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Abstract

This thesis shows how artificial neural networks (ANNs) can be applied to predict geomagnetic
activity from solar-wind data. It introduces and summarizes five papers where development of
ANN models are reported, and where predictions of geomagnetic activity are discussed. The
studies cover geomagnetic disturbances characterized by global-scale indices and geomagnetic
variations that are locally observed. Several types of ANN are utilized: time-delay networks,
radial-basis function networks, and partially recurrent networks. Methods and procedures that
can be applied to forecasting based on real-time data are emphasized.

The first, introductory part of the thesis begins with an outline of the solar-terrestrial space
environment, focusing on the processes and circumstances that play a role in the generation
of geomagnetic disturbances. The ANN methods that have been used in the present studies
are then briefly described, and put into a wider context of other modeling and prediction
techniques. The introductory part of the thesis ends with short summaries of the five papers,
which are reprinted in the second part of the thesis.

Paper I describes predictions of the ring-current index Dst from solar-wind data. It is
shown that magnetic storms can be predicted with time-delay networks. The influence of the
solar-wind input sequence length on the different storm phases is discussed.

Papers II, III, and V present studies of the solar wind-auroral electrojet relations using
time-delay networks [ILIII], and recurrent networks [V]. The relative importance of different
solar-wind variables and coupling functions is studied in paper II. Paper III describes the influ-
ence of the Dst level on the modeled solar wind-auroral electrojet relations. In paper V, the
capabilities of recurrent networks are evaluated, and compared to time-delay networks.

In paper IV, predictions of locally observed geomagnetic variations are studied. The daily,
quiet-time variations are modeled with radial-basis function networks that account for annual
and solar-cycle modulations. The horizontal magnetic disturbance field is modeled with gated,
time-delay networks taking local time and solar-wind data as input.
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Research Articles
This thesis introduces and summarizes the following research articles:

I. Gleisner H., Lundstedt H., and Wintoft P.:
Predicting geomagnetic storms from solar-wind data using
time-delay neural networks

Annales Geophysicae, 14, 679-686, 1996.
II. Gleisner H. and Lundstedt H.:

Response of the auroral electrojets to the solar wind modeled with neural networks

Journal of Geophysical Research, 102, 14269-14278, 1997.
III. Gleisner H. and Lundstedt H.:

Ring current influence on auroral electrojet predictions

Annales Geophysicae, 17, 1268-1275, 1999.

IV. Gleisner H. and Lundstedt H.:
A neural network-based local model for prediction of geomagnetic disturbances
Journal of Geophysical Research, in press (8 pp), 2000.

V. Gleisner H. and Lundstedt H.:
Auroral electrojet predictions with dynamic neural networks
Journal of Geophysical Research, submitted (8 pp), 2000.

Papers I and III are reprinted with permission from the European Geophysical Society.
Paper I is reprinted with permission from the American Geophysical Union.
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Chapter 1: Introduction 1

1 Introduction

On some days, the geomagnetic field at the Earth’s surface undergoes smooth and
regular variations, while on other days it is more or less disturbed. The irregular dis-
turbances that are superposed on the regular, daily variations, are a consequence of
interactions between the solar wind and the Earth’s magnetic field. Large-scale elec-
trical currents, flowing in near-Earth space and connecting to the upper atmosphere,
are powered by the solar wind and react quickly to any variations in the solar-wind
conditions. The resulting magnetic disturbances, or the geomagnetic activity, provide
information on the global state of the near-Earth space which is not readily available
by other means.

Although the most characteristic features of geomagnetic activity - the magnetic
storm and the magnetic substorm - can be related to prior solar-wind conditions, the re-
lations are seldom straightforward. The Earth’s magnetosphere does not passively trans-
form a solar-wind input into a geomagnetic-activity output. Powerful dynamical pro-
cesses taking place in the near-Earth space add their own signatures to the geomagnetic
disturbance field. Different methods have been used to explore the relations between
the solar wind and magnetic storms and substorms: statistical correlative methods, lin-
ear filters, nonlinear filters, and low-dimensional, nonlinear systems. This thesis shows
how artificial neural networks (ANNs) can be applied to predict geomagnetic activity
from solar-wind data. It introduces and summarizes five papers where the develop-
ment of ANN models are reported, and where predictions of geomagnetic activity are
discussed.

That geomagnetic activity is somehow related to the Sun’s activity has been known,
or at least suspected, for nearly 150 years. This early understanding rested largely on
common periodicities: the 11-year sunspot cycle and the 27-day solar rotation period
were detected in the geomagnetic records.)»? What actually transmitted the influences
from the Sun was at the time totally unknown. Over the years, several attempts were
made to explain the solar influences by matter flowing out from the Sun, but the role
played by the solar wind was not confirmed until the first in situ measurements were
made beyond the Earth’s protective magnetic fields. In fact, the very existence of a
permanent solar wind was debated at the time of the first spacecraft travels.? It soon
became apparent that the Sun’s magnetic fields, extending far out into interplanetary
space, play a fundamental role in controlling geomagnetic activity.

Today, 40 years after the first space probe encounters with the solar wind, our
ideas about the solar-terrestrial space environment, the empirical data available, and
the methods used to analyze them have developed considerably. A recent development
is the establishment of real-time monitoring systems in space. The Sun is now being
observed twenty-four hours a day with spaceborne telescopes, and the solar wind is
continuously monitored from a location 1.5 million kilometers upstream in the so-
lar wind. We can now watch how solar-wind disturbances are triggered by explosive
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events on the Sun and then follow how they sweep past the Earth a few days later,
generating disturbances in the near-Earth space environment, lighting up the skies
with auroral displays, and sometimes causing problems to technical systems. A new
term, space weather, has been coined to describe certain aspects of the solar-terrestrial
space environment, particularly those that have consequences for technical systems on
ground or in space. This focus on the consequences of the solar-terrestrial space con-
ditions has made the development of forecasting capabilities an important concern,
and has stressed the significance of real-time monitoring of the solar-terrestrial space
environment. Solar monitoring provides an indication two or three days ahead that
disturbances are on their way, whereas solar-wind monitoring gives us a more detailed
view of arriving solar-wind disturbances up to an hour ahead. Translation of the ob-
served solar-wind conditions into useful forecasts of upcoming disturbances requires
predictive methods that are accurate and computationally efficient. This thesis will,
hopefully, demonstrate the usefulness of neural networks, both as a means to map the
solar wind-geomagnetic activity relations and as a tool for short-term forecasting of
geomagnetic disturbances and related phenomena.

The thesis is based on five papers that have been, or will be, published in scientific
journals. The first, introductory part of the thesis is intended to provide a background
for the non-specialist. It begins in chapter 2 with an outline of the solar-terrestrial
space environment, focusing on the processes and circumstances that play a role in the
generation of geomagnetic disturbances. The neural networks that have been used in
the present studies are briefly described in chapter 3, and in chapter 4 they are put into
a wider context of other modeling and prediction techniques. The introductory part
of the thesis ends with short summaries of the five papers on which the thesis is based,
and the papers are then reprinted in the second part of the thesis.
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2 The Solar-Terrestrial Space Environment

The continuous outflow of matter from the Sun’s atmosphere fills interplanetary space
with a thin, ionized gas that is traveling away from the Sun with velocities of several
hundred kilometers per second. This is the solar wind to which all solar-system objects
are exposed. The solar wind produces planetary aurorae and cometary plasma tails,
and modulates the intensity of cosmic rays. This chapter describes the solar wind and
the Earth’s magnetic field, and some consequences of their interactions. One of the
most important consequences is the formation of a magnetosphere where large-scale
electrical currents are generated - currents that are the source of geomagnetic activity.

2.1 The magnetically active Sun

The Sun is an ordinary, hydrogen burning star with a mass of 2 - 10*° kg, a radius of
700,000 km, and a total radiative output of 4 - 1026 W. The bulk of this radiation leaves
the Sun from the photosphere, which is a thin layer at the base of the solar atmosphere
with a thickness of only a few hundred kilometers. Here, the Sun’s convective interior
is cooled by radiation into space. Above the photosphere lies the chromosphere and the
extended solar corona. The temperature increases from a minimum around 4,500 K
in the upper photosphere, to several tens of thousands of K in the chromosphere, and
then rise rapidly to more than a million K in the corona.

To the unaided eye, the Sun appears to be essentially unchanging. The Sun is,
however, a magnetically active star. Magnetic fields that rise from within the Sun
become visible as strong surface fields in the photosphere and as complicated magnetic
structures in the chromosphere and in the corona. All aspects of solar activity are related
to the magnetic fields: sunspots are due to magnetic field concentrations visible in the
photosphere, prominences are clouds of relatively cool gas supported by magnetic fields
in the solar corona, and the violent flares and the huge coronal mass ejections, which
are eruptive events on the Sun with important terrestrial consequences, are driven by
conversion of magnetic energy into kinetic energy, heat and radiation.

The number of sunspots visible on the Sun varies regularly with a period around
11 years. This is the well-known sunspot cycle, which is just one of the manifestations
of the Sun’s magnetic cycle. The same periodicity is found in most measures of solar
activity: the occurrence of flares and coronal mass ejections, energetic-particle fluxes,
UV- and X-ray fluxes. In fact, the global structure of the corona changes radically from
solar-activity minimum to maximum, in concert with the magnetic cycle.

The influence of the solar magnetic field reach far beyond the Sun itself. As the
field is dragged out by the solar wind, it pervades the interplanetary space and interacts
with all solar-system bodies, including the Earth. The Sun’s magnetic field governs such
terrestrial phenomena as aurorae and geomagnetic activity, and modulates the intensity
of cosmic rays.
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2.2 The solar wind
2.2.1 Basic properties

The high temperatures in the Sun’s corona create a pressure which is not completely
balanced by the Sun’s gravity. The result is an acceleration of the solar atmosphere into
a solar wind*, which soon reaches velocities of several hundred kilometers per second.
This velocity is preserved throughout the planetary system while the solar-wind density
gradually decreases away from the Sun. Near the Earth’s orbit, the average velocity and
electron number density is 450 km/s and 7 cm 3, respectively, and the temperature
has dropped to roughly 10° K.

The solar wind gas is fully ionized, and consists of electrons and ions in numbers
that make the gas electrically neutral on macroscopic scales. A gas in this state is referred
to as a plasma. The electrical conductivity of a plasma is very high and, according to
Faraday’s law, the magnetic field and the plasma are forced to move together. This fact is
often described in terms of the magnetic field being “frozen” to the plasma. As the solar
wind is accelerated and flows out into interplanetary space, it drags the solar magnetic
fields along with it. Near the Earth’s orbit, the magnetic flux density is on average 6 nT,
which means that the kinetic energy density is one or two orders of magnitude larger
than the magnetic energy density. Extraction of only a fraction of the kinetic power of
the solar wind plasma impinging on the magnetosphere (about 10* GW) is sufficient
to drive the magnetospheric processes that generate geomagnetic activity and aurorae.

Averages alone do not express the fact that the solar-wind conditions are extremely
variable. Steady, spatial solar-wind structures that rotate with the Sun past the nearly
stationary Earth cause a 27-day recurrency of the solar-wind conditions (Fig. 1a).
Episodic ejections of matter from the Sun cause transient, high-speed plasma flows
that drive shock waves in the solar wind, and that can have unusual magnetic-field
characteristics (Fig. 1b). Superposed on the co-rotating structures and the transient
solar-wind flows, are a rich variety of smaller-scale inhomogeneities and wave motions.

2.2.2 Co-rotating structures

One of the earliest recognized features of the interplanetary magnetic field is its organi-
zation into magnetic sectors. For one or two weeks at a time the field has a predominant
polarity, pointing either toward or away from the Sun. The solar-wind speed and den-
sity undergo systematic variations in association with the magnetic sector structure.
At sector boundaries, the wind speed is usually low, 300-400 km/s. The boundary is
followed by a compression of the solar-wind plasma and a steep rise in velocity, up to
600-700 km/s. The velocity and density structure can be described as a high-speed
stream catching up a slower flowing plasma, thus creating an interaction region which
coincides with the magnetic sector boundary. The structuring into sectors usually dom-
inates the solar wind during the declining and minimum phases of the solar-activity
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Figure 1. Solar wind speed, proton number density, and the north-south component (B;) and
magnitude (B) of the interplanetary magnetic field, during (a) 31 days in June-July 1974 when
the solar wind was dominated by co-rotating structures, and (b) 2 days in January 1988 during
the passage of a transient solar-wind disturbance caused by a CME.

cycle, when the solar magnetic fields have a relatively simple appearance.” A typical
example is shown in Fig. la.

