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Abstract—An M-BCJR algorithm is proposed and tested over
an AWGN channel with moderate to very intense intersymbol
interference (ISI). Two M-BCJR applications are evaluated,
simple detection over the ISI channel and turbo equalization.
The signaling is binary faster than Nyquist linear modulation.
The ISI models tested correspond to transmission of increasingly
many bits/Hz-s with a fixed signal spectra; the paper studies
the range 2–8 bits/Hz-s, which implies ISI models as long as 32
taps. As a simple detector, the M-BCJR achieves the ML error
rate with small computation, even when the Viterbi algorithm is
completely impractical. In turbo equalization, the M-BCJR needs
somewhat more computation and a more careful design because
it must produce accurate likelihoods.

I. INTRODUCTION

We investigate turbo equalization and a new M -algorithm
BCJR (M-BCJR) for some cases of intersymbol interference
(ISI) that occur in severely bandlimited transmission. Such a
scheme reduces the ordinary BCJR computation by retaining
only the M largest terms at each recursion stage. The signal
transmission model is baseband linear modulation according
to

s(t) =
√

Eb/T
∑

n

anh(t − nτT ), (1)

where {an} are binary ±1 data, Eb is the symbol energy, h(t)
is a unit energy pulse, and τT is the symbol time (τ ≤ 1).
The pulse h(t) is much more narrowband than 1/2τT Hz, and
consequently there is strong ISI. An additive white Gaussian
noise (AWGN) channel follows. We will employ this Linear
Modulation—AWGN Channel—M-BCJR Algorithm system
in two ways, as the inner coder/decoder in turbo equalization
[9] and by itself as an uncoded narrowband communication
system (called “simple detection” in the sequel). The receiver
consists of a matched filter, a sampler and a post filter,
which together reduce the channel model to a minimum
phase discrete-time convolution of {an} with v = v0, v1, . . .,
to whose outputs are added zero-mean IID Gaussians with
variance N0/2.

The ISI creates a long model v. It has been known for some
time that a critical requirement in this scenario is providing
a minimum phase input sequence to the receiver processor,
whether it is a Viterbi algorithm (VA) or the M-BCJR in this
paper. A straightforward means to do this is a matched filter,
followed by an all-pass filter that produces a maximum phase
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Fig. 1. Turbo equalization with a simple detection inner coder (dashed box).

output, followed by reversing the output frame. A whitened
matched filter approach is possible, but a simpler and more
tractable approach discussed in [7] is used in this paper (see
Section II). The min phase idea was used with M-algorithm
detection of ISI in [1] and later by others. We studied its role
in reducing the ordinary VA and BCJR to a minimum size in
[6], [7]. We find here that it plays a crucial role as well with
the M-BCJR used in turbo equalization.

Earlier work with reduced-state decoders primarily treats
non-turbo receivers. A selection of recent papers on M- or
other reduced BCJRs is [2], [3], [4], [5]. The BCJR procedure
consists of forward and backward linear recursions, instead of
the VA’s unidirectional add-compare-select. The inner behavior
of the BCJR can be rather different from the VA’s. There is
a major difference between an algorithm that calculates full
log likelihoods (LLRs) and one that makes decisions about
bits, i.e., calculates the LLR sign. This paper evaluates the M-
BCJR as a simple detector where only the LLR sign matters
and as part of turbo equalization, where it must produce
accurate LLRs. These are shown schematically in Fig. 1. The
M-BCJR algorithm presented is the outcome of experiments
with many variations, but it follows closely the idea that both
recursions should base their calculation on M major terms.
It is not necessarily true that this is the best strategy for
reducing the BCJR, and we will report some other strategies
in a forthcoming paper.

