Lehtola and M. Kauppinen. Suitability of requirements prioritization
methods for market–driven software product development. Software
Process Improvement and Practice, 11(1):7–19, 2006.

J.A. McCall and M. Matsumoto. Software quality metrics enhancements,
vol. i–ii. Technical report, Rome Air Development Center, 1980.

S.L. Pfleeger. Software Engineering – Theory and practice. Prentice–Hall, 2001.

B. Regnell and J. Brinkkemper. Engineering and Managing Software Require-
ments, chapter Market–Driven Requirements Engineering for Software
Products, pages 287–308. Springer, 2005.

B. Regnell, P. Beremark, and O. Eklundh. A market–driven requirements
engineering process – results from an industrial process improvement
programme. Requirements Engineering, 3(2):121–129, 1998.

B. Regnell, M. Höst, J. Natt och Dag, P. Beremark, and T. Hjelm. An indus-
trial case study on distributed prioritization in market–driven require-
ments engineering for packaged software. Requirements Engineering, 6:
51–62, 2001a.

B. Regnell, B. Paech, A. Aurum, C. Wohlin, A. Dutoit, and J. Natt och Dag.
Requirements mean decisions! – research issues for understanding and
supporting decision–making in requirements engineering. In Proceed-
ings of 1st Swedish Conference on Software Engineering Research and Practise,
pages 49–52, 2001b.

B. Regnell, H.O. Olsson, and S. Mossberg. Assessing requirements com-
pliance scenarios in system platform subcontracting. In Lecture Notes in
Computer Science, volume 4034, pages 362–376, 2006.

B. Regnell, M. Höst, and R. Berntsson Svensson. A quality performance
model for cost–benefit analysis of non–functional requirement applied to
the mobile handset domain. In Lecture Notes in Computer Science, volume
4542, pages 277–291, 2007.

B. Regnell, R. Berntsson Svensson, and T. Olsson. Supporting roadmap-
ping of quality requirements. IEEE Software, 25(2):42–47, 2008a.

B. Regnell, R. Berntsson Svensson, and K.Wnuk. We beat the complexity of
very large–scale requirements engineering? In Lecture Notes in Computer
Science, volume 5025, pages 123–128, 2008b.

42

REFERENCES

C. Robson. Real World Research. Blackwell, 2002.

G-C. Roman. A taxonomy of current issues in requirements engineering.
IEEE Computer, 18(4):14–23, 1985.

G. Ruhe and M.O. Saliu. The art and science of software release planning.
IEEE Software, 22(6):47–53, 2005.

P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, 2009.

T. Saaty. The Analytical Hierarchy Process. McGraw–Hill, 1980.

J. Schalken and S. Brinkkemper. Assessing the effects of facilitated work-
shops in requirements engineering. In Proceedings of 8th IEEE Interna-
tional Conference on Empirical Assessment in Software Engineering, pages
135–144, 2004.

G.G. Schulmeyer and J.I. McManus. Handbook of Software Quality Assurance.
Prentice Hall, 1999.

I. Sommerville. Software Engineering. Addison–Wesley, 2007.

H. Thayer. Software engineering: a tutorial. IEEE Computer, pages 68–73,
2002.

R. Thayer and M. Dorfman. Systems and Software Requirements Engineering.
IEEE Computer Society Press, 1990.

M.I. Ullah and G. Ruhe. Towards comprehensive release planning for soft-
ware product lines. In Proceedings of the 1st International Workshop on
Software Product Management, pages 51–55, 2006.

I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis, J. Versendaal, and L. Bi-
jlsma. On the creation of a reference framework for software product
management: Validation and tool support. In Proceedings of the 1st Inter-
national Workshop on Software Product Management, pages 3–11, 2006a.

I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis, J. Versendaal, and L. Bi-
jlsma. Towards a reference framework for software product manage-
ment. In Proceedings of the 14th IEEE International Requirements Engineer-
ing Conference, pages 312–315, 2006b.

R. Wieringa and H. Heerkens. Designing requirements engineering re-
search. In Proceedings of 5th International Workshop on Comparative Evalu-
ation in Requirements Engineering, pages 36–48, 2007.

43

REFERENCES

C. Wohlin and A. Aurum. What is important when deciding to include
a software requirement in a project or release? In Proceedings of 4th In-
ternational Symposium on Empirical Software Engineering, pages 237–246,
2005.

C. Wohlin, P. Runeson, M. Höst, M.C. Ohlson, B. Regnell, and A. Wess-
lén. Experimentation in Software Engineering: An introduction. Kluwer
Academic, 2000a.

C. Wohlin, A. von Mayrhauser, M. Höst, and B. Regnell. Subjective evalu-
ation as a tool for learning from software project success. Information and
Software Technology, 42:983–992, 2000b.

R.K. Yin. Case Study Research: Design and Methods. Sage Publications, 2003.

44

Paper I

Managing Quality Requirements: A Systematic
Review

Richard Berntsson Svensson, Martin Höst, Björn Regnell
Department of Computer Science, Lund University, Sweden

Submitted to Information and Software Technology, 2009

ABSTRACT

It is commonly acknowledged that the handling and bal-
ance of quality requirements are important and difficult parts
of the requirements engineering process, and playing a critical
role in software product development. This paper presents a
systematic review of empirical studies of quality requirements.
The search strategy identified 2647 studies by searching the lit-
erature, of which 22were found to be empirical research studies
of acceptable quality, and related to the research questions. The
studies are grouped into six areas: elicitation, dependencies,
quality requirements metrics, cost estimations, prioritization,
and software product management. The review investigates
what is currently known about the benefits and limitations of
methods for quality requirements. Moreover, the strength of
evidence of the reviewed studies is evaluated. The main im-
plication for research is a need for more empirical studies on
quality requirements. In addition, replication of current meth-
ods/techniques for quality requirements is needed. For prac-
titioners, the review provides an overview of what is currently
known about methods for quality requirements. In addition,
the identified methods give the practitioners the opportunity
to compare to their own industrial environment..

Keywords: Empirical software engineering, systematic re-
view, evidence–based, quality requirements, non–functional re-
quirements

1. INTRODUCTION

1 Introduction

The complexity of software systems is determined by both functionality
and by quality aspects such as performance, reliability, accuracy, security,
and usability (Chung et al. 2000). These quality aspects, or non–functional
requirements are subsequently called quality requirements (QR). It is com-
monly acknowledged that the handling and balance of QR are important
and difficult parts of the requirements engineering process (Jacobs 1999),
and that QR are playing a critical role in software developmen (Chung et al.
2000).
One characteristic of QR is the specification of certain quality levels, and
therefore QR are in many cases possible to quantify (Olsson et al. 2007).
This is important, not only for understanding QR (Jacobs 1999), but also
for planning (Regnell et al. 2007). Not dealing, or ineffectively dealing with
QRmay lead to more expensive software and longer-time–to–market (Cys-
neiros and Leite 2004), or in worst case, failures in software development
((Breitman et al. 1999), (Finkelstein and Dowell 1996)). Studies ((Jr. 1987),
(Cysneiros and Leite 1999)) have showed that QR are expensive and diffi-
cult to handle, and according to Chung et al. (2000), QR are often poorly
understood in comparison to less critical aspects of software development.
It is generally agreed that decisions about what QR to state on a product
have large effects on the development project and the choice of architec-
ture. This means that the area of QR is important to understand in more
detail and to understand which dependencies there are between different
QR.
This paper seeks to collect and compare existing empirical evidence on
quality requirements to date. Also, an overview of findings, strength of
findings, and implications for research and practice are studied. Kitchen-
ham et al. (2009) published a review of all conducted systematic reviews.
Among the 20 identified systematic reviews, not a single topic area was
about quality requirements.
Since the area of QR is an important area for research there is a need
for a review of the state of research in the area. This systematic review is
intended to provide this state of research and in this way it can serve as
a basis for further empirical research on the subject. A systematic review
can, in general, both provide an understanding of the performance of dif-
ferent methods in an area, and provide a summary of which methods are
available and how they are related. This paper is mainly concerned with
the latter objective.
The paper is structured as follows: In section 2, an overview of qual-
ity requirements and existing reviews are presented. Section 3 describes
the review method used in this systematic review. In section 4, findings
of the review are presented while section 5 discusses benefits and impli-
cations for practice and research. Section 6 gives a summary of the main
conclusions and provides recommendations for further research on quality

47

PAPER I: MANAGING QUALITY REQUIREMENTS: A SYSTEMATIC REVIEW

requirements.

2 Background and Related Work

This section first describes quality requirements in relation to elicitation,
dependencies, metrics, cost estimation, prioritization, and software prod-
uct management. Then, a summary of previous reviews of requirements
engineering literature is provided.

2.1 Quality Requirements

Functional requirements describe the interaction between the system and
its environment (Pfleeger 2001), while quality requirements specify how
well the system must perform the functions (Lauesen 2002). Instead of
specifying what the system must do, quality requirements put restrictions
on the system (Pfleeger 2001). It is commonly acknowledged that the han-
dling and balance of quality requirements are an important and difficult
part of the requirements engineering process (Jacobs 1999). Furthermore,
quality requirements are often poorly understood (Chung et al. 2000), de-
spite that they are of major importance (Ebert 2005). According to Kotonya
and Sommerville (1998), quality requirements are of major importance be-
cause they are restrictions on the systems, and therefore, functional re-
quirements may have to be excluded to meet these quality requirements.
Despite the knowledge of the importance of quality requirements, quality
requirements receive little attention in the literature (Cysneiros and Leite
2004), and users are often dissatisfied with software quality (Jung et al.
2004). Quality requirements are a key differentiator between a company
and its competitors (Doerr et al. 2005).
There are a number of important research areas with respect quality re-
quirements. However, this systematic review focus on areas related to
the software product management domain. That is, requirements elici-
tation, requirements metrics (quantification of quality requirements), cost
estimation, requirements prioritization, requirements dependencies, and
software product management in general. Research areas such as architec-
ture and design are not within the scope of this systematic review. For fur-
ther elaboration on the software product management domain, see van de
Weerd et al. (2006b). In the following, the considered research areas are
described, and the difficulties when considering quality requirements are
presented.
Requirements elicitation is about finding and revealing requirements
from different stakeholders for a software product. Elicitation of quality re-
quirements involves additional challenges compared to elicitation of func-
tional requirements. Lack of deep understanding of quality requirements
of the application domain, and quality requirements are often specified in-

48

2. BACKGROUND AND RELATED WORK

formally (Balushi et al. 2007), for example, the software product should be
fast or the user interface should be easy to use.
Requirementsmetrics relates to quantification of requirements, to make
them possible to verify. Olsson et al. (2007) found that 50% of all quality
requirements in a requirement specification were specified with a metric.
This may indicate difficulties in specifying verifiable quality requirements.
Cost estimation is about estimating the needed development effort for
a particular requirement, function, or feature. Estimating the development
effort for a particular quality requirement may be even more complex con-
sidering the complex interdependencies among them.
Requirements prioritization involves cost and value estimations of the
requirements (Karlsson et al. 1998) and is the foundation for release plan-
ning (Ullah and Ruhe 2006) in software product management. Models
that address requirements prioritization often emphasize functional as-
pects, for example, the cost–value approach for requirements prioritization
(Karlsson and Ryan 1997).
Requirements dependencies: Priority of requirements is a major deter-
minant in planning, but the fact that requirements are related to each other
makes it difficult or sometimes even impossible, to schedule requirements
based on priority only (Carlshamre et al. 2000). However, the situation is
even more complex for quality requirements because they tend to have a
global impact on the entire system (Cysneiros and Leite 2004).
Software productmanagement includes several important activities, su-
ch as requirementsmanagement, release planning, and launching products
(van de Weerd et al. 2006a). Ullah and Ruhe (2006), lacking of good re-
lease planning practices may results in unsatisfied customers and market
loss, which makes release planning a major determinant of the success of
a product. When dealing with quality requirements such as performance,
usability, and reliability, we often end up in a difficult trade–off analysis.
Aspects such as release targets, end–user experience, and business oppor-
tunities must be taken into account (Berntsson Svensson et al. 2008).

2.2 Related Work

Reviews of requirements engineering that are related to this systematic
review are presented by Davis et al. (2006) and van Lamsweerde (2000).
In addition, several systematic reviews ((Grimstad et al. 2006), (Jørgensen
2004), (Jørgensen and Shepperd 2007), (Kitchenham et al. 2007), (Mair and
Shepperd 2005)) of cost estimations are presented.
Davis et al. (2006) conducted a systematic review of the effectiveness
of requirements elicitation techniques. The results show that the most ef-
fective elicitation technique, in several domains, is interviews. In addition,
interviews were found to be the most commonly used elicitation technique
in practice. Several other elicitation techniques, such as, ranking and card
sorting were found to be less effective than interviews. Davis et al. (2006)

49

PAPER I: MANAGING QUALITY REQUIREMENTS: A SYSTEMATIC REVIEW

found that careful preparation of interviews has much higher impact on
the elicitation result than the analyst’s experience, which contradicts the
old ideas of requirements engineering.
van Lamsweerde (2000) reviewed the history of the main concepts and
techniques to support requirements engineering activities and found, in
the first 25 years of requirements engineering, that modeling appears to be
important in requirements engineering. Several modeling techniques were
introduced in the literature. Later on, integration of goal–based reasoning
was introduced to requirements models. Two frameworks arose, the for-
mal framework and the qualitative framework. The qualitative framework
was the foundation for the NFRmethodology for capturing and evaluating
goal decompositions. The next step was the introduction of scenario–based
elicitation. Scenarios were introduced due to the difficulties of eliciting
goals.
van Lamsweerde (2000) identifies several issues that needmore attention
in the next 25 years. First, efforts to bridge the gap between requirement
engineering research and research in software architecture are needed. In-
ternet becomes more accessible, which enables more end–users to access
applications. Based on this, van Lamsweerde suggests that ”Define–it–
yourself” approaches should be explored in the area of supporting require-
ments engineering. Moreover, requirements models need to capture more
knowledge about aspects, concerns and activities in the requirements engi-
neering process. In addition, a lot of research has been conducted on new
languages and notions; van Lamsweerde suggests it is time to use the new
languages and notions to build complex artifacts. Finally, tool support for
requirements engineering developments need to be addressed.
Several systematic reviews of cost estimations have been conducted in
recent years (Kitchenham et al. 2009). The first systematic review of the
existing literature on cost estimations was published by Jørgensen in 2004
(Jørgensen 2004). Jørgensen (2004) concluded that expert estimation is the
dominating strategy, and that there is no evidence to support the superi-
ority of model estimates over expert estimates. In 2005, Mair and Shep-
perd (2005) conducted a systematic review of software engineering cost
estimation and focused on regression and analogy techniques. Mair and
Shepperd (2005) did not find clear evidence of which technique should
be preferred. Grimstad et al. (2006) studied typical software effort es-
timation terminology, and concluded that a more precise terminology is
needed. Jørgensen and Shepperd (2007) conducted a systematic review of
software development cost estimation studies in 2007. A systematic review
by Kitchenham et al. (2007) looked into under what circumstances compa-
nies would benefit on cross–company–based estimations models. How-
ever, Kitchenham et al. (2007) did not find any conclusive explanations
of why some companies would benefit from using the models, but others
would not.
The focus of the above mentioned reviews have not been on quality re-

50

3. REVIEW METHOD

quirements, nor has any systematic review of quality requirements previ-
ously been published (Kitchenham et al. 2009).

3 Review Method

A systematic review aims to identify, evaluate and interpret all available
research to a particular research question or to examine empirical evidence
that supports or contradicts theoretical hypotheses (Kitchenham 2007). The
research method used in this study is a systematic review (Kitchenham
2007), which includes several stages: planning the review, identification of
research questions, search strategy and search, selection of studies, qual-
ity assessment, data extraction, and data synthesis. In the reminder of this
section, each stage of the systematic review is described in details.

3.1 Planning the Review

This systematic review started by developing a review protocol following
Kitchenham’s guidelines (Kitchenham 2007). One of the aims of the review
protocol is to reduce the possibility of research bias (Kitchenham 2007).
The review protocol specified the background to the systematic review, the
research questions, search strategy, search process, inclusion and exclusion
criteria, quality assessment criteria, data extraction, and method of syn-
thesis. The aim of this systematic review was to provide an overview of
empirical studies of quality requirements in software engineering, answer-
ing the research questions listed in Section 3.2.

3.2 Research Questions

This systematic review aims at summarizing the current state–of–the–art
in quality requirements by answering the following research questions:

RQ1. What are the results of empirical investigations on quality require-
ments in relation to elicitation, metrics, cost estimation, prioritization, de-
pendencies, and software product management?

RQ2. What empirical research methods have been used within the area?

3.3 Search Strategy and Search

The search strategy for a systematic review is a plan to identify a set of rel-
evant publications in relation to the research questions. The search string
used in this systematic review was constructed in the following steps:

1. Check keywords in relevant papers, the authors’ knowledge of the

51

PAPER I: MANAGING QUALITY REQUIREMENTS: A SYSTEMATIC REVIEW

Table 1.1: Identified search terms

Category Search words
C1: QR non–functional requirements OR nonfunctional re-

quirements OR non functional requirements OR qual-
ity attributes OR quality requirements OR non–
functional software requirements OR quality charac-
teristics OR quality factors OR qualities

C2: software software
C3: elicitation elicitation OR requirements gathering OR require-

ments acquisition
C4: depen-
dency

dependenc* OR trade–off OR tradeoff OR trade–offs
OR tradeoffs OR trade off OR trade offs OR interde-
pendenc* OR change impact OR traceability OR rela-
tionships OR inter–dependencies OR conflict

C5: Metrics metrics OR measurement
C6: cost software development effort OR cost estimation
C7: prioritiza-
tion

prioritization OR prioritizing OR prioritize OR priori-
tisation OR prioritising OR prioritise

C8: Software
product man-
agement

release planning OR roadmapping OR road mapping
OR roadmapOR scope OR scoping OR software prod-
uct management OR software product

areas, and from previous systematic reviews that are related to our
research questions?

2. Identify alternative spelling and synonyms for the keywords
3. A test search in databases was performed to validate and identify
new keywords and synonyms

4. Keywords, alternative spelling, and synonyms were grouped into
categories according to their search area

5. Use the Boolean ”OR” operator to connect keywords and alternative
spelling and synonyms for each category

6. Use the Booleans ”AND” and ”OR” operator to create the search
string by connecting the different categories

Table 1.1 presents the identified categories of search terms from the con-
struction of the search string. Keywords and synonyms for empirical stud-
ies were not included in the search string. Instead, a screening question in
the quality assessment checklist was added to decide if a study is empirical
or not, see Section 3.5.
Chung et al. (2000) defines about 160 different terms for quality require-
ments and several standards that define quality requirements. To include

52

3. REVIEW METHOD

of all of these specific termswould have created a too long and complicated
search-string, and still we would not be sure that all of them are covered.
Therefore, specific terms of quality requirements, such as performance and
usability requirements were excluded. Thus, category 1 consists of differ-
ent general terms for quality requirements. Categories 3 and 6 are inspired
by previous systematic reviews by (Davis et al. 2006) and (Jørgensen and
Shepperd 2007) respectively. The final search string was constructed in the
following way:

Search–string = C1 AND C2 AND (C3 OR C4 OR C5 OR C6 OR C7 OR C8)

The search strategy included the following electronic databases:

• ACMDigital Library1

• Compendex and Inspec2

• IEEE Xplore3

• Wiley Inter Science Journal Finder4

In addition, the search–stringwas applied to twomore electronic databa-
ses, ScienceDirect – Elsevier5 and SpringerLink6 . However, the search
string was too long and complex to be used in these databases. Therefore,
a subset of the search string was used in both ScienceDirect – Elsevier and
SpringerLink, and compared the result from the five databases. All articles
from the subset found in ScienceDirect – Elsevier and SpringerLink were
also found in the included databases. Based on this test search, we con-
cluded that articles in ScienceDirect – Elsevier and SpringerLink would be
found among the five included databases.
The International Requirements Engineering conference, themajor event
in requirements engineering is indexed in the Compendex and Inspec data-
bases, therefore, not manually searched. However, all volumes of the fol-
lowing proceedings were manually searched:

• International Workshop on Software Product Management

• Measuring Requirements for Project and Product Success

• Requirements Engineering: Foundation for Software Quality

1portal.acm.org
2www.engineeringvillage2.org
3ieeexplore.ieee.org
4www3.interscience.wiley.com
5www.sciencedirect.com
6www.springerlink.com

53

PAPER I: MANAGING QUALITY REQUIREMENTS: A SYSTEMATIC REVIEW

Whenever an electronic database did not allow the use of our search
string or the use of complex Boolean applied to the titles, abstract, and
keywords, we designed different search strings for each of these databases.
Excluded from the searchwere expert opinions, summaries of tutorials and
workshops, discussions, and comments.
In Section 3.4, the systematic review process is illustrated, and the num-
ber of papers identified at each phase. In phase 1, the search string was
used to search for articles based on the title, abstract, and keywords in the
included electronic databases. The search was performed the 10th October
2008 and resulted in a total of 2647 articles that included 1560 unduplicated
articles. These 1560 articles formed the basis for the following phases in our
selection process.

3.4 Selection of Studies

Our selection of studies process comprised of four phases, which is shown
in Figure 1. Relevant studies from phase 1 (2647 studies) were entered into
a reference database tool, while duplicates were excluded. For each of the
following phases, separate databases and spreadsheets were created. Only
papers written in English are included.
At phase 2, one researcher (the first author) read through the 1560 undu-
plicated titles of all studies from phase 1, to determine their relevance to
this systematic review. We included papers that were about quality re-
quirements or related to any of the following categories: elicitation, depen-
dencies, metrics, cost estimation, prioritization or software product man-
agement, independently of whether they were empirical or not. The reason
for this broad inclusion is that titles are not always a good indicator of what
an article is about (Jørgensen and Shepperd 2007). To minimize the threat
of excluding relevant papers, the first author randomly selected two sam-
ple sets (with different papers) of 10% of the excluded papers. The second
and third authors were provided with one sample set each to include or
exclude papers. Any disagreement between the authors was resolved by
discussion that included all three researchers. Two papers were up for dis-
cussion; however, not a single paper was added to the included ones. At
this phase, 727 papers were included.
At phase 3, papers were excluded, on the basis of abstract, if focus or
main focuswas not quality requirements and related to the same categories
as in phase 2 or if they did not present any empirical data. However, ac-
cording to (Dybȧ and Dingsyr 2008), abstracts can be of different quality
and misleading. Therefore, all papers that indicated some form of empiri-
cal data were included for review in phase 4. All abstracts were reviewed
by the first author, while the second and third author reviewed a total of
20% of all papers that were excluded by the first author. Any disagreement
between the authors was resolved by discussion that included all three re-
searchers. Four papers were up for discussion, and one paper was added

54

3. REVIEW METHOD

Figure 1.1: Phase of the selection of studies process

to the included papers after the discussion. After phase 3, 229 papers were
included for the detailed quality assessment (see Section 3.5).

3.5 Quality Assessment

Each of the 229 studies from phase 3 was assessed by the first author ac-
cording to 10 criteria, see Table 1.2. These 10 criteria are based on a re-
searcher’s checklist for case study by Runeson and Höst (2009). However,
despite that the criteria are adopted from a case study checklist, all empir-
ical studies that fulfilled the quality criteria were included in this system-
atic review. The 10 criteria covered three main aspects, (1) study design, (2)
preparation for data collection, and (3) analysis of collected data. In addi-
tion, one criterion (Q1 in Table 1.2) was used to decide whether the study

55

PAPER I: MANAGING QUALITY REQUIREMENTS: A SYSTEMATIC REVIEW

Table 1.2: Quality assessment checklist

ID Quality criteria
Q1 Is the study based on empirical research?

Study Design
Q2 Are the research questions, objectives of study and aims well de-

fined?
Q3 Is the studied context well defined?
Q4 Is it motivated that the research design is suitable to address the

research questions?
Preparation for data collection

Q5 Are data collection procedures sufficient for the purpose?
Analysis of collected data

Q6 Are the analysis procedures sufficient for the purpose?
Q7 Are findings clearly stated, results credible, and conclusions jus-

tified?
Q8 Are different views taken on the case?
Q9 Are threats to validity analyses addressed in a systematic way?
Q10 Are conclusions, implications for practice and future research, re-

ported suitably for its audience?

was based on empirical data or not.
One reason for including Q1 is that the term case study appears in soft-
ware engineering research papers even though small toy examples have
been used (Runeson and Höst 2009). In addition, studies that used the
term case study in their title or abstract were identified; however, the used
case was based on an example from literature. The definition of what con-
stitutes a case study is not always obvious. Therefore, the following defini-
tion of case study was used in this systematic review: An empirical method
aimed at investigating contemporary phenomena in their context (Runeson and
Höst 2009).
The ten questions in Table 1.2 provided a measure of the quality of the
studies and a measure of how confident we were about a study’s findings.
The first question (Q1) was graded on a ”yes” and ”no” scale, where ”yes”
was assigned the value of one (1) and ”no” the value of zero (0). Questions
2 to 9 were graded on a ”yes” (1), ”partly” (0.5), and ”no” (0) scale. The
result of the quality assessment checklist is displayed in Table 1.3.
The first three questions (Q1, Q2, and Q3) were used as screening ques-
tions to exclude non–empirical research papers. If a study received a ”no”
score on Q1, or if both Q2 and Q3 received a ”no” score, we did not con-
tinue with the quality assessment and the study was excluded.