2.2.3 Transient structures

During solar-activity maximum, the solar magnetic fields are normally very complex.
Often, no clear sector structure is developed and the solar wind is dominated by tran-
sient disturbances,® of which some are associated with coronal mass ejections (CMEs).
Although our understanding of CME:s still is incomplete, it is clear that they originate
in disruptions of coronal magnetic field structures not previously participating in the
solar wind expansion.6 A large-scale magnetic structure that has been in a closed, static
equilibrium for days or weeks, suddenly loses equilibrium and rapidly expands out-
ward into interplanetary space. The solar-wind signature of a CME is often a shock
followed by a high, but monotonically decreasing speed, and a strong magnetic field
that is steady or slowly rotating. An unusually well-behaved example of a transient
solar-wind structure, sometimes referred to as a magnetic cloud, is shown in Fig. 1b.

2.2.4 Geoeffectiveness of the solar wind

Significant geomagnetic activity occurs only when the interplanetary magnetic field
(IMF) has a southward component, anti-parallel to the dayside geomagnetic field. The
only known explanation for this relationship is magnetic reconnection, i.e. the process
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by which two plasmas with imbedded magnetic fields interact with each other. In the
thin current sheet that develops between two volumes of plasma with different mag-
netic field direction and strength, the frozen-in field concept breaks down and magnetic
field lines can merge across the boundary. Every time the IMF turns southward, effi-
cient reconnection starts between the solar wind and the magnetosphere, driving the
processes that generate geomagnetic activity and aurorae. The term “geoeffectiveness”
is sometimes used to describe the efficiency of the solar wind in this respect. A strong,
southward magnetic field together with a high wind speed and density, is the most
geoeffective combination of solar-wind parameters.

On average, the interplanetary magnetic field lines are parallel to the ecliptic plane
and the north-south component, B,, is close to zero. The IMF is, however, extremely
variable and deviations from the in-ecliptic field direction are a common occurrence.
Although the north-south component often is significant, it is seldom steady and only
rarely has the same sign for several hours. During the passage of a solar-wind transient
associated with a CME (Fig. 1b), the solar-wind conditions often exhibit unusual char-
acteristics, particularly the IMF which can be relatively steady, stronger than normal,
and slowly rotating for a day or more. The most intense magnetic storms are almost
invariably associated with CMEs.”

A substantial north-south IMF component, B,, can also occur as a result of co-
rotating solar-wind structures (Fig. 1a). The interaction regions are associated with
high dynamic pressures and a fluctuating north-south IMF component of higher-than-
average field strength. The frequently occurring weak and moderate magnetic storms
are often coincident with the passage of sector boundaries.” Within the high-speed
flows following a sector boundary one can often observe Alfvén waves that produce
continuous substorm activity and that prolong the decay of magnetic storms back to
quiet-time values.

2.3 The near-Earth space
2.3.1 The geomagnetic main field

The geomagnetic main field is generated in the Earth’s fluid outer core with local con-
tributions from magnetized regions in the Earth’s crust. To a first approximation, the
field can be described as a magnetic dipole. More refined models are derived from
observational data, usually in the form of an Earth-centered spherical harmonic ex-
pansion of the magnetic scalar potential. At the Earth’s surface, the first-order dipole
approximation is on average able to represent about 90% of the field.

The present-day geomagnetic field strength is 31 T (0.31 G) at the Earth’s surface
near the magnetic equator, and twice that at the poles. For epoch 2000 the northern
pole of the best fitting geocentric dipole - the geomagnetic pole - is located near the
northwestern tip of Greenland (79.5° N, 71.7° W). The location where the geomag-
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Figure 2. The magnetospheric structure showing magnetic fields, plasma regions, and large-
scale electrical current systems. From Introduction to Space Physics, Kivelson and Russell (eds.),

Cambridge University Press, 1995.

netic field is fully vertical - the magnetic dip pole - is currently about 700 km west of
the dipole position.

The geomagnetic field exhibits variations on almost all time scales. An important
distinction is made between secular variations caused by slow changes of the main field,
and transient variations caused by electrical currents flowing in space. The term “geo-
magnetic activity” refers only to the latter. The secular variations must, however, often
be considered as they slowly change the reference level used to define the transient field
disturbances.

2.3.2 The Earth’s magnetosphere

The Earth’s magnetic field is constantly exposed to the solar wind. The field is strong
enough to deflect the solar-wind plasma, but is at the same time significantly distorted
by the interactions. A vast magnetic cavity, the magnetosphere, is formed. Only the
inner part of the magnetosphere, out to 5 or 6 Earth radii (Rg), remains approxi-
mately dipolar. Beyond that, the magnetosphere more or less resemble a huge wind-
sock (Fig. 2). It extends out to ten Rg in the sunward direction, and hundreds of Rg
in the opposite direction, where magnetic field lines from the polar caps are dragged
out into a long tail, usually referred to as the magnetotail.

The magnetospheric boundary to the solar wind, the magnetopause, consists of
thin sheets of electrical currents with a typical thickness of only 500 to 1000 km.
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The inner magnetospheric boundary has a very different appearance. It consists of a
gradual transition down to the Zonosphere, which is the partially ionized regions of the
atmosphere at a height above 90 km. The ionosphere plays an important role for the
magnetosphere. It provides an additional source of plasma, mainly protons and singly
charged helium and oxygen, and it forms an electrically conducting shell at the base of
the magnetosphere through which horizontal electrical currents can flow.

As a consequence of the magnetospheric structure, the geomagnetic disturbances
have widely different characteristics at high and low latitudes. The auroral oval marks
the boundary between the polar cap, which is magnetically connected to the magne-
totail and the solar wind, and the low-latitude regions, where the magnetic fields are
dipolar and the field lines close on Earth. Within the polar caps and the auroral ovals,
the geomagnetic activity is predominantly caused by electrical currents flowing in the
ionosphere, at a height of 90 to 130 km. Concentrations of horizontal ionospheric
currents, commonly carrying more than 108 A, are referred to as auroral electrojets. The
ionospheric currents are fed by field-aligned currents (Fig. 2) which transmit stresses
from the solar wind-magnetosphere interactions. Unlike the low-latitude magnetic ac-
tivity, the geomagnetic disturbances at high latitudes reflect physical processes in the
magnetotail and in regions of space where the solar wind-magnetosphere interactions
take place.

At low- and mid-latitudes, well equatorward of the auroral ovals, it is normally
variations of the ring current (Fig. 2) that dominates the geomagnetic activity, although
the other magnetospheric currents also contribute to the ground-level disturbances.
The ring current is a permanent feature of the outer radiation belt.® It is formed by ions
and electrons in the 20-200 keV range, located between 2 to 7 R, that are drifting
under the influence of the inhomogeneous magnetic field.

2.3.3 Convection and substorms

The picture presented above is that of an “average” magnetosphere. However, the
internal magnetospheric dynamics and the ever-changing solar wind only rarely, if at
all, allow the magnetosphere to settle into a steady state. The dynamic behaviour of
the magnetosphere is often described in terms of quasi-steady magnetospheric convection
and transient magnetospheric substorms.

In the magnetosphere, any electric field E with a component orthogonal to the
magnetic field B will drive a plasma flow. Two quasi-steady electric fields dominate the
interior of the magnetosphere, the co-rotation electric field and the cross-tail electric field,
corresponding to two modes of large-scale circulation: an inner region co-rotating with
the Earth and an outer region circulating under the influence of the solar wind. The
term magnetospheric convection refers to the latter. Unlike the co-rotation E-field, the
cross-tail E-field is highly variable. The potential difference across the magnetotail is
mapped along field lines down to ionospheric levels where it can be measured by satel-
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Figure 3. (a) Magnetospheric convection of magnetic field lines. Reconnection occurs between
pairs of field lines 1-1” and 6-6’. The associated plasma flow in the polar ionosphere is also
shown. From Introduction to Space Physics, Kivelson and Russell (eds.), Cambridge University
Press, 1995. (b) A simplistic sketch of a magnetospheric substorm, showing the formation of a
second site of reconnection in the magnetotail. The near-Earth magnetic fields becomes more
dipolar, while a closed magnetic-field structure is cut off and released downtail.

lites in low-Earth orbit. Such measurements show cross-polar cap potentials between
20 kV and 150 kV, strongly depending on the solar-wind conditions.’

Applying the “frozen-in” field concept to the magnetospheric plasmas, we find that
the convection must be associated with a circulation of magnetic flux. At two locations,
the frozen-in field concept break down: at the dayside magnetopause, where flux is
added to the magnetotail through reconnection, and within the tail plasma sheet, where
flux is removed (field lines 1-1° and 6-6’ in Fig. 3a). The newly merged field lines 1-1’
in Fig. 3a are swept back over the poles and gradually sink into the tail, where the field
lines 6-6’ reconnect and flow back to the dayside of the magnetosphere. The associated
plasma flow in the polar ionosphere is also shown in Fig. 3a.

The magnetospheric convection, as described above, can only be steady if the re-
connection rates at the two sites are equal. Although they must be equal in a time-
averaged sense, they are so only rarely on an instantaneous basis. During periods of
southward IME when the energy transfer from the solar wind is enhanced, steady re-
connection within the magnetotail cannot balance the inflow of magnetic flux. The
magnetic flux content of the tail lobes increase until the flux is, suddenly, released by
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explosive reconnection in the near-Earth plasma sheet, and the whole magnetosphere
rapidly reorganizes into a more dipolar configuration. The whole sequence of events -
build-up of energy in the magnetotail, explosive release of the energy together with a
rapid dipolarization of the magnetic fields, followed by a slow recovery - that normally
takes two or three hours, is referred to as a magnetospheric substorm. It is schematically
described in Fig. 3b. The visual manifestations of the substorm are referred to as an
auroral substorm, while the magnetic manifestations are referred to as a magnetic sub-
storm. Much work has been devoted to understand the physical processes behind the
substorm. Several phenomenological models exist, that have much in common but
that also differ in important respects .

During prolonged periods of strong magnetospheric convection, the ring current
sometimes exhibit a rapid enhancement followed by a slow recovery back to normal
levels. When this happens, we observe the classical signature of a magnetic storm: a
depression of the field at low- and mid-latitudes up to several hundreds of nT lasting
for around a day, followed by a slow recovery over several days. Magnetic storms are
always accompanied by a frequent occurrence of substorms, which has led researchers
to believe that substorms somehow are the cause of magnetic storms. More recently,
this has been questioned and the exact role played by substorms in enhancing the ring
current is still uncertain.!!

2.3.4 Coordinate systems

The geomagnetic dipole organizes many auroral, ionospheric and magnetospheric phe-
nomena. A simple Earth-centered dipole is therefore used to establish various coordi-
nate systems. The Geocentric Solar Magnetospheric (GSM) system is a right-handed,
Cartesian system centered at the Earth. The x-axis is defined by the direction from the
Earth to the Sun, along the Sun-Earth line, and the z-axis is located in the plane de-
fined by the x-axis and the dipole axis. With this definition of the z-axis, the coordinate
system oscillates about the solar direction with a 24-hour period. If the z-axis instead
is defined to be perpendicular to the ecliptic plane, the coordinate system is referred to
as the Geocentric Solar Ecliptic (GSE) system.
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(a) Geomagnetically quiet day in Sodankyla (b) Geomagnetically active day in Sodankyla
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Figure 4. The northward (X), eastward (Y), and vertical (Z) geomagnetic field components
in Sodankyld, Finland, during (a) a geomagnetically quiet day, and (b) a disturbed day. Note
that the vertical scales are different: the quiet day record is enlarged 10 times compared to the
disturbed day.

2.4 Geomagnetic activity
2.4.1 Regular geomagnetic variations

On geomagnetically quiet days, when the energy transfer from the solar wind is weak,
the geomagnetic field is normally observed to undergo smooth and regular variations.
These variations are caused by a global ionospheric current system fixed with respect
to the Sun. Solar heating of the upper atmosphere drives winds that blow ionization
across magnetic field lines. As the ions and electrons react differently to the winds of
the neutral atmosphere, a dynamo is formed that drives electrical currents. The quiet-
time, regular variations are mainly diurnal, with additional semi-diurnal components
due to solar and lunar tides in the upper atmosphere. An example of a geomagnetically
quiet day in Sodankyli, Finland, is shown in Fig. 4a.