The emphasis of this paper is strong bandwidth limitation,



chosen to place a severe strain on the state reduction design.
In such a scenario, receiver error performance is sensitive to
the entire shape of the signal spectrum, not just to a rough
measure like 3 dB bandwidth. Signal sets with the same
3 dB bandwidth but different stopband spectrum shape can
have quite different constrained capacities (see [8]). Removing
only a small power from the outer spectrum can change the
minimum distance of a set significantly; this is the “escaped
distance” problem ([10], Chapter 6). These effects grow more
pronounced as the bandwidth per data symbol drops. Our
experimental method needs to be adjusted to this reality. If a
small extra power appears in an outer stopband—for example,
through a too-early truncation of a long v—receiver bit error
rate can improve, and give a false test result for that model.

With the foregoing in mind, the pulses h(t) in this paper
are chosen within the so-called faster than Nyquist, or FTN,
framework. Throughout, we take h(t) to be the root raised-
cosine (RC) T -orthogonal pulse with 30% excess bandwidth.
The spectrum of this pulse is in fact zero outside ±1.3/2T
Hz. τ = 1 gives the familiar orthogonal pulse. As τ drops
below 1, pulses come “faster”, but the transmitted average
power spectral density (PSD) shape remains the same, namely,
a raised cosine. The bit density is 2/τ data bits/Hz-s, taking
the 3 dB bandwidth measure. The methods in this paper
apply to any ISI, but there are good reasons for the FTN
framework. First and foremost, the transmissions generated
as τ declines yield increasingly high bit density systems that
have an identical PSD shape. Second, they have proven to be
an effective way to design coded systems that minimize both
energy and bandwidth. Finally, the Shannon capacity of FTN
signals exceeds that of orthogonal signals with the same PSD
[8].

The paper is organized as follows. Section II presents
the ISI channels with increasingly severe ISI. Section III
reviews the BCJR algorithm, while Section IV describes an
M-algorithm BCJR and evaluates the algorithm as a simple
detector. Section V evaluates the algorithm as a component of
turbo equalization.

II. DISCRETE-TIME CHANNEL MODELS

Our purpose in this section is to design a straightforward
transmission system, in which signal spectra can be tightly
controlled, PSDs equal to zero can be dealt with, and a
minimum phase detection can be implemented. The inner part
of the turbo equalization system, the dashed box in Fig. 1,
consists of the following chain of processors:

Data {an} at nτT → Linear modulation by h(t) at rate
1/τT → AWGN → Matched Filter → Sample at nτT →
Discrete-time post filter B(z) → Frame reverse → M-BCJR
→ LLR Out

The chain produces a minimum phase sequence and applies
it to the M-BCJR. The chain prior to the M-BCJR can be
modeled as a discrete-time system that convolves {an} with
v.

Next we will derive v, using the Orthogonal Basis Method
presented in [7]. There is no loss of generality if h(t) in
the above chain is replaced by h(t) =

∑
ckφ(t − kτT ),

where ck =
∫

h(t)φ(t − kτT ) dt and φ(t) is any convenient
τT -orthogonal pulse that satisfies the sampling theorem for
h(t). Then the Matched Filter in the chain can be matched
to φ(t), and since φ(t) is τT -orthogonal, the samples at nτT
are corrupted by AWGN. The {ck} are the energy-normalized
samples h(kτT ) of the 30% root RC h, taken at the integers
k = −K, . . . ,K. The filter B(z) in the chain can be any
allpass, and its outputs will again have AWGN.

Since the root RC pulse has zero PSD outside 1.3/2T Hz,
it requires an infinite series expansion. We truncate the model
v given to the M-BCJR, and the M-BCJR is thus slightly
mismatched (model taps < 0.01 can be safely ignored). The
model spectra in this paper are controlled by comparing their
autocorrelation (from which their PSD can be derived). For
each τ , the different models and the h samples are chosen
long enough so that their autocorrelations agree to ±.001.