56

3. REVIEW METHOD

Table 1.3: Quality Scores

Publication
ID

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Score

P1 1 1 1 1 1 0.5 1 1 0 0.5 8
P2 1 1 1 1 1 1 1 1 0 1 9
P3 1 1 1 1 1 1 1 1 1 1 10
P4 1 1 0.5 1 0.5 0.5 1 0.5 0 0.5 6.5
P5 1 1 1 1 1 1 1 1 0 1 9
P6 1 1 1 1 1 1 1 1 0 1 9
P7 1 0.5 1 0.5 0.5 0 1 1 0 1 6.5
P8 1 0.5 0.5 1 1 0.5 0.5 1 0 0.5 6.5
P9 1 1 1 1 0.5 0.5 1 1 0 0.5 7.5
P10 1 1 1 0.5 0 0.5 1 1 1 1 8
P11 1 0.5 1 0 0 0 1 1 0 0.5 5
P12 1 1 0.5 0 0.5 0 1 0.5 0 0.5 5
P13 1 1 0.5 1 1 1 1 0.5 0 0.5 7.5
P14 1 1 0.5 1 1 0.5 1 1 0 0.5 7.5
P15 1 1 0.5 1 1 0.5 1 1 0 0.5 7.5
P16 1 1 1 1 1 1 1 1 0 1 9
P17 1 1 1 1 1 1 1 0 0.5 1 8.5
P18 1 1 1 1 0.5 0 1 1 0 1 7.5
P19 1 1 0.5 1 1 0.5 1 1 0 1 8
P20 1 0 0.5 0.5 0.5 0 1 1 0 0.5 5
P21 1 1 0.5 1 1 0.5 1 1 0.5 0.5 8
P22 1 1 0.5 0.5 0.5 0.5 1 1 0 0.5 6.5
Total 22 19.5 17 18 16.5 12 21.5 19.5 3 16

57

PAPER I: MANAGING QUALITY REQUIREMENTS: A SYSTEMATIC REVIEW

Table 1.4: Data extraction form

General study description
Publication identification
Bibliographic information: author(s), year, title, publication informa-
tion
Study aims and research questions
Methodology: design of study, sample description, context of study,
data collection, data analysis
Tools/approaches/techniques used

Study findings
Result(s)
Conclusions
Limitations and threats to validity

3.6 Data Extraction and Synthesis

During the data extraction phase, datawas extracted from22primary stud-
ies. A predefined data extraction form was created to collect the needed
information to be able to address the research questions. The quality of
each study was not part of the data extraction form since it was assessed
during the quality assessment phase (Section 3.5). The extracted data was
divided into two categories: (1) general study description, and (2) study
findings, which is displayed in Table 1.4. In addition, each primary study
was classified into one (or more) of the six categories described in Table 1.1
and Figure 1.2. In this systematic review, a descriptive (non–quantitative)
synthesis (Kitchenham 2007) was conducted. The data synthesis was car-
ried out individually by the first author. However, any uncertainty of the
classification or the extracted data from the primary studies was solved
through discussion within the research team.

3.7 Threats to Validity

In this section, threats to this systematic review are discussed. Similar to
(Engström et al. 2008), we base this on the discussion of validity and threats
presented inWohlin et al. (2000). One type of threats mentioned in (Wohlin
et al. 2000) is not relevant to this systematic review, which is external valid-
ity. External validity is concernedwith the ability to generalize the findings
beyond the actual study. The validity threats considered are: construct,
conclusion, and internal validity threats respectively.
Construct validity: The construct validity is concerned with the relation
between theories behind the research and the observations. One threat to

58

4. RESULTS

construct validity is exclusion of relevant studies. To address this issue,
a stringent search strategy (Section 3) was defined, which included four
phases. A quantitative inter–rater reliability study, e.g. based on the Kappa
statistic, was not conducted at any of the four phases. However, a set of
20% of all excluded papers at each phase was reviewed by the second and
third author. Only one paper from all phases was added to the included
papers after the discussion. This indicates that the authors agreed to a high
extent concerning which papers to include and exclude, which also indi-
cates that there were no misunderstandings about constructs of the study.
Conclusion validity: Threats to conclusion validity arise from the ability
to draw accurate conclusions. With respect to the conclusion validity, two
concerns were raised; author bias may have been introduced in the qual-
ity assessment criteria and during data extraction. In order to minimize
the threat to quality criteria, inclusion and exclusion criteria were explic-
itly defined. In addition, we had a focus of inclusion at phase two and
three, meaning that papers were rather included than excluded. Any dis-
agreement between the authors was resolved by discussions that included
all three researchers until an agreement was reached. To address possi-
ble data extraction bias, we ensured that any dubious data extraction was
discussed between all researchers until an agreement was reached.
Internal validity: This threat is related to issues that may affect the
causal relationship between treatment and outcome. One concern related
to internal validity is relevant for this study, namely unpublished studies
may affect the result are not made available. These studies are difficult to
obtain; however, inclusion of such studies would have increased the inter-
nal validity.

4 Results

This section describes the descriptive evaluation of the identified studies
in relation to the research questions (see Section 3.2). Out of 2647 papers
analyzed in the systematic review, 22 publications (P1–P22)were identified
and categorized into six different topic areas in relation to quality require-
ments (QR), based on the empirical evidence that is presented in the study.
The topic areas are elicitation, dependencies, cost estimations, metrics, pri-
oritization, and software product management (SPM), which is displayed
in Table 1.5.
Figure 1.2 provides an overview of the 22 identified publications in rela-
tion to the topic areas they have been applied to. Figure 1.2 shows that six
publications are related to quality requirements and dependencies, while
only three publications have looked into prioritization of quality require-
ments. Only one paper (P19) related to cost estimations of quality require-
ments was identified with our search criteria.
In the following subsections, first, a general analysis of the primary stud-

59

PAPER I: MANAGING QUALITY REQUIREMENTS: A SYSTEMATIC REVIEW

Table 1.5: Primary studies, P1–P22

Publication
ID

Reference Topic area where QR
have been applied

Type of study

P1 Al-Kilidar et al. (2005) Metrics Experiment
P2 Andersson and Bosch

(2005)
SPM Case Study

(Multiple)
P3 Berntsson Svensson

et al. (2008)
Metrics, SPM Case Study

P4 Boehm and In (1996) Dependencies Experiment
P5 Cleland-Huang et al.

(2005)
Dependencies Experiment

P6 Cysneiros and Leite
(1999)

Elicitation Case Study
(Multiple

P7 Doerr et al. (2005) Elicitation, Metrics,
Dependencies

Case Study
(Multiple

P8 Hassenzahl et al.
(2001)

Elicitation Case Study

P9 In and Boehm (2001) Dependencies Experiment
P10 In et al. (2001) Dependencies Case Study
P11 Jacobs (1999) Metrics Case Study
P12 JaeJoon et al. (2001) Elicitation, Metrics Case Study
P13 Johansson et al. (2001) Prioritization Survey
P14 Kusters et al. (1999a) Elicitation Case Study

(Multiple
P15 Kusters et al. (1999b) Elicitation Case Study

(Multiple
P16 Leung (2001) Metrics, Prioritization Survey, Exper-

iment
P17 Olsson et al. (2007) Metrics Case Study
P18 Poort and de With

(2004)
Dependencies Case Study

(Multiple
P19 Regnell et al. (2007) Metrics, Cost, SPM Case Study

(Multiple
P20 Regnell et al. (2008) Elicitation, Metrics,

SPM
Case Study

P21 Sibisi and van Wav-
eren (2007)

Prioritization Survey

P22 Zulzalil et al. (2008) Dependencies Case Study
(Multiple

60

4. RESULTS

Figure 1.2: Overview of primary studies related to topic area

ies, then the main findings from the empirical studies in relation to each of
the six topic areas are presented.

4.1 General Analysis of Primary Studies

In this subsection, the primary studies with regards to where they are pub-
lished, which year they are published, the type of study (case study, exper-
iment etc), sample description, and the quality of the primary studies are
analyzed.
The two major requirements engineering conferences, the International
Conference on Requirements Engineering and the International Working
Conference on Requirements Engineering: Foundation for Software Qual-
ity, are represented among the publications. In addition, major software
engineering conferences and journals are also represented. It is not sur-
prising that the International Conference on Requirements Engineering has
most publications (together with the IEEE Software journal). However, it is
worth noticing that these two are the only ones with more than one publi-
cation, and that they only have two publications each. Among the included
publications, 59% (13 papers) are published at conferences, 32% (7 papers)
in journals, and the remaining 9% (2 papers) are published at workshops.
The identified empirical studies on quality requirements have been pub-
lished between 1996 and 2008, which is visualized in Figure 1.3. In the year
of 2001, most empirical studies of quality requirements were published (6

61

PAPER I: MANAGING QUALITY REQUIREMENTS: A SYSTEMATIC REVIEW

papers). The first published paper on empirical evaluation of quality re-
quirements was P4. Figure 1.3 shows that publications that empirically
evaluate quality requirements are increasing. However, one surprising
finding is that not a single paper was published in the years of 2000, 2002,
2003, and 2006.
From Figure 1.3, it can be seen that about two–thirds (15 papers) of the
included papers used case studies to empirically evaluate quality require-
ments, which makes it the most common research method. Seven of these
papers used a single case study, while 8 papers used multiple case studies
(between 2 and 4 cases).

Figure 1.3: Cumulative number of publications, experiments, case studies,
surveys, and mixed methods

Almost 60% (13 papers) used professionals when evaluating quality re-
quirements, which makes professionals the most common type of sample
(see Table 1.6). Five publications used systems or projects as their sample,
while only 2 studies used documents.
As described in Section 3.5, an assessment of each of the primary studies
according to 10 quality criteria was conducted. The results of the qual-
ity assessment checklist are shown in Table 1.3 (Section 3.5). Since only
empirical studies were included in this systematic review, all publications
received a ”yes” response on Q1. All studies had a more or less detailed
description of the studied context in which the research was conducted.
For two primary studies, the research design (Q4 in Table 1.3) was not de-
scribed and therefore they received a ”no” response. Furthermore, in two
studies, the data collection procedures (Q5 in Table 1.3) were not described,
while five primary studies did not describe their analysis procedure (Q6 in
Table 1.3). Surprisingly, only four of the 22 primary studies addressed va-

62

4. RESULTS

Table 1.6: Distribution of sample description

Sample description Number of publications Percentage
Professionals 13 59%
Systems/projects 5 23%
Documents 2 9%
Students 1 5%
Tools 1 5%

lidity issues (Q9 in Table 1.3), where two studies received a ”yes” response
and two received ”partly”.

4.2 Elicitation

Table 1.7 provides an overview of six primary studies in relation to elici-
tation of quality requirements. The six papers evaluated six different elic-
itation techniques in one or more case studies. The type of systems where
each elicitation technique has been evaluated is displayed in Table 1.7.
Cysneiros and Leite (P6) present a strategy to elicit quality requirements
(ET1). The strategy is based on the use of a lexicon that will anchor func-
tional and non–functional models, and drive quality requirements elicita-
tion. The strategy comprises of four major activities. First, a lexicon based
on the Language Extended Lexicon is built. Second, the functional model
is built. Third, build the non–functional perspective, which adds the qual-
ity requirements to the created lexicon. Fourth, the functional and non–
functional perspectives are integrated. The elicited quality requirements
are then integrated into UML (Unified Modeling Language). The strategy
was evaluated in three case studies, using three different systems, which
is illustrated in Table 1.7. In all three case studies, ET1 elicited new quality
requirements that generated between 20–25 percent of new classes for the
existing systems. In addition, 46 percent of the existing classes (for all three
systems) were in someway changed to satisfy the quality requirements.
Cysneiros and Leite (P6) argue that quality requirements should not be
dealt within the scope of functional requirements because quality require-
ments require detailed reasoning. Moreover, quality requirements have
many interdependencies among them that may require trade offs among
different design decisions.
On the other hand, Doerr et al. (P7) argue that elicitation of quality and
functional requirements, and architecturemust be intertwined. One reason
is that the refinement of quality requirements is not possible without detail
functional requirements and architecture. Therefore, Doerr et al., devel-
oped the NFR (non–functional requirements) method (ET2) and evaluated
it in three case studies, using three different systems (see Table 1.7). The

63

P
A
P
E
R
I:
M
A
N
A
G
IN
G
Q
U
A
L
IT
Y
R
E
Q
U
IR
E
M
E
N
T
S:
A
S
Y
S
T
E
M
A
T
IC
R
E
V
IE
W

Table 1.7: Primary studies of different elicitation techniques

Elicitation
Technique ID

Used technique Type of system(s) Elicited quality requirement(s) Publication
ID

ET1 A strategy to
elicit QR

(1) Light control system,
(2) Students software project
course, (3) Software for clinical
analysis laboratories

(1, 2, 3) General QR elicitation P6

ET2 An NFR ap-
proach

(1) Wireless control system, (2)
Multi–functional printer sys-
tem, (3) Geographical informa-
tion system

(1) Efficiency, reliability, main-
tainability (2) Efficiency (3) Se-
curity

P7

ET3 SHIRA Home automation system General QR elicitation P8
ET4 A strategy for

elicitation
Factory–process–controlling–
system

Performance, maintainability,
fault tolerance

P12

ET5 Questionnaire–
based strategy

(1) Outdoor payment terminal,
(2) Omega fuel station man-
agement system

(1, 2) General QR elicitation P14, 15

ET6 Multi–party
chain strategy

(1) Outdoor payment terminal,
(2) Omega fuel station man-
agement system

(1, 2) General QR elicitation P14, 15

64

4. RESULTS

aim of the method is to achieve a set of measurable and traceable qual-
ity requirements. The main feature of the model include, a process for
common treatment of high level quality requirements, quality models that
capture experiences with quality requirements, detailed elicitation guide-
lines in terms of checklists and prioritization questionnaire, documenta-
tion guidelines, rationales to justify quality requirements, and requirement
management support in terms of dependency analysis. In the wireless con-
trol system, the NFR method was successfully implemented, especially
the prioritization questionnaire. The authors argue that new and impor-
tant quality requirements were discovered with the NFR method. More-
over, only five of the 54 elicited quality requirements were not measurable.
In addition, the NFR method found many new quality requirements that
were missed before, which was found when comparing the new quality
requirements with the original requirements specification. In the multi–
functional printer system, the NFR method was found promising for elici-
tation of quality requirements. In this case study, the need for requirements
management support was emphasized, which the NFR methods provide.
In the geographical information system, quality requirements that had not
been considered before, despite that they were of high importance for the
project, were identified by the NFR method.
The Structured Hierarchical Interview for Requirement Analysis (ET3)
was evaluated by using a home automation system by Hassenzahl (P8),
which is illustrated in Table 1.7. Hassenzahl argues that an integrated
approach, which gathers different aspects such as quality requirements,
design approach, and the relationships among them, is important for en-
suring a basic understanding of the design problem. The Structured Hi-
erarchical Interview for Requirement Analysis (SHIRA) is an interviewing
technique that consists of the following parts. First, the general idea of the
system is introduced to the interviewee. Second, the interviewee chooses
desired abstract quality requirements. Third, the interviewee is requested
to list concrete qualities to the abstract quality requirement. Finally, the
interviewee presents ideas of how to design the concrete qualities. The
SHIRAmethod was evaluated by 18 interview session, where 172 concrete
qualities and 474 design approaches were elicited. To further evaluate the
usefulness of SHIRA, five independent experts assessed the results from
the interviews. The experts found the results to be very useful; however,
lack of information that defines usability requirement was criticized. The
authors argue that SHIRA is a promising tool, but further assessments are
needed.
JaeJoon et al. (P12) proposed a strategy to elicit quality requirements
(ET4) for a factory–process–controlling system, which can be seen in Table
1.7. The proposed strategy has the following basic steps: (1) select quality
requirements, (2) make consensus on the quality requirements, (3) develop
scenario elicitation forms, (4) decide metrics for each quality requirements
(e.g. performance is measured by the amount of data processed per time

65

PAPER I: MANAGING QUALITY REQUIREMENTS: A SYSTEMATIC REVIEW

unit), and (5) prioritize the quality requirements. The strategy (ET4) helps
in identifying which components of the architecture model are related to
which quality requirement. The authors compared to maintenance cost
between the existing and the new architecture model (the existing used
an old method to elicit quality requirements, while the new architecture
model used the proposed strategy). The result shows that the maintenance
cost was reduced by 10–50 percent in the new architecture model.
In Kusters et al. (P14, P15), two strategies for elicitation of quality re-
quirements are presented and evaluated. The strategies are a questionnaire-
based strategy (ET5) and the multi–party chain strategy (ET6). For the
questionnaire–based (QB) strategy, a supporting tool and a questionnaire
are developed to enable the elicitation of quality requirements. The pro-
cedure is to interview (one or more) persons that are connected to the
development effort. The interview’s aim is to characterize the environ-
ment where the system is supposed to run. Then, defined rules are ap-
plied to the defined environment, which will result in a quality profile. The
multi–party chain (MPC) strategy requires three elements, a party (a per-
son, group of persons, or an organization), a role (an area where the party
is responsible), and quality requirements (identified by one or more parties).
The process of applying MPC is as follow, first, all relevant parties, roles,
and their relationships are identified. Second, a series of structured inter-
views are conducted. The goal of the MPC is to provide an effective and
efficient communication of the systems quality requirements.
Both ET5 and ET6 were applied together in two different systems (Table
1.7). That is, first ET5 was used; the elicitation results were used as input
to ET6. In the Outdoor payment terminal case, the result shows that an ad-
ditional system test checklist was created in relation to reliability (one type
of quality requirement). In the second case, the omega fuel station man-
agement system, the authors found that a substantial amount of improve-
ments in relation tomaturity and suitability (types of quality requirements)
were undertaken, for example, additional effort in configuration manage-
ment and testing. However, in both case studies, the authors argue that
the quality of the results were insufficient, changes to the results from ET5
were needed. The authors argue that the combination of both ET5 and ET6
seems to work fine. Their disadvantages tend to cancel one another out.

4.3 Dependencies

In this subsection empirical evidence in quality requirements dependen-
cies is covered. In Table 1.8, an overview of the identified dependency
techniques/tools is provided. In addition to the techniques, one primary
study (P22) investigates the existence of interdependencies among quality
requirements.
Zulzalil et al. (P22) investigated interdependencies among four quality
characteristics, namely functionality, usability, reliability, and efficiency for

66

4. RESULTS

Table 1.8: Comparison of dependency techniques/tools

Dependency
Technique
ID

Used tech-
nique/tool

Type of system(s) Type of
study

Publication
ID

DT1 QARCC Satellite ground
stations

Experiment P4

DT2 WinWin
mode

Satellite ground
stations

Experiment P4

DT2 WinWin
mode

15 digital library
systems (students
projects)

Case study P9, P10

DT3 QARCC and
S–COST

15 digital library
systems (students
projects)

Case study P9, P10

DT4 Goal–Centric
Traceability

Ice–Breaker sys-
tem

Experiment P5

DT5 NFD Criminal inves-
tigation system,
Dutch road–
pricing system

Case study P18

67

PAPER I: MANAGING QUALITY REQUIREMENTS: A SYSTEMATIC REVIEW

Table 1.9: Strong dependencies between quality requirements

Academic domain E–commerce domain Museum domain
Usability and Effi-
ciency

Usability and Func-
tionality

Usability and Reliabil-
ity

Functionality and Ef-
ficiency

Usability and Reliabil-
ity

Usability and Effi-
ciency

Functionality and Re-
liability

Functionality and Ef-
ficiency

web applications. Three different web applications domains were used,
academic websites (six websites are used in the evaluation), e–commerce
websites (five websites are used), and museum websites (four websites are
involved in the evaluation). Zulzalil et al. discovered eight strong positive
correlations among quality requirements, which are illustrated in Table 1.9.
Moreover, the authors concluded that there are interactions among quality
requirements and they are dependent on each other, either a positive or a
negative dependency.
Techniques and tools for identifying interdependencies among quality
requirements were found in five primary studies. Boehm and In (P4) com-
pared the manual approach of the WinWin system (DT2) with the semi–
automatic approach of the Quality Attribute Risk and Conflict Consultant
(QARCC) tool for identifying quality requirements conflicts. The Win-
Win model is a general framework for identifying and resolving require-
ment conflicts. The WinWin model identifies conflicts by negotiating ar-
tifacts, such as win conditions, issues, and options. QARCC (DT1) is a
knowledge–based tool for identifying possible conflicts among quality re-
quirements. QARCC uses the same artifact as the WinWin model to iden-
tify conflicts. In an experiment, Boehm and In (P4) applied the QARCC tool
in a system for satellite ground stations. The results show that the QARCC
tool found both the significant identified conflicts by the WinWin model.
Moreover, QARCC also identified eight more possible conflicts, where five
of these were considered significant for the satellite ground station system.
The authors argue that QARCC can help users, developers, and customers
to identify conflicts among quality requirements.
In and Boehm (P9) describe the QARCC tool as a good tool for provid-
ing top–level suggestions about quality requirement conflicts; however,
QARCC is lacking details. In an attempt to add more details to QARCC,
the Software Cost Option Strategy Tool (S–COST) was developed to com-
plement QARCC. S–COST uses the COCOMO cost drivers, cost estimates,
and related experience to provide details of quality requirement conflicts
involving cost. In et al. (P10) and In and Boehm (P10) evaluated the combi-

68

4. RESULTS

nation of QARCC and S–COST (DT3) in comparison to theWinWin model.
A case study involving 15 digital library systems developed by graduate
students was used for the comparison of identifying conflicting require-
ments. The result shows that DT3 identified 79% of all issues identified by
the manual approach of the WinWin model, while DT3 could not identify
15% of issues found by WinWin. In addition, DT3 found 742%more issues
than discovered by WinWin. Moreover, DT3 generated 97% of the same
conflict resolutions options that was generated by the manual approach of
theWinWinmodel (3%were not identified byDT3). Furthermore, DT3 sur-
faced 166%more solution strategies than identified by the WinWin model.
The authors conclude that DT3 identifies more issues and options than the
manual use of WinWin. However, some issues and options identified by
DT3 were not significant. The authors argue when DT3 is trained to the
systems nature, the non–significant issues and options will greatly reduce.
Cleland–Huang et al. (P5) propose the goal–centric traceability (GCT)
technique to trace quality requirements. The GCT (DT4) uses a softgoal
interdependency graph (SIG) to model quality requirements as goals, and
helps developers to model quality requirements during software devel-
opment. The GCT technique consists of four phases; the first one is goal
modeling, which occurs during elicitation and specification of the software
product. The second phase is impact detection, which is about understand-
ing the impact of a change, and helping developers to evaluate the change.
Third, in the goal analysis phase a re–analysis of the change, and an eval-
uation of its effect on the software products other goals are conducted.
Finally, in the decision–making phase stakeholders review the impact to
decide to proceed or not. In addition, stakeholders review the impact the
change may have on other quality requirement goals. Cleland–Huang et
al. (P5) empirically evaluated the GCT technique in an experiment of a
system that consists of 180 functional requirements and nine quality re-
quirements. The results show that GCT helps developers to manage the
impact of functional change upon quality requirements. Moreover, the ex-
periment revealed that GCT is feasible to dynamically retrieve traceability
links for quality requirements.
Poort and de With (P18) developed the Non–Functional Decomposition
(NFD) method for decomposing a system, based on the system’s conflicts
among requirements with an emphasis on quality requirements. The NFD
(DT5) method comprises of the following steps. First are requirements
gathered and prioritized, where any elicitation or prioritization technique
can be used. It is important to show how the primary functional require-
ments are mapped to the supplementary requirements. Second, functions
are grouped based on supplementary requirements. Third, conflicts among
the supplementary requirements are identified. Then, function groups that
dealwith in–group conflicts are split. Finally, when in–group conflicts have
been sorted out, the resulting grouping conflicts are the basis for the archi-
tectural decomposition. Poort and de With evaluated the NFD method in

69

PAPER I: MANAGING QUALITY REQUIREMENTS: A SYSTEMATIC REVIEW

two case studies. The results reveal that NFD turned out to be success-
ful in terms of communicating to stakeholders how the design decisions
are related to the supplementary requirements. Furthermore, resolving in–
group conflicts showed the application of the method and principles of the
NFD method.