2.42 Magnetic substorms

The magnetic substorm can be described as the result of two current systems with
different spatial and temporal characteristics: one current system is associated with
the magnetospheric convection during the substorm growth phase, and the other is
associated with the transient events during the substorm expansion phase.

The growth phase of a substorm begins after a southward turning of the IME In the
weakly collisional ionosphere, Hall currents are generated by the enhanced ionospheric
convection. The currents flow roughly from midnight to noon across the polar cap, and
then back to the nightside through the auroral ovals. The geomagnetic signature near
the auroral oval is a positive northward disturbance before midnight and a negative
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Figure 5. The development of a magnetic storm (Dst, lower panel) and the associated high-
latitude geomagnetic activity (AU and AL, upper panel) during 11 days in January 1988. Note
that the vertical scales of the two graphs are different: the lower graph span 300 nT, whereas
the upper graph span 3000 nT.

disturbance after midnight, corresponding to an eastward electrojet across the dusk
meridian and a westward electrojet across the dawn meridian.

During the growth phase, the magnetic energy in the magnetotail increases, and
the cross-tail current becomes strongly enhanced and moves closer to the Earth. The
substorm expansion phase starts when, due to some kind of plasma instability in the
magnetotail, a part of the cross-tail current is diverted through the polar ionosphere
along the midnight auroral oval in the form of a westward substorm electrojet. The
geomagnetic field around local midnight show a rapid decrease of the horizontal com-
ponent that can reach more than 1000 nT and that lasts some tens of minutes. In
extreme cases the disturbances can reach several thousand nT.

An isolated substorm can be caused by a brief (~40 to 60 minutes) pulse of south-
ward IME. If the IMF remains southward for several hours, a whole sequence of sub-
storms will be generated. These are the same conditions that enhance the ring current,
and during prolonged periods of southward IMF the sequence of substorms will be
accompanied by a magnetic storm as shown in Fig. 5.
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2.4.3 Magnetic storms

The basic defining property of a magnetic storm is an enhanced ring current that cause
a depression of the geomagnetic field at ground level. The classical signature observed
at low- and mid-latitudes is a rapid decrease of the horizontal field component, followed
by a slow recovery that normally takes several days. Sometimes the main phase of the
storm is preceded by an increase of the geomagnetic field strength. This initial phase is
no longer regarded as an essential feature of the magnetic storm.

The conditions that lead to magnetic storms are prolonged periods (~3 hours)
of strong southward IMF and high solar-wind velocities. Shorter periods (~1 hour)
of southward IMF do not usually lead to a buildup of the ring current, but they are
normally sufficient for a substorm to develop. If the prolonged period of southward
IMEF is preceded by an increase of the solar-wind dynamic pressure, we also observe the
typical initial phase of a magnetic storm. This phase of the storm is not caused by the
ring current; it is the magnetopause currents that are strengthened and move closer to
the Earth as a result of the increased dynamic pressure acting on the magnetosphere. A
typical example of a major magnetic storm is shown in Fig. 5.

2.4.4 Geomagnetic activity indices

Geomagnetic observatories around the world are continuously monitoring the geo-
magnetic field. From this vast amount of data, various geomagnetic indices are derived.'?
Most indices are defined to be representative of a certain phenomenon, e.g., the strength
of a specific current system. In practice, all indices are influenced by several current sys-
tems, and a separation of the different contributions can not be made from the index
alone.

The Dst index, often referred to as the ring current index, has a relatively clear
physical interpretation. It is a measure of the magnetic disturbance generated by a
symmetric ring current. After correction for the magnetopause currents, Dst is roughly
proportional to the total energy of the radiation belt particles that contribute to the
ring current.'® The Dst index is based on the horizontal field component, H, from a
number of low-latitude observatories evenly distributed in longitude. The geomagnetic
disturbance at each observatory is obtained by subtraction of a secularly varying base
line, Hy, and the regular, daily variations, Hg,, from the observed geomagnetic field,
H. The geomagnetic disturbances at the observatories are averaged and divided by the
average of the cosines of the geomagnetic dipole latitudes A

<Hl - H(l) - ng>

Dst = (cos A;)

(1)

This definition of Dst allows the use of any time resolution and any number of geo-
magnetic observatories. However, the index presently derived at World Data Center for
Geomagnetism in Kyoto is based on one-hour averages from four stations.
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Dst is mainly influenced by the ring current and the magnetopause currents, but
influences from other currents complicate the interpretation of Dst. Another un-
certainty is the definition of a quiet-time reference level, since secular variations and
regular daily variations can be as large as the ring-current disturbance itself.

The auroral-electrojet indices AU, AL, and AE measure the peak disturbances
occurring in the auroral zone at any instant of time. They are based on a chain of geo-
magnetic observatories, spread around the auroral zone at magnetic latitudes between
65° and 70°, with a longitudinal spacing of 10° to 40°. At each observatory a monthly
average quiet-time level, Hy, is defined. The disturbances, AH, are obtained as the
difference between the observed field, H, and the reference level, H,. The traces of
AH from all the stations are then plotted with respect to a common baseline. The AU
index is defined as the upper envelope of the traces, AL is defined as the lower enve-
lope, and AFE is defined as the difference between AU and AL. The AL index can
thus be regarded as a measure of the maximum westward electrojet, while AU quantify
the maximum eastward electrojet.

The most serious shortcoming of the AE indices is a very sparse grid of geomag-
netic observatories. There are longitudinal gaps of more than 2 hours of local time,
and the small latitudinal range (65° to 70° magnetic latitude) can also be a problem,
particularly during low geomagnetic activity when the auroral oval contracts and the
most intense electrojets tend to flow north of latitude 70°. Further, the definition of
the magnetic disturbance, AH, does not eliminate the regular, daily variations.
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3 Artificial Neural Networks

Artificial neural networks (ANN) is the term used for a set of mathematical techniques
applicable to problems which are inherently nonlinear and/or multi-dimensional, prop-
erties which often characterize “real-world” problems. Despite the somewhat strange
designation, the methods are often relatively uncomplicated, with simple basic princi-
ples. During the last two decades, the ANN technique has developed until it now has
become part of the standard toolbox for solving problems related to mapping between
multi-dimensional spaces, time-series analysis, pattern recognition, or classification.

3.1 Modeling static systems

ANN s are composed of simple elements, or nodes, operating in parallel (Fig. 6). Each
node receives several incoming signals and converts these into an outgoing activation
that is passed on to other nodes in the network. Some nodes interface directly with
the outside world, whereas others are internal or "hidden.” An important distinction is
made between feed-forward networks and recurrent networks, i.e. networks with feed-
back connections. The type of processing performed at the nodes and the connectivity
of the network put limits to the range of possible behaviours of a network.

The basic feed-forward ANN (Fig. 6a) performs a nonlinear, static mapping from

an input vector, {4k = 1,2, ..., N;,, }, with N;;, components, to an output O
Npia Nin
OF = go( > Wign(D_ wint + bi&o) + B&) - 2)
j=1 k=1

Each input-output sample {&f', O*} is labeled by superscript 4. Index j refers to a
hidden node and index k refers to an input node. Wj and wjy are weights associated
with the connections. The bias input, &, is assigned a fixed value and is connected to
all hidden and output nodes through the bias weights b; and B. The network described
by equation 2 has a single hidden layer. Most discussions in this chapter are, however,
valid for any number of hidden layers.

Equation 2 describes what is sometimes referred to as a nonlinear perceptron. The
processing performed at each node consists of a weighted summation of the incoming
activations followed by a transformation, g, which is nonlinear at the hidden nodes
and linear or nonlinear at the output node

yi = 90> wiky) - 3)
«

The function g3, defining the transformation at the hidden nodes, should be nonlinear,
continuous, and saturating (Fig. 6b). Two common choices are the hyperbolic tangent
function and the logistic function. The function g,, at the output, is often a purely
linear function.
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(b)

Figure 6. (a) Feed-forward network with input nodes to the left and a single output node to
the right. (b) The processing performed at each hidden node for the nonlinear perceptron, and
(c) for the radial-basis function network.

The radial-basis function network is a feed-forward network that offers an alternative
to the nonlinear perceptron. It performs a different type of processing at the hidden
nodes

i =93 M) : 4)
k

o2

The weights now define locations in the input space where the hidden-node activa-
tions are high. Each hidden node in a radial-basis function network produces large
activations for a localized part of the input space, whereas a hidden node in a nonlinear
perceptron produces large activations for all input values over a certain threshold. The
function g is commonly an exponential, but any continuous function peaking at zero
and with a monotonic fall-off away from zero can be used. A decisive advantage of the
radial-basis function network compared to the nonlinear perceptron is that the training
times can be significantly reduced.

3.2 Modeling dynamic systems

These two types of feed-forward ANNs work well for nonlinear, static mappings. How-
ever, in order to predict geomagnetic activity from solar-wind data, we need networks
that can model a nonlinear, dynamic system driven by an external input. Two classes
of neural networks have been used for this purpose: time-delay networks and par-
tially recurrent networks. These two classes of networks have the advantage of being
relatively simple and well-understood. They can be trained to approximate the input-
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Figure 7. (a) Nonlinear ARMA network with a single feed-back connection from the output
node to a time-delay line at the input. (b) Elman recurrent network with feed-back connections
from the hidden nodes to a set of context nodes at the input.

output behaviour of a dynamic system, provided that sufficiently large sets of empirical
input-output data are available.

The time-delay network (TDN) is simply a feed-forward network that is fed with a
temporal sequence of time-lagged external inputs.!* It is the organization of the input
data that gives the TDN a dynamic behaviour; the mapping itself is static. The TDN
is based on the assumption that the geomagnetic activity, O, can be described as a
function of a vector, I, of time-lagged solar-wind inputs

Ot - F(Itfl) (5)
where

L. = {It71,It72, ceey IthI} 6)

and 77 is the temporal length of I. If the solar-wind input at any instant of time is
quantified by a single parameter, say the solar-wind electric field, then each element, I,
of the input vector (6) is a single, scalar quantity and the number of input nodes, N;,,
equals T7. A TDN then performs the mapping

Nyiq Nin
O = go(>_ Wign(>_ wirdi—x + bi&o) + B&) . 7)
j=1 k=1

In general, the solar-wind input at any instant of time is quantified by several parame-

ters, and each element, I, of the input vector (6) must be a multiple quantity.
Partially recurrent networks have a limited set of fixed feed-back connections from

either the output nodes,’ or the hidden nodes.'® The latter is referred to as an Elman
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recurrent network (ERN). Unlike the TDN, the dynamical properties of an ERN is a
result of the mapping itself being dynamic. The ERN incorporates the essential features
of time-delay networks, but includes a set of special input nodes, or context nodes, that
receive the hidden-node activations through a set of feed-back connections (Fig. 7b).
No weights are associated with the feed-back connections which are kept fixed during
the training process. This is an important property of a recurrent network. It allows
the use of the same training algorithm as for the purely feed-forward networks.

The ERN is thus based on the assumption that the geomagnetic activity, O, can be
described as a function of a vector, I, of time-lagged solar-wind data together with a set
of internal state variables, Y,

Oy=F(I,_1,Y, ) (8)
where
Y, ={V},, Y2, ... YN )

are the hidden-node activations at time ¢t — 1, representing the internal state of the
network. Under the same assumption as for the TDN in equation 7, the ERN performs
the mapping

Nhld Nin Necon
Ot = 8o Z W]gh ijklt kT Z ch t 1 + b; EO) + Béo) (10)
j=1 k=1

where index ¢ denotes the context units. Similar to a TDN, the external input data to
the ERN are organized as a temporal sequence of time-lagged data. We can, however,
expect the required length, 77, of the input sequence to be much smaller for an ERN
than for a TDN. As the feedback structure of the ERN constitutes an implicit memory
for past states, and thus indirectly for past inputs to the system, the importance of
explicitly feeding the network with a long sequence of external inputs is reduced.

3.3 Network training

Network training is the process of finding a set of weights that gives the network a
response similar to the input-output samples in a set of training data. The ability to
produce a "correct” output is monitored by the cost function

1 Qe

;20T (1

where w is the set of weights, O* is the actual output of the network, T* is the "cor-
rect” output (or target), and @y, is the number of samples in the training set. If the
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nodal transfer functions are nonlinear and differentiable, this cost function will also be
nonlinear and differentiable.