The minimum phase requirement is implemented by a
particular choice of the filter B(z), namely the one whose
poles are located at the zeros of the model v and whose zeros
lie at the reflections about the unit circle of these positions.
This actually produces a maximum phase output, but the
Frame Reverse block produces the desired minimum phase.
B(z), however, can be any allpass, and there exist other B that
improve M-BCJR performance even more than the min phase
B(z). The reason is that while min phase takes first priority,
what the M-BCJR really needs is a model with a steep initial
energy growth. The rise can be improved by allowing some
low energy precursor taps in v. The BCJR calculation needs
to ignore the precursors, and it is thus slightly mismatched to
the model, but the overall effect is a much smaller M for the
same receiver performance. Such a modified min phase model
is called super minimum phase [7].

A narrowband minimum phase model such as this thus
has taps in the pattern [low energy precursor] + [high energy
response] + [long decaying tail]. Some part of the precursor
needs to be ignored in M-BCJR, as well as in other M-
algorithm applications, since it increases their complexity
exponentially with little improvement in the error rate or
LLR quality. Ignoring the precursor is equivalent to running
the decoder “ahead” by the length of the precursor. For the
remainder of the response, branch labels � at trellis stage n
are generated from some ±1 data sequence a by

� =
m∑

k=0

an−kvk. (2)

The memory m is the sum of the high energy and long tail
lengths. Symbols an, an−1, . . . in the first term are the first
high energy symbols. In narrowband ISI the long tail greatly
increases the complexity of the full BCJR or VA [6], [7], but
unlike the precursor, it has little effect on the M-BCJR.

We create a range of ISIs by choosing the FTN τ =
1/2, 1/3, 1/4. The 1/2 case produces mild ISI and a 50%
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Fig. 2. Error event rates for simple ISI detection vs. Eb/N0 in dB; M-BCJR (dotted), VA comparison (dashed). Heavy lines are Q-function estimates.

bandwidth reduction; a full BCJR or VA receiver for simple
detection needs about 64 states. The 1/3 case is severe ISI
and a 2/3 bandwidth reduction; a full BCJR/VA needs around
1000 states. The 1/4 case is very severe and a 3/4 reduction;
a full BCJR/VA needs at least 262,000 states, and in fact only
a reduced-state approach is practical. The signal sets created
by these ISIs have square minimum distances of about 1.02,
.58 and .20, which are energy losses of 2.9, 5.4 and 10 dB
compared to antipodal signaling. B(z) does not affect dmin.

There is no framework at the moment for evaluating super
min phase models, other than exhaustive testing. The following
(3)–(5) are effective choices. Note that the original RC pulse
train in (1) is not at all minimum phase. Additional tail taps
are used in the generation of the actual transmitted sequence
to insure spectral accuracy. Tap sets (6)–(7) are the true min
phase sets for τ = 1/2, 1/3. Set (6) is the first 18 taps of the
min phase operation on 25 samples of the root RC pulse at
t = kτ , k = −12, . . . , 12, and set (7) is the first 17 taps from
41 samples at t = kτ , k = −20, . . . , 20. It can be seen that
the responses come sooner but energy growth is slower.

v = {−.005,−.003,.007,−.011,−.001,.034,−.019,.003, (3)

.375,.741,.499,−.070,−.214,.019,.087,−.020,−.028}
v = {.025,.012,−.024,.008,.191,.464,.623,.506,.176, (4)

−.123,−.196,−.075,.060,.080,.013,−.035,−.022}
v = {−.010,−.013,−.007,.005,.011,.004,−.008,.001,.060, (5)

.181,.339,.473,.520,.443,.262,.047,−.120,−.182,

−.138,−.037,.055,.092,.070,.018,−.025,−.037,−.021,

.003,.016,.012,.0004,−.008}
v = {.177,.567,.694,.238,−.239,−.153,.123,.075,−.073, (6)

−.022,.040,−.007,−.016,.017,.001,−.014,.006,.005}
v = {.038,.168,.385,.567,.549,.288,−.055,−.236,−.161, (7)

.032,.132,.071,−.040,−.070,−.014,.036,.025}

In (3) there are 17 taps; the first 8 are taken as precursors
and m = 8. Set (4) also has 17 taps, but only the first 4 are
precursors and m = 12. Set (5) needs to be long and has 32
taps, 8 precursor taps and m = 23.