4.4 Metrics

The metrics category has a focus on how metrics are used in relation to
quality requirements, how many are quantified, and what scales are used.
In addition, which methods are used to quantify, and to create verifiable
quality requirements are investigated. In (P17), Olsson et al. empirically
analyzed a requirement specification from the mobile phone domain. The
aim was to analyze the quality requirements and how quality requirement
metrics are used in practice. They found that 40% of the requirements are
quality requirements. The authors found that 37% of the quality require-
ments use references to various standards. Moreover, a mixture of different
scales was used to quantify the quality requirements, where absolute val-
ues (58% of all quantified quality requirements) were the most frequently
used scale. That is, no interval is given, but an absolute number. Other
used scales include creating a min–max interval, or creating a one–sided
interval (either with an upper or a lower bound). Olsson et al. found, even
within the same software product, that the treatment of quality require-
ments varies between different development areas. Therefore, the authors
argues that different areas, both with respect to technical domain and type
of quality requirements are unique in their character and require unique
treatment in terms of tool support and method guidance. Furthermore,
Olsson et al. states that the nature of specified intervals and scales for dif-
ferent areas are important for negotiation and prioritization. That is, the
intervals and scales need to be aligned with the market and cost value.
The alignment between intervals and market values has been studied in
P20 and P3. Both Regnell et al. (P20) and Berntsson Svensson et al. (P3)
evaluated the application of the quality performance (QUPER) model in
the mobile phone domain. Regnell et al. developed a guideline of how to
apply the model in practice, with a focus on aligning intervals and mar-
ket value. The guideline focus on identifying for which market segment
the product should be released, what are the competitors’ current level of
quality, and what our product’s current quality is. When the needed in-
formation has been gathered, a template for documenting the results, and
the actual interval for a certain quality requirement was developed. The
interval has three targets, low, mid, and high, where low means the mini-
mum expected quality level needed, while high indicates that quality over
this level is not needed. Berntsson Svensson et al. (P3) evaluated the prac-
tical guideline from Regnell et al. (P20) by interviewing four experts that
used the QUPER model for three months. The experts viewed the rela-

70

4. RESULTS

tion between the intervals and market value as an important feature of the
model. By adjusting the quality requirement interval based on the market
segment and the competitors’ quality provides a better basis for the qual-
ity requirement’s actual metrics. Moreover, understanding the company’s
position on the market and more knowledge of the market situation were
two comments about the practical application of QUPER.
Another method for quantifying quality requirementswas studied by Ja-
cobs (P11). Jacobs introduced amethod called the Gild style in the telecom-
munication domain. The Gild style method is an adaption of the Plan-
guage (Gilb 2005) method. To make quality requirements measurable, Ja-
cobs used several concepts form the Planguage, such as scale (the unit in
which the requirement should be measured) and meter (how the measure-
ment will be performed). All used concepts were introduced, and visible
in the requirements specification. The author argues that the whole con-
cept of implementing the Gilb style was successful. Unclear requirement
is no longer an issue for project using the new style. However, lack of
good requirements is not just a technical problem, but also a behavioral
problem. Jacobs reports that the culture changed within the company by
implementing the Gilb style. In addition, writing requirements with the
Gilb style put a focus on quality requirements, a common understanding
of quality requirements is crucial according to Jacobs. By specifying the
concept meter, Jacobs found that test cases were already defined during
the requirements engineering phase.
The ISO/IEC 9126 (9126-2001 E) is an international standard for quality
requirements. The aim of the standard is to ensure the quality of all soft-
ware products. Al–Kilidar et al. (P1) evaluated the standard in terms of its
ability to quantify and measure the quality attributes of a software design.
Al–Kilidar et al. used 158 students in an experiment for the evaluation.
The results show that the ”common language” proposed by ISO/IEC9126
did not have a standard interpretation. The subjects had difficulties to in-
terpret the quality characteristics in the standard. The authors argue that
ISO/IEC 9126, in its present form, does not achieve any of its objectives.

4.5 Cost Estimation

Only one paper (P19) was related to cost estimations of quality require-
ments. Regnell at al. (P19) evaluated if it is possible to foresee when a
major investment (in terms of cost) is necessary in order to improve the
level of quality. The study found that all of the six interviewed experts in
the mobile handset domain could identify these cost barriers. The cost of
achieving a certain quality level is related to software optimization, hard-
ware investment, development effort, investments in new architecture, and
license fees. In addition, cost estimations is more uncertain in early stages
of a new technology compared to technology that has been available and
reached a certain market maturity. Another aspect that needs to be con-

71

PAPER I: MANAGING QUALITY REQUIREMENTS: A SYSTEMATIC REVIEW

sidered is the rapidly changes over time, which makes the expected cost
barriers change over time, making trade–off analysis even more difficult.
It is worth noting that only one paper is related to quality requirements
and cost estimations, particular since there are many reviews of cost es-
timations in the literature (Kitchenham et al. 2009). However, Regnell et
al. (P19) do not address how cost estimations of quality requirements are
conducted in industry; instead, P19 indentifies foreseen cost barriers rep-
resenting the nonlinear nature of the relation between quality and cost. For
further elaboration on cost estimation of quality requirements, see Section
5.1.

4.6 Prioritization

Three studies (P13, P16, and P21) address prioritization of quality require-
ments. Two studies (P13 and P16) address how stakeholders prioritize the
importance of different quality requirements, while P21 created a process
framework that can be used to prioritize the importance of quality require-
ments. All three studies use the ISO/IEC 9126 standard (9126-2001 E) as
their reference of quality requirements.
Johansson et al. (P13) present the result of which quality requirements
are considered the most expensive to obtain, and the most wanted ones
in software platform development. A questionnaire was sent to the par-
ticipants and non–directive interviews were used to capture unexpected
information. Johansson et al. concluded that different stakeholders priori-
tize quality requirements differently, despite that the company’s goals are
the same for all stakeholders. In one of the studied companies, market-
ing considered reusability as the cheapest quality requirement to achieve;
however, system designers and architects do not share this belief. Both the
studied companies identified reliability as one of the most important qual-
ity requirements in a software platform. Johansson et al. advise companies
that develops architecture of software platforms to consider three goals:
(1) reliability is identified as the most important quality requirement, (2) a
software platform should not be developed as part of another project, and
(3) techniques that allows for precise communication and eliciting quality
requirements from stakeholders are needed.
Leung (P16) studied which are the key quality requirements for intranet
applications. A survey was used to determine the users’ view of the im-
portance of quality requirements. The survey was sent to various users
such as end–users, developers, and information system professionals and
a total of 30 responses were used in the study. The participants ranked
the six quality characteristics from the ISO/IEC 9126 standard (9126-2001
E) and the three most important ones for intranet applications are: (1) re-
liability, (2) functionality, and (3) efficiency. In addition, the participants
were also asked to rank the importance of the 32 sub–characteristics from
the ISO/IEC 9126 standard. The five most important sub–characteristics

72

4. RESULTS

are: (1) availability, (2) accuracy, (3) security, (4) suitability, and (5) time
behavior, which all belong to the three key quality characteristics.
Sibisi and van Waveren (P21) developed process framework for cus-
tomizing software quality models. The proposed framework comprises
four steps. In step 1, a generic quality profile questionnaire is created,
which must be constructed to achieve its goal quality (users need). Step
2 is about building a specific quality profile. The quality profile presents
the importance of each quality requirement. In step 3, a target quality pro-
file is built, which is a modified specific quality profile (created in step
2) to fit the organizations own business goals. Finally, customization of a
quality model is the last step. In this step, the target quality profile (from
step 3) is used to prioritize quality requirements and thereby customizing
a software quality measurement model, and decisions if quality require-
ments shall be removed or ignored are taken. The proposed framework
was evaluated by two independent projects. The evaluation shows that
the framework is valid for the six quality characteristics from the ISO/IEC
9126 standard (9126-2001 E), while improvements are needed at the sub–
characteristic level.

4.7 Software Product Management

Four studies (P2, P3, P19, and P20) investigated quality requirements in
relation to software product management activities. The focus of this cate-
gory is on scoping, release planning, and roadmapping. Two main topics
were investigated: identification of issues and problems in relation to scop-
ing and variability management (P2), and the introduction and evaluation
of the quality performance (QUPER) model (P3, P19, and P20).
In a study by Andersson and Bosch (P2), issues in scoping and variabil-
ity management in software product families are analyzed. The results are
based on case studies, using interviews and document studies, conducted
at four Swedish companies that are involved in software product families.
Andersson and Bosch (P2) identified five major issues, first, evolving qual-
ity requirements, which was a key problem in two of the case companies.
The problem arises from how to expand a quality platform and maintain
support levels for current platform users. Second, service level for quality
requirements support, is also caused by the evolution and identified by two
case companies. The major problem is to make applications that work on
different levels to coexist on the same platform without causing behav-
ioral problems. Third, dynamic quality footprint was identified by all four
case companies. Problems related to dynamic quality footprint are, how to
manage quality requirements as variation points, how to express quality
requirements and their interdependencies, and the lack of descriptions of
how to design evolvable architecture. Fourth, quality support mismatchwas
also identified by all companies as an important problem. This problem is
a result of insufficient variability management and scoping, and integra-

73

PAPER I: MANAGING QUALITY REQUIREMENTS: A SYSTEMATIC REVIEW

tion problems. Flexibility and extendibility of quality support is the fifth and
final identified problem. The flexibility and extendibility of quality sup-
port problem was regarded as an extremely important development for
future quality platforms. One part of the problem is difficulties to model-
ing and designing an ”open scope” platform. In addition, another part of
the problem is the crosscutting nature of quality requirements and complex
interdependencies among them.
The Quality performancemodel has been created, implemented and eva-
luated at a case company (P19, P20, and P3). Regnell et al. (P19) devel-
oped the quality performance (QUPER) model that incorporates quality as
a dimension in addition to the cost and value dimensions used in priori-
tization approaches for functional requirements. The QUPER model aims
to support decisions with regards to roadmapping, release planning, and
platform scoping. The QUPER model consists of three views, the benefit
view, the cost view, and the roadmap view. The benefit view includes three
breakpoints indicating principal changes in the benefit level with respect
to user experience and market value. The cost view includes foreseen cost
barriers representing the nonlinear nature of the relation between quality
and cost. The roadmap view combines the two previous views by position-
ing the information on the same scale. How to use the model in practice
was studied by Regnell et al. (P20). The development of practical applica-
tion was conducted in close collaboration with a case company. Applying
QUPER in practice involves six steps, (1) define quality indicators, (2) for
each indicator, estimate the breakpoints and barriers, (3) estimate the com-
petitors and your own products quality, (4) estimate targets for coming
releases, (5) approve and communicate the roadmaps, and (6) revise the
roadmaps. However, only the first four steps were introduced at the com-
pany. In addition, a template for documenting the results of the model’s
first four steps was developed. Berntsson Svensson et al. (P3) evaluated
the practical application of the model; however, the evaluation only in-
cludes the benefit view. The evaluation shows that the main benefit of the
breakpoints was an understanding of when to stop to improve the qual-
ity level. Moreover, with regards to decision making, and especially in
release planning, all interviewees confirmed that the richer understanding
of the market with the identified breakpoints, the competitors and their
own products quality level the more accurate the decisions are.

5 Discussion

This systematic review’s overall goal is to collect and compare existing em-
pirical evidence on quality requirements to date, and in addition, to pro-
vide state of research to serve as a basis for further empirical research on
quality requirements. This review is the first systematic review on quality
requirements. The following subsections address the benefits and limita-

74

5. DISCUSSION

tions of method for quality requirements and strength of evidence of the
primary studies.

5.1 Benefits and limitations

The 22 identified primary studies are classified into six categories in rela-
tion to software product management activities. The review showed that
more empirical studies on quality requirements in relation to the elicitation
and dependency categories are conducted.
The studies that address elicitation of quality requirements do not pro-
vide a unified view of current practice, instead, a broad picture of expe-
rience and tested techniques is offered. Six different elicitation techniques
for quality requirements are identified in this systematic review. Each tech-
nique is evaluated on one, two, or three different systems. All techniques
were found to be promising for gathering quality requirements. Davis
et al. (2006) found that interviews are the most effective elicitation tech-
nique for gathering requirements. In this systematic review, three of six
techniques use interviews to elicit quality requirements. Moreover, Davis
et al. (2006) found that interviews are the most commonly used elicitation
technique, which is only partly confirmed in this study. With respect to
limitations, Doerr et al. (P7) argue that elicitation of quality and functional
requirements need to be intertwined with architecture. On the other hand,
Cysneiros and Leite (P6) argue that quality and functional requirements
should not be dealt within the same scope. The reason is that quality re-
quirements require detailed reasoning. However, van Lamsweerde (2000)
identified the need for bridging the gap between requirements and archi-
tecture, which supports the idea from Doerr et al. (P7).
With respect to handle dependencies of quality requirements, five dif-
ferent techniques are identified. No unified view of current practice is pro-
vided. In three studies, Boehm and In (P4); and In and Boehm (P9 and P10)
compared the WinWin model with the, QARCC tool; and the QARCC tool
in combination with the S-COST tool. All three studies showed that the
WinWin model was less effective in identifying conflicts between quality
requirements. However, no comparison of the QARCC tool and the com-
bination of the QARCC and S-COST tools are conducted. The need for tool
support in requirements engineering is support by van van Lamsweerde
(2000). No other comparison of dependency techniques is conducted. With
respect to limitations, the WinWin model is the only technique that has
been evaluated in more than one study. Therefore, it is not possible to
identify which technique/tool is most suitable to use for identification of
interdependencies among quality requirements.
With respect to prioritization of quality requirements, only three stud-
ies are identified. However, it is worth noting that none of the identified
studies addresswhich technique or method that can be beneficial to use for
requirements prioritization. This indicates the importance of understand-

75

PAPER I: MANAGING QUALITY REQUIREMENTS: A SYSTEMATIC REVIEW

ing how quality requirements are prioritized, which may be a gap in the
literature.
Only one paper related to quality requirements and cost estimations is
identified by this systematic review. One possible explanation is that our
search string did not identify the existing studies. There is a risk that our
search string did not identify relevant papers due to that a number of syn-
onyms of estimations are used in the literature, which has been discussed
by Jørgensen and Shepperd (2007). Jørgensen and Shepperd (2007) con-
cluded that a wider search, including more synonyms, results in a too large
set of studies to be meaningful. Another explanation for the lack of iden-
tified studies on cost estimations of quality requirements can be that cost
estimations of quality requirements and functional requirements are con-
ducted in a similar way. This review found that no study has been con-
ducted on how to estimate the cost of quality requirements. To the best
of our knowledge, based on our systematic review and the previous eight
systematic reviews on cost estimations (Kitchenham et al. 2009), we believe
that there is a lack of evidence of how cost estimations of quality require-
ments are conducted. One may argue that cost estimation, regardless if
it is for functional or quality requirements, the same process can be used.
However, studies ((Jr. 1987), (Cysneiros and Leite 1999)) have showed that
quality requirements are expensive and difficult to handle, and according
to Chung et al. (2000), quality requirements are often poorly understood.
This indicates the importance of understanding how the procedure of cost
estimation of quality requirements are conducted, thus there may be a gap
in the literature.

5.2 Strength of evidence

Similar to (Dybȧ and Dingsyr 2008), we base the discussion of the strength
of evidence on the GRADE (Grading Recommendations Assessment, De-
velopment and Evaluation) (Atkins et al. 2004) definitions of the overall
strength of evidence. The GRADE system’s overall strength of evidence
is defined as high, moderate, low, or very low. According to GRADE,
the overall strength of evidence is based on four categories, study design,
study quality, consistency, and directness. In study design, experiments
are considered as a high grade, while observational studies are considered
as low. In this systematic review, only four experiments were identified,
while the remaining studies are observational. Therefore, the total evi-
dence of the combined studies, in relation to the category of study design
in the GRADE system, is considered low.
With respect to the quality of the included studies methods were some-
times not well described; issues of bias, validity, and appropriate data anal-
ysis procedures were not always addressed (see Section 3.5). As many as
15 out of the 22 primary studies did not fully have/describe a sufficient
data analysis procedure for the purpose of the study. In addition, only 2

76

6. CONCLUSION

out of the 22 primary studies did address validity issues in a systematic
way, and 2 of the 22 primary studies mentioned validity threats. Based on
these finding, it is concluded that there are limitations to the quality of the
studies.
The consistency category is concerned with the similarity of estimates
and effect across studies. Since most of the studies did not address threats
to validity, in general we did not find direct evidence from the studies with
no major validity threats. With respect to directness, i.e., to the extent
which the interventions and outcome measures are similar, it was found
that very few studies provided comparisons of interventions. Therefore,
we believe that there are major uncertainties about the directness of the
included primary studies. When combining the four categories from the
GRADE system, our conclusion is that the strength of evidence is low.

6 Conclusion

This systematic review identified 2647 studies by searching the literature,
of which 22 were found to be empirical research studies of acceptable qual-
ity, and related to the research questions. The studies are categorized into
six areas in relation to quality requirements: elicitation, dependency, met-
rics, cost estimation, prioritization, and software product management.
A number of benefits and limitations of methods for quality require-
ments within each of these areas are identified. All identified methods
for quality requirements are found to be promising. With respect to limi-
tations, no unified view of current practices can be provided. The strength
of evidence is not very high, which makes it difficult to offer specific ad-
vice to practitioners. Few studies are replicated, and thus the possibility to
draw conclusions based on variations is limited. In order for practitioners
to make use of the results, the context of where a method/technique has
been applied must be considered and compared to the actual environment
into which the method/technique is supposed to be applied.
A clear finding of this systematic review is the need to increase the num-
ber, and the quality of studies on quality requirements. In particular, pri-
oritization of quality requirements warrants further attention. Not a single
study looked into techniques of prioritization of quality requirements; in-
stead, the studies looked into which quality requirements are considered
most important. In addition, only one paper is related to cost estimations
of quality requirements. However, the study does not address how cost es-
timations of quality requirements are conducted, nor does it identify what
methods/techniques are appropriate for estimating the cost of quality re-
quirements.
Future work for the research community is to: (1) empirically evaluate
quality requirements in various requirements engineering and software
product management activities to fill the identified gaps in literature; (2)

77

PAPER I: MANAGING QUALITY REQUIREMENTS: A SYSTEMATIC REVIEW

encourage systematic replications of studies in different context, and scal-
ing up to more complex environments; (3) define how empirical evalua-
tions of quality requirements should be reported, and what defines a case
study.

Acknowledgements

This work was partly funded by VINNOVA (the Swedish Agency for Inno-
vation Systems) within the MARS project. We especially thank Per Rune-
son for his valuable advice on the systematic review methodology.

78

REFERENCES

References

ISO/IEC 9126-2001(E). Software engineering – product quality – part 1:
Quality model, 2001.

H. Al-Kilidar, K. Cox, and B. Kitchenham. The use and usefulness of the
iso/iec 9126 quality standard. In Proceedings International Symposium on
Empirical Software Engineering, pages 122–128, 2005.

J. Andersson and J. Bosch. Development and use of dynamic product–line
architectures. IEE Software, 152(1):15–28, 2005.

D. Atkins, D. Best, P.A. Briss, M. Eccles, Y. Falck-Ytter, S. Flottorp, G.H.
Guyatt, R.T. Harbour, M.C. Haugh, D. Henry, S. Hill, R. Jaeschke,
G. Leng, A. Liberati, N. Magrini, J. Mason, P. Middleton, J. Mrukowicz,
D. O’connell, A. D Oxman, B. Phillips, H.J. Schunemann, T.T.T. Edejer,
H. Varonen, G.E. Vist, J.W. Williams Jr., and Z. Stephanie. Grading qual-
ity of evidence and strength of recommendations. BMJ, 328(1490), 2004.

T.H. Al Balushi, P.R.F. Sampaio, D. Dabhi, and P. Loucopoulos. Elicito: A
quality ontology–guided nfr elicitation tool. In Lecture Notes in Computer
Science, volume 404542, pages 306–319, 2007.

R. Berntsson Svensson, T. Olsson, and B. Regnell. Introducing support
for release planning of quality requirements – an industrial evaluation
of the quper model. In 2nd International Workshop on Software Product
Management, 2008.

B. Boehm and H. In. Identifying quality–requirement conflicts. IEEE Soft-
ware, 13(2):25–35, 1996.

K.K. Breitman, J.C.S.P. Leite, and A. Finkelstein. The world’s stage: A sur-
vey on requirements engineering using a real–life case study. Journal of
the Brazilian Computer Scociety, 6:13–38, 1999.

P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och Dag. An
industrial survey of requirements interdependencies in software prod-
uct release planning. In Proceedings 5th IEEE International Symposium on
Requirements Engineering, pages 84–91, 2000.

L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. NFR in Software Engineer-
ing. Kluwer Academic Publishers, 2000.

J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya, and
S. Christina. Goal–centric traceability for managing non–functional re-
quirements. In Proceedings 27th International Conference on Software Engi-
neering, pages 362–371, 2005.

79

REFERENCES

L.M. Cysneiros and J.C.S.P. Leite. Integrating non–functional requirements
into data model. In Proceedings 4th IEEE International Symposium on Re-
quirements Engineering, pages 162–171, 1999.

L.M. Cysneiros and J.C.S.P. Leite. Nonfunctional requirements: From elic-
itation to conceptual models. IEEE Transactions on Software Engineering,
30(5):328–349, 2004.

A. Davis, O. Dieste, A. Hickey, N. Juristo, and A.M. Moreno. Effectiveness
of requirements elicitation techniques: Empirical results derived from
a systematic review. In Proceedings 14th IEEE International Requirements
Engineering Conference, pages 176–185, 2006.

J. Doerr, D. Kerkow, T. Koenig, T. Olsson, and T. Suzuki. Non–functional
requirements in industry – three case studies adopting an experience–
based nfr method. In Proceedings 13th IEEE International Conference on
Requirements Engineering, pages 373–382, 2005.

T. Dybȧ and T. Dingsyr. Empirical studies of agile software development:
A systematic review. Information and Software Technology, 50(9–10):833–
859, 2008.

C. Ebert. Requirements before the requirements: Understanding the up-
stream impact. In Proceedings 13th IEEE International Conference on Re-
quirements Engineering, pages 117–124, 2005.

E. Engström, M. Skoglund, and P. Runeson. Empirical evaluations of re-
gression test selection techniques: a systematic review. In Proceedings of
the Second ACM–IEEE International Symposium on Empirical Software En-
gineering and Measurement, pages 22–31, 2008.

A. Finkelstein and J. Dowell. A comedy of errors: The london ambulance
service case study. In Proceedings 8th International Workshop on Software
Specification and Design, pages 2–4, 1996.

T. Gilb. Competitive Engineering. Elsevier Butterworth–Heinemann, 2005.

S. Grimstad, M. Jørgensen, and K. Molokken-Ostvold. Software effort es-
timation terminology: the tower of babel. Information and Software Tech-
nology, 48(4):302–310, 2006.

M. Hassenzahl, R. Wessler, and K.C. Hamborg. Exploring and understand-
ing product qualities that users desire. In Proceedings of the 15th Annual
Conference of the Human–Computer Interaction Group of the British Computer
Society, pages 95–96, 2001.

H. In and B.W. Boehm. Using winwin quality requirements management
tools: a case study. Annals of Software Engineering, 11:141–174, 2001.

80

REFERENCES

H. In, B.W. Boehm, and M. Deutsch. Applying winwin to quality require-
ments: a case study. In Proceedings of the 23rd International Conference on
Software Engineering, pages 555–564, 2001.

S. Jacobs. Introducing measurable quality requirements: a case study. In
Proceedings 4th IEEE International Symposium on Requirements Engineering,
pages 172–179, 1999.

L. JaeJoon, H. Sucheol, K.C. Kang, C. Youngyeol, H. Yoonpyo, andH. Hwa-
won. Quality requirement elicitation for the architecture evaluation of
process computer systems. In Proceedings of the Eighth Asia–Pacific Soft-
ware Engineering Conference, pages 335–340, 2001.

E. Johansson, A. Wesslen, L. Bratthall, and M. Höst. The importance of
quality requirements in software platform development–a survey. In
Proceedings of the 34th Annual Hawaii International Conference on System
Sciences, 2001.

M. Jørgensen. A review of studies on expert estimation of software devel-
opment effort. Journal of Systems and Software, 70(1–2):37–60, 2004.