Network training is a nonlinear optimization problem that can be solved with many
of the methods from the standard toolbox: gradient-descent methods, second-order
Newton-type methods, or various search methods. In practice, most of the stan-
dard methods are not well suited to a network implementation. One of the most
widely used technique is a modified gradient-descent method referred to as error back-
propagation.'” The weights are iteratively updated according to the rule

ocC
Aw; < -7 (—) + aAw; 4 (12)
ow /,

where w is a single weight and subscript ¢ denotes the iteration. Normally, it is only a
subset of the )4, training samples that is used in each iteration, and the actual update
is in an approximate gradient direction. The size, Qpqt, of this subset is a parameter
that, along with 7 and «, controls the training process. The art of choosing these
parameters is discussed in many of the text books available, e.g., Haykin.ls

Error back-propagation can be used both for TDNs and ERNs. A widely used al-
ternative is the Levenberg-Marquardt method.* At the cost of an increased complexity
and memory requirement, this method is much faster than simple gradient descent.
Second-order convergence is approached without actually having to compute the Hes-
sian matrix. The training of radial-basis function networks differs somewhat from the
other network types. The orthogonal least-squares method is one of several alternatives
available for this kind of network.?

Much of the practical use of neural networks relies on their ability to make sensible
generalizations. This ability can be defined as the average performance on a randomly
chosen data sample. However, the cost function C'(W) measures a network’s ability
to memorize the training data rather than the ability to generalize to new data. For a
network that has already attained a reasonable fit to the training set, further training
could actually impair the generalization ability. At some point during training, the
network starts to learn details that is due to random, non-representative features of the
finite set of training data. The network performance on data that are not included in
the training set will then start to deteriorate; the network becomes overfitted.

In order to achieve a good generalization ability, rather than a perfect fit to the
training data, the training procedure need to be constrained. This can be done by
excluding a part of the training set from the actual training, and instead use these data
to determine when to stop the iteration. In this way the problem of overfitting is
avoided, or at least lessened.
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3.4 Neural networks and linear/nonlinear filters

Neural networks have much in common with the linear and nonlinear filters that have
been applied to magnetospheric physics, but they also differ from them in important
respects. The time-delay network is essentially a nonlinear generalization of the linear
moving-average (MA) filter. The auto-regressive moving-average (ARMA) filter has
much in common with the Elman recurrent network, but it also has a more direct
analogue amongst the neural networks, namely the network shown in Fig. 7a.

The discrete, linear MA filter is given by

Tr
Oy=c+ > (H:I ) (14)
T=1
i.e. the impulse response function, H, of the magnetospheric system is convolved with
a sequence of solar-wind inputs. For a filter to be linear, H must be time-invariant
and independent of the solar-wind input. The ARMA filter is obtained by adding
auto-regressive terms to the MA filter

Tr Ts
Ot =c+ Z(HTIt*T) + Z(GTOt,T) (15)

T7=1 T=1
where T is the temporal length of the memory for prior geomagnetic-activity states.
Linear filters can be generalized to handle nonlinearities. One approach is to ap-
proximate the nonlinear response F' in equation 5 locally by linear MA filters. The
filter coefficients are fixed for each given input sequence, but they are allowed to vary
between different regions of the input space. ARMA filters can similarly be general-
ized by allowing some variation of the filter coefficients between different regions of
the input-output space. If H and G are fixed in each small neighbourhood of the
input-output space, but change between different neighbourhoods, then this filter will
be locally linear but globally nonlinear. Such local-linear, nonlinear filters”* have been
used in several studies to describe the magnetospheric response to the solar wind.
Equation 7 describes the processing performed by a TDN. If the activation func-
tions g, and gy, are linear, i.e. g(z) = x, then we can write the output of the TDN
0, => (. Wywpdy i) + > Wb+ B. (16)
k] J
As the input vector I, represents a time series of data, we can identify the inner sum of
the first term of equation 16 with the impulse response coefficients of equation 14

H. = 3 Wi, (17)
J

A TDN with linear activation functions is apparently identical to a linear MA filter.
By the same kind of reasoning it can be shown that the partially recurrent network
in Fig. 7a becomes identical to a linear ARMA filter if it is assigned linear activation
functions. Hence the designation nonlinear ARMA filter for this neural network.
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4 Predicting Geomagnetic Activity From the Solar Wind

The geomagnetic disturbances detected at the surface of the Earth can be interpreted
as an output signal from a physical system driven by an external input, namely the
solar wind. It is a complex output signal, with a low-latitude component tracing the
conditions in the outer radiation belt, and a high-latitude component signaling both
the occurrence of magnetospheric convection and the explosive release of magnetotail
energy during substorms. The ANN technique is one of several methods that can be
used to map the input-output relations of this system. The accuracies obtained depend
partly on limitations intrinsic to the applied methods, and partly on the predictability
of the underlying magnetospheric processes. Successful mapping techniques may also
be used to forecast geomagnetic disturbances and related phenomena.

4.1 Solar-wind coupling functions

The dominating mechanism of energy transfer from the solar wind to the magneto-
sphere is magnetic reconnection. The rate of reconnection at the dayside magnetopause
is largely controlled by the solar-wind electric field E, = —V B,, where subscripts y
and z refer to the GSM system. However, magnetic reconnection is only effective
for a southward IME It has therefore been common to use the rectified electric field
VB, = —V B,I'(#), where I'(6) is a function of the IMF direction in the y — z plane.
Here, I is O for northward IMF and 1 for southward IME Most studies also find a
modulating influence by the solar-wind velocity, V, density, n, and dynamic pressure,
Pyyn. Higher velocities or higher dynamic pressures tend to enhance the rate of energy
transfer to the magnetosphere.

Many attempts have been made to find a single combination of solar-wind vari-
ables, or a coupling function, that describes the rate at which energy is transferred from
the solar wind to the magnetosphere.?>?* A wide variety of functions have been de-
fined and evaluated, e.g., V B,, V2B, and P;y/,f V B;. Some coupling functions allow
a small amount of energy transfer also for northward IMF directions through the use of

a "leaky” gating function T', e.g., V B2I'(#) and P;?J/,?VBTF(G). Here, By is the mag-
nitude of the IMF component in the y — 2 plane. Several coupling functions appear
in the papers included in this thesis. It is, however, also found that the use of separate
solar-wind parameters n, V, and B,, gives more accurate predictions than any of the

most common coupli ctions constructed from these parameters.
t com ling function. tructed from th met

4.2 Magnetic storms and the ring current

The intensity of a magnetic storm is defined by the strength of the ring current, which
is commonly measured by the geomagnetic index Dst. An ideal Dst index would be



22 Chapter 4: Predicting Geomagnetic Activity from the Solar Wind

proportional to the total energy of the radiation-belt particles that contribute to the ring
current.'? Although a rough measure, Dst is an important parameter for describing the
state of the inner magnetosphere.
In 1975, Burton et al.** described the evolution of the ring current by a first-order
differential equation
dDst*(t)

PO — gy - 2

dt T (18)

where Q(t) is a source term representing the injection of particles to the ring current.
The purpose of this simple model was primarily to explore to what extent Q(¢) is con-
trolled by the solar wind. The designation Dst* indicates that Dst has been corrected
for the influence of magnetopause currents using the simple relation

Dst = Dst™ + by/ Py, + (19)

where b and c are constants, and Py, is the solar-wind dynamic pressure. In the study
by Burton et al., the source function () was a linear function of V B, and the decay rate
T was constant. Later studies have expanded on this basic model, e.g., Feldstein et al. 25,
Pudovkin et al.?®, and more recently O’Brien and McPherron®”. Here, the decay rates
have been found to vary with the phase of the storm, such that 7 must be described as
a function of solar-wind parameters or Dst itself. If, in fact, 7 is a function of Dst, the
system described by equation 18 is nonlinear. The expressions for the source function,
Q(t), are commonly more complex than in the original study by Burton et al.

This work on the evolution of Dst established that the injection of particles to the
ring current is well approximated by a function of solar-wind parameters. In 1979,
linear MA filters were first used in a study by Iyemori et al?® That study together
with others, e.g., Fay et al.?® and McPherron et al.,*° led to similar conclusions for the
relations between the solar wind and D st. More recently, McPherron®! have used linear
filters to study the role of substorms in the generation of magnetic storms, and Detman
et al.®? have explored the use of linear filters in real-time forecasting of Dst.

The possibility of using ANNG to predict Dst was first pointed out by Lundsteds*®.
In 1993, Freeman et al.3* presented a neural network for prediction of Dst from solar-
wind parameters and Dst itself. The fact that they used the observed, hourly Dst
as input to make predictions one hour ahead, indicates that the ANN relied heavily
on auto-correlation of Dst. Two subsequent studies, by Lundstedt and Wintoft*> and
Gleisner et al. [paper I], showed that time-delay neural networks can be used to predict
Dst from solar-wind data alone. As no pressure correction was applied to the Dst
index, it was the combined disturbance from the magnetopause currents and the ring
current that was predicted. Using TDNs, the main phase of magnetic storms could be
accurately predicted with as little as 4 hours of input data, whereas prediction of the
recovery phase required 20 hours, or more, of solar-wind data. An example is shown
in Fig. 8 where six different TDNs, all of them using n, V, and B, as input, are



Chapter 4: Predicting Geomagnetic Activity from the Solar Wind 23

.50 e
t=-100
B-150

-200

250

-300, -300 -300|
60 80 100 120 20 40 60 80 100 120 0 20
Time / hours Time / hours

40 _ 60 80 100 120
Time / hours

-50
tz-100 1-100
B 8.

a 150/ a 150)

-200 -200

-250 -250

-300, -300 -300|
0 20 40 60 80 100 120 20 40 60 80 100 120 20 4 _ 60 80 100 120
Time / hours Time / hours Time / hours

Figure 8. Comparison of observed and predicted Dst for different lengths of the solar-wind
input sequence, from 4 hours (NET4) to 24 hours (NET24). The predicted recovery phase
is systematically improved as the input sequence becomes longer. The predictions were made
with time-delay neural networks using n, V', and B, as input.

used to predict a major storm. Note that the predicted recovery phase is systematically
improved up to the last panel of Fig. 8, where 24 hours of input data are used. The
studies also showed that all three solar-wind parameters n, V and B, are important.
Removal of any of them impairs the network performance.

In 1996 and 1997, Wi and Lundstedt® published several studies on Dst predic-
tions using Elman recurrent networks. Different network setups and input data sets
were evaluated. A large number of coupling functions were tested as input to the
ERNs. The one that performed best was Pdly/jVB s» which is very close to a function
proposed by Vasyliunas et al.?® on the grounds that it has dimension of power. It was,
however, only marginally better than the more commonly used function P;y/j V B;.

Recently, the standard model by Burton et al. was extended by Klimas et al.®” and
Vassiliadis et al.*® to second order and time-varying coefficients

d?Dst(t)  dDst(t) Dst

= Q) — — 20

gz T = Q) - — (20)

The model was developed using local-linear, nonlinear filters,*® related to the nonlinear

filters briefly mentioned in chapter 3.4, together with a technique for deriving closed-

form analytical models from the filters.*® From such models, Vassiliadis et al.®®
able to derive timescales governing ring current growth and decay.

were
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Figure 9. Predictions of the auroral electrojet index AE with time-delay networks. Network
performances for different lengths of the solar-wind input sequence, (left) using individual
solar-wind parameters as input, and (right) using coupling functions as input.

4.3 Magnetic substorms and the auroral electrojets

The effects of substorms can be seen in the records of the geomagnetic indices AU, AL,
and AF, which are often used to quantify the strength of magnetic substorms. Ideally,
these indices measure the peak geomagnetic disturbances occurring in the auroral zone
at any instant of time.

In the years around 1970, a number of investigators began to publish studies on the
relationships between the auroral-electrojet indices and the solar wind. These earliest
studies were based on cross-correlation analysis, superposed epochs, or other statistical
techniques. They all found a strong dependence on the rectified magnetic field B, and
also confirmed that the correlation between geomagnetic activity and the solar wind is
highest when the solar-wind magnetic field components are given in GSM coordinates.

In a study by lyemori et al.?® in 1979, linear MA filters were used to relate V B to
hourly AL, AU, and AFE indices. All three filters showed a peak around 1 hour lag
time, but otherwise the filters had very different characteristics. This work was followed
by several linear-filter studies using data of higher time resolutions, e.g., Clauer et al®!,
Bargatze et al.*?, and McPherron et al.®® The study by Bargatze et al. clearly showed
that the geomagnetic response is fundamentally nonlinear, with contributions both
from magnetospheric convection and from the release of energy stored in the magne-
totail. These two components of the high-latitude geomagnetic activity are commonly
referred to as the directly driven and the unloading components, respectively.