III. REVIEW OF THE BCJR ALGORITHM

The BCJR computes the probabilities of states and paths in
a signal trellis, given the channel outputs y = y1, . . . , yN and
the apriori data probabilities. The algorithm is given by two
matrix recursions that calculate trellis working variables αn

and βn at stage n. These vectors have components

αn[j] � P [Observe y1, . . . , yn ∩ Sn = j]
βn[i] � P [Observe yn+1, . . . , yN | Sn = i] (8)

where Sn is the encoder state at time n. The following forward
and backward recursions hold:

αn = αn−1Γn, n = 1, . . . , N

βn = Γn+1βn+1, n = N − 1, . . . , 1 (9)

Here Γn is the matrix with [i, j] element

Γn[i, j] � P [yn ∩ Sn = j | Sn−1 = i] (10)

= [P (a′)/
√

πN0/Es] exp [−(N0/Es)(yn − �i,j)2]

where �i,j is the label (2) on the branch from state i to j and
a′ is the value of data symbol an that causes the transition.
Our data frames terminate at both ends at the all-0 state, so
α0 = (1, 0, . . . , 0) and βN = (1, 0, . . . , 0)′. In a reduced
recursion, some of the smaller αn or βn components are set
to 0 and have no further effect on the recursion.

The product of the {α} and {β} produce the set {λ}
through λn[j] = αn[j]βn[j], and from these come the LLRs
via

LLR(an) � ln
P [an = +1]
P [an = −1]

= ln

∑
j∈L+1

λn[j]
∑

j∈L−1
λn[j]

(11)



Here L±1 are the sets of states reached by an = ±1, for
which nonzero α and β have both been found. A problem
in a reduced calculation is that one or both of L±1 can be
empty. Both being empty at a reasonable M never occurred
in our M-BCJR tests. If only one is empty, the numerator or
denominator of (11) must be filled in by some backup method.

IV. AN M-BCJR ALGORITHM AND ITS SIMPLE

DECODING PERFORMANCE

The M-algorithm for searching code trees and trellises is
well known, and we will only summarize it here. As a general
procedure, the algorithm proceeds breadth-first through a tree
structure of values, keeping only the dominant M at each tree
stage. As a BCJR, we use it once each to find the dominant
M αn and βn, near to the values that a full BCJR would find
at n if it were applied to an ISI tree with a priori information.
For moderate or strong ISI, the Γ-matrices are very sparse,
and furthermore, most non-zero components are very small. A
useful view is that the M-search implements a sparse matrix
calculation in which the α or β vector at each stage is limited
to M active components.

Our algorithm is as follows. Recursions start and end at
state 0 (all +1s data). Inputs to the algorithm are the noisy
channel outputs and a priori probabilities of the data. Outputs
are the signed LLR values in (11). The M-list consists of two
sublists, one containing α or β values and one containing the
corresponding trellis states.

The α Recursion. Starting at n = 0, perform at stage
1, 2, . . .:

1). The α recursion in (9) is computed from the M nonzero
values retained in αn−1. There are M corresponding to data
+1 and M to -1; only the 2M corresponding Γ elements are
computed.

2). Trellis paths in the +1 and -1 M-lists may merge. Merges
are detected and removed, leaving one survivor only, whose
α value is the sum of the two incoming values.

3). The best M of the remaining paths are found. These
are stored for the next iteration and for the β recursion.

The β Recursion. Starting at L, the end of the channel block,
perform at stage L,L − 1, . . .:

4). The β recursion in (9) is computed from the M nonzero
values retained in βn+1. There are M corresponding to data
+1 and M to -1; only the 2M corresponding Γ elements are
computed.