M. Jørgensen and M. Shepperd. A systematic review of software develop-
ment cost estimation studies. IEEE Transactions on Software Engineering,
31(1):33–53, 2007.

F.P. Brooks Jr. No silver bullet: Essences and accidents of software engi-
neering. Computer, 4:10–19, 1987.

H-W. Jung, S-G. Kim, and C-S. Chung. Measuring software product qual-
ity: A survey of iso/iec 9126. IEEE Software, 21(5):88–92, 2004.

J. Karlsson and K. Ryan. A cost–value approach for prioritizing require-
ments. IEEE Software, 14(5):67–74, 1997.

J. Karlsson, C. Wohlin, and B. Regnell. An evaluation of methods for pri-
oritising software requirements. Information and Software Technology, 39
(14–15):939–947, 1998.

B. Kitchenham, E. Mendes, and G.H. Travassos. A systematic review of
cross– vs. within–company cost estimation studies. IEEE Transactions on
Software Engineering, 33(5):316–329, 2007.

B.A. Kitchenham. Guidelines for performing systematic literature reviews
in software engineering version 2.3. Technical report, Keele University
and University of Durham, 2007.

B.A. Kitchenham, O.P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman. Systematic literature reviews in software engineering – a
systematic literature review. Information and Software Technology, 51(1):
7–15, 2009.

81

REFERENCES

G. Kotonya and I. Sommerville. Requirements Engineering. John Wiley &
Sons, 1998.

R.J. Kusters, R.V. Solingen, and J.J.M. Trienekens. Identifying embedded
software quality: Two approaches. Quality and Reliability Engineering In-
ternational, 15:485–492, 1999a.

R.J. Kusters, R.V. Solingen, and J.J.M. Trienekens. Strategies for the identi-
fication and specification of embedded software quality. In Proceedings of
the Ninth International Workshop Software Technology and Engineering Prac-
tice, pages 33–39, 1999b.

S. Lauesen. Software Requirements – Styles and Techniques. Addison–Wesley,
2002.

H.K.N. Leung. Quality metrics for intranet applications. Information and
Management, 38(3):137–152, 2001.

C. Mair and M. Shepperd. The consistency of empirical comparisons of
regression and analogy–based software project cost prediction. In Pro-
ceedings of the International Symposium on Empirical Software Engineering,
pages 509–518, 2005.

T. Olsson, R. Berntsson Svensson, and B. Regnell. Non–functional require-
ments metrics in practice – an empirical document analysis. InWorkshop
on Measuring Requirements for Project and Product Success, 2007.

S.L. Pfleeger. Software Engineering – Theory and practice. Prentice–Hall, 2001.

E.R. Poort and P.H.N. de With. Resolving requirement conflicts through
non–functional decomposition. In Proceedings of the Fourth Working
IEEE/IFIP Conference on Software Architecture, pages 145–154, 2004.

B. Regnell, M. Höst, and R. Berntsson Svensson. A quality performance
model for cost–benefit analysis of non–functional requirement applied to
the mobile handset domain. In Lecture Notes in Computer Science, volume
4542, pages 277–291, 2007.

B. Regnell, R. Berntsson Svensson, and T. Olsson. Supporting roadmap-
ping of quality requirements. IEEE Software, 25(2):42–47, 2008.

P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, 2009.

M. Sibisi and C.C. van Waveren. A process framework for customising
software quality models. In Proceedings of IEEE AFRICON Conference,
pages 547–554, 2007.

82

REFERENCES

M.I. Ullah and G. Ruhe. Towards comprehensive release planning for soft-
ware product lines. In Proceedings of the 1st International Workshop on
Software Product Management, pages 51–55, 2006.

I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis, J. Versendaal, and L. Bi-
jlsma. On the creation of a reference framework for software product
management: Validation and tool support. In Proceedings of the 1st Inter-
national Workshop on Software Product Management, pages 3–11, 2006a.

I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis, J. Versendaal, and L. Bi-
jlsma. Towards a reference framework for software product manage-
ment. In Proceedings of the 14th IEEE International Requirements Engineer-
ing Conference, pages 312–315, 2006b.

A. van Lamsweerde. Requirements engineering in the year 00: A research
perspective. In Proceedings of the 2000 International Conference on Software
Engineering, pages 5–19, 2000.

C. Wohlin, P. Runeson, M. Höst, M.C. Ohlson, B. Regnell, and A. Wess-
lén. Experimentation in Software Engineering: An introduction. Kluwer
Academic, 2000.

H. Zulzalil, Z.M. Zain, A. Ghani, M.H. Selamat, and R. Mahmod. Relation-
ships analysis between quality factors for web applications. In Proceed-
ings of the International Symposium on Information Technology, 2008.

83

REFERENCES

84

Paper II

Quality Requirements in Practice: An Interview
Study in Requirements Engineering for Embedded

Systems

Richard Berntsson Svensson1, Tony Gorschek2, Björn Regnell1
1Lund University, Department of Computer Science, Box 118, 221 00

Lund, Sweden

2Blekinge Institute of Technology, School of Engineering, PO Box 520, 372
25 Ronneby, Sweden

Accepted for publication at the 15th International Working conference on
Requirements Engineering: Foundation for Software Quality (REFSQ09),

June 2009, Amsterdam, The Netherlands

ABSTRACT

[Context andmotivation] Inmarket–driven software devel-
opment it is crucial, but challenging, to find the right balance
among competing quality requirements (QR). [Problem] In or-
der to identify the unique challenges associated with the se-
lection, trade–off, and management of quality requirements an
interview study is performed. [Results] This paper describes
how QR are handled in practice. Data is collected through
interviews with five product managers and five project lead-
ers from five software companies. [Contribution] The contri-
bution of this study is threefold: Firstly, it includes an exam-
ination of the interdependencies among quality requirements
perceived as most important by the practitioners. Secondly, it
compares the perceptions and priorities of quality requirements
by product management and project management respectively.
Thirdly, it characterizes the selection and management of qual-
ity requirements in down–stream development activities.

Keywords: Quality requirements; Non–functional require-
ments; Requirements engineering; Market–driven requirements
engineering; Empirical study

1. INTRODUCTION

1 Introduction

The complexity of software systems is determined by both functionality
and by quality aspects such as performance, reliability, accuracy, security,
and usability (Chung et al. 2000). These quality aspects, or non–functional
requirements are subsequently called quality requirements (QR). It is com-
monly acknowledged that the handling and balance of QR are an impor-
tant and difficult part of the requirements engineering (RE) process (Jacobs
1999), playing a critical role in software development (Chung et al. 2000).
However, the situation is even more complex in a market–driven devel-
opment situation (Aurum and Wohlin 2005). In market–driven develop-
ment, the flow of requirements is not limited to one project, and the re-
quirements are generated from internal (e.g., engineers) and external (e.g.,
customers) sources (Gorschek and Wohlin 2006). Also, to achieve high–
quality in complex embedded systems, a combination of experience and
knowledge from different disciplines is needed (Kusters et al. 1999). This
may lead to communication difficulties and difficulties in achieving the re-
quired quality level (Kusters et al. 1999). QR often specify certain quality
levels and QR are in many cases possible to quantify (Olsson et al. 2007).
Quantification is important, not only for understanding QR (Jacobs 1999),
but also for planning (Regnell et al. 2007). Not dealing, or ineffectively
dealing with QR may lead to more expensive software and longer–time–
to–market (Cysneiros and Leite 2004), or in worst case, failures in software
development (Breitman et al. 1999), (Finkelstein and Dowell 1996). Studies
(Jr. 1987), (Cysneiros and Leite 1999) have showed cases where QR are the
most expensive and difficult aspects to handle, and according to Chung et
al., QR are often poorly understood in comparison to less critical aspects
of software development (Chung et al. 2000). To be able to improve how
QR are handled it is important to understand their characteristics (Ols-
son et al. 2007), how they are used and prioritized in industry, as well as
the challenges of dealing with QR. This paper presents an empirical study
performed in industry to investigate these aspects as well as complement
other RE surveys as few of them have focused on the specific challenges
related to QR.
Two main perspectives on QR are studied in this paper (Gorschek and
Davis 2008). First, the product perspective. Product managers are respon-
sible for the overall product perspective and the selection of the overall
planning of the product evolution and offering are elicited (for further
elaboration see van de Weerd et al. (2006)). Second, the project perspec-
tive is studied through the project leader, responsible for managing and
prioritizing within the realization phases. The two perspectives are also
compared, studying the alignment between project and product managers.
The purpose of this study is to discover and describe how QR are han-
dled in practice, both from the product manager and the project leader’s
perspective, which is important since communication problems are a chal-

87

PAPER II: QUALITY REQUIREMENTS IN PRACTICE: AN INTERVIEW
STUDY IN REQUIREMENTS ENGINEERING FOR EMBEDDED SYSTEMS

lenge in market–driven software development (Karlsson et al. 2007). In
addition, the effects of not dealing, or ineffectively dealing with QR are
also investigated. The paper presents the results of an empirical study that
includes data collected from ten practitioners (five product managers and
five project leaders) at five companies in Sweden.
The reminder of this paper is organized as follows. In section 2, the
background and related work are presented. The research methodology
is described in Section 3, while Section 4 presents the results and relates
the findings to previous studies. Section 5 gives a summary of the main
conclusions.

2 Background and Related Work

There are several surveys that concern or include RE related challenges.
Curtis et al. (1988) reported the first significant field survey of practices.
Even though the study does not have a focus on RE, challenges related to
RE were identified, including communication breakdowns and conflicting
requirements. Next, a study by Chatzoglou (1997) identifies problemswith
the RE process, the challenges presented are e.g., lack of resources and poor
quality of tools and techniques in the RE process.
Lubars et al. (1993) published a field study on requirements modeling.
The presented challenges include vaguely stated requirements and diffi-
culties with prioritization of requirements. In addition, Lubars et al. (1993)
identified challenges in relation to specification of performance require-
ments (a type of QR) such as the rationale is not always obvious and dif-
ficulties to associate performance requirements with parts of dataflow or
control flow specifications. In addition, a field study by Kamsties et al.
(1998) includes small and medium sized enterprises. The identified chal-
lenges include implementation of new requirementsmay cause unpredicta-
ble interaction with existing requirements, requirements are not traceable,
and that requirements are too vague to test. Kamsties et al. (1998) also
indentified a challenge related to specification of graphical user interfaces
(usability requirements, a type of QR). Furthermore, Karlsson et al. (2007)
published a study with solely focus on challenges in market–driven soft-
ware development. The presented challenges include communication pro-
blems between marketing and development, and requirements prioritiza-
tion. Karlsson et al. (2007) also indentified challenges in relation to QR.
One challenge is related to QR interdependencies, which was identified
as a major problem. Quality requirements can influence a large part of the
functionality or other QR. This is not only related to finding the existing in-
terdependencies, but also assessing to what extent that requirements affect
each other, and determining how to deal with this. In addition, problems
with considering quality requirements in release planning were identified.
Several studies (Carlshamre et al. 2000), (Chung et al. 2000), (Cleland-

88

3. RESEARCH METHOD

Huang et al. 2005), have looked at requirements interdependencies; for
example, Carlshamre et al. (2000) identified six different interdependency
types in industry. Research related to classification and measurement of
QR are also introduced in literature (Jacobs 1999), (Olsson et al. 2007). Ols-
son et al. (2007) conclude that for a method to be successful, it is important
that it is flexible enough to handle the diverse nature of QR.
The focus of the above mentioned studies have not been primarily on
QR, but QRrelated findings emerged as parts of the results. This paper
presents a study with the primary focus on QR and how they are managed
in the RE process.

3 Research Method

The study was carried out using a qualitative research approach (Robson
2002). Qualitative research aims to investigate and understand phenomena
within its real life context. A qualitative research approach is useful when
the purpose is to explore an area of interest, andwhen the aim is to improve
the understanding of phenomena. The purpose of this study is to gain
in–depth understanding of QR within market–driven embedded systems
companies. The following research questions (see Table 2.1) provided a
focus for our empirical investigation.
It is important to understand an organizations alignment in terms of QR,
otherwise there may be a mismatch between product management (van de
Weerd et al. 2006) and project leadership. Project leaders may down pri-
oritize quality aspects that are considered important by product managers
and vice verca. In addition, interdependencies are important to under-
stand since QR may influence a large part of the system (Karlsson et al.
2007). Kamsties et al. (1998) found that requirements are often too vague to
test, therefore, it is important to investigate if QR are quantified in industry.
Also, dismissal of QR from projects may have an impact on the predicted
return of investment, as well as the cost for the customers. Finally, QR are
a difficult part of the RE process (Jacobs 1999), however; not all challenges
in relation to QR may be of major concern for industry. Therefore, it is
important to understand what challenges are critical and which ones are
adequately handled today.

3.1 Research Design and Data Collection

The study uses semi–structured interviews enabling exploratory discus-
sion between the researcher and the interviewee. The studywas conducted
in two stages: first the data from each company was collected and ana-
lyzed. Secondly, the combined data from all participating companies was
collected and analyzed. The criteria for selecting companies were based on
our corporate contacts within industry. Five market–driven software com-

89

PAPER II: QUALITY REQUIREMENTS IN PRACTICE: AN INTERVIEW
STUDY IN REQUIREMENTS ENGINEERING FOR EMBEDDED SYSTEMS

Table 2.1: Research questions

Research Questions (QR = Quality Requirements)
RQ1: Is there any difference in the views of what quality re-
quirements are the most important between product managers and
project leaders?
RQ2: What interdependencies between QR are present in the com-
panies?
RQ2.1: What types of interdependencies are deemed most impor-
tant by practitioners, and is there any difference between the view
of product managers and project leaders in this regard?
RQ2.2: To what extent are interdependencies elicited, analyzed and
documented in industrial practice?
RQ3: Are QR specified in a measurable manner?
RQ4: To what extent are QR dismissed from projects after project
initiation?
RQ4.1: If QR are dismissed, is any consequence analysis per-
formed?
RQ5: What QR challenges are articulated as critical by the practi-
tioners themselves?
RQ6: What QR aspects do the companies feel confident as being
adequately handled today?

90

3. RESEARCH METHOD

panies participate. From each company, one product manager (PM) and
one project leader (PL) from the same project were interviewed, resulting
in ten data points. The study consists of three phases: planning, data col-
lection, and analysis.
Planning: The first phase of the study involved a brainstorming and
planning meetings to design the study and to identify different areas of in-
terests. A combination of maximum variation sampling and convenience
sampling was used to select companies within our industrial collaboration
network (Patton 2002). The included companies vary in respect to size,
type of product, and application domain, a rudimentary characterization
can be see in Table 2 (more details are not revealed for confidentiality rea-
sons). The interview instrument was designed with respect to the different
areas of interest and inspiration from (Karlsson et al. 2007). To test the
interview instrument1, two pilot interviews were conducted prior to the
industry study.
Data collection: The study used a semi–structured interview strategy
(Robson 2002). All interviews were attended by one interviewee and one
interviewer. First, the purpose of the study and a general explanation of
QRwere presented and then questions about the different areas of interests
in relation to QR were discussed in detail. All interviews varied between
40 and 90 minutes.
Analysis: The content analysis (Robson 2002) involved creating cate-
gories where interesting parts from the interviews were added and dis-
cussed. The first two authors examined the categories from different per-
spectives and searched for explicitly stated or concealed pros and cons in
relation to how QR are handled in industry. The results from the analysis
are found in Section 4.

3.2 Validity

In this section, threats to validity are discussed. We consider the four per-
spectives of validity and threats presented in Wohlin et al. (2000).
Construct validity: The construct validity is concerned with the relation
between theories behind the research and the observations. The variables
in our research are measured through interviews, including open–ended
aspects where the participants are asked to express their own opinions.
Mono–operation bias (Wohlin et al. 2000) was avoided by collecting data
from a wide range of sources on the topic of the study. To avoid evaluation
apprehension (Wohlin et al. 2000), complete anonymity from other partic-
ipants, the companies, and researchers was guaranteed. Another validity
threat lies in the question that asked interviewees to rank and include ad-
ditional factors if the list provided to them was inadequate. Interviewees
may have thought that it was easier to rank the provided factors than pro-

1http://serg.cs.lth.se/research/packages

91

P
A
P
E
R
II:
Q
U
A
L
IT
Y
R
E
Q
U
IR
E
M
E
N
T
S
IN
P
R
A
C
T
IC
E
:
A
N
IN
T
E
R
V
IE
W

S
T
U
D
Y
IN
R
E
Q
U
IR
E
M
E
N
T
S
E
N
G
IN
E
E
R
IN
G
F
O
R
E
M
B
E
D
D
E
D
S
Y
S
T
E
M
S

Table 2.2: Company characteristics

Aplha Beta Gamma Delta Epsilon
of employees ˜100 ˜3000 >5000 325 65
Domain Control systems Telecom Telecom Telecom Control systems
Typical project cy-
cle

18 months 48 months 24-36 months Differs 9 months

of reqs >1000 ˜7000 >20000 ˜100 features Differs
of QR ˜10% QR ˜10% QR QR unknown ˜10% QR

92

4. RESULTS AND ANALYSIS

pose new factors. This means that important interdependency types may
be missing.
Conclusion validity: Threats to conclusion validity arise from the ability
to draw accurate conclusions. The interviews were conducted at different
companies and each interview was done in one work session. Thus, an-
swerswere not influenced by internal discussions. To obtain highly reliable
measures and to avoid poor question wording and poor layout, several pi-
lot studies were conducted.
Internal validity: This threat is related to issues that may affect the
causal relationship between treatment and outcome. Threats to internal
validity include instrumentation, maturation and selection threats. In our
study, the research instrument was developed with close reference to lit-
erature relating to non–functional requirements, and influenced by a pre-
viously administrated and validated research instrument (Karlsson et al.
2007), which mitigates the instrumentation threat. In addition, maturation
threats are handled by reducing the duration of interview sessions by col-
lecting background information before the interview, and by keeping the
interview session to 90 minutes.
External validity: This threat is concerned with the ability to generalize
the findings beyond the actual study. Qualitative studies rarely attempt
to generalize beyond the actual setting since it is more concerned with ex-
plaining and understanding the phenomena. However, understanding the
phenomena may help in understanding other cases. The fact that most of
the identified challenges are acknowledged by more than one company in-
creases the possibility to generalize the results beyond this study. To avoid
the interaction of selection and treatment, interviewees were selected ac-
cording to their roles within the company, and companies were selected
from different geographical locations.

4 Results and Analysis

This section presents the results discovered during the analysis of the in-
terviews. The five following sub–sections present and discuss one research
question each, corresponding to the research questions in Table 2.1.

4.1 Important Quality Aspects (RQ1)

In analyzing Research Question 1, this section examines the most impor-
tant quality aspects, as illustrated in Figure 2.1. Based on Lauesen’s com-
parison of ISO9126 and McCall quality factors (Lauesen 2002), we identi-
fied 23 different types of QR. We asked the interviewees to rank the top
five most important aspects for their products based on their expertise and
their own definition of the quality factor. (Our approach was not to im-
pose preconceived definitions but to try to understand existing industrial

93

PAPER II: QUALITY REQUIREMENTS IN PRACTICE: AN INTERVIEW
STUDY IN REQUIREMENTS ENGINEERING FOR EMBEDDED SYSTEMS

practice and practitioners’ own interpretations of QR.) Looking at Figure
2.1, the quality aspect ranked first received five points, the one ranked sec-
ond got four points and so on, and the one ranked fifth got one point. In
total we see that interviewees agreed that usability (which got a total of 26
points) and performance (23 points) requirements are the two most impor-
tant types of QR followed by compliance (13 points), flexibility (13 points),
and stability (11 points).
One reason for the prioritization of usability, as explained by several in-
terviewees, is that ”if the product is not usable we will not sell any products”.
One interviewee expanded the view by stating that it does notmatter if you
have the latest and coolest functionality, if the system is not easy to use, the
customer will look at the competitors for an easy to use system. The reason
why compliance was ranked as the third most important quality aspect is
interesting. Several interviewees explained that compliance is important
because ”we must be compliant with the requirement document”. This inter-
pretation of compliance differs from the one formulated by ISO9126 which
states to adhere to standards, regulations and laws. This leads to a possible
mismatch between the established academic interpretation of compliance
and the industrial interpretation of it. Apart from the agreement that us-
ability and performance were the two most important types of QR, PM
and PL had different priorities. PMs ranked performance (14 points) as
the most important quality aspect, followed by usability (12 points) and
security/integrity (7points).

Figure 2.1: Importance of quality aspects

PLs ranked usability first (14 points), followed by performance (9 points),
and compliance and flexibility (8 points). PMs uniquely identified securi-
ty/integrity, testability, suitability, and installability as the most important
quality aspects. On the other hand, PLs uniquely identified the following
quality aspects: recoverability, reusability, correctness, and accuracy. The
differences in priority between PM and PL may not be a surprise as some

94

4. RESULTS AND ANALYSIS

mismatch can be expected. The two have different roles and perspectives,
but it might nevertheless be an important insight. For example, not a single
PL ranked security/integrity among the top five even if security/integrity
was considered the third most important by the PMs. Worth observing is
that the aspects of fault tolerance, conformance, replaceability, and analyz-
ability was not in any of the PMs or PLs top five.

4.2 Interdependencies (RQ2)

Six different interdependency types are characterized (Carlshamre et al.
2000): (1) R1 AND R2: R1 requires R2 to function, and R2 requires R1 to
function, (2) R1 REQUIRES R2: R1 requires R2 to function, but not vice
versa, (3) R1 TEMPORAL R2: Either R1 has to be implemented before R2
or vice versa, (4) R1 CVALUE R2: R1 affects the value of R2 for a customer,
(5) R1 ICOST R2: R1 affects the cost of implementing R2, and (6) R1OR R2:
Only one of R1, R2 needs to be implemented.
Although the interviewees had the option of adding new types of inter-
dependencies, no new types were discovered during the interviews. All of
the six presented interdependency types were used by the interviewees to
characterize perceived interdependencies, both among different QR, and
interdependencies among QR and functional requirements (FR), as illus-
trated in Table 2.3.
In general, the most common interdependency types identified among
QR were: OR, REQUIRES, and ICOST, while the least frequent one iden-
tified was TEMPORAL. When the results from PM and PL were examined
separately, the findings show a difference of opinion. PMs viewed OR and
ICOST as the most common types, while PLs viewed REQUIRES as the
most common one.
When examining the most frequent identified interdependency types
among QR and FR, four of the six types were considered equally common,
while the remaining two (AND, OR) types were considered least impor-
tant. However, when examining the results from the PM and PL sepa-
rately, the findings show an interesting difference. While PM considered
TEMPORAL as the most common interdependency, PL viewed TEMPO-
RAL as least frequent. On the other hand, PL identified OR as one of four
(the other three are: REQUIRES, ICOST, and CVALUE) equally common
interdependency types, but ORwas viewed as least frequent by PM.
In the study by Carlshamre et al. (2000), three of five case companies
viewed value related (ICOST or CVALUE) interdependency types as the
most common. In the remaining two cases, functionality related (i.e., AND
or REQUIRES) types were most common. Our results show a mix of value
and functionality types as the most common ones (with the exception of
Company Epsilon). The difference between the studies may be explained
by the focus, i.e. we focused solely on interdependencies related to QR,
while in Carlshamre et al. (2000) the focus was on requirements in general.

95

PAPER II: QUALITY REQUIREMENTS IN PRACTICE: AN INTERVIEW
STUDY IN REQUIREMENTS ENGINEERING FOR EMBEDDED SYSTEMS

Table 2.3: Existing interdependency types divided by role

Role QR to QR QR to FR

Alpha
PM REQUIRES, CVALUE,

ICOST
AND, REQUIRES, TEM-
PORAL, CVALUE,
ICOST

PL NONE NONE

Beta
PM OR, AND, REQUIRES,

TEMPORAL, CVALUE,
ICOST

OR, AND, REQUIRES,
TEMPORAL, CVALUE,
ICOST

PL OR, REQUIRES, TEM-
PORAL, CVALUE, ICOST

OR, REQUIRES, TEM-
PORAL, CVALUE, ICOST

Gamma
PM OR, AND, REQUIRES,

CVALUE, ICOST
AND, REQUIRES, TEM-
PORAL, CVALUE, ICOST

PL OR, AND, REQUIRES,
CVALUE, ICOST

AND, REQUIRES,
CVALUE, ICOST

Delta
PM OR, ICOST OR, REQUIRES, TEMPO-

RAL, CVALUE, ICOST
PL OR, REQUIRES,

CVALUE, ICOST
OR, AND, REQUIRES,
TEMPORAL, CVALUE,
ICOST

Epsilon
PM OR TEMPORAL
PL REQUIRES OR

In Chung et al. (2000) and Cleland-Huang et al. (2005), a softgoal interde-
pendency graph (SIG) is used to show interdependencies among QR. The
interdependency types used in the SIG are limited toAND, andOR, which
is not inline with the findings in our study, as we found that six different
interdependency types were present in the companies. Furthermore, the
two types AND, and OR were only identified as present by 25% of the in-
terviewees.