In 1993, Hernandez et al.** published a study on AL predictions using two types of
ANN: a nonlinear ARMA filter and a nonlinear MA filter, the latter being similar to a
TDN. The ANNss were able to predict AL, but due to clipping of the high amplitude
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Figure 10. Observed and predicted AE during two days in March 1974. The two days are
divided into two intervals. The first (left) begins in the morning of March 2 at 08.10 UT and
the second (right) begins in the evening the same day at 21.35 UT. The predictions were made
with a time-delay network using 100 minutes of n, V, By, and B, as input.

variations they performed no better than linear filters. The question of how to deal
with this clipping problem was addressed in 1999 by Weige/ et al.**, who suggested
the use of a gating technique whereby different activity levels are handled by different
networks, and then combined into a single predicted value using a gating network. In
1997, Gleisner and Lundstedt [paper II] used time-delay networks to predict AE from
solar-wind data alone. Their study showed that the TDNs performed better when
individual solar-wind variables were used as input instead of coupling functions. They
also showed that the IMF component B, has a modulating influence on the predicted
AEFE, whereas no influence from B, can be found. Both these results can be seen in
Fig. 9. TDNs were also used to investigate whether the Dst state has any influence
on the modeled solar wind-AF relation [paper III]. Recently, an AE prediction study
based on Elman recurrent networks was presented by Gleisner and Lundsteds [paper V.
That study demonstrated that very simple ANN configurations can predict the AE
index from solar-wind data with a relatively high accuracy, if the networks are provided
with a simple feedback mechanism. Neural networks have further been employed by
Takalo and Timonen® to study the dynamical behaviour of observed and nonlinearly
predicted AE time series.

Parallel to this work on neural networks, there has been a continuous development
of nonlinear filtering techniques. Vassiliadis et al.*® developed a globally nonlinear, but
locally linear filtering technique (see section 3.4), and used it to study AL predictions
from solar-wind data. They found that the performances of the nonlinear filters were
superior to the corresponding linear filters. The same method was later used by Vas-
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Predicted and observed AX at SOD (interval #5) Predicted and observed AY at SOD (interval #5)

400 UT 19:20 10 may 1978 1 400 UT 19:20 10 may 1978
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10 5
Time [h] Time [h]

Figure 11. Observed and predicted northward (AX) and eastward (AY) geomagnetic dis-
turbance components at Sodankyli Geomagnetic Observatory. The interval covers 15 hours,
beginning on the evening on May 10, 1978.

siliadis et al.*" to investigate the degree of nonlinearity of the geomagnetic response to
the solar wind. This problem was also addressed by Price et al.*® using a somewhat
different technique, although based on the same general concepts.*®

As pointed out above, the auroral-electrojet indices measure the peak disturbances
occurring in the auroral zone. They do not provide any information on the location
of the peak disturbances, or the disturbance levels are at other locations. For some
purposes this is serious shortcoming. There are, however, a number of models, e.g.,
Heppner and Maymmfo, and Weimer®!, that describe the ionospheric convection pat-
terns and the associated geomagnetic activity within the polar caps as a function of
solar-wind parameters. These models are only valid for intervals dominated by quasi-
steady convection effects, and the dependences on the solar wind are usually linear.
Another type of model was recently reported by Valdivia et al.5?> They modified the
nonlinear filter technique previously developed by Vassiliadis et al.*° so that it can be
applied to spatial distributions of geomagnetic disturbances. Using geomagnetic data
from a chain of magnetic observatories, they obtained a model of the spatial pattern
of disturbances at auroral-zone latitudes. Paper IV in this thesis demonstrates how a
combination of time-delay networks and radial-basis function networks can predict the
locally observed geomagnetic variations at one particular site, located near the peak of
the auroral zone. These latter studies show an interesting development toward pre-
diction models that take the spatial dimension of the geomagnetic disturbances into
account.
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5 Summary of Research Articles

The thesis is based on five journal articles that are published in Annales Geophysicae
and in the space physics section of Journal of Geophysical Research. The common theme
of the articles is prediction of geomagnetic activity from solar-wind data using neural
networks.

In a study by Lundstedt and Wintofi*® it is demonstrated that time-delay networks
are able to predict aspects of magnetic storms from an 8-hour sequence of solar-wind
data. The main phases of the storms are well predicted, whereas the recovery phases
are not accurately accounted for. Paper I describes an attempt to overcome the limita-
tions found in that prior study. Using hourly Dst and solar-wind data, six time-delay
networks were trained to predict Dst one hour ahead. All networks were fed with n,
V, and B, through a time-delay line with a temporal length from 4 hours to 24 hours.
The results show that the trained networks perform better with a longer time-delay line,
and that the improvements are significant up to an input-sequence length between 16
and 20 hours. A closer inspection of individual storms shows that the improvements
are largely due to better predictions of the recovery phase. In many cases, the recovery
phase is most accurate using a 24-hour delay line, while a 4-hour delay line is enough
to predict the main phase. For the best performing network, the correlation between
prediction and observation is 0.92 as calculated over the whole test set, corresponding
to 84% of the observed Dst index variance.

In Paper II, time-delay networks are used to predict the auroral-electrojet index
AFE from solar-wind data at a 5-minute time resolution. The data were selected from
essentially the same time period (Nov. 1973 to Dec. 1974) as in the seminal study by
Bargatze et al.*? In the first part of the study, various combinations of separate solar-
wind parameters are used as input to the networks (Fig. 9a). For each combination, the
temporal length of the input-data sequence vary from 20 to 100 minutes. It is found
that the solar-wind parameters n, V, B, and B, contribute to improved predictions.
When any of these four solar-wind parameters is left out, the network performance
decreases. It is also found that B, does not have any influence on the network perfor-
mance, and that the temporal size of the time-delay line should be at least 100 minutes
for maximum prediction accuracy. A properly trained network with 100 minutes of n,
V, By, and B, as input, accounts for 76% of the AE variance.

In the second part of the study, the input to the networks consists of coupling func-
tions. It is a selection of the most widely used functions that are evaluated (Fig. 9b).
It is found that any coupling function constructed from V' and B, is improved by a
simple scaling with Pdly/j. Around 71% of the observed AFE variance can be accounted

for by a time-delay network taking 100 minutes of P;ZJ/,%VQB s as input. This is less
accurate than using the solar-wind parameters n, V, and B, as separate inputs. Infor-
mation on the solar wind that is relevant to the AFE variations is obviously lost when
the raw solar-wind parameters are combined into a coupling function.
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It is also shown in paper II that much of the high-frequency variations are filtered
out: the predicted AF is essentially a smoothed version of the observed AE. There are
features in the geomagnetic data, such as the large and sudden excursions due to intensi-
fications of the westward electrojet, that are not accurately reproduced by the networks.
The amplitudes of the substorm disturbances also tend to be underestimated. Never-
theless, the gross features of individual substorms are actually reproduced, as shown in
Fig. 10.

In Paper III, the previous work is extended to examine whether Dst has an in-
fluence on the AE predictions that could indicate a ring-current modulation of the
modeled solar wind-AFE relation. Predictions of AE based on both solar-wind data
and Dst are compared with predictions from solar-wind data alone. Two conclusions
are reached: (1) with an optimal set of solar-wind data available, the AE predictions
are not markedly improved by the Dst input, but (2) the AE predictions are improved
by Dst if less than, or other than, the optimum solar-wind data are available to the net.
It appears that the solar wind-AFE relation described by an optimized neural net is not
significantly modified by the magnetosphere’s Dst state. When the solar wind alone is
used to predict AE, the correlation between predicted and observed AE is 0.86, and
the prediction residual is virtually uncorrelated to Dst.

In Paper IV we do not use any magnetic index. Instead, it is the directly observed
magnetic field variations at a particular site that are modeled. Secular variations are
first removed from the observed geomagnetic records by a piecewise linear fit to quiet-
time annual means. Then, the daily quiet-time variations are modeled by radial-basis
function networks taking local time, day number, and solar 10.7 cm radio flux as input.
The annual and solar-cycle modulations of the regular variations are thus accounted
for. The remaining horizontal disturbance components AX and AY are modeled
with gated TDNis taking local time and a sequence of solar-wind data as input.

This modeling procedure is used in paper IV to predict the geomagnetic variations
at Sodankyld Geomagnetic Observatory, located near the peak of the auroral zone. It is
shown that 73% of the AX variance, but only 34% of the AY variance, is predicted
by the neural networks. The reason for this large difference is not clear. However,
one potentially important factor is the different spatial scales of the source currents.
Large-scale ionospheric electrojet currents have a predominant east-west flow direction.
These are the currents that generate AX. The spatial scales of currents flowing in the
north-south direction, which are the currents that generate AY’, tend to be smaller.

The above figures refer to prediction of the irregular variations, or disturbances.
The corresponding figures for prediction of 4/ transient variations, including both
the regular and the irregular components, are 74% and 51% for the northward and
eastward components, respectively. Compared to predictions of the irregular variations
alone, the prediction accuracy is significantly improved for the eastward component,
whereas the accuracy is nearly the same for the northward component. This result
reflects the fact that the regular variations contribute a larger part of the total variability
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for the eastward component than for the northward component. The magnitudes of
the northward and eastward regular variations are nearly equal, whereas the irregular
variations A X are considerably larger than AY". It is also emphasized in paper IV that
the prediction accuracies are subject to a strong local-time modulation. An example of
observed and predicted horizontal field disturbance is shown in Fig. 11.

One motivation for Paper V was the apparent success of Elman recurrent networks
to predict the storm-time Dst variations.*® The evolution of Dst is partly governed
by the solar-wind input and partly by internal magnetospheric processes, and ERNs
are apparently able to describe at least a part of the dynamics of the solar wind-Dst
relation. To what extent would ERNs be able to approximate the solar wind-AFE
relation, with its completely different dynamic characteristics?

Paper V describes predictions of AE using both ERNs and TDNS, with data at a
2.5-minute time resolution. The data are essentially those used by Bargatze et al.*? It is
shown that an ERN can predict 71% of the observed AFE variance using only a single
sample of solar wind n, V, and B, as input, i.e. with no time-lagged external input
data at all. A neural network with identical solar-wind input, but without a feedback
mechanism, only predicts around 45% of the observed AE variance.

The ERNs are compared to TDNs taking a sequence of time-lagged solar-wind
data as input. To reach comparable prediction accuracies as an ERN, a TDN needs up
to 100 minutes of input data. The fact that it takes nearly 100 minutes of solar-wind
data for a TDN to accomplish what an ERN can do with a single 2.5-minute sample of
input data, shows that something of the solar wind-AE dynamics have been encoded
into the feed-back structure of the ERN. The structure of the ERN can be very simple
and still produce relatively accurate predictions: from 1 to 4 input nodes (depending
on what solar-wind parameters are used), 4 hidden nodes, 4 context nodes, and a single
output node. In fact, with only 2 hidden nodes, an thus 2 context nodes, the ERN
produce predictions that are surprisingly accurate.
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Abstract. We have used time-delay feed-forward neural
networks to compute the geomagnetic-activity index
Dy one hour ahead from a temporal sequence of solar-
wind data. The input data include solar-wind density n,
velocity V and the southward component B, of the inter-
planetary magnetic field. Dy, is not included in the input
data. The networks implement an explicit functional rela-
tionship between the solar wind and the geomagnetic
disturbance, including both direct and time-delayed non-
linear relations. In this study we especially consider the
influence of varying the temporal size of the input-data
sequence. The networks are trained on data covering
6600 h, and tested on data covering 2100 h. It is found
that the initial and main phases of geomagnetic storms are
well predicted, almost independent of the length of the
input-data sequence. However, to predict the recovery
phase, we have to use up to 20 h of solar-wind input data.
The recovery phase is mainly governed by the ring-current
loss processes, and is very much dependent on the ring-
current history, and thus also the solar-wind history. With
due consideration of the time history when optimizing the
networks, we can reproduce 84% of the Dy variance.

1 Introduction

The earth’s magnetosphere responds to the ever-changing
solar-wind conditions in a variety of ways. Some of the
resulting magnetospheric disturbances can be detected at
the earth’s surface as geomagnetic disturbances due to
changes in the large-scale electrical current systems flow-
ing in the magnetosphere and ionosphere. A widely used
index for quantifying the disturbance level is Dy, which
originally was introduced by Sugiura (1964) as a measure
of the ring-currrent magnetic field. This index is defined as
the reduction of the horizontal magnetic component at

Correspondence to: H. Gleisner

the geomagnetic dipole equator, and has often been used
in studies of the solar wind-magnetosphere coupling.