5). Trellis paths in the +1 and -1 M-lists may merge. Merges
are detected and removed, leaving one survivor only, whose β
value is the sum of the two incoming values.

6). The best M of the remaining paths are found, subject
to the following condition: β paths must be kept if their state
and stage overlap with that of a stored α.

7). Compute the LLR from (11). If L+1 or L−1 is empty,
the LLR is ±ε, respectively, where ε is a threshold chosen in
advance.

Notes on the algorithm operation. The overlap in step 6
never failed to occur in the tests presented here. Steps 3 and 6,
which find the best M , are equivalent to finding the median of
the larger list. An important property of median finding is that
its computation is linear in M . This is because it never orders
the elements, which requires order M log M . In keeping with
this, we take a true M-algorithm application to be one where
all computation is of order M . The search for the median is
thus implemented in order M , but so also is removal of state
merges in steps 2 and 5 and finding the overlap of α and β
in step 6. The key to the last two is keeping all path lists in
state order, which is itself a linear operation. Finally, M need
not be the same in the α and β recursion, but we found no
significant gain from different M .

Figure 2 plots the error event rate of this M-BCJR algorithm
used as a simple detector at the three ISI intensities, using taps
(3)–(5). The algorithm decides symbols from the sign of its
LLR output. Heavy lines show Q-function bounds that are the
sum of several nearest error event terms weighted by their
multiplicity factors (details are in [7]). Dashed heavy lines
compare the performance at τ = 1/3 and 1/4 of a 256- and
4096-state VA, respectively. The M-BCJR performs better than
the VA, especially at τ = 1/4, because a practical VA cannot
be large enough to deal with every detail of intense ISI. The
M-BCJR needs only M = 4, 7, 20 at high Eb/N0 for the three
τ .

We will turn now to turbo decoding in which the M-BCJR
is used as the ISI decoding element. Two M-BCJRs will be
employed there. The first, called the “Simple” M-BCJR, is the
one above. The second, called the “Backup” M-BCJR, has a
more sophisticated step 7 that does not need an ε specified in
advance. The ε plays no role in simple detection, because only
the sign of the LLR matters, but in turbo decoding the best ε
depends on SNR.

The new step 7 is as follows. First a third backup recursion
is performed, which computes a symbol probability from the
αs only. This works from the decided symbol path, which
is available from the first two recursions. That path is traced
forward through the signal trellis, and the “incorrect subsets”
of each decided node are traced forward a certain length of
stages. These traces are performed with a small M-search
(M = 2 works well), and the necessary searching can be
arranged in a simple way. The αs from this search give a
backup estimate of P [an = +1]/P [an = −1]. This is used
when L+1 or L−1 is empty; otherwise (11) is used.

V. M-BCJR IN TURBO EQUALIZATION

In this section we evaluate the BER performance of the M-
BCJR algorithm when applied as part of a turbo equalization
system. We also show the advantages of super minimum
phase discrete-time channel models (3) and (4) over the true
minimum phase models (6) and (7) when the receiver is
a BCJR with a truncated ISI reponse. The truncated BCJR
calculates its labels based on the mtrunc + 1 dominant taps,
ignoring the low energy precursors in models (3) and (4). This
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Fig. 3. Turbo equalization for τ = 1/2, comparing Backup M-BCJR
(dashed) with Simple M-BCJR (solid) and truncated BCJR (dotted) for
M = 4, 6, 16 (respectively no markers, circles, triangles).

simple reduced-state BCJR will also serve as a comparison to
the M-BCJRs from Section IV.

At the transmitter a block of N information bits is encoded
by the (7,5) rate 1/2 convolutional code, producing a coded
sequence of 2N symbols. These enter a size 2N random
interleaver and map to antipodal symbols ±1 (0 = +1, 1 =
−1). After correct termination the transmitted signal is finally
formed by (1) and tested over the simulated AWGN channel.