RQ2.1: What types of interdependencies are deemed most important by
practitioners, and is there any difference between the view of product
managers and project leaders in this regard? According to the intervie-
wees in total, the most important interdependency type to identify among
QR was REQUIRES, however, the PM and PL roles were not in agreement.
PM considered ICOST as the most important, while REQUIRESwas prior-
itized by the PL. Interestingly, in identifying the most important interde-
pendency type among QR and FR, the total result was identical to interde-
pendency types among QR. On closer examination the result between PM
and PL vary in relation to interdependencies among QR and FR. PM pri-

96

4. RESULTS AND ANALYSIS

oritized ICOST, but also uniquely identified TEMPORAL and ICOST. The
PL prioritized REQUIRES, but also uniquely identified OR and CVALUE.
It is not surprising that PM and PL have different views on interde-
pendency priority. According to Carlshamre et al. (2000), value related
interdependencies are subjective; it may be difficult to state whether the
cost exceeds the value for the customer, therefore, these types of decisions
should be made by product committees. This is inline with the results
in this study; PM considers ICOST as the most important type, while PL
REQUIRES. One PL explained that REQUIRES is the most important in-
terdependency type because ”functionality first, then the quality aspect of the
functionality is relevant”. Surprisingly, both among QR, and among QR and
FR, REQUIRES is considered the most important to identify looking at the
summation of all interviewees. This result is not inline with Carlshamre
et al. (2000), which found that ICOST and CVALUE were the most impor-
tant types of interdependencies in marketdriven developing companies,
while REQUIRES was considered the most important in bespoke devel-
oping companies. One PM explained that REQUIRES is considered the
most important interdependency to identify because ”this is the easiest type
to miss, and therefore the most important to identify”.

RQ2.2: To what extent are interdependencies elicited, analyzed and doc-
umented in industrial practice? The results show that in three of the five
companies (Gamma, Delta, and Epsilon) both PM and PL confirmed that
no elicitation, analysis, or documentation of interdependencies involving
QR was conducted at all. In Company Alpha, the PM stated that all de-
pendency activities were conducted, while the PL from the same company
indicated that none of them were performed. In only one company (Beta)
both PM and PL stated that activities to elicit, analyze and document inter-
dependencies was performed. This result is inline with results from Karls-
son et al. (2007), which found that interdependencies between require-
ments in market–driven software development are a major problem. The
problem includes identification, how the requirements affect each other,
and how to deal with them. The results are relevant since interdependen-
cies among QR’s are at the hart of managing explicit trade–offs among so-
lution alternatives (Cysneiros and Leite 2004). In addition, Cleland-Huang
et al. (2005) states that failing to trace QR expose a company to huge risks
when a change is introduced. Furthermore,Kamsties et al. (1998) found
that new requirements may cause unpredictable interaction with existing
requirements, which indicates the importance of finding the interdepen-
dencies among requirements.
There can be several potential explanations of why interdependencies
among QR are not actively looked for. Quality requirements tend to have
a global impact on the entire system, therefore, QR are difficult to trace
and because of the extensive network of interdependencies and trade–offs
that exists among them responsibilities for their realization is often vague

97

PAPER II: QUALITY REQUIREMENTS IN PRACTICE: AN INTERVIEW
STUDY IN REQUIREMENTS ENGINEERING FOR EMBEDDED SYSTEMS

Table 2.4: Quantification of quality requirements

Role Alpha Beta Gamma Delta Epsilon
PM Always Never Always Sometimes Always
PL Sometimes Sometimes Always Sometimes Sometimes

((Chung et al. 2000), (Cysneiros and Leite 2004)). Other explanations were
discovered during the interviews. Some interviewees stated that they have
little focus on QR, while others stated that QR are assumed and therefore
interdependencies are not actively looked for. In addition, one intervie-
wee confirmed that their focus is on functional requirements and not QR.
Others stated that dependencies are handled during other parts of the de-
velopment process, for example, during the design, architecture, and im-
plementation. However, they have more focus on functional requirements
because functional requirements are easier to discover than QR.
One possible implication with this is that quality aspects such as usabil-
ity and performance are not considered at the early stages of product and
project planning. This can be an acceptable alternative, given that the com-
panies consider quality aspects important only in the solution domain, and
not from a product offering or business perspective. This is however con-
tradicted by the results obtained during the prioritization of quality aspects
(see Section 4.1), where the practitioners stated that several (or which us-
ability was premiered) quality aspects were crucial for being able to sell
the product at all.

4.3 Quantification of Quality Requirements (RQ3)

In analyzing research question 3, this section examines how often QR are
specified in a measurable manner, as illustrated in Table 2.4.
Interestingly, four of the PLs claimed that QR were quantified sometimes,
while in three of these cases the PMs view differed, stating always or never.
In two out of five (Gamma and Beta) companies agreement between PM
and PL could be observed. The disagreement may be an indication of com-
munication problems between the PM and PL. Communication problems
were also identified as a challenge in market–driven RE by several studies
((Fricker et al. 2008), (Fricker et al. 2007), (Karlsson et al. 2007)). In a study
by Olsson et al. (2007), about half of the QR were found to be quantified
which seems to confirm the findings. However, one interesting observation
that can not be directly confirmed is the level of disagreement between PM
and PL. It should be noted that each PM and PL pair worked for the same
company, and moreover with the same project.

98

4. RESULTS AND ANALYSIS

4.4 Dismissal of Quality Requirements (RQ4)

We asked the interviewees how often QR that were actually specified and
selected for inclusion in a projectwere subsequently dismissed fromproject
during development (see Table 2.5). The total average mean value of dis-
missed QR is 22.5%, meaning almost every fourth QR that has been in-
cluded in a project is dismissed at some stage. When comparing PM and
PL, the least (in the best situation) amount of dismissed QR is slightly
higher for PM (5%) than for PL (3%). In worst case (Most in Table 5); the
mean value of dismissed QR is 55% according to the PMs, while PLs be-
lieve that 45% are dismissed.
According to the interviewees, there are two trends of which types of QR
that are more representative of the ones being dismissed. Firstly, QR that
are not visible for the end customer, such as maintainability and testability
are more often dismissed than other QR. Secondly, performance require-
ments are more often dismissed due to the difficulties of estimating them.
One inherent contradiction can be seen in these two trends. For example, if
the performance of a system is inadequate, the inadequacy of this quality
aspect can be noticed by the customer through a slow system/product. No
further elaborations were given on this contradiction.
The results reveal three main reasons for the dismissal of QR: (1) poor
cost estimations, (2) lack of resources, and (3) that QR have lower prior-
ity than functional requirements (FR). Poor cost estimations is related to
the difficulties to estimate the cost of QR that have a global impact on the
system. The difficulties of estimating the cost of QR are related to lack of
knowledge and understanding of how to manage QR in practice. Several
interviewees frequently described that QR have lower priority, and that
they do not spend much time on managing QR. Some of the interviewees
explained that QR are seen as base requirements and therefore not con-
sidered. However, this focus has implications on the system, as explained
by one PM, ”in most situations, QR are down prioritized by FR due to lack of
knowledge of how important a system’s quality is. By lowering the quality level,
the value of the system decreases”.

RQ4.1: If QR are dismissed, is any consequence analysis performed?
According to the PMs, a consequence analysis is only conducted if the cus-
tomers are affected. The consequence analysis may include new prioriti-
zation of all requirements and new cost estimations, as explained by one
interviewee that ”if we have promised a certain quality, then we have to increase
the cost for this project and accept a lower return of investment”. Another conse-
quence, as explained by a PM, is to ”first ask the customer if this is OK. If not,
we talk to the developers to find out the reason why this cannot be done. Finally,
we decide if we have to add or remove other requirements”. Surprisingly, none of
the PLs shared the view of the PMs. All PL claimed that nothing happens
when QR were dismissed from the projects. One explanation, which was

99

P
A
P
E
R
II:
Q
U
A
L
IT
Y
R
E
Q
U
IR
E
M
E
N
T
S
IN
P
R
A
C
T
IC
E
:
A
N
IN
T
E
R
V
IE
W

S
T
U
D
Y
IN
R
E
Q
U
IR
E
M
E
N
T
S
E
N
G
IN
E
E
R
IN
G
F
O
R
E
M
B
E
D
D
E
D
S
Y
S
T
E
M
S

Table 2.5: Dismiss rate of quality requirements

Role Dismissal rate Consequence Analysis Reason for dismiss rate
Least Average Most

Alpha
PM 10% 15% 20% If customer is affected Poor cost estimations
PL 0% 50% 90% No Testing QR very late

Beta
PM 10% 20% 90% If customer is affected Lack of resources
PL 1% 5% 20% Yes Lack of resources and poor cost esti-

mations

Gamma
PM NA NA NA Checkwith stakeholders Poor cost estimations and lack of re-

sources
PL NA NA NA No Lack of resources and lower priority

than FR

Delta
PM 0% 5% 10% If customer is affected Issues we cannot affect, e.g. network

capacity
PL 0% 10% 20% No Issues we cannot affect, e.g. network

capacity

Epsilon
PM 0% 50% 100% If customer is affected Poor cost estimations and lower pri-

ority than FR
PL 10% 25% 50% No Lower priority than FR

NA: Not available

100

4. RESULTS AND ANALYSIS

qualified by one PL, is that ”we do not have time to re–analyze the consequence
of QRs, other things are more important”. Another explanation according to
another PL is that ”we can deliver on time if QRs are dismissed”.
A central issue here seems to be the difficulty to properly quantify aswell
as estimate the cost of implementing a QR, but more importantly the value
of a QR. This might indicate a lack of estimation models/techniques for
QR. The complexity is of course that a QR often implies a quality aspect of a
system/product. Such a quality aspect is often not realizedas a feature, but
rather implies that all development be in line and adhering to the quality
aspect. For example, performance is not dictated by one thing, but often by
how the system is realized overall, including architectural considerations
impacting the whole.

4.5 Quality Requirement Challenges (RQ5 and RQ6)

In analyzing research questions 5 and 6, this section examines what QR
challenges and what QR aspects the practitioners identified. Figure 2.2
shows the two perspectives.
Three companies (Beta, Gamma, and Epsilon) stated that they are very
good in terms of testing QR (QR that are well specified and quantified).
This was confirmed by one interviewee: QR that are quantified are easy to
test. Another interviewee explained that their company has a well estab-
lished test organization and good methods for testing QR, both in lab and
field environments. However, one of the identified challenges is difficul-
ties in achieving testable QR, i.e. making QRwell specified and quantified.
This is not a surprising result and is confirmed in previous studies ((Kam-
sties et al. 1998), (Karlsson et al. 2007), (Lubars et al. 1993)). Apart from the
agreement of testing QR, each company identified issues in relation to QR
that are adequately handled today. One surprising finding was that one
company (Delta) stated that they are good at rejection of QR. The prod-
uct manager explained that ”we are very good in negotiation of QRs, which
is to make sure that QRs are not part of the contract.”. The result reveals two
major challenges that are faced by the companies, (1) how to get QR into
the projects, and (2) when is the quality level good enough? All companies
faced the same problem of getting QR into the project. The challenge is that
QR have to contend with FR, where FR often emerge as victors. Problems
with considering QR were also found by Karlsson et al. (2007).
A reason may be that having an extra function is considered more valu-
able than to improve the quality of the system. However, this focus may
backfire as the customers may want a certain quality level of the systems
that are bought. One interviewee confirmed that ”we have been very technol-
ogy focused, we did not care about QRs, but now it has backfired and we have to
put a lot of focus on the QRs.”. In addition, QR are considered as obvious, or
even as base requirements and therefore not quantified or specified. The
second main challenge is to decide when a certain quality level is good

101

PAPER II: QUALITY REQUIREMENTS IN PRACTICE: AN INTERVIEW
STUDY IN REQUIREMENTS ENGINEERING FOR EMBEDDED SYSTEMS

Figure 2.2: Challenges and non–challenges in the companies

enough, when are you finished with a QR? The interviewees expressed
their concern of how to decide when the quality is good enough. Should
the performance be two seconds, 1.5 seconds, or even one second, who can
decide that? One interviewee said, who can decide if 1 or 5 Mbits are most
appropriate?
Two companies (Alpha and Delta) identified achieving testable QR, and
one company (Gamma) viewed creatingmeasurable usability requirements
as challenges. One reason for identifying these challenges may be related
to the quantification of QR (Section 4.3), which shows that 60% of the in-
terviewees stated that QR are never, or sometimes specified in a measurable
manner. Another identified challenge (Company Beta) is prioritization of
QR. Prioritization of QR involves other challenges than prioritization of
FR, which were further explained by one interviewee by the statement that
performance and usability requirements are different in nature and very
difficult to compare. How do we prioritize performance requirements of
two seconds against the subjective appraisal of usability requirements, was
asked by one interviewee.

5 Conclusions

In conclusion, this article presents the results of an empirical study that ex-
amines Quality Requirements (QR) in practice in five software companies.
Data is collected from five product managers and five project leaders at the
companies. To the best of our knowledge, there are no other multi–case
survey studies that examine QR in practice.
The findings reveal that usability and performance requirements are dee-
med the two most important types of QR by the interviewed practitioners.
In addition, we found that the companies do not actively look for interde-

102

5. CONCLUSIONS

pendencies among QR, and we did not encounter QR–specific elicitation,
documentation, or analysis (RQ2). The findings highlight three important
challenges (RQ5): (1) how to get QR into the projects when functional re-
quirements are prioritized, (2) how to know when the quality level is good
enough, and (3) how to achieve testable QR. Our results indicate that QR
are often not quantified (RQ3), thus difficult to test. However, the intervie-
wees consider that the companies are good in terms of testing the (few) QR
that are quantified (RQ6).
There seems to be a bespoke development mindset where the immediate
project gets a higher priority than the long–term evolution of the product
(which would be interesting for further studies). This is confirmed by the
implicit management of QR, and the dismissal off–hand of QR with little
or no consequence analysis (RQ4). This contradicts the interviewees’ initial
view (RQ1) where quality aspects were labeled as critical, but looking at
practice, the project–oriented perspective and the urge of offering more
functionality in the immediate release dominates.
The interviewees expressed that the limited focus on QR can have long–
term consequences as well; increased maintenance costs and degradation
in usability with feature growth are but a few examples. However, the
main problem is that QR are not taken into consideration during product
planning (pre–project) and thus not included as hard requirements in the
projects. This implies that no explicit trade–off can be made, making the
realization of QR a reactive rather than proactive effort. Product manage-
ment may thus not be able to plan and rely on quality aspects to achieve
competitive advantages, but mainly respond to emerging QR problems.

103

PAPER II: QUALITY REQUIREMENTS IN PRACTICE: AN INTERVIEW
STUDY IN REQUIREMENTS ENGINEERING FOR EMBEDDED SYSTEMS

104

REFERENCES

References

A. Aurum and C. Wohlin. Engineering and Managing Software Requirements.
Springer, 2005.

K.K. Breitman, J.C.S.P. Leite, and A. Finkelstein. The world’s stage: A sur-
vey on requirements engineering using a real-life case study. Journal of
the Brazilian Computer Scociety, 6:13–38, 1999.

P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. Natt och Dag. An
industrial survey of requirements interdependencies in software prod-
uct release planning. In Proceedings 5th IEEE International Symposium on
Requirements Engineering, pages 84–91, 2000.

P.D. Chatzoglou. Factors affecting completion of the requirements capture
stage of projects with different characteristics. Information and Software
Technology, 39:627–640, 1997.

L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. NFR in Software Engineer-
ing. Kluwer Academic Publishers, 2000.

J. Cleland-Huang, R. Settimi, and O. BenKhadra. Goal-centric traceability
for managing non-functional requirements. In Proceedings 27th Interna-
tional Conference on Software Engineering, pages 362–371, 2005.

B. Curtis, H. Krasner, and N. Iscoe. A field study of the software design
process for large systems. Communications of the ACM, 31:1268–1287,
1988.

L.M. Cysneiros and J.C.S.P. Leite. Integrating non-functional requirements
into data model. In Proceedings 4th IEEE International Symposium on Re-
quirements Engineering, pages 162–171, 1999.

L.M. Cysneiros and J.C.S.P. Leite. Nonfunctional requirements: From elic-
itation to conceptual models. IEEE Transactions on Software Engineering,
30:328–349, 2004.

A. Finkelstein and J. Dowell. Comedy of errors: The london ambulance
service case study. In Proceedings 8th International Workshop on Software
Specification and Design, pages 2–4, 1996.

S. Fricker, T. Gorschek, and P. Myllyperkö. Handshaking between software
projects and stakeholders using implementation proposals. In Lecture
Notes in Computer Science, volume 4542, pages 144–159, 2007.

S. Fricker, T. Gorschek, and M. Glintz. Goal–oriented requirements com-
munication in new product development. In 2nd International Workshop
on Software Product Management, 2008.

105

REFERENCES

T. Gorschek and A. Davis. Requirements engineering: In search of the
dependent variables. Information and Software Technology, 50:67–75, 2008.

T. Gorschek and C. Wohlin. Requirements abstraction model. Requirements
Engineering Journal, 11:79–101, 2006.

S. Jacobs. Introducing measurable quality requirements: a case study. In
Proceedings 4th IEEE International Symposium on Requirements Engineering,
pages 172–179, 1999.

F.P. Brooks Jr. No silver bullet: Essences and accidents of software engi-
neering. Computer, 4:10–19, 1987.

E. Kamsties, K. Hörnmann, and M. Schlich. Requirements engineering in
small and medium enterprises. In International Proceedings Conference on
European Industrial Requirements Engineering, pages 84–90, 1998.

L. Karlsson, Ȧ.G. Dahlstedt, B. Regnell, J. Natt och Dag, and A. Persson.
Requirements engineering challenges in market-driven software devel-
opment - an interview study with practitioners. Information and Software
Technology, 49:588–604, 2007.

R.J. Kusters, R.V. Solingen, and J.J.M. Trienekens. Identifying embedded
software quality: Two approaches. Quality and Reliability Engineering In-
ternational, 15:485–492, 1999.

S. Lauesen. Software Requirements - Styles and Techniques. Addison-Wesley,
2002.

M. Lubars, C. Potts, and C. Richter. A review of the state of the practice in
requirements modelling. In Proceedings 1st IEEE International Symposium
on Requirements Engineering, pages 2–14, 1993.

T. Olsson, R. Berntsson Svensson, and B. Regnell. Non-functional require-
ments metrics in practice - an empirical document analysis. InWorkshop
on Measuring Requirements for Project and Product Success, 2007.

M.Q. Patton. Qualitative Research and EvaluationMethods. Sage Publications,
2002.

B. Regnell, M. Höst, and R. Berntsson Svensson. A quality performance
model for cost-benefit analysis of non-functional requirement applied to
the mobile handset domain. In Lecture Notes in Computer Science, volume
4542, pages 277–291, 2007.

C. Robson. Real World Research. Blackwell, 2002.

I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis, J. Versendaal, and L. Bi-
jlsma. Towards a reference framework for software product manage-
ment. In Proceedings of the 14th IEEE International Requirements Engineer-
ing Conference, pages 312–315, 2006.

106

REFERENCES

C. Wohlin, P. Runeson, M. Höst, M.C. Ohlson, B. Regnell, and A. Wess-
lén. Experimentation in Software Engineering: An introduction. Kluwer
Academic, 2000.

107

REFERENCES

108

Paper III

Non–functional requirements metrics in practice –
an empirical document analysis

Thomas Olsson1, Richard Berntsson Svensson2, Björn Regnell1,2
1Sony Ericsson Mobile Communication, Lund, Sweden

2Dept. of Computer Science, Lund University, Sweden

Published at the Workshop on Measuring Requirements for Project and
Product Success (MeReP07), November 2007, Palma de Mallorca, Spain

ABSTRACT

Non–functional requirements (NFR) complement functional
requirements with quality aspects and are a central part of soft-
ware engineering. This paper presents an empirical case study
that characterizes the specification of NFR. The study is per-
formed on a large set comprising 2113 requirements on subcon-
tracted technology platforms in the mobile phone domain. The
analysis is qualitative using an emerging coding scheme for in-
vestigating of frequency and patterns in NFR specifications. It
can be observed that as many as 40% of the requirements are
NFR. Standards are commonly referenced in NFR and directly
quantified NFR as well as NFR without a concrete metric are
common. Results on distribution of NFR in different technical
areas are discussed. Two hypotheses are identified for further
investigations: (1) different areas of NFR are special in their
character and require unique treatment, and (2) if interval and
scale patterns are aligned with market value breakpoints and
cost barriers then prioritization and scoping can be made more
effective.

1. INTRODUCTION

1 Introduction

It is commonly acknowledged that non–functional requirements (NFR) are
an important and difficult part of requirements engineering (Doerr et al.
2005) (Jacobs 1999). Non–functional requirements (also known as quality
requirements) complement functional requirements with quality aspects
(Chung et al. 2000). A characteristic of NFR is that they specify certain
quality levels and can hence often be quantified. This is important not
only for understanding the requirements (Jacobs 1999), but also for priori-
tization and planning (Regnell et al. 2007).
The aim of the study presented in this paper is to empirically analyze
NFR specification in practice and to investigate how NFR metrics are used
in an industrial context. The study is performed at Sony Ericsson, one of
the leading developers of mobile phones. An in–depth analysis of a single
case helps us to understand the details of a specific context, and enables
comparison with other similar case studies. To our best knowledge, similar
studies on NFRmetrics do not yet exist, but future empirical studies on the
important area of NFR may hopefully be conducted. Another outcome of
this research is the classification approach as such. We demonstrate how
a classification can be performed in practice, enabling companies to detail
their knowledge of their own requirements.
The case study presented here is a document content analysis study
(Robson 2002), focused on understanding how non–functional requiremen-
ts are specified, in particular which metrics that are being used. A docu-
ment analysis is an unobtrusive study of an artefact (Robson 2002). A spec-
ification consisting of 2113 requirements is carefully analyzed in a bottom–
upmanner. The classification scheme is built up as the research progresses.
The study is qualitative in the sense that we do not want to confirm any
theory, but rather seek to identify patterns and generate hypotheses for
further research.
The research questions that guide the presented work are:

1. What are the characteristics of different types of requirements?
2. How are NFR specified?
3. How are NFR quantified?

The paper is structured as follows: Section 2 provides an account of the
case study analysis method with its goals, questions and metrics as well as
the coding scheme that is applied in the qualitative data analysis. Section 2
also includes the data analysis with descriptive statistics of distribution of
coding categories. Section 3 discusses the implications of the data analysis
and summarises lessons learned and hypotheses generated. Section 4 gives
an account of related work relevant to NFR specification. Finally, Section 5
concludes the paper.

111

PAPER III: NON–FUNCTIONAL REQUIREMENTS METRICS IN PRACTICE –
AN EMPIRICAL DOCUMENT ANALYSIS

2 Case study analysis

2.1 Research methodology

This case study is an open–ended and exploratory document analysis (Rob-
son 2002). The focus is on understanding how non–functional require-
ments are specified, in particular which metrics that are being used. A
document analysis is an unobtrusive study of an artefact. Analysing the
content is a quantified codification of the artefact (Robson 2002).
The coding scheme and relevant aspects to code are derived as the study
progresses. To avoid moulding the characterization to a particular stan-
dard or classification, the case study does not use a pre–defined character-
ization scheme. Instead, the questions and metrics are openly defined, see
Table 3.1.
To collect the metrics, a requirements document is analyzed. A content
analysis (Robson 2002) is performed to codify and quantify the specifica-
tion. The requirements are analyzed and coded with respect to the differ-
ent metrics that is collected. The document analysis is performed in the
following steps:

1. A preliminary coding was performed to categorize aspects of inter-
est to be coded in more detail. An overall coding of the entire set of
requirements was performed. The goal is to have a first categoriza-
tion of the requirements into classes of functional and non–functional
and to explore which aspects to code further. In sub–sequent steps,
the effort is focused on the non–functional requirements.

2. The emerging codes are discussed and consolidated. The overall
coding was revised and consolidated. The revision consisted of at-
taining orthogonal categories and agreeing on the meaning of the
categories. The consolidation also consisted of raising the level of
confidence in the coding. The subjectively perceived coding confi-
dence varied from ”very low” to ”very high” in five levels. It was
agreed that the confidence should be at least judged ”high” to be
considered acceptable. The coding was performed by all three re-
searchers and discussed until an agreement was reached, with the
intention to increase the coding accuracy.