A typical low-latitude disturbance, the geomagnetic
storm, can be divided into three phases with different
causes and characteristics. The initial phase is caused by
an increased solar-wind dynamic pressure acting on the
magnetopause as a result of the arrival of a solar-wind
disturbance. The increased pressure compresses the day-
side magnetosphere, forcing the magnetopause current
closer to the earth while at the same time increasing it. It
has been shown that the resulting Dy, enhancement is
proportional to the square root of the solar-wind dynamic
pressure (Siscoe et al., 1968; Ogilvie et al., 1968).

The main phase is due to an increase in energetic ions
and electrons in the inner magnetosphere, where they
become trapped on closed magnetic field lines and drift
around the earth, thus creating the ring current. This
current creates a magnetic field opposing the geomagnetic
field at the ground, and can be measured as a large
decrease in the horizontal geomagnetic component (Akaso-
fu and Chapman, 1961).

The ring current is subject to several loss processes. It
will gradually lose particles to the upper atmosphere and
the surrounding plasma populations. This can be seen in
a ground-level magnetogram as the recovery phase, a slow
recovery of the geomagnetic field back to its undisturbed
strength (Williams, 1983).

This picture of the classical, low-latitude geomagnetic
storm is very schematic. In reality, the storms show a con-
siderable variety as a result of the diversity of interplan-
etary disturbances (Akasofu, 1981).

The development of Dy; can (after correction for a vary-
ing dynamic pressure) be described in terms of source and
loss mechanisms, following, for example, Akasofu (1981):

d(Ds:)
dt

The build-up of the ring current depends on the efficiency

of the coupling between the solar wind and the magneto-

sphere. This efficiency in turn depends on the magnitude
and direction of the interplanetary magnetic field (IMF),

—o-1p, ()
T
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the most efficient being an IMF with a large southward
component (Rostoker and Falthammar, 1967). The source
term Q in Eq. 1 thus becomes a function of the solar-wind
conditions, and controls the development of the main
phase.

The ring-current particles are subject to several loss
processes and the total decay rate t varies considerably
during a geomagnetic storm, mainly because different ion
species have different lifetimes in the ring current (Will-
iams, 1983). This decay is governed by the loss term in
Eq. 1, which controls the development of the recovery
phase.

Since in situ measurements of solar-wind properties
became generally available, various methods have been
used for studying the relationships between the solar wind
and the magnetospheric response. Burton et al. (1975)
developed a simple empirical model for predicting Dy sole-
ly from the solar-wind dynamic pressure and the dawn-
to-dusk component of the interplanetary electric field. A
similar study was presented by Feldstein et al., in 1984.
Another empirical model, though somewhat more com-
plicated and including non-linear responses, was used by
Goertz et al. (1993) to study the response of the auroral
electrojet to the solar wind.

Amongst the general-purpose methods, the linear fil-
ters have caught most attention during the last 15 years.
They were first applied to magnetospheric physics by
Iyemori et al. (1979) and Iyemori and Maeda (1980), and
have also been used by McPherron et al. (1986) to study
the magnetospheric response, in terms of Dy, to the solar-
wind input. A detailed description of the technique is
given by Clauer (1986). Other studies of the solar wind-
magnetosphere coupling have later been made using lin-
ear filtering methods (Bargatze et al., 1985; Fay et al.,
1986; Detman et al., 1993). By using non-linear filtering,
the geomagnetic-activity predictions have been further
improved (Vassiliadis et al., 1995).

Prediction of the Dy index by means of artificial neural
networks was introduced by Lundstedt (1992a, b). Neural
networks have since been used by Freeman and Nagai
(1992), and Lundstedt and Wintoft (1994). This technique
has previously proved to be an efficient and rather simple
way of finding complex non-linear relationships between
two sets of interrelated data, something which is described
in detail by Hertz ez al. (1991). In this study we continue
the work of Lundstedt and Wintoft aiming at predicting
all phases of geomagnetic storms, including the recovery
phase, using feed-forward neural networks.

2 Geomagnetic and solar-wind data
2.1 Data

Solar-wind plasma and IMF data have been available
from measurements aboard many spacecraft since the
beginning of the 1960s. Some of these data have been
compiled by J. H. King (Couzen and King, 1986), and are
distributed by the National Space Science Data Center.
Solar-wind data, as measured from spacecraft outside the
earth’s bow shock either in earth orbit or in halo orbit
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around the sun-earth libration point L;, have been se-
lected and normalized. They are given as hourly averages,
and the magnetic-field vectorial data are given in geocen-
tric-solar-magnetospheric (GSM) coordinates.

The geomagnetic index Dy, is also available in the King
compilation.

2.2 Data preparation

We selected data from the 21-year period 1963-1983.
These data consist of 75 storm-time periods and 9 relative-
ly quiet periods (—10 < Dy < 10 nT), in total 84 periods
covering 8800 h. The periods varied in length from 44 to
144 h, and no data gaps larger than 4 h occurred within
each period. Missing data were replaced by linearly inter-
polated values. The 84 periods were divided into two
groups: training data (62 periods covering 6600 h) and test
data (22 periods covering 2100 h).

As input to the networks we used n, V and B, a number
of hours back in time, while the network output data were
Dg: one hour forward in time. To get a reasonable working
range for the nodal transfer functions, all input data were
scaled to the interval [—1.0, +1.0] and the output data
were scaled to [—0.8, +0.8].

3 The time-delay feed-forward neural network
3.1 General

We have modelled the magnetospheric response to the
temporally varying solar wind by artificial neural net-
works. These implement a functional relationship from
a time series of solar-wind data

¢, e —1),8t—2),....8Ct—(r,— 1))
to a magnetospheric response
ot +1),

where the Dy index is used as a measure of the magneto-
spheric response. Dy is computed one hour ahead, which
is approximately the same as the L;-magnetopause travel
time. The input data are independent of the output data,
i.e. the functional relationship does not include any auto-
correlation of Dg. This is of practical importance, since
Dy: is not available in real time.

A feed-forward network (Hertz et al., 1991) is arranged
in layers of nodes (Fig. 1). The input to the nodes in one
layer is the sum of the weighted outputs from the nodes in
the previous layer. The output from a node is given by the
input to the node and the nodal transfer function, usually
a sigmoidal function. Usually all nodes in one layer are
connected to all nodes in the next layer, i.e. the networks
are fully connected. There are no connections between
nodes in the same layer. An additional node, the bias
node, is set to 1 and connected to all hidden and output
nodes in the network. The purpose of this is to adjust the
nodal transfer functions. The key to network performance
is the weights determining the strength of the connection
between nodes. Since this network type belongs to the
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Fig. 1. The network with input nodes to the left and the single
output node to the right. In the feed-forward phase the input is
propagated through the net to the output. The error between actual
output and desired output is propagated backwards through the net
and the weights are updated accordingly. The bias node is always set
to 1, as indicated. Input data sequence length t,, varies from 4 to 24 h

class of supervised networks, it is trained by adjusting the
weights until the average error on a set of known training
examples is minimized. The most common training algo-
rithm is a modified form of gradient descent called error
back-propagation (Rumelhart et al., 1986).

The neural networks used in this study were feed-
forward networks with one hidden layer and one output
layer. The input data to the networks are organized as
a temporal sequence, where data sampled during a time
window of length z,, is shown to the network simulta-
neously. To get a time sequence of output data, this
window is moved stepwise in time. The feed-forward neu-
ral network, together with this type of organization of the
input data, is often referred to as a time-delay neural
network.

For an input-output pair, or example, g, the network
output is given by

Of =go (z Wing <z Wik é#))v (2
j k

where (¢, k =1 ... m)is the input-data vector. Here in-
dex i refers to a node in the output layer, index j to
a hidden-layer node and index k to an input-layer node.
Superscript u denotes the examples. W; is thus a weight
connecting two nodes between the hidden and output
layers, while wj, connects nodes between the input and
hidden layers; gy is the transfer function for nodes in the
hidden layer and g, is the transfer function for the output-
layer nodes. These are hyperbolic tangent functions for
hidden-layer nodes, and linear functions for output-layer
nodes. The network output for an input vector
(&, k=1...m)is then given by

o* = Z(Wj-tanh<z wjkéi‘)), ?3)

J

where index i has been omitted since the output vector
consists of a single value, the predicted Dy index.

The network error is defined as the sum of the indi-
vidual errors over a number of examples, an epoch. The
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Table 1. Architectures and data sets of the six networks. See text for
the explanation of Ny, Ny, Nw, Qrgy and Orsr

Network Ny Ny Nw Qrry Orst
NET4 12 45 631 6359 1997
NET8 24 23 599 6111 1909
NETI12 36 15 571 5863 1821
NET16 48 11 551 5615 1733
NET20 60 8 497 5367 1645
NET24 72 7 519 5119 1557
network error is then given by
1
E=3 Y (0" — D)~ 4

u

3.2 Network setup — choice of network size

After choosing the type of network, in this case a feed-
forward network with one hidden layer, one must decide
the number of nodes in each layer. In the output layer
there is only a single node, the predicted D index. The
number of nodes in the input layer is determined by the
number of input data. Since we used three hourly solar-
wind parameters during 7, hours as input data, each
network had 3r,, input nodes. Six networks were created
with varying size of input window: 4, 8,12, 16,20 and 24 h
respectively. Their number of input nodes are shown in
Table 1.

The size (i.e. number of weights) of each network is only
determined by the number of hidden nodes, as the number
of input and output nodes are given. The number of
weights in the network has to be large enough to represent
the full complexity of the problem, and it has to be small
enough not to overfit and lose generalization ability. The
minimum number of weights is thus determined by the
complexity of the relationship we are trying to model,
while the maximum number of weights is determined by
the number of training data available. We chose to set the
number of hidden nodes so that the number of weights in
each network is approximately one tenth of the number of
training data available. This rule was earlier used by
Lundstedt and Wintoft (1994). The number of hidden
nodes is however not a critical parameter, which is further
discussed in Sect. 4.3.

In the discussions below, the six networks are referred
to as NET4, NETS, NET12, NET16, NET20 and NET24.
The number of input nodes (N;), the number of hidden
nodes (Ny), the number of weights (Ny), the number of
training examples (Qrgy) and the number of test examples
(Qrst) are shown in Table 1.

3.3 Network training

Training a network means finding a set of weights that
minimizes the average error on the training set. The train-
ing is done iteratively, by showing the network known
input-output pairs, calculating the error and updating the
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weights accordingly. The weights are not updated after
every input-output pair but after a number of examples,
an epoch, which here was chosen as 500. The weight
changes are given by the error derivatives and the weight
changes in the preceding iteration,

—V(-—E+1-Aw(i), (5)
dw

where # and « are the learning rate and the momentum.

The error derivatives are calculated according to the error

back-propagation algorithm. The learning parameters are

chosen according to a simple rule of thumb suggested by

Lundstedt and Wintoft (1994):

1

-oF
1/N
01’

where Q is the epoch size and N is the fan-in, ie. the
number of connections going into a node.

The weights were initiated to random values in the
interval

1 1
-, +—=, 8
[ NG \/ﬁ} ©
in order to keep the typical nodal input somewhat less
than unity (Hertz et al., 1991).

The total amount of training data includes 6607 h from
62 different periods. The length of each period is reduced
by the size of the input-data window z,, ie. there is less
data available when using larger input-data windows, as
shown in Table 1.

Aw(i+ 1) =

n (6)

=1 ™

3.4 Network testing

The real test of a fully trained neural network is how well
it can be expected to perform on inputs for which the
output is not known in advance. We then need a statis-
tically fair sample of input-output pairs which has not
been shown to the network during training. For this
purpose we used 22 periods covering 2085 h. These test
data were not included in training the network.

The performance of the networks was checked accord-
ing to three criteria: correlation coefficient (r) between
measured and computed Dy, average relative variance
(ARV) and the RMS error (RMSE). These are defined by

| 20" =<0)) (D5 = (D)
r - , ©)

Orsr 00°0Opst

> (0" — DYy’
ARV=—t (10)

Y (D% — (D)

u

RMSE =

> (0" =Dy, (1)

Orsr
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where the sums include all the examples in the test set.
{0) and {Dy) are the averages of the network output
O and the desired output Dy, respectively; oo and o are
the corresponding standard deviations.

4 Results
4.1 General

Figure 4a—f shows correlation plots for the test data. Each
of the plots includes the whole test set. The overall per-
formance of the six trained networks is also shown in
Table 2 and Fig. 2.