At the receiver iterative decoding is performed via turbo
equalization where the component decoder for the intentional
ISI is the M-BCJR (see Fig. 1). The block N is 1000
information bits and plots are based on ≥ 50 error events. ISI
models are (3) and (4) for τ = 1/2 and 1/3. Soft information
in terms of LLRs is passed around the turbo loop 10 times
before a decision is made.

The output required from the M-BCJR differs now signifi-
cantly from what is needed under simple decoding. Whereas
only the sign of the LLRs was needed for data symbol de-
cisions, turbo decoding requires reasonably accurate absolute
values, especially in the early iterations.

Since no recursive precoding is employed, the ultimate
turbo goal is to reach the performance of the underlying
convolutional code, which is plotted as a reference. Figures
3–4 plot BER results for the Backup M-BCJR in Section IV
(shown dashed), the Simple M-BCJR (solid), and the truncated
BCJR (dotted). Figure 3 shows the results for ISI case (3).
The three sets of curves correspond to different state space
sizes: No marker corresponds to M = 4, circles to 6 and
triangles to 16 states. It is clear that this ISI, which comes
with a 50% bandwidth reduction, is not a major difficulty for
either M-BCJR. The Backup M-BCJR clearly improves the
BER performance over the Simple M-BCJR and as Eb/N0

grows the performance becomes virtually that of the outer
code. The truncated BCJR with only 4 states is not able to
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Fig. 4. Turbo equalization for τ = 1/3; Simple, Backup and truncated as
in Fig. 3. M = 16, 64 with no markers and squares; circles denote A/B =
64/8.
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Fig. 5. BER performance of the truncated BCJR for τ = 1/2 discrete-time
channel models (3) (no markers) and (6) (�) for different mtrunc.

converge to the convolutional code due to the energy loss in
the truncation.

Figure 4 plots the τ = 1/3 case, which corresponds to
much more severe ISI. The curves for M = 16 (no markers)
and M = 64 (squares) show that the Backup M-BCJR design
greatly improves the BER performance, and the convolutional
code BER is very nearly achieved. The notation A/B denotes
that the first turbo iteration is performed with M = A and the
remaining ones with M = B. The set of curves with circles
has A = 64 and B = 8; it appears to represent a more effective
use of computation.

We have performed an initial study of the extreme ISI case
with τ = 1/4 and the 32-tap set (5). Here the convolutional



code BER cannot be reached since it would violate capacity.
BER is generally 3–4 dB worse than the τ = 1/3 performance
shown in Fig. 3. The M in the Backup M-BCJR needs to be
in the range 50–100, compared to 20 in the simple detection
case of Fig. 2 and many thousands for truncated-BCJR turbo
decoding. The block length needs to be at least 4000 with
this longer ISI. In addition, tests show that there need to be
optimized scaling coefficients for the LLRs before the M-
BCJR and the convolutional code BCJR in the turbo loop.

A comparison between the τ = 1/2 discrete-time channel
models (3) (super min phase) and (6) (ordinary min phase)
is shown in Fig. 5. Here we use the truncated BCJR with
three different mtrunc corresponding to 4, 8 and 16 states.
The steeper initial energy growth clearly results in improved
BER performance of the truncated BCJR. The same behavior
has been observed for the τ = 1/3 tap set.

VI. CONCLUSION

We have investigated several BCJR algorithms whose calcu-
lation is limited to M significant terms. As a simple detector,
in a receiver with the correct overall minimum phase design,
the M-BCJR hugely reduces computation under moderate and
intense ISI in this paper. As part of a turbo equalizer, the
application requires some accuracy in the LLR magnitudes,
but the algorithm gives significant savings. It is important in
both applications to convert to minimum phase before the M-
BCJR and to allocate properly the precursor and main model
components. Even better performance comes from sharpening
the model energy by the super minimum phase method. The
outcome is a turbo decoder of reasonable complexity, which
can lead simultaneously to an energy saving of 4 dB and a
bandwidth reduction of 35%.
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