3. Detailed coding, initial iteration. After having identified which cat-
egories to code, a more detailed coding of e.g. domain, scales and
class followed. In the first iteration, the goal is o get an initial under-
standing of the requirements. The emerging codes and groups were
analysed to derive a consistent and reliable codification. Not all qual-
ity requirements were coded, as the purpose was mainly to derive a
suitable and consistent coding. The analysis was performed using
card sorting (Nurmuliani et al. 2004), (Upchurch et al. 2001). The
card sorting was performed as a group activity among the authors.

112

2. CASE STUDY ANALYSIS

Table 3.1: Goals, questions and metrics (Al-Kilidar et al. 2005)

Goal Question Metric

1. What are the
characteristics of
different types of
requirements?

1. Which types of
requirements are
present in the
requirements
document?

1. Type of require-
ments (functional, non–
functional)
2. Distribution across
different areas of the
specification

2. How many are there
of the different types of
requirements?

3. Type of requirements
4. Number of require-
ments of certain types

3. Are there areas with
more or less NFR than
others?

5. Type of requirements
6. Distribution across
different areas of the
specification

2. How are NFR
specified?

4. Which metrics are
being used?

7. Direct or indirect
quantification
8. Type of metric
9. Distribution of met-
ric usage

5. How is the usage of
standards in the NFR?

10. Name of standard
11. Direct or indirect
quantification

3. How are NFR
quantified?

6. On which kind of
scales are metrics
defined?

12. Types of intervals
13. Type of scales

4. Final detailed coding. The purpose of the final detailed coding iter-
ation is to code all NFR in the specification. This coding provides the
final result presented here.

The coding was performed in parallel by all three authors. To ensure
consistency and reliable results, there was an overlap in the coding among
authors and the consolidating steps 2 and 3.
The process of coding and consolidating ran over several months. The
effort spent on the case study is in the range of 3–4 person weeks. The
first author spent more than half of that effort. The remaining was equally
distributed between the two other authors.

113

PAPER III: NON–FUNCTIONAL REQUIREMENTS METRICS IN PRACTICE –
AN EMPIRICAL DOCUMENT ANALYSIS

2.2 Description of the case

The case study is performed at Sony Ericsson. Sony Ericsson operates in
themobile phone industry, developing severalmillions phone per years for
a wide range of markets and customers. The individual products are de-
veloped on a common platform with a product line engineering approach.
Hence, also the NFR are specified mainly for the platform and not the in-
dividual products. Some parts of the platform are developed by different
sub–contractors, some by Sony Ericsson itself.
Mobile phones are embedded real–time system consumer products de-
veloped for a mass–market. The platform requirements that are investi-
gated in this study are characterized by a number of aspects relevant to
NFR, such as metrics and scale but also usage of standard references. By
having a better understanding of the company practices regarding NFR,
we support our long–term goal to develop effective support which works
in a practical context.
This case study investigates a requirement specification given to a sub
contractor of Sony Ericsson. This subcontractor provides mobile platform
technology for integration into mobile products. The specification contains
areas such as radio, multimedia and network. There are both hardware and
software requirements in the specification. The areas range from being
pure hardware related to being pure software related on a sliding scale.
The specification is focused on enabling technologies, rather than end–user
requirements.
In total, the requirements document contains 2113 requirements. There
is a mixture of functional and non–functional requirements. The specifi-
cation is written in natural language English. The document is structured
into different areas (headings) and sub areas. The structure and depth of
sub areas differ among the areas. A requirement typically consists of 1–5
sentences. The specification is reused over time. New requirements are
added and obsolete requirements are deleted. The sub–contractor uses the
specification as the basis for a statement of compliance in the negotiation
process with Sony Ericsson. The specification has been used over a longer
period of times for several generations of platforms. Hence, the require-
ments have been reviewed and used extensively and are of an appropriate
quality.

2.3 Coding scheme

The scheme is used to codify the requirements. The scheme consists of
three main requirements types

• Pure Functional requirements (PF) – used for the common under-
standing of functional requirements.

• Pure Quality requirements (PQ) – these requirements are NFR that

114

2. CASE STUDY ANALYSIS

do not add functionality, but specifies a quality level on functional
requirements or puts requirements on the sub–contractor as such.

• Both functional and quality aspects mixed (F&Q) – this category is
used when NFR and functional aspects are combined and intermin-
gled in the same requirement. This also includes cases where the re-
quirement includes references to a (part of a) standard that contains
both quality and functional aspects.

As the requirements of class F&Q also contain quality aspects, these re-
quirements are also considered in the detailed analysis of the NFR classes.
Therefore, the union of the requirements sets PQ and F&Q are given a gen-
eral type ”Q”. The detailed coding is focused on the Q set, see the step
description in Section .2.1.
In addition to the general types above, a number of other aspects are
coded:

• Standard reference in Quality requirement (SQ) – used to indicate
whether requirements of the class Q reference a standard or not. For
example, ”The MPEG coding standard shall be supported”.

• Direct Quality level (DQ) – requirements that are quantified or use a
metric. This might be a certain time requirement or sensitivity level,
e.g. ”640x480 (VGA) resolution shall be supported”. It can also be the
case that a specific level in a standard is referred, e.g. ”GPRS class 1
according to the 3GPP standard shall be supported”.

• Indirect Quality level (IQ) – even though it is a non–functional re-
quirement, a metric might not be used. It can for example be a gen-
eral standard reference or for example a maintainability requirement.
The sum of all DQ and IQ requirements are all the Q requirements.

For the DQ requirements, the scale characteristics are also coded as fol-
lows:

• Lower/upper bound – a DQ requirement that specifies a one–sided
interval, either an upper or a lower bound. For example, there are re-
quirements on phone start–up time (upper bound) and data transfer
rates (lower bound)

• Min–Max – a DQ requirement specifying a double–sided interval, i.e.
both an upper and a lower bound. This is for example used for sen-
sitivity and accuracy requirements.

• Absolute – a DQ requirement that specified an absolute value, i.e. no
interval is used. Display resolution is one example of an absolute
DQ.

115

PAPER III: NON–FUNCTIONAL REQUIREMENTS METRICS IN PRACTICE –
AN EMPIRICAL DOCUMENT ANALYSIS

• Discrete/Continuous – indicates whether the scale discrete or contin-
uous. For certain requirements, e.g. memory, only some values are
available. For others, e.g. response time, any value on the scale can
be used.

2.4 Data analysis

The overall distribution of requirements can be found in Figure 3.1 and in
Table 3.2. The data have for confidentiality reasons been made anonymous
in terms of which areas the requirements cover. We use themain heading in
the specification to separate the document into areas. These areas are used
throughout the presentation. There are in total 28 areas, which correspond
to heading level one in the requirements specification. As this heading
structure has evolved over time, it is a mixture of different topics. Some of
the topics are closely related to a specific domain, e.g. audio or telephony,
some more general such as performance or architecture.

PF; 60%
F&Q; 14%

PQ; 26%

Figure 3.1: Total distribution of requirements types (functional require-
ments (PF), non–functional requirements (PQ) and both (F&Q))

As can be seen in Table 3.2 and Figure 3.1, functional requirements are
the dominating type of requirements. PF requirements represent 60% of
the entire requirementsmass. 26% of the requirements are pure non–functi-
onal requirements (PQ) and the rest (14%) are both functional and non–
functional (F&Q). Hence, Q requirements (PQ + F&Q) are 40% of the re-
quirements.
Looking more closely into the different areas in the document, it can
be seen that the distribution of the types differs across the document, see
Figure 3.2. Interesting to note is that areas 1 and 2 in the figure have two
requirements each and except for area 1, there is at least one Q requirement
in the area (cf. Table 3.2). Note that the number of Q requirements for area

116

2. CASE STUDY ANALYSIS

Table 3.2: Number of requirements per area

Area PF PQ F&Q Sum Q SQ DQ
1 2 0 0 2 0 0 0
2 0 2 0 2 2 0 2
3 3 1 0 4 1 0 1
4 1 7 0 8 7 0 2
5 8 3 0 11 3 0 2
6 16 1 0 17 1 0 1
7 6 6 6 18 12 0 11
8 7 12 0 19 12 3 2
9 21 3 1 25 4 0 2
10 24 0 4 28 4 4 3
11 2 20 10 32 30 1 22
12 13 12 10 35 22 4 17
13 19 16 1 36 17 11 14
14 22 3 14 39 17 13 0
15 35 3 4 42 7 5 4
16 30 9 3 42 12 8 2
17 32 4 7 43 11 2 5
18 16 8 23 47 31 20 6
19 60 0 3 63 3 0 2
20 40 29 3 72 32 0 12
21 18 53 3 74 56 8 4
22 7 81 2 90 83 40 3
23 63 38 3 104 41 26 25
24 55 37 20 112 57 0 35
25 177 4 40 221 44 14 39
26 198 20 6 224 26 18 11
27 197 42 15 254 57 39 24
28 185 139 128 449 264 97 216
All 1257 553 303 2113 856 313 467

117

PAPER III: NON–FUNCTIONAL REQUIREMENTS METRICS IN PRACTICE –
AN EMPIRICAL DOCUMENT ANALYSIS

28 is off the chart in Figure 3.2, Figure 3.3 and Figure 3.5. It contains a total
of 264 Q requirements. For presentation purposes, the scale is reduced.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0
10
20
30
40
50
60
70
80
90

PQ F&Q PF # Q

Figure 3.2: Distribution of types pf requirements per area (functional (PF),
non–functional (PQ) and both (F&Q)) as well as number of NFR (# Q)

Overall, the mobile phone domain uses a lot of standard references in
the requirements specification, see Figure 3.3. It might both be that there is
a general fulfillment requirement, e.g. ”the platformmust comply with the
legal standard XYZ” or a direct reference to a level in the standard ”Level 2
of the standard ABC should be fulfilled”. The distribution shows that dif-
ferent areas utilized standards in a varying way. 11 areas have no reference
to any standard in their NFR. However, 50% of the Q requirements have a
standard reference in 9 areas.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
0
10
20
30
40
50
60
70
80
90

Standard No standard # Q

Figure 3.3: The proportion of Q requirements that reference a standard as
well as the number of NFR (# Q)

A non–functional requirement might be specified using a direct quan-
tification (DQ). For example, ”The platform should be able to decode MP3
of 128kb/s”. Alternatively, the quality level is indirect (IQ), e.g. ”The plat-

118

2. CASE STUDY ANALYSIS

form should comply with the 3GPP standard”. The distribution of DQ and
IQ requirements can be seen in Figure 3.4.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

DQ IQ

Figure 3.4: The relative number of Q requirements that have a direct quan-
tification (DQ) or not (IQ)

As with the SQ requirements, it is clear that the different areas are not
the same with respect to directly quantified requirements. Most areas have
a mixture of IQ and DQ. When combining the standard and metric cate-
gories, 49% of the DQ requirements have a standard reference, while 31%
of the IQ requirements have a standard reference. Figure 3.5 depicts how
many percent of the requirements have a standard reference. The figure
also shows how many Q requirements there are in each area.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0
10
20
30
40
50
60
70
80
90

S DQ S IQ # Q

Figure 3.5: Distribution of standard references, divided on DQ and IQ

Domains of NFR were coded for all the requirements. This can be for
example audio or telephony. The heading structure (areas) is related to do-
main, but the heading structure is mixed with different topics, sometimes
cross–cutting. Hence, the domains need to be coded in a more consistent
and coherent manner than the heading structure. As can be seen, the num-
ber of NFR varies across different domains, see Figure 3.6.

119

PAPER III: NON–FUNCTIONAL REQUIREMENTS METRICS IN PRACTICE –
AN EMPIRICAL DOCUMENT ANALYSIS

Figure 3.6: Domains of Q requirements

Finally, scales and types of NFR were coded for all DQ requirements.
Looking more closely on the DQ requirements and the scales on which the
quantification is specified, a mixture can be seen (see Figure 3.7):

• Absolute – no interval given, but an absolute number (58%)

• Min–max – a lower and an upper bound is specified, creating a min–
max interval (7%)

• Upper bound – an upper bound is specified, creating a one–sided
interval (24%)

• Lower bound – as with upper bound, a one–sided interval (12%)

In addition to the interval bounds, the scale might be either discrete or
continuous. Memory is an example of a discrete scale. Memories typically
come in sizes based on the power of 2, e.g. 64MB or 256MB, and com-
binations of such sizes. In comparison, e.g. transfer speeds are typically
not limited to discrete steps but can assume any value within the available
range, e.g. download capacity can vary from 100Kbps to 2Mbps. Area 28
is off the scale with a total of 214 DQ requirements on a continuous scale.

3 Discussion of findings

Figure 3.1 and Figure 3.2 show the distribution of pure functional, pure
quality and mixed functional and non–functional requirements per area.

120

3. DISCUSSION OF FINDINGS

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0

5

10

15

20

25

30

35

Lower bound Upper bound Min-Max Absolute Discrete Continuous

Figure 3.7: Interval (bars) and scale (line) patterns

The spread is large ranging from 100% pure functional to 0% pure func-
tional and from 100% pure quality to 0% pure quality. The mixed func-
tional and quality category ranges from 0%up to 83%. This further strengt-
hens the view that the areas are very different and suggest that each area
needs unique treatment of its NFR.
Figure 3.3, Figure 3.4 and Figure 3.5 also show vast differences among
areas in terms of the fraction of direct metrics and the fraction of NFR
that have references to standards external to the requirements specifica-
tion. This implies even more that the different areas are different in nature
and require tailored treatment. Similar observations have been made in
(Doerr et al. 2005), (Kerkow et al. 2005).
The differences among areas may be explained by the following conjec-
tures:

• The areas are technically very different ranging from having their
major emphasis on hardware or mixed hardware and software or
mainly software.

• The number of requirements in each group varies greatly, ranging
from 2 to 449 with a median of 40 and a mean of 75 requirements per
area.

• Some areas are easier to measure than others. Typically, physical
measures in areas related to hardware aremore straight–forward than
subjective experience of software performance.

• Some areas have more maturity than others, in terms of how long
requirements belonging to the area have been present in the platform.

• Some areas may have more dedicated resources than others in terms

121

PAPER III: NON–FUNCTIONAL REQUIREMENTS METRICS IN PRACTICE –
AN EMPIRICAL DOCUMENT ANALYSIS

of number of engineers working with the requirements of a particular
area.

• Similarly, some areas may have been more thoroughly elicited, spec-
ified or validated. This is natural since time is a limited resource and
the work needs to be prioritized.

• Some areas may be more critical from a quality viewpoint than oth-
ers.

• Some areas may be more critical to important stakeholders than oth-
ers.

This leads us to the first hypothesis: [H1] Different areas of non–functional
requirements, both with respect to technical domain and type of non–functional
requirement, are unique in their character and require unique treatment in terms
of tools support and method guidance.
More work is needed to identify and classify the different areas and to
find patterns within similar areas, across domains. If such patterns exist,
these can be used to tailor the support for working with NFR within a cer-
tain area. This confirms observations from other case studies (Doerr et al.
2005). However, the underlying assumptions of the different areas and
their unique behaviour are not well known and warrant further studies.
When regarding the distribution of different type, there are many NFR
that are related to the architecture or associated documentation in contrast
to requirements on the system as such. Performance requirements are the
most common type of NFR in this case study, whereas reliability require-
ments are largely lacking. This leads us to the following observations:

• In the mobile phone domain size and power consumption are central
along with limited computer capacity, which can explain why perfor-
mance requirements are very common. Furthermore, mobile phones
are not what are usually considered to be safety critical systems, such
as trains or aeroplanes. This explains the limited emphasis on relia-
bility requirements. If a different domain was analyzed, the results
would probably have looked different, suggesting that different do-
mains require different solutions.

• There are a number of NFR that are identified as having a concur-
rency aspect. This leads us to two conjectures: it is not always clear
to which type a NFR belongs to and that NFR might belong to more
than one type at the same time. Hence, when modelling quality, we
need to consider that requirements might be cross–cutting and not
possible to sub–divide in a strictly hierarchical manner.

• Many requirements are put on the architecture. In many cases Sony
Ericsson has an architecture which needs to be taken into consider-
ation for the sub–contracted parts. If those parts do not fit into the

122

3. DISCUSSION OF FINDINGS

overall system architecture, obvious problems will occur. This can
explain why there are so many NFR in architecture related classes.

• Another reason that many requirements are related to the architec-
ture might be that some requirements cannot be revealed to the sub–
contractor for confidentiality reasons. Hence, rather than stating the
end–user requirements, architecture or design requirements are spec-
ified.

Figure 3.7 is based on coding of direct NFR (DQ) and reveals that there
are several different patterns for specifying intervals. It can be seen from
the distribution that it is rather common that direct quality metrics are
qualified with more information than just a simple absolute value. Fur-
thermore, Figure 3.7 shows the coding of direct NFR (DQ) and reveals that
there are two principally different scales used; a continuous pattern and a
discrete pattern.
Based on the data analysis we make the following conjectures regarding
intervals and scale patterns:

• In many cases, there is a threshold. Values up to (or down to) a
certain value are all acceptable. One example is transfer rate (lower
bound). Another example is start–up time (upper bound).

• Sometimes complex interrelationships exist among differentNFR. For
example, to maximize the conversation quality, the radio output sho-
uld be as high as possible. However, the radio output level needs
to be kept down to reduce current consumption and electromagnetic
field affecting the person using the phone. This leads to a min–max
interval.

• It is often difficult to specify an exact value for a certain quality level.
Therefore, quality is often specified using an interval to indicate an
approximate value within a certain range.

• There are cases where a specific level is sought, e.g. with video reso-
lution. Due to for example compatibility issues, size restrictions and
user quality perception, perhaps VGA 30fps is the only acceptable
compromise, neither more nor less.

• When referring to a standard, a specific level is sometimes defined.
This is then an absolute level in the standard and not an interval. In
fact, the scale as such in this case would most likely be nominal and
an interval scale would not make sense.

• In certain areas, prominently hardware, the scales are discrete rather
than continuous. Hardware components typically have pre–defined
steps and combinations which can be used. Hence, we are not free
to select for example 34MB of memory. Software, on the other hand,

123

PAPER III: NON–FUNCTIONAL REQUIREMENTS METRICS IN PRACTICE –
AN EMPIRICAL DOCUMENT ANALYSIS

is prominently continuous, e.g. data transfer rate. But there are also
examples where scales for software NFR are discrete, e.g. audio and
video encoding which is typically standardized for interoperability
purposes.

The nature of the intervals and scales for different areas are important
when defining the quality levels and when negotiating and prioritizing
then. This leads us to a second hypothesis: [H2] Interval and scale patterns
need to be aligned with the market value breakpoints and cost barriers (Regnell
et al. 2007) to allow effective prioritization and negotiation.
Each quality indicator needs to be investigated to figure out the optimal
way of specifying requirements using intervals. The quality indicators pat-
terns will be different for different areas. To better support prioritization
and negotiation (e.g. as in (Regnell et al. 2007)) these patterns need to be
understood for the domain. Furthermore, the complex interaction among
the different quality indicators and NFR need more study to effectively
support negotiation and prioritization.
The coding of NFR is a non–trivial task. It has been reported that when
using the ISO 9126 it is inherently difficult to get a reliable classification
(Al-Kilidar et al. 2005). Similar problems were identified in this case study.
We address this by tailoring the coding scheme to the particular case. This
made it easier to attain a reliable coding. The down–side of using a tailored
code is that the comparability with other studies is hampered. However,
each domain is unique in one way or another and we believe that the cod-
ing also needs to be tailored to the domain (Doerr et al. 2005), (Kerkow
et al. 2005).
There are a number of threats to the validity of the results. First, the cod-
ing reliability may in some cases be low due to the deep domain knowl-
edge required but sometimes lacking. This is addressed by independent
coding among three researcher and consolidation based on perceived con-
fidence.
Second, the transferability of the result can be discussed as this study
only covers one specific case. Preferably, a standardized coding should
be used to enable comparison with other cases. To the authors’ knowl-
edge, there are as of yet no similar studies performed. Hence, there is no
standardized coding and no cases to compare with. Hopefully, the expe-
rience and outcome of this study will inspire and aid other researchers in
performing similar studies, as there is a lack of empirically grounded un-
derstanding of NFR.

4 Related work

Research in non–functional requirements has concentrated on modelling
and representation of NFR. However, research related to classification and

124

5. CONCLUSION

measurements of NFR are also introduced in literature. In this section, a
selection of classification methods and measurements are presented.
There are case studies reporting using differentNFR approaches (Balushi
et al. 2007), (Doerr et al. 2005), (Jacobs 1999), (Sedigh-Ali et al. 2001). How-
ever, even though industry case studies were sometimes conducted, little
or no information is shared on the characteristics of the NFR.
Balushi et al. (2007) developed a tool called ElicitO. The purpose of the
tool is to empower requirements analysts during elicitation interviews.
ElicitO is based on domain ontology to support elicitation activities. The
domain ontology uses characteristics and metrics from the standard qual-
ity model ISO/IEC 9126 (9126-2001 E).
In the IESE NFR method (Kerkow et al. 2005) based on the ISO 9126
(9126-2001 E), quality models are used to document the understanding of
quality attributes. The method has shown its usefulness in several indus-
trial case studies (Doerr et al. 2005). The basis of the method is the concept
of quality models. These models capture the behaviour of a specific qual-
ity attribute and break it down hierarchically. However, the quality models
used in the method is not based on empirical data. Furthermore, detailed
support on scales, intervals and interrelationships are largely missing.
According to Sedigh-Ali et al. (2001), commercial–off–the–self (COTS)
based systems require metrics for quality indicators such as complexity,
performance and so forth. Obtaining system–level indicators of quality
is complicated for COTS products. Sedigh–Ali et al presents 13 system–
level metrics for COTS based systems. How to measure these metrics are
described, but no concrete or precise measures are defined. Furthermore,
the 13 system–level metrics in (Sedigh-Ali et al. 2001) are not empirically
validated.
Coding of NFR can be a difficult and unreliable process. Al-Kilidar et al.
(2005) empirically evaluated ISO 9126 (9126-2001 E) as a mean to classify
NFR. They found both shortcomings in the content of the standard and
unreliable codes in an experiment. There is a lack of studies on the matter
of coding NFR which needs to be addressed.

5 Conclusion

This paper presents an empirical study on non–functional requirements
(NFR) in a requirements specification within the embedded software do-
main based on a document content analysis of 2113 requirements. Asmany
as 40% of the requirements in the specification are non–functional. The dis-
tribution across the areas on the specification varies, but only a few areas
completely lack NFR. In many cases (14%), the requirements specify both
a functional and a non–functional aspect.
Standards are commonly used and for NFR, as many as 37% of the NFR
references a standard. About half of the NFR are specified using a metric.

125

PAPER III: NON–FUNCTIONAL REQUIREMENTS METRICS IN PRACTICE –
AN EMPIRICAL DOCUMENT ANALYSIS

Large parts of the quantified NFR are specified on an interval, both single–
and double–sided.
A general conclusion is that for a method to be successful, it is important
that it is flexible enough to handle the diverse nature of NFR. This impacts
all areas of requirements engineering, starting with elicitation and analysis
to specification and validation. Further research is needed into different
sub–domains to be able to identify general patterns and trends which can
be used to facilitate industry in their work with NFR. This case study re-
sults are specific to the domain investigated and to the product platform
under study and the results cannot be directly transferred to another con-
text. However, a number of hypotheses of general interest can be stated
based on this case study, as discussed in Section 3.
We used a domain–specific method for coding NFR which can be ap-
plied instead of basing a classification on a general model such as ISO 9126.
Even though it requires an initial tailoring to be useful, once the coding
scheme is defined, it is our experience that domain–specific coding can be
reasonably reliable and efficient.
To improve how NFR are handled, we need to understand the charac-
teristics of them, and this case study is aimed as a step towards a richer
picture of NFR rooted in empirical findings in a specific domain. Further
case studies are needed in other domains and on other requirements spec-
ifications to enable generalizations outside the domain of this study.

Acknowledgments

This work was partly funded by VINNOVA (Swedish Agency for Innova-
tion Systems) within the MARS project.

126

REFERENCES

References

ISO/IEC 9126-2001(E). Software engineering – product quality – part 1:
Quality model, 2001.

H. Al-Kilidar, K. Cox, and B. Kitchenham. The use and usefulness of the
iso/iec 9126 quality standard. In Proceedings International Symposium on
Empirical Software Engineering, pages 122–128, 2005.

T.H. Al Balushi, P.R.F. Samoaio, D. Dabhi, and P. Loucopoulos. Elicito: A
quality ontology–guided nfr elicitation tool. In Lecture Notes in Computer
Science, volume 4542, pages 306–319, 2007.