The most striking result is the better performance of
networks with larger temporal size of the input-data se-
quence, t,,. With 7, large enough, we could reproduce
84% of the variance of the Dy index (i.e. 72~0.84). The
improvements with increased z,, are significant in all three
performance criteria. This is, however, only valid up to
a certain level of t,,, up to somewhere between 15 and 20 h
as shown in Fig. 2. No further improvement is achieved by
increasing t,, above this level.

In order to gain more insight into the physical reason
for the improved performance when increasing t,,, we
have to study predictions of individual geomagnetic
storms (Fig. 5a—f).

All networks succeed in predicting the initial and main
phases of the geomagnetic storms. The predicted onset
and strength of the main phase is well correlated to the

Table 2. Overall performance of the six trained networks. See text
for the explanation of r, ARV and RMSE

Network r ARV RMSE/nT
NET4 0.84 0.30 22
NET8 0.87 0.24 19
NETI12 091 0.17 16
NET16 0.92 0.15 16
NET20 0.92 0.15 15
NET24 0.92 0.15 15
25 0.4

ORMSE

e (1-r)

s ARV

(1-r) and ARV

1 1 L O

0 5 10 15 20 25
Length of input data sequence (h)

Fig. 2. Overall performance using different lengths of input-data

sequence. The scale to the left measures the RMSE, while the scale to
the right measures both ARV and 1 —r
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measured Ds. The initial phases are predicted, but the
predictions are in some cases smaller than the measured
initial phases. The recovery phase is well predicted for
some of the networks, but not for others, and here we find
the main reason for the difference in performance between
networks using different sizes of input-data sequences.
A typical example of this behaviour can be seen in
Fig. Sa—f showing the measured and computed Dy indices
for a major geomagnetic storm. The storm starts by a den-
sity peak at the same time as a velocity increase, thus
creating a peak in the dynamic pressure. B, turns south-
ward and the main phase starts. After a few hours
B, slowly starts to increase until at 46 h it turns north-
ward. From now, and some hours forward in time, the
geomagnetic disturbance level is mainly controlled by the
slow decay of the ring current. When only a small part of
the solar-wind history is available to the network, the
predicted recovery phase ends abruptly after only a short
time. Increasing the length of the time history makes the
predictions more accurate. The improvements are notice-
able up to a length of the time history somewhere between
15 and 20 h. This is the same conclusion as can be drawn
from the overall performance results.

The initial and main phases, on the other hand, seem to
be well predicted, almost independent of the length of the
available solar-wind history. This is a consequence of the
fact that the connection between the solar wind and the
geomagnetic disturbance is more direct during these
phases.

4.2 Influence of the solar-wind history

Most of the geomagnetic storm behaviour can be under-
stood in terms of two concurrent mechanisms: (a) com-
pression of the magnetosphere caused by an increased
solar-wind dynamic pressure and (b) build-up and sub-
sequent loss of the ring current. There is an important
difference between these two mechanisms. The first gives
a direct connection between solar-wind conditions and
ground-level geomagnetic field disturbance; the second
includes delays and time-dependent transport and dissipa-
tion processes, such that the geomagnetic disturbance
becomes a function not only of the current solar-wind
conditions, but also of the solar-wind history. These time
dependences introduced by magnetospheric processes are
particularly important during the recovery phase of
geomagnetic storms.

To predict accurately Dy at a certain time, the network
must have information from which it can calculate the
amount of energy that has been injected into the ring
current, and at what time it was injected. The length of the
magnetospheric “memory” then determines the necessary
length of the solar-wind history. This “memory” has
a finite length due to dissipation. It is determined by the
efficiency of the ring-current loss processes, which can be
quantified by the ring-current decay time. The length of
the solar-wind time sequence, used as input to the net-
work, has to be a significant fraction of the decay time.
This demand is a consequence of the underlying physics of
the problem and not a limitation of the neural networks.
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Fig. 3. Overall performance for networks with 16 h of input data
and a varying number of hidden nodes. The scale to the left measures
the RMSE, while the scale.to the right measures both ARV and
1 — r. The number of hidden nodes has to be less than three to give
a significant decrease in performance

If this outline of the necessary amount of input data is
correct, then we would expect the predictions to be more
accurate the larger input-data sequence we use, up to
a certain limit. This is also what we saw in both the overall
results and in studies of individual geomagnetic storms.
The saturation of the performance measures (Fig. 2) at
15-20 h gives the approximate length of the magneto-
spheric “memory” as seen by the neural networks.

4.3 Influence of the number of hidden nodes

One disadvantage of using a large input-data sequence is
that the number of input nodes, and thus also the number
of weights, becomes large. If we want the number of
weights to be a specific fraction of the number of training
data, then we have to remove hidden nodes as the size of
the input-data sequence increases. There could then be
a risk that the network loses its ability to model the full
complexity of the problem. In practice this seems not to be
the case. Starting with NET16 and varying the number of
hidden nodes from 10 down to 1 results in the RMSEs,
ARVs and correlation coefficients shown in Fig. 3. The
number of hidden nodes has to be less than three to give
a significant decrease in performance, which is much less
than the number used in any of the networks in this study.

5 Discussion and conclusions

Based on these results, we can now summarize the abilities

of the networks:

e The initial and main phases of geomagnetic storms are
well predicted with only 2 to 4 h of solar-wind data
available.

o The recovery-phase predictions are improved by the
availability of a larger part of the solar-wind history.
The improvements are significant up to 15-20h of
solar-wind data, which is the approximate length of the
magnetospheric “memory” as seen by the neural net-
works.
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Fig. d4a—c. Test-data correlation plots for the networks NET4,
NETS8 and NET12. The plots include all test data

e Up to 84% of the variance of the Dy index was repro-
duced, using a large test set consisting of 2100 h of
varied solar-wind and geomagnetic conditions.

e The neural networks that can make these excellent
predictions are simple. The number of hidden nodes can
be small, suggesting a fairly simple relationship between
the solar wind and the D index (using 1-h averaged
data). The size of the network is determined by the
necessity of using 15 to 20 h of solar-wind data.

How do these results compare to previous studies using

other methods?

Using linear filters with solar-wind dynamic pressure
and the dawn-to-dusk component of the interplanetary
electric field, McPherron et al. (1986) and Fay et al. (1986),
both found that they could account for 70% of the
Dy variance. When studying the two filters (i.e. the P,y,-
and the E filters) separately, McPherron et al. found that
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Fig. 4d—f. Test-data correlation plots for the networks NET16,
NET20 and NET24. The plots include all test data

the dynamic-pressure filter had a width of only about
10 min, while the electric-field filter had a very long dura-
tion. They drew the conclusion that the characteristics of
the electric-field filter are due to the long time constants
associated with the decay of the ring current. This is in
accordance with our finding that the recovery-phase pre-
dictions are very much dependent on the ring-current
history, and thus also the solar-wind history.

Another method is to fit an analytical expression to
solar-wind and geomagnetic-activity data. An example is
Gonzalez et al. (1989), who systematically tested a number
of analytical formulas for the prediction of the Dy index.
They occasionally found correlation coefficients above
0.90 for individual storms, but the average over a more
diverse set of storm-time periods was considerably lower.
A major advantage of the analytical formulas of Gonzalez
et al. is that they explicitly reveal the quantitative depen-
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Fig. 5a—c. The measured ( filled line) and predicted (dotted line)
Dy indices for a major geomagnetic storm. The predictions are made
with the networks NET4, NET8 and NET12

dence on the most important solar-wind parameters. The
only previous paper claiming equal correlations to the
present study is Goertz et al. (1993). They used an empiri-
cal non-linear model to predict the auroral electrojet
index AE, and found a correlation coefficient of 0.92. The
stated correlation was, however, criticized by McPherron
and Rostoker (1993), based on an assumed biased selec-
tion of test data.

To compare different prediction methods is a difficult
task. The correlation between measured and computed
geomagnetic-activity indices depends on the type of index,
averaging of data, as well as the statistical properties of
the sample used for testing the methods. In the present
study we have predicted 1-h averages, which is consider-
ably less complicated than, for example, predictions of
high time-resolution quantities such as AU, AL or AE. We
have been very careful in selecting a large, varied and
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Fig. 5d—f. The measured (filled line) and predicted (dotted line)
Ds: indices for a major geomagnetic storm. The predictions are made
with the networks NET16, NET20 and NET24

unbiased test set. The presented correlations should there-
fore be valid for continuous predictions made during
a long time span.

A practical use of the presented neural-network tech-
nique would be real-time predictions of the geomagnetic
activity one hour ahead. This will need a spacecraft con-
tinuously monitoring the solar wind at the sun-earth lib-
ration point L. To make accurate predictions during the
recovery phase, 15 to 20h of continuous solar-wind
measurements are necessary. However, to predict the ini-
tial and main phases of a geomagnetic storm, 2 to 4 h of
continuous measurements are enough.

The neural network, based only on measurements, can
be seen as a purely empirical model of the whole chain of
dynamical processes connecting the solar wind with the
inner magnetosphere and the ring current. We can there-
fore use it to investigate the solar wind-magnetosphere
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coupling and the magnetospheric dynamics controlling
the energy flow from the solar wind to the ring current.
Based on selected periods of well-behaved solar-wind
data, it should be possible to use the networks for various
sensitivity studies. The goal of such studies could be the
variations of the injection rate Q and the decay rate t,
with the strength of the storms or the solar-wind condi-
tions in general.

Another interesting application of time-delay neural
networks is the prediction of high time-resolution mag-
netic data connected with the substorm phenomenon. The
successful development of a method to predict such
geomagnetic quantities could be a step toward an im-
proved understanding of substorms and substorm trigger-
ing mechanisms.
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Response of the auroral electrojets to the solar wind
modeled with neural networks

H. Gleisner and H. Lundstedt
Lund Observatory, Lund, Sweden

Abstract. The dissipative processes in the Earth’s magnetosphere, such as the ring current
and the auroral electrojets, depend on both the external solar wind forcing and factors
internal to the magnetosphere. Previous studies have shown that artificial neural networks
are able to compute the ring current index Dst very accurately from only solar wind data.
In this study, we use neural networks to model the response of the auroral electrojets to the
solar wind conditions. The solar wind input to the networks consist of 5-min averaged data
from the Earth-orbiting spacecraft IMP 8, while the output is the auroral electrojet index
AE. The relationships between the solar wind and the AE index, as modeled by the neural
networks, are investigated in a parameter study. The relative importance of individual solar
wind variables is studied, as well as the abilities of various coupling functions. It is shown
that the use of individual solar wind variables as input to a neural network is superior to
the use of corresponding coupling functions. The nonlinear neural networks are related to
earlier linear techniques, and the abilities of linear networks (linear filters) are compared
to those of nonlinear networks. It is found that a nonlinear network with n, V, By, and
B, as input during 100 min can account for 76% of the variance (r~0.87) in the AE
index. No influence of B, is found. With the coupling function p!/2V2 B, as input to a
nonlinear network, 71% of the AF index variance is predicted. These results are averaged
over a large test set (~ 330 hours) of data not used to train the networks. The test data
are from 1973-1974 and include a diverse set of conditions, ranging from almost quiet to

exceptionally disturbed.

1. Introduction

Efforts to predict geomagnetic activity have led to many
correlation studies using a rich variety of techniques (e.g.,
the collection of papers edited by Kamide and Slavin [1986]).
The geomagnetic activity has mostly been quantified by some
global index that measures the effects of the major current
systems in the magnetosphere and ionosphere. Two of the
most widely used indices are Dst and AE [Baumjohann,
1986]. Dst measures the geomagnetic activity at low lati-
tudes and responds most strongly to the ring current and the
magnetopause currents. AE measures geomagnetic activity
at auroral latitudes and responds to the convection electro-
jets (the DP 2 current system) and the substorm electrojets
(the DP 1 current system). While Dst has been shown to
be fairly easy to correlate to solar wind data [Burton et al.,
1975; Iyemori et al., 1979; Clauer, 1986), the response of
AE to the solar wind conditions has proven to be less easy
to determine [Holzer and Slavin, 1982; Clauer, 1986]. One
reason for these difficulties could be that there are two types
of substorm-like magnetic signatures contributing to the AE
index [Pytte et al., 1978]: one is directly driven by the solar
wind and is caused by modulations of the enhanced convec-
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tion that occurs when the interplanetary magnetic field has
a southward component, while the other includes current-
wedge formation and near-midnight magnetic disturbances.
Whether the latter type of geomagnetic disturbance is caused
solely by some internal instability or triggered by external
changes in the solar wind is a matter of much controversy.