L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. NFR in Software Engineer-
ing. Kluwer Academic Publishers, 2000.

J. Doerr, D. Kerkow, T. Koenig, T. Olsson, and T. Suzuki. Non–functional
requirements in industry – three case studies adopting an experience–
based nfr method. In Proceedings 13th IEEE International Conference on
Requirements Engineering, pages 373–382, 2005.

S. Jacobs. Introducing measurable quality requirements: a case study. In
Proceedings 4th IEEE International Symposium on Requirements Engineering,
pages 172–179, 1999.

B. Kerkow, J. Doerr, B. Paech, T. Olsson, and T. Koenig. Requirements Engi-
neering for Sociotechnical Systems, chapter Elicitation and Documentation
of Non–Functional Requirements for Sociotechnical Systems, pages 284–
302. Hersey: Information Science Publishing, 2005.

N. Nurmuliani, D. Zowghi, and S.P. Williams. Using card sorting tech-
nique to classify requirements change. In Proceedings of the 12th IEEE
International Requirements Engineering Conference, 2004.

B. Regnell, M. Höst, and R. Berntsson Svensson. A quality performance
model for cost–benefit analysis of non–functional requirement applied to
the mobile handset domain. In Lecture Notes in Computer Science, volume
4542, pages 277–291, 2007.

C. Robson. Real World Research. Blackwell, 2002.

S. Sedigh-Ali, A. Ghafoor, and R.A. Paul. Software engineering for cots–
based systems. IEEE Computer, 34(5):44–50, 2001.

L. Upchurch, G. Rugg, and B. Kitchenham. Using card sorts to elicit web
page quality attributes. IEEE Software, 18(4):84–89, 2001.

127

REFERENCES

128

Paper IV

Supporting Roadmapping of Quality Requirements

Björn Regnell1, Richard Berntsson Svensson1, Thomas Olsson2
1Lund University 2Sony Ericsson

Published in IEEE Software Vol. 25, no. 2, pp 42–47, 2008

ABSTRACT

When dealing with quality requirements, you often end up
in difficult trade–off analysis. You must take into account as-
pects such as release targets, end–user experience, and busi-
ness opportunities. At the same time, you must consider what
is feasible with the evolving system architecture and the avail-
able development resources. Our experience from the mobile–
phone domain shows that much can be gained if development
team members share a common framework of quality indica-
tors and have a simple, easy–to–use model for reasoning about
quality targets. To support quality–requirements analysis, the
Quper (quality performance) model combines cost and benefit
views into a roadmap of each important quality indicator for
the particular domain. The practical application of Quper in-
volves six steps.

1. INTRODUCTION

1 Introduction

Would slightly better performance be significantly more valuable from a
market perspective? Would significantly better performance be just slightly
more expensive to implement? When dealing with performance, usability,
reliability, and so on, you often end up in difficult trade–off analysis. You
must take into account aspects such as release targets, end–user experi-
ence, and business opportunities. At the same time, you must consider
what is feasible with the evolving system architecture and the available
development resources.
Our experience from the mobile–phone domain shows that it is help-
ful when software development team members share a common frame-
work of quality indicators when discussing roadmaps for future system
releases. They should also have a simple, easy–to–use model for reasoning
about options as input to cost–benefit and trade–off analysis. To support
roadmapping of quality requirements when developers plan systems for
software–intensive consumer products, we developed the Quper (quality
performance) model (Regnell et al. 2007).
Quality requirements are of major importance in the development of
systems for software–intensive products (Jacobs 1999). To be successful, a
company must find the right balance among competing quality attributes.
How should you balance, for example, investments for improved usabil-
ity of a mobile phone’s phone book and better mobile positioning? In
the context of quality requirements, decision making typically combines
market considerations and design issues in activities such as roadmapping
(Regnell and Brinkkemper 2005), release planning (Carlshamre and Reg-
nell 2000), and platform scoping (deBaud and Schmid 1999). Models that
address requirements prioritization in a market–driven context often em-
phasize functional aspects. (For a comparison of other relevant techniques
with Quper, see the sidebar.) Quper provides concepts for reasoning about
quality in relation to cost and value and can be used in combination with
existing prioritization approaches.

2 Related Techniques

Severalmodels related to requirements prioritization and cost–benefit anal-
ysis can help requirements engineers select product requirements. Karls-
son and Ryan (1997) suggest a cost–value approach based on the Analytic
Hierarchy Process (Saaty 1980). Their approach uses pair–wise compar-
isons to rate requirements on the basis of value and cost; a 2D graph dis-
plays the value against the cost (Saaty 1980). This approach deals mainly
with functional requirements, but the prioritization can also include qual-
ity attributes. However, it does not explicitly address the continuous na-
ture of quality levels. Our Quper (quality performance) model introduces

131

PAPER IV: SUPPORTING ROADMAPPING OF QUALITY REQUIREMENTS

a third dimension capturing the quality level.
Noriaki Kano and his colleagues developed a model for evaluating pat-
terns of quality (Kano et al. 1984), (Matzler and Hinterhuber 1998) . The
evaluation is based on the customer’s satisfaction with specific quality at-
tributes and is displayed in a 2D graph. Like Quper, this model views
quality as nonlinear. However, it does not include the cost dimension.
In addition, Quper is related to roadmapping and includes benefit break-
points and cost barriers to indicate important aspects of quality relations
(for more on breakpoints and barriers, see the main article).
Quality Function Deployment is a customer– and user–oriented model
for product development (Karlsson 1997). For a full implementation of
QFD, customers and usersmust be visible. However, not all market–driven
projects have access to their customers and users. In addition, QFD is a
complex and comprehensive model that might require a company to com-
pletely change its practices. Quper is a simple reference model with a few
concepts, aimed to be easy to use in combination with a company’s current
practices.
Tom Gilb’s Planguage has roadmap–related concepts such as ”past,”
”record,” and ”trend” in templates for quality requirements (Gilb 2005).
You can use Quper in combination with Planguage to express breakpoints
and barriers as well as targets related to, for example, competing products
in different market segments.
Rick Kazman and his colleagues developed the Architecture Trade–off
Analysis Method to find trade–offs among quality attributes that affect
each other at the architecture level (Kazman et al. 1998). While ATAM con-
siders decision making at the architecture level, Quper combines market
considerations and design issues in activities such as roadmapping, release
planning, and platform scoping.
For a general discussion on service value and quality in engineering, see
The Changing Nature of Engineering (Aslaksen 1986).

3 QUPER

We have observed that quality is often continuous and nonlinear. That
is, instead of viewing the quality level as a binary property of ”good” or
”bad,” you can view it as having different shades on a sliding scale. For ex-
ample, a small decrease in response time might require significant invest-
ments in architectural evolution; a small change in the user interface might
significantly improve usability. On the basis of these observations and dis-
cussions with domain practitioners, we determined that Quper should be

• robust to uncertainties (we concentrate on principal properties rather
than precise predictions),

• easy to use (the model should include a limited number of simple–to–

132

3. QUPER

understand concepts), and

• domain relevant (it should be adaptable to a particular domain, and
you should be able to incorporate it in your working practices with-
out costly interferencewith existing processes, techniques, andmeth-
ods).

3.1 Basic concepts

A breakpoint is an important aspect of the relation between quality and
benefit–for example, when mobile–phone start–up time shifts from nor-
mal expectations to outperforming most competitors. A barrier is an im-
portant aspect of the relationship between quality and cost–for example,
when better mobile–gaming performance requires an expensive rebuild of
the architecture. These two concepts are the basis for Quper’s three views.
The benefit view (see Figure 4.1) includes three breakpoints indicating
principal changes in the benefit level with respect to user experience and
market value. The utility breakpointmarks the border between useless and
useful quality. ”Useless” means that a product isn’t accepted on the mar-
ket and users do not recognize its value. After passing the utility break-
point, a product starts to become useful and thus have a potential market
value. The differentiation breakpoint marks the shift from useful to compet-
itive quality. Only a few products have such quality, which makes them
have a competitive market proposition. The saturation breakpoint indicates
a change from competitive to excessive quality. At the excessive–quality
level, higher quality has no practical effect on the benefit in the particular
usage context.
The cost view (see Figure 4.2) includes foreseen barriers representing the
nonlinear nature of the relation between quality and cost. For a specific
quality aspect in a specific context, we approximate the quality–cost rela-
tion to have two different steepness ranges. A barrier occurs when the cost
shifts from a plateau–like situation where an increase in quality has a low
cost penalty, to a sharp rise where an increase in quality has a high cost
penalty. A typical cost plateau is when comparatively inexpensive soft-
ware optimizations might produce high gains of performance. A typical
barrier might be that an increase in quality is not feasible without a large
reconstruction of the product architecture. A quality aspect might have
many barriers, depending on the context and the type of cost considered.
Costs can, for example, be investments in development effort or the cost
per hardware unit.
Quper generally aims to avoid making complete predictions of the in-
herently difficult relations between a system’s benefit, cost, and quality.
Instead, we simplify the problem by finding reasonably good predictions
of a limited set of breakpoints and barriers (with ranges to indicate error
margins, if appropriate). Every quality indicator must be considered care-

133

PAPER IV: SUPPORTING ROADMAPPING OF QUALITY REQUIREMENTS

Figure 4.1: Benefit view

Figure 4.2: Cost view

134

3. QUPER

fully to find special cases. The curves might not always look like those in
Figures 4.1 and 4.2, and breakpoints and barriers might sometimes need
special treatment and might change over time.
The roadmap view (see Figure 4.3) combines the two previous views by
positioning the breakpoints and barriers on the same scale. So, you can
visualize the breakpoints and barriers in relation to your product’s current
quality and the competing products’ quality. To support roadmapping,
this view also incorporates targets for coming releases.

Figure 4.3: Roadmap view

In all three views, the horizontal axis indicates the quality level. The
quality indicators might be specific to different entities, such as features,
use cases, andmarket segments. Defining these indicators is the main issue
in tailoring Quper for a certain domain or product.

3.2 Quper steps

Applying Quper in practice involves six steps:

1. Define the quality indicators.

2. For each indicator and for each relevant qualifier (for example, a spe-
cific feature, use case, market segment, competitor, or platform capa-
bility), estimate the breakpoints and barriers.

3. Estimate your product’s current quality (for a given release) and the
competing products’ quality (current or future).

4. Estimate targets for coming releases, propose candidate targets, and
decide on actual targets.

5. Approve and communicate roadmaps as a common vision with real-
istic targets for downstream systems and software engineering.

6. Revise the roadmaps and iterate any necessary steps as estimates be-
come more certain or circumstances changes. Align the iterations
with the release frequency.

135

PAPER IV: SUPPORTING ROADMAPPING OF QUALITY REQUIREMENTS

We are introducing Quper at Sony Ericsson, concentrating initially on
steps 1–4. We plan to eventually deploy steps 5 and 6 as well as estimate
the cost barriers from step 2. We propose to align Quper with the current
scoping process, which uses pairwise comparison of features (high–level
functional requirements) in cost–benefit analysis (Karlsson and Ryan 1997).
Figure 4.4 shows how to document the results of steps 1–4 (to preserve
confidentiality, the requirements in the figure are fictitious).

Figure 4.4: A template for documenting the results of QUPER’s first four
steps

In step 1, when defining quality indicators, it is important to identify
relevant qualifiers and consider their consequences for the particular in-
dicator. For example, different mobile phones offered to different market
segments have different requirements for image quality. Or, a competitor
might recently have released a mobile phone with better gaming perfor-
mance, thereby changing users’ perceptions of gaming quality. Further-
more, today’s hardware isn’t the same as tomorrow’s. This has implica-
tions for performance requirements, as software features might run much
faster. Also, users’ evolving expectations might influence quality targets,
as users expect better performance and quality in the latest mobile phones.
In step 2, for each quality indicator, define the current market expec-
tations in terms of the values of the breakpoints in Figure 4.1. First, de-
termine the utility breakpoint–the lowest acceptable value on the current
market. Then, determine the saturation breakpoint, which represents qual-
ity levels clearly considered excessive in the current market. Finally, deter-
mine the differentiation breakpoint; values above it will give you a market
advantage. For example, for a mobile phone, taking 10 minutes to start
is useless, while less than one minute is useful. A competitive advantage
could be to start the phone within 10 seconds, while 10 milliseconds could
be considered excessive.

136

4. LESSONS LEARNED

In step 3, after identifying all the quality levels, identify reference levels
based on actual products– your own or your competitors’. These levels fur-
further calibrate your estimates and give you objective measures to relate
your targets to.
In step 4, targets are requirements with potential quality commitments.
Different quality indicators might have a different number of relevant tar-
gets. Figure 4.4 shows three targets: low, mid, and high, which have dif-
ferent implications regarding cost and benefit.

4 Lessons learned

Before deploying Quper, we investigated it with experts in six mobile–
phone subdomains: local connectivity, positioning, Java platforms, mobile
TV, memory, and radio network access. We were able to define breakpoints
and barriers for several quality indicators in all the subdomains. Also, the
interviewees recognized the model’s usefulness. They stressed that new
prioritization techniques and roadmapping methodology must be simple
and easy to learn and understand.

4.1 Quality indicators

Important quality indicators include these:

• for local connectivity, various data–transfer rates measured in bits
per second;

• for positioning, the position accuracy (the error margin in the given
positioning data) measured in meters; and

• for mobile TV, the video frame rate measured in number of image
frames per second.

However, the interviewees raised two main issues. First, how many
and which quality indicators should you manage? This issue is about the
balance between the information’s benefit and the effort for acquiring it.
The number of quality indicators that you must identify depends on issues
such as the domain, the product, and the most–strategic use cases.
Second, how do you manage dependencies between quality indicators?
This issue is about prioritizing the indicators. You can use existing prior-
itization methods, but only for discrete values of the indicator. You can
also compare one indicator’s breakpoints with those of another. Currently,
the most important dependencies are managed on the basis of expert judg-
ment in particularly crucial cases. Trying to estimate all the dependen-
cies inevitably leads to a combinatorial explosion. We need to understand
more about dependencies before we can find heuristics to efficiently sup-
port them.

137

PAPER IV: SUPPORTING ROADMAPPING OF QUALITY REQUIREMENTS

There are two types of metrics: one with lower values for higher qual-
ity (for example, the time to first fix, for mobile positioning) and one with
higher values for higher quality (for example, frame rate, for mobile TV).
To visualize quality indicators in the benefit view (see Figure 4.1), we rec-
ommend the second type of metric. You can achieve this, for example, by
inverting the first type of metric or reversing the scale.
Taking standards into account when defining quality indicators seems
inevitable in the mobilephone domain. However, the relation between a
technical quality defined by standards and the user’s perceived experience
isn’t always straightforward.

4.2 Breakpoints

We’ve encountered three factors relevant to breakpoint positions:

• Different use cases and market segments have different quality de-
mands. You can express this in Quper by defining use–case–specific
targets and market–segment–specific targets.

• As we mentioned before, when the products and market mature,
users get familiar with features, and they expect higher quality. You
can express this in Quper by having breakpoints that change over
time.

• Sometimes, as the market matures, the utility and saturation break-
points remain stable but the differentiation breakpoint rapidly be-
comes more demanding.

4.3 Barriers

Our experience indicates that cost has a nonlinear relationship to quality,
and we found it relevant to discuss specific barriers in that relationship.
However, our experiences also revealed that the next barrier you have to
deal with seems much easier to identify than ones further into the future.
You might have to overcome that first barrier before you can more accu-
rately estimate future barriers.
We identified several types of costs related to different cost categories
in the six subdomains. Development effort is one of the most critical cost
types for software. For hardware issues (more or less indirectly linked to
software), we found examples of these cost types: cost per unit, footprint,
physical size, and energy consumption. We also identified the general cost
of missed market opportunities.

138

5. SUMMARY

4.4 Benefits

On the basis of our case study experiences, we conclude that Quper can
provide a richer picture of quality targets. It also enables developers to put
quality requirements into context and calibrate them against market and
investment estimations in a coherent way. Instead of treating quality re-
quirements separately, Quper lets developers prioritize them in combina-
tion with functional requirements and relate their priorities already during
platform scoping.

5 Summary

Quper is based on our observation that existing practices often specify
quality aspectswithout explanation or rationale. Communication is impor-
tant in requirements prioritization. Quper addresses this issue, aiming to
enrich the overall picture of quality requirements through a better shared
understanding. Its validation in the mobile–phone domain indicates that
it is feasible and relevant for this specific domain. We believe it can also
be relevant in other domains where software–intensive products are de-
veloped for open markets. The main benefit in using Quper, we believe,
is better release–planning decisions. We envision that Quper will support
the inherently difficult prediction of the impact of different quality targets.

Acknowledgments

This work was partly funded by VINNOVA (the Swedish Agency for Inno-
vation Systems) within the MARS project. We especially thank Per Rune-
son for valuable advice on initial drafts of this article.

139

PAPER IV: SUPPORTING ROADMAPPING OF QUALITY REQUIREMENTS

140

REFERENCES

References

E.W. Aslaksen. The Changing Nature of Engineering. McGraw–Hill, 1986.

P. Carlshamre and B. Regnell. Requirements lifecycle management and
release planning in market–driven requirements engineering processes.
In Proceedings 11th International Workshop on Database and Expert Systems
Applications, pages 961–965, 2000.

J.M deBaud and K. Schmid. A systematic approach to derive the scope of
software product lines. In Proceedings of the 21st International Conference
on Software Engineering, pages 34–43, 1999.

T. Gilb. Competitive Engineering. Elsevier Butterworth–Heinemann, 2005.

S. Jacobs. Introducing measurable quality requirements: a case study. In
Proceedings 4th IEEE International Symposium on Requirements Engineering,
pages 172–179, 1999.

N. Kano, S. Nobuhiro, S. Takahashi, and S. Tsuji. Attractive quality and
must–be quality. Hinshitsu, 14:39–48, 1984.

J. Karlsson. Managing software requirements using quality function de-
ployment. Software Quality Journal, 6(4):311–325, 1997.

J. Karlsson and K. Ryan. A cost–value approach for prioritizing require-
ments. IEEE Software, 14(5):67–74, 1997.

R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere.
The architecture tradeoff analysis method. In Proceedings 4th IEEE In-
ternational Conference on Engineering of Complex Computer Systems, pages
66–78, 1998.

K. Matzler and H.H. Hinterhuber. How to make product development
projects more successful by integrating kano’s model of customer satis-
faction into quality function deployment. Technovation, 18(1):25–38, 1998.

B. Regnell and J. Brinkkemper. Engineering and Managing Software Require-
ments, chapter Market–Driven Requirements Engineering for Software
Products, pages 287–308. Springer, 2005.

B. Regnell, M. Höst, and R. Berntsson Svensson. A quality performance
model for cost–benefit analysis of non–functional requirement applied to
the mobile handset domain. In Lecture Notes in Computer Science, volume
4542, pages 277–291, 2007.

T. Saaty. The Analytical Hierarchy Process. McGraw–Hill, 1980.

141

REFERENCES

142

Paper V

Introducing Support for Release Planning of
Quality Requirements – An Industrial Evaluation

of the QUPER Model

Richard Berntsson Svensson1, Thomas Olsson2, Björn Regnell3
1,3Lund University, 2,3Sony Ericsson

Published at the Second International Workshop on Software Product
Management (IWSPM08), September 2008, Barcelona, Spain

ABSTRACT

In market–driven product development and release plan-
ning, it is important to market success to find the right balance
among competing quality requirements. To address this issue,
a conceptual model that incorporates quality as a dimension in
addition to the cost and value dimensions used in prioritisation
approaches for functional requirements has been developed. In
this paper, we present an industrial evaluation of the model.
The results indicate that the quality performance model pro-
vides helpful information about quality requirements in release
planning. All subjects stated that the most difficult estimations
may be more accurate by using the quality performance model.

1. INTRODUCTION

1 Introduction

Market–driven product development and release planning is becoming in-
creasingly common in the software industry (Ullah and Ruhe 2006), (Carl-
shamre 2002). As market–driven product development gains greater ac-
ceptance (AlBourae et al. 2006), a new role within software companies
emerged, namely that of productmanager (van deWeerd et al. 2006). Prod-
uct management is rather complex where the product manager has several
important tasks, such as requirements management, release planning, and
launching products (van de Weerd et al. 2006). Release planning is a pro-
cess applying various types of upstream decision–making that combine
market considerations with implementation concerns (Regnell et al. 2007).
Release planning involves aspects such as selecting what features and re-
quirements should be in a certain release, when it should be released, and
at what cost (Ullah and Ruhe 2006). According to Ullah and Ruhe (2006),
lacking of good release planning practices may results in unsatisfied cus-
tomers and market loss, which makes release planning a major determi-
nant of the success of a product.
Models that address requirements prioritization in a market–driven con-
text often emphasize functional aspects, for example, the cost–value ap-
proach for requirements prioritization (Karlsson and Ryan 1997). Other
methods are based on release planning and software product management
(Greer and Ruhe 2004), (van de Weerd et al. 2006). However, to the best of
our knowledge very little research has looked into prioritization of quality
requirements in release planning, despite that quality requirements are of
major importance in market–driven requirements engineering, as reported
e.g. in a case study in the telecommunication domain (Jacobs 1999).
Would slightly better performance be significantly more valuable from a
market perspective? Would significantly better performance be just slightly
more expensive to implement? When dealing with performance, usabil-
ity, reliability and so forth, we often end up in a difficult trade–off anal-
ysis. Aspects such as release targets, end–user experience, and business
opportunities must be taken into account. To support release planning and
roadmapping of quality requirements, we developed the quality perfor-
mance (QUPER) model (Regnell et al. 2007), while applying QUPER in
practice is reported in (Regnell et al. 2008a).
This paper presents one case of QUPER tailoring, implementation, and
most important evaluation, conducted at Sony Ericsson, one of the leading
mobile handset developers. The main purpose is to investigate the imple-
mentation of QUPER in industry. The very large–scale industry (Regnell
et al. 2008b) trials allow us to validate the QUPER model’s usefulness in a
non–simulated environment in real projects using real requirements. The
main objective and contribution of the paper is to show how QUPER can
be used in one company and in particular the focus is on an evaluation of
the industrial introduction of the model.

145

PAPER V: INTRODUCING SUPPORT FOR RELEASE PLANNING OF QUALITY
REQUIREMENTS – AN INDUSTRIAL EVALUATION OF THE QUPER MODEL

The paper is structured as follows: Section 2 gives a short introduction
to the QUPER model. In section 3, the tailoring of the QUPER model is
presented. In section 4, the company and its product development situ-
ation where QUPER is used is presented. Section 5 presents the research
methodology while the results from the evaluation are presented in section
6. Related work is presented in section 7 and section 8 gives a summary of
the main conclusions.

2 QUPER

The development of QUPER was carried out at two case companies in the
mobile handset domain with a supplier–integrator relationship. Indus-
try needs and possibilities for improvement were identified. The QUPER
model was developed in three main steps (Regnell et al. 2007):
Step 1: Problem definition. The goal was to understand different require-
ment decision scenarios by focusing on the interface between the two case
companies. The result of this work is reported in (Regnell et al. 2006). In
addition, the need for a cost–benefit model including quality aspects to
support roadmapping and scoping was identified.
Step 2: Model definition. The model definition was based on the input
from step 1. The QUPER model was defined comprising three views: a
benefit view, a cost view, a roadmap view, and the concepts of benefit
breakpoints and cost barriers.
Step 3: Model validation. An evaluation of the model was carried out in
six cases of selected subdomains through interviews with experts.
The quality performance model is a feature prioritization model that in-
cludes a third dimension related to quality, as a complement to the two di-
mension cost and value that are used in prioritization of functional require-
ments (Karlsson and Ryan 1997). The model aims to support prioritization
and roadmapping of quality requirements at early stages of release plan-
ning when making high–level scoping decisions and creating roadmaps.
The QUPERmodel is based on the observations that quality is continuous
and non–linear. The quality level is typically not viewed as either good
or bad, but rather as something with different shades of goodness on a
sliding scale. In addition, we assume that a change in quality level may
result in non–linear changes to both cost and benefit, and that this non–
linearity is of interest to release planning and roadmapping. Based on these
observations, the following goals for QUPER were selected as a guide to
the development step:

• Robust to uncertainties, concentrating on principal properties rather
than precise predictions.

• Easy to use, the model should include only a few concepts that are
easy to learn, remember, and understand by practitioners.

146

2. QUPER

• Domain relevant, the model must be possible to combine with existing
practice and possible to tailor to a particular domain.