Although the solar wind is known to be the primary source
of energy that drives the dissipative processes in the magneto-
sphere, there still remains fundamental questions concerning
how the energy is transferred from the solar wind and how it
is further transformed into the various geomagnetic activity
signatures. A widely used approach has been to combine a
few relevant solar wind variables into a coupling function.
The linear correlation between this coupling function and a
geomagnetic activity index has then been calculated, after in-
cluding a proper time delay. Following the demonstration by
Arnoldy [1971] of a close relationship between AE and the
rectified dawn-to-dusk component of the interplanetary elec-
tric field, many coupling functions have been investigated.
With the introduction of the linear filter technique by Iyemori
et al. [1979], the linear correlation studies were extended to
take into account a whole time series of solar wind input, still
in the form of coupling functions.

The abilities of the linear filters depend on the dynamical
properties of the magnetosphere, particularly the linearity
and time invariance of the magnetospheric response to the
solar wind. In a linear filter study by Bargatze et al. [1985],
it was shown that the magnetospheric response to the solar
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wind conditions varies with the level of geomagnetic activity.
Further, as first shown by Russell and McPherron [1973],
there is clear evidence for the existence of a component in the
geomagnetic activity that is not directly driven by the solar
wind. These findings imply a nonlinear and time-varying
magnetospheric response that can not be properly modeled
by linear filters.

During the last years, interest has turned toward nonlinear
dynamical methods. Two approaches have emerged: ana-
logue modeling and data-based phase space reconstruction.
The recent development of analogue modeling started when
Baker et al. [1990] adapted a dripping faucet analogue model
to describe magnetospheric dynamics. This work was fol-
lowed by Goertz et al. [1993] with a directly driven model
of the AE index and by Klimas et al. [1992, 1994] with the
so-called Faraday loop model. All these analogue models
consist of low-dimensional systems of ordinary differential
equations, which have the advantage that a physical inter-
pretation is made possible. This is contrary to data-based
input-output analysis methods, such as phase-space recon-
struction, which lack an immediate physical interpretation
but that instead have the advantage that system characteris-
tics are determined directly from empirical data. Data-based
phase-space reconstruction was used by Price and Prichard
[1993] after they pointed out the inadequacy of treating the
magnetospheric system as autonomous. Several input-output
studies followed [Price et al., 1994; Vassiliadis et al., 1995].
Then in 1993, Hernandez et al. [1993] described a study
where two types of neural networks were used to model the
AL index, but the results were not conclusive. However,
other studies have shown that artificial neural networks are
able to compute the Dst index from solar wind data very ac-
curately [Lundstedt and Wintoft, 1994; Gleisner et al., 1996;
Wu and Lundstedt, 1996]. It thus seems appropriate to con-
tinue a further exploration of neural network-based analysis
methods applied to high time resolution auroral-zone geo-
magnetic activity.

The emphasis of this paper is on the abilities of fairly stan-
dard neural networks as an empirical model of the solar wind
forcing of the auroral electrojets. The strength of the elec-
trojets is quantified by the 5-min averaged AE index. After
training the networks, they are evaluated in terms of the cor-
relation between the observed and the computed A E indices.
The relative importance of individual solar wind variables is
studied, as well as the abilities of various coupling functions.
Linear and nonlinear networks are compared and the qualita-
tive agreement between the observed and the computed AE
is studied during 2 days in March 1974. It is the purpose of
the present study to show the usefulness of nonlinear neu-
ral network models and to point out some possible physical
interpretations of the results.

2. Artificial Neural Networks

Some of the most widely used artificial neural network
models have much in common with the various filters that
have been applied to magnetospheric physics. The stan-
dard neural network techniques (multilayer feed-forward and
partly recurrent networks) can be regarded as nonlinear gen-
eralizations of linear filters. In this paper, we use both linear
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and nonlinear feed-forward neural networks, where the linear
neural networks correspond to linear filters.

2.1. Linear and Nonlinear Filters

The linear moving-average (MA) filter, and its nonlinear
generalizations, is based on the assumption that the geomag-
netic activity O can be described as a function of a time series
of solar wind variables 7,

0. = F(It—h]z—zw--,ft—T), (1)
where T is the length of the magnetospheric system mem-
ory for previous inputs. No geomagnetic activity variables
are included among the independent variables. The discrete
linear MA filter output is given by

T
01 = (HrL—s)

T=1

)

that is, the impulse response function of the magnetospheric
system, H,, is convolved with a sequence of earlier solar wind
inputs. For a filter to be linear, H; must be time invariant and
exhibit no dependence on the solar wind input. However, it
has been shown [Bargatze et al., 1985] that the empirical im-
pulse response function depends on the level of geomagnetic
activity, an indication that the real magnetospheric system is
in fact nonlinear.

The nonlinear filter can be cast in many forms. One of the
simplest forms of nonlinearity is to approximate the nonlinear
response F' locally by linear filters of the type given by
equation 2. To give a nonlinear response, H; must then
depend on the solar wind input [Vassiliadis et al., 1995]. As
shown below, the multilayer feed-forward neural network can
also be regarded as a nonlinear generalization of the linear
MA filter [Hertz et al., 1991; Hernandez et al., 1993].

2.2. Feed-Forward Neural Networks

2.2.1. General. A feed-forward neural network [Hertz
et al., 1991] is a collection of processing nodes arranged in
layers (Figure 1). The input to each node is the sum of the -
weighted outputs from all the nodes in the previous layer
and the activity of each node is passed on to all the nodes in
the following layer. The output from a node is given by the
input to the node and the nodal activation function, which is
a differentiable, saturating function. An additional node, the
bias node, is set to 1 and connected to all hidden and output
nodes in the network (Figure 1). The purpose of this is to
adjust the nodal activation functions.

The key to network performance is the weights determin-
ing the strength of the connection between nodes. Since this
network type belongs to the class of supervised networks,
it is trained by adjusting the weights until the average er-
ror on a set of known training examples is minimized. The
most common training algorithm, which is also used in this
study, is a modified form of gradient descent called error
back-propagation [Rumelhart et al., 1936].

The neural networks used in the present study all have
one hidden layer and one output layer. The input data to the
networks are organized as a temporal sequence, where input
data sampled during a time window of length L are shown to
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Figure 1. A network withi (left) input nodes and (right) the
single output node. In the feed-forward phase, the input is
propagated through the network to the output. The error
between the computed output and the observed AE is prop-
agated backward through the network, and the weights are
updated accordingly. The bias node is always set to 1 as
indicated. The temporal length L of the input data sequence
varies from 20 to 100 min.

the network simultaneously. To get a time sequence of output
data, this window is moved stepwise in time. A feed-forward
neural network, together with this type of organization of the
input data, is often referred to as a time delay neural network.

For an input data vector, {€£;k = 1,2,...,m}, with m
components, the network output is given by

OF =go [E Wisgn(d w]‘kfg)} . ©)
7 k

Each input-output pair {££, O} is labeled by superscript .
Index ¢ refers to a node in the output layer, index j refers
to a hidden layer node, and index k refers to an input layer
node. The weight W;; thus connects a hidden layer node with
an output layer node, while w;; connects input and hidden
layer nodes. Here gy and go are the activation functions for
nodes in the hidden layer and output layer, respectively. In
the present study, g is the hyperbolic tangent function, and
go is a linear function. The network output is then given by

or=%"

~J

[Wj tanh(} " w;iéf )] , @
k

where index ¢ has been omitted since the output vector con-

sists of a single value, the predicted geomagnetic index. If

both activation functions go and gy are linear, then we can

write the network output

or=3" [W,-(Z wJ'kfi')] =3O Wiwirér). (5)
J k k7

As the input vector £§ represents a time series of data, we

can identify the inner sum of equation 5 with the impulse

response coefficients of equation 2
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Ht = ZVVj‘U}]’t. (6)
J

The feed-forward neural network with linear activation func-
tions is obviously identical to a linear filter. With nonlinear
activation functions, the neural network can be regarded as a
nonlinéar generalization of the basic linear filter.

2.2.2. Network setup. After a certain network architec-
ture has been specified, in this case a feed-forward network
with one hidden layer, the number of nodes in each layer
has to be determined. In the output layer, there is only a
single node, the predicted geomagnetic index. The number
of nodes in the input layer is determined by the number of
input data. This in turn is determined by the temporal length
of the input data time series, L, and the set of solar wind
variables included in the time series. Using, for example,
5-min averages of n, V, and B, during L = 60 min makes a
total number of 36 nodes in the input layer.

The size (i.e., the number of weights) of a network is only
determined by the number of hidden nodes as the number of
input and output nodes are given. The number of weights
in the network has to be large enough to represent the full
complexity of the problem, and it has to be small enough not
to overfit and lose generalization ability. As a rough rule of
thumb, the number of weights in the network should be less
than one tenth the number of training data [Lundstedt and
Wintoft, 1994], which in this study means that the number of
weights should be less than ~1690 . All the networks we use
here have eight hidden nodes. With this number of hidden
nodes, we avoid the problems with too few or too many
weights in the networks. This matter is further discussed in
section 4.1.4 where we show eight hidden nodes to be a good
choice.

2.2.3. Network training. Training a network means find-
ing a set of weights that minimizes the average error on the
training set. The training is done iteratively by showing the
network known input-output pairs, calculating the network
error and updating the weights accordingly. The weights are
not updated after every input-output pair but after a number
of examples, an époch, which here is chosen as 1000 exam-
ples. The weight changes are given by the error derivatives
and the weight changes in the preceding iteration,

™M

where the constants 7 and « are referred to as the learning
rate and the momentum. The network error is defined as the
sum of the errors over an epoch,

8F
Wip1 = Wt + Aw; = wy — ﬂa—w + aAw,_I,

1
E=3 > (0% — AE¥Y, (8)
B

where O* is the actual output of the network and AE* is
the corresponding "correct” output. The error derivatives are
calculated according to the error back-propagation algorithm
[Rumelhart et al., 1986], and the learning parameters are
chosen as

©)
(10)
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where @ is the epoch size and N is the fan-in, the number of
connections going into a node. This choice of learning rate
has been used earlier by Gleisner et al. [1996] in a similar
study, and it is more thoroughly discussed by Hertz et al.
[1991]. The weights are initiated to random values in the
interval

1 1
77+ an
in order to keep the typical nodal input somewhat less than
unity [Hertz et al., 1991].

2.24. Network testing. Much of the practical use of
neural networks is based on their ability to make sensible
generalizations. This ability can be formally defined as the
average network performance on a randomly chosen new
data point. The true generalization ability can not be known
exactly, but it can be estimated by the network performance
on the test set, a set of randomly chosen data not included in
the training set. To get a good estimate of the generalization
ability, the test set has to be large enough to be representative
in a statistical sense.

The abilities of the networks are quantified with three
diagnostics: correlation coefficient (r) between observed and
computed AF, average relative variance (ARV'), and the
RMS test error (RM SE). These are defined by

. > (0 - (O))(AE* - (AE))

- . a2
Qrsr COCAE (12)

r

> (0# - AE+y?

ARV = £

Sap oy

_ [ 1 — AEHY?
RMSE = \/ Gron %:(Oﬂ AER?,  (14)

where the sums include the whole test set. The averages
of the computed output O and the observed output AE are
denoted (O) and (AE), respectively, while 0o and o4 are
the corresponding standard deviations.

3. Geomagnetic and Solar Wind Data

The data used in the present study span the interval from
November 1973 to December 1974. The basic geomagnetic
data consist of the 2.5-min averaged AF index obtained
from World Data Center C1 for Solar-Terrestrial Physics in
England. The AF database is complete and contains no data
gaps. Each pair of neighboring 2.5-min values was combined
into a 5-min average. The present study is based on these
5-min averages.

The solar wind data consist of 5-min averaged solar wind
plasma and interplanetary magnetic field (IMF) parameters.
These are from the Earth-orbiting spacecraft IMP 8 and are
obtained from the National Space Science Data Center in
Greenbelt, Maryland. The solar wind plasma data include the
bulk velocity V, the proton number density », and the fraction
of He?* ions in the solar wind. The IMF components B,
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By, and B, are expressed in geocentric solar magnetospheric
(GSM) coordinates. On the basis of these variables, we
computed solar wind coupling functions such as V' B;, where
B; is defined as B, = —B, when B, < Oand B; = 0 when
B. > 0. Some coupling functions also included 6, the polar
angle of the IMF vector projected onto