The QUPER benefit view (Figure 5.1) includes three breakpoints indicat-
ing principal changes in the benefit level with respect to user experience
and market value. A breakpoint is an important aspect of non–linear rela-
tion between quality and benefit. The utility breakpoint represents the bor-
der between a quality level useless and useful quality. Useless means that
the quality is so low that the product is not accepted on the market. The
differentiation breakpoint represents the shift from useful to competitive qual-
ity, which makes them have a competitive market proposition. The satura-
tion breakpoint imply a change in quality level from competitive to excessive
quality, where higher quality levels have no practical impact on the benefit
in the particular usage context considered.

Useful

Useless

Competitive
advantage

Excessive

Utility breakpoint

Differentiation breakpoint

Quality level

Benefit

Saturation breakpoint

Figure 5.1: The QUPER benefit view

The QUPER cost view (Figure 5.2) includes the notation of cost barriers
that represents the non–linear relation between quality and costs. For a
specific quality aspect in a specific context, we approximate the quality–
cost relation to have two different steepness ranges. A typical cost barrier
may be the result of that a quality increases is not feasible without a large
reconstruction of the product architecture, while a typical cost plateau is
exemplified by the case where comparatively inexpensive software opti-
mizations may result in high gains of performance.
The QUPER roadmap view (see Figure 5.3) combines the benefit and cost
views by position the breakpoints and barrier together ordered on the same
scale. This view enables visualization of benefit breakpoints and cost bar-
riers in relation to the current quality level of a product and the qualities

147

PAPER V: INTRODUCING SUPPORT FOR RELEASE PLANNING OF QUALITY
REQUIREMENTS – AN INDUSTRIAL EVALUATION OF THE QUPER MODEL

of competing products. This view also combines the notation of targets for
coming releases with the aim of supporting roadmapping.

Quality level

Cost

barrier

Figure 5.2: The QUPER cost view

Current Questionable Target

Quality Indicator
(Feature X, Segment Y)

Target release n1

Competitor B

Competitor A

Target release n2

Utility Differentiation Saturation

Figure 5.3: The QUPER roadmap view

3 QUPER tailoring

QUPER as presented in section 2 is generic in nature, therefore an adaption
of the six steps in applying QUPER in practice (Regnell et al. 2008a) needs
to be addressed prior to the model being set into operation at Sony Eric-
sson. This evaluation of QUPER only includes the QUPER benefit view
(Figure 5.1) because it is considered the most important part of the QUPER

148

4. CASE STUDY DESCRIPTION

model for Sony Ericsson to start with. We envision the following four steps
of how to use the QUPER benefit view at Sony Ericsson:

1. Define quality aspects.
2. Estimate your product’s current quality (for a given release) and the
competing products’ quality (at present or envisioned).

3. For each quality aspect and for each relevant qualifier, estimate the
breakpoints.

4. Estimate candidate targets and discuss and decide on actual targets
for coming releases.

In step 1, when defining quality aspects, it is important to identify rel-
evant qualifiers and consider their consequences. For example, different
mobile phones offered to differentmarket segments have different require-
ments for image quality. Furthermore, today’s hardware is not the same as
tomorrows. This has implications for performance requirements, as soft-
ware features might run much faster.
In step 2, after identifying quality aspects, identify reference levels based
on actual products, your own and competitors’. These reference levels fur-
ther calibrate the estimations to provide objective measures to relate to the
breakpoints.
In step 3, define the current market expectations in terms of breakpoints
(Figure 5.1). First, determine the utility breakpoint – the lowest acceptable
value on the current market. Then, determine the saturation breakpoint,
which represents quality levels considered excessive in the current market.
Finally, determine the differentiation breakpoint; values above this level
give market advantages.
In step 4, targets are requirements with potential quality commitments.
The actual requirement is an interval that is specified by two targets, min
(the lowest acceptable quality) and max (the highest needed quality). Dif-
ferent quality aspects may have different number of relevant targets.

4 Case study description

Sony Ericsson developsmobile handsets for a globalmarket. Sony Ericsson
employs more than 5,000 people. In total, Sony Ericsson has more than
20,000 requirements. A modern mobile phone contains a complex set of
features, ranging from traditional voice calls and SMS to multimedia usage
and personal organizer. Compared to general purpose computers, user
interfaces aremuchmore limited aswell as computing power andmemory.
Therefore, user interfaces need to be tailored to the device and performance
needs to be optimized for the hardware constraints. Hence, in addition to
scoping functional features, qualities of features are important and a large
part of the effort invested.

149

PAPER V: INTRODUCING SUPPORT FOR RELEASE PLANNING OF QUALITY
REQUIREMENTS – AN INDUSTRIAL EVALUATION OF THE QUPER MODEL

Sony Ericsson employs a platform development process. Based on the
platform, a number of products are developed. The first part of the plat-
form process is the roadmap extraction, and each technology area has road-
maps. Based on the market and planned launch date of the first product on
the platform, a selection of features on the roadmap is selected. The differ-
ent technology areas are individually prioritized in terms of market value.
For each area, based on the available resources, an initial scope is defined.
Then the different technology areas are prioritized by different stakehold-
ers to get their priorities. Finally, a project priority for the platform project
in question is compiled by merging the different stakeholder views into
a project feature list. Based on the project priority, the scope is adjusted
to ensure that the features with highest return of investment are part of
the project scope. Both the market value estimation and cost estimation is
performed on high–level features.
Once the project scope is established, the high–level features are refined
into requirements. The refinement of features includes both functional as
well as quality requirements. Once the features are refined, cost estima-
tions are redone. Also, if there have been any changes to the market, im-
pacting either market value estimations or selection of features, market
value estimations are also redone. Using the updated and more accurate
estimations, the return of investment is recalculated and the project prior-
ity reanalyzed, to ensure that the most important features are part of the
project scope.

5 Evaluation methodology

The research was carried out in cooperation between Lund University and
Sony Ericsson. The study was carried out using an action research (Rob-
son 2002) approach. Action research aims to influence or change some
aspects of the research focus. Furthermore, action research involves the
improvement of: practice, the understanding of practitioners, and the sit-
uation in which the practice takes place (Robson 2002). In this research,
we are involved in improving the practice of release planning of quality
requirements by introducing the QUPER model at Sony Ericcson. In addi-
tion, we improve the understanding of how practitioners use the QUPER
model and its environment where the practice takes place. The general
objectives of the research are to evaluate:

• The QUPER model in an industrial setting

• How easy the model adapts to existing processes

• What value the QUPER model may bring to release planning.

Four interview subjects were chosen to represent four areas (one from
each area) to give a rich picture. The areas were selected to include dif-

150

5. EVALUATION METHODOLOGY

ferences with respect to level of dependencies to hardware. The interview
subjects are leaders for the selected areas. The study consists of the follow-
ing three steps.

5.1 Step 1 – Interview (part 1)

Planning: Step 1 involved a brainstorming and planning meeting to plan
the study and to identify different areas of interests for the evaluation. The
interview instrument was designedwith respect to the different areas of in-
terests. To test the interview instrument, three pilot interviewswith experts
from Sony Ericsson were carried out to adapt and improve the instrument.
A summary of the used interview instrument1 is presented in Table 5.1.
Data collection: The study uses a semi–structured interview strategy
(Robson 2002). All interviews were carried out individually by the first
author. First, the purpose of the study was presented and then questions
about their previous process were discussed in detail. All interviews were
recorded and varied between 20 and 40 minutes in length. Transcripts of
all interviews were made in order to facilitate and improve the analysis
process.
Analysis step 1: The content analysis (Robson 2002) involved creating
categories where interesting parts from the transcripts were added and
discussed. The first author examined the categories from different per-
spectives and search for explicitly stated or concealed pros and cons with
their current process of handling performance requirements.

5.2 Step 2 – Workshop

Presentation: QUPER and how to use QUPER in practice was presented
in a workshop. During the workshop, a selection of requirement engineers
and managers (including the subjects that participated in interview – part
1) were present. These representatives are selected based on their roles and
expertise by the local managers. As they were invited, they were asked to
prepare for the workshop by reading requirements from their real projects.
In total, six workshops were conducted at different geographical locations
and varied between 60 and 90 minutes in length. During the workshop,
the first author provided help and feedback to the subjects about applying
QUPER on their requirements.
ApplyQUPER in real projects: As the workshop is concluded, the main
goal is to achieve an understanding of how to use QUPER on real require-
ments in coming projects. The evaluations of the QUPER model were con-
ducted about 3 months after the QUPER model and its practical applica-
tion were introduced at Sony Ericsson. The reason for the time delay was
that we wanted the subjects to use QUPER in their projects prior to the

1http://serg.cs.lth.se/research/packages

151

PAPER V: INTRODUCING SUPPORT FOR RELEASE PLANNING OF QUALITY
REQUIREMENTS – AN INDUSTRIAL EVALUATION OF THE QUPER MODEL

Table 5.1: The interview instrument

Link to Table 5.2 Question(s)
About the previous process

Did PR exist? Did performance requirements exist?
How are PR handled? In what way are PR handled?

Challenges with PR
What challenges do you face when working
with PR? What has been difficult?

Deciding relevant metrics How did you decide relevant metrics
About the QUPER model

General view What is your general view of QUPER?

Challenges and difficulties
What challenges did you face when working
with QUPER? What was difficult?

Using QUPER Would you like to use QUPER?

Decision–making
Does QUPER lead to better decision
making? (why, why not)

Time spent How much time did it take to use QUPER?

Estimation accuracy
Do you think the estimates will be more
accurate with QUPER? (why, why not)

Other issues
Can you think of any challenges that we
have not covered?

PR: Performance Requirements

evaluation.

5.3 Step 3 – Interview (part 2)

Data collection: The semi–structured interview approach was continued.
All interviews were carried out individually by the first author. Questions
about the QUPER model were discussed in detail. The interview sub-
jects were the same subjects as participated in step 1. All interviews were
recorded and varied between 25 and 35 minutes in length. Transcripts of
all interviews were made in order to facilitate and improve the analysis
process.
Final analysis of all data: Since we sought a comprehensive view of the
complete data set, the data from step 1was analyzed togetherwith the data
from step 3. The interview transcripts were coded by the first author. The
transcripts were analyzed and interesting quotations weremarked. For the
analysis, all transcript files with quotations were complied and printed.
The results from the analysis are found in section 6.

152

6. EVALUATION RESULTS

5.4 Validity evaluation

In this section, we discuss the threats to validity in research projects pre-
sented in Wohlin et al. (2000), and the measures taken in the presented
study to increase validity.
Conclusion validity: The conclusion validity is concerned with the abil-
ity to draw correct conclusions. The interviews were conducted at different
departments and different geographical locations within the company and
each interview part was done in one work session. Thus, answers were
not influenced by internal discussions. The subjects selected may not be
representative of the role they represent at the company. To minimize this
misrepresentation, subjects were selected in cooperation with senior man-
agers.
Internal validity: This threatmay have a negative effect on the casual re-
lationship between treatment and outcome. As the evaluations of QUPER
were performedwith different interview subjects, they expressed their opi-
nions and views regarding the current process of working with perfor-
mance requirements and about QUPER. As their answerswere recordedby
the researcher this may have constrained people in their answers. Recorded
answers were only to be used by the researcher, i.e. not to be showed
or used by any other party. To avoid evaluation apprehension, complete
anonymity from other participants was guaranteed.
External validity: The external validity is concerned with the ability to
generalize the results, in this case the applicability of QUPER in industry
at companies other than Sony Ericsson. Some of the problems introduced
as a motivation behind QUPER could, to some extent be general for orga-
nizations faced with developing products for markets. However, it is not
possible to generalize the results from this evaluation based on the case
study of Sony Ericsson; although the concepts and the practical applica-
tion of the QUPER model as described in this paper and in Regnell et al.
(Regnell et al. 2008a), (Regnell et al. 2007), makes it possible for any orga-
nization to adapt the concepts behind QUPER to fit their organization.

6 Evaluation results

Table 5.2 illustrates the result from this study. All areas, except email,
had specified performance requirements. A general tendency observed
is that performance requirements were indirectly controlled by standards
or hardware components and/or suppliers. There are three main reasons
why the email area did not have any performance requirements: (1) per-
formance was continuously tested by the testing department, (2) the op-
erating system supplier performed performance testing, and (3) no struc-
tured process of how to handle performance requirements existed. How-
ever, internal performance requirements are now introduced in the email

153

PAPER V: INTRODUCING SUPPORT FOR RELEASE PLANNING OF QUALITY
REQUIREMENTS – AN INDUSTRIAL EVALUATION OF THE QUPER MODEL

area. One reason is the introduction of the QUPER model, which provides
a structured process of handling performance requirements, andmore con-
trol over the requirements in terms of understanding why a particular
quality level is needed and the relation to the competitors.
In general, the areas handled performance requirements in two ways:
(1) looked at different standards stated performance and (2) the perfor-
mance was provided by either hardware suppliers or the market depart-
ment. Those quality levels were accepted without an understanding of
why they were important. The acceptance of provided quality levels is one
of three major challenges that were identified by the subjects. One subject
stated:

”We wrote use cases [for a particular feature] based on what the user
expected and needed from the new feature. We did not release this
feature because the hardware could not deliver what we thought was
good enough quality. We did not know if this quality level was accept-
able in the market or how good our competitors’ quality level was.”

By introducing QUPER, an overview of themarkets and the competitors’
current quality level is visible in the roadmap view, which has helped to
understand what good enough quality is. This is confirmed by one subject:

”With the QUPER model we would have had an understanding of
what is good enough quality in the market and how good our com-
petitors are. Maybe the quality level we had would have been good
enough at this particular time and we could have released it.”

The second identified challenge was related to specification of perfor-
mance requirements. The subjects identified a need to be able to have an
interval for the specified quality level. However, even if this was possible,
one subject asked what is good enough. The concept behind QUPER is to
identify the current market situation (breakpoints and analyzing the com-
petitors) and then specify the performance requirements. By specifying
performance requirements according to the QUPERmodel, a richer picture
and understanding of what is good enough are provided. This was con-
firmed by one subject by stating that the QUPER model provides a more
extensive view to work after.
The third challenge was how to specify performance requirements that
are quantifiable, representative of the ”real world”, and under what condi-
tions they should be fulfilled.
In the first step of applying QUPER in practice (section 3), relevant mar-
ket segment and hardware platforms needs to be considered as well as the
consequences for the performance requirement, and thereby consider un-
der what conditions the requirements should be fulfilled. This was inline
with one subject that stated:

154

6. EVALUATION RESULTS

PR: Performance Requirements

Table 5.2: Evaluation results

155

PAPER V: INTRODUCING SUPPORT FOR RELEASE PLANNING OF QUALITY
REQUIREMENTS – AN INDUSTRIAL EVALUATION OF THE QUPER MODEL

”QUPER recognizes the fact that in a real mobile network you do not
necessarily have the clean conditions that the standards specify.”

The subjects liked the concept of the QUPERmodel, especially the break-
points. The main benefit of the breakpoints was the saturation break-
point, where the quality level changes from competitive to excessive qual-
ity, meaning that higher quality levels have no practical impact on the ben-
efit in the particular usage context considered. However, one problem was
identified related to the saturation breakpoint. One subject stated:

”Do not only look at the saturation breakpoint and stop improving the
performance just because QUPER says stop. If we can go beyond this
breakpoint without increasing the cost and time spent, why should we
not improve the performance?”

This indicates that the evolution of the saturation breakpoint over time
should be considered when revising breakpoints regularly.
Another interesting point made by one subject was that QUPER is not
only applicable to performance requirements, but also can be applied to all
quality requirements.
One goal with the QUPER model was that it should be easy to learn.
All subjects confirmed that the QUPER model is easy to understand and
learn, and is a straight forward model that is not complicated. According
to one subject, QUPER is very pedagogical and makes it easy to explain
and discuss with others. In addition, a common terminology among the
staff improves the communication. The QUPER model is introduced at
Sony Ericsson and will be used as the process for handling performance
requirements.
In general, estimations of performance requirements may be more accu-
rate when using the QUPER model according to all subjects. The most dif-
ficult and insecure performance estimations will have the highest increase
of accuracy. However, none of the subjects believed that their best estima-
tions (the easiest performance requirements to estimate) will be more ac-
curate when using QUPER. However, using the QUPER model takes more
time and requires more effort than the previous process of handling perfor-
mance requirements. The difference is related to competitor analysis and
identification of the breakpoints. On the other hand, the subjects believe
they have more control of the performance requirements and understand
why a particular metrics is used in one market segment. One reason is
the introduction of breakpoints and competitor analysis. By identifying all
breakpoints and the competitors’ quality level, and visualize all informa-
tion in the roadmap view, the subjects experienced more control of both
the performance requirements as well as the current market segment.
The evaluation of the QUPERmodel indicates improvements in decision
making, especially in release planning. All subjects agreed that the richer
the understanding of the market with identified breakpoints, the quality

156

7. RELATED WORK

level of their own and their competitors’ products, the more accurate the
decisions are. The subjects believe the QUPER model will be of major help
in release planning, which was stated by one subject:

’’The QUPER model can be used as input for release planning and
decision making; and when we should introduce a product to a partic-
ular market segment”

Another subject stated when asked if the QUPER model may help in
decision making:

”Yes because you know more about the market and you are not 100%
controlled by the hardware suppliers.”

According to another subject, the QUPER model is especially an impor-
tant input whenmaking decisions aboutwhat time a productwith a certain
quality level should be released. In addition, the QUPER model helps to
understand when the market has matured over time, which is when the
breakpoints have changed, and the test results show lower performance
than expected. It is still possible to know that we are better than our com-
petitors and therefore release the product, stated one subject. Another im-
portant feature of the QUPER model in decision making was the roadmap
view, which provides the decision makers with a good overview of the
market.
During the interviews, one main challenge of applyingQUPERwas iden-
tified, difficulties to identify the values of the differentiation and saturation
breakpoints. When to stop calibrating those breakpoints? One subject re-
lied on a measurement report that was conducted by an industrial orga-
nization together with the expertise within the area. However, by using
QUPER over a longer period of time, all subjects believed this will not be
a challenge. The first time a new model is used is always difficult before
knowing what to do and how to do it. In addition, another challenge was
raised by one subject; different people may have different understanding
and opinion of the breakpoints value. This will be a smaller problem in the
future when the staff has used QUPER for a longer period of time, which
was confirmed by all subjects.

7 Related work

Severalmodels related to requirements prioritization and cost–benefit anal-
ysis may help product managers select requirements for a certain release.
The contributions in this area include: Kano (Kano et al. 1984), planguage
(Gilb 2005), quality function deployment (QFD) (Karlsson 1997), and a
cost–benefit approach (Karlsson and Ryan 1997) based on the analytical
hierarchical process (AHP) (Saaty 1980). Kano et al. (1984) developed a

157

PAPER V: INTRODUCING SUPPORT FOR RELEASE PLANNING OF QUALITY
REQUIREMENTS – AN INDUSTRIAL EVALUATION OF THE QUPER MODEL

model for evaluating patterns of quality. Similar to the QUPER model,
Kano’s approach views quality relationships as non–linear. The Kanomod-
el, however, does not include a cost dimension as in the QUPERmodel. In
addition, Kano’s model is not related to roadmapping, benefit breakpoints,
or cost barriers to indicate important aspects of quality relations.
Gilb’s planguage (Gilb 2005) has roadmap related concepts such as past,
record, and trend in templates for quality requirements. QUPER could be
used together with planguage to express breakpoints, barriers, and targets
related to, for example, competing products in different market segments.
QFD (Karlsson 1997) is a comprehensive, customer and user oriented ap-
proach to product development. To fully implement QFD, customers and
users need to be visible; however, not all market–driven projects have ac-
cess to customers and users (Karlsson 1997). Furthermore, QFD measures
quality attributes using a scale where no clear distinctions between the val-
ues are provided. While QFD is a complex and comprehensive methodol-
ogy that may require a complete change of current practice, QUPER is a
simple reference model to be used in combination with current practice to
support communication of quality attributes using a few, easy concepts.
Karlsson and Ryan (1997) suggested using a cost–value approach for re-
quirements prioritization based on the AHP (Saaty 1980). This approach
is mainly used for functional requirements; however, quality requirements
can of course be included as objects of prioritization in AHP. The QUPER
model thus goes further by introducing a third dimension related to the
continuous nature of quality attributes.

8 Conclusions

In this article we have tailored, implemented, and evaluated the QUPER
model at Sony Ericsson by applying it in real projects, using real require-
ments, by industry professionals. The overall result indicates that the QUP-
ER model is relevant in high–level decisionmaking for quality require-
ments in an activity such as release planning. The concepts of breakpoints,
competitor analysis, and identification of own products quality level pro-
vides a greater understanding of the current market segment and why a
certain quality level is needed in a particular release. The goal of the model
is to be useful by being simple and it must be possible to combine QUPER
with current practices. The conducted evaluation shows that QUPER is
easy to understand and learn, straight forward, and not complicated to ap-
ply in Sony Ericsson’s current practice. In fact, all subjects stated that they
are andwill use QUPER. In addition, the concepts behind QUPER improve
the communication among staff regarding requirements prioritization.
The main identified challenge was difficulties to identify and specify the
values for the differentiation and saturation breakpoints. Furthermore, dif-
ferent understanding of the breakpoints value among the staff was raised

158

8. CONCLUSIONS

as a challenge.
The evaluation indicates that QUPER is feasible and relevant to the se-
lected domain. We also believe that the general concepts of QUPER are
transferable to release planning for other domains of market–oriented prod-
uct development, but this needs to be investigated in further research. Fur-
ther research also includes, an additional evaluation of the QUPER model
involving more areas and subjects with different roles. Furthermore, a
practical application and evaluation of the QUPER cost view will be in-
vestigated. In addition, evolution of the market needs to be investigated,
how to use a snapshot of today’s market when predicting future quality
levels.

159

PAPER V: INTRODUCING SUPPORT FOR RELEASE PLANNING OF QUALITY
REQUIREMENTS – AN INDUSTRIAL EVALUATION OF THE QUPER MODEL

160

REFERENCES

References

T. AlBourae, G. Ruhe, and M. Moussavi. Lightweight replanning of soft-
ware product releases. In Proceedings of the 1st International Workshop on
Software Product Management, pages 27–34, 2006.

P. Carlshamre. Release planning in market-driven software product devel-
opment: Provoking an understanding. Requirements Engineering Journal,
7(3):139–151, 2002.

T. Gilb. Competitive Engineering. Elsevier Butterworth-Heinemann, 2005.

D. Greer and G. Ruhe. Software release planning: An evolutionary and
iterative approach. Information and Software Technology, 46(4):243–253,
2004.

S. Jacobs. Introducing measurable quality requirements: a case study. In
Proceedings 4th IEEE International Symposium on Requirements Engineering,
pages 172–179, 1999.

N. Kano, S. Nobuhiro, S. Takahashi, and S. Tsuji. Attractive quality and
must-be quality. Hinshitsu, 14:39–48, 1984.

J. Karlsson. Managing software requirements using quality function de-
ployment. Software Quality Journal, 6(4):311–325, 1997.

J. Karlsson and K. Ryan. A cost-value approach for prioritizing require-
ments. IEEE Software, 14(5):67–74, 1997.

B. Regnell, H.O. Olsson, and S. Mossberg. Assessing requirements com-
pliance scenarios in system platform subcontracting. In Lecture Notes in
Computer Science, volume 4034, pages 362–376, 2006.

B. Regnell, M. Höst, and R. Berntsson Svensson. A quality performance
model for cost-benefit analysis of non-functional requirement applied to
the mobile handset domain. In Lecture Notes in Computer Science, volume
4542, pages 277–291, 2007.

B. Regnell, R. Berntsson Svensson, and T. Olsson. Supporting roadmap-
ping of quality requirements. IEEE Software, 25(2):42–47, 2008a.

B. Regnell, R. Berntsson Svensson, and K.Wnuk. We beat the complexity of
very large-scale requirements engineering? In Lecture Notes in Computer
Science, volume 5025, pages 123–128, 2008b.

C. Robson. Real World Research. Blackwell, 2002.

T. Saaty. The Analytical Hierarchy Process. McGraw-Hill, 1980.

161

REFERENCES

M.I. Ullah and G. Ruhe. Towards comprehensive release planning for soft-
ware product lines. In Proceedings of the 1st International Workshop on
Software Product Management, pages 51–55, 2006.

I. van de Weerd, S. Brinkkemper, R. Nieuwenhuis, J. Versendaal, and L. Bi-
jlsma. On the creation of a reference framework for software product
management: Validation and tool support. In Proceedings of the 1st Inter-
national Workshop on Software Product Management, pages 3–11, 2006.

C. Wohlin, P. Runeson, M. Höst, M.C. Ohlson, B. Regnell, and A. Wess-
lén. Experimentation in Software Engineering: An introduction. Kluwer
Academic, 2000.

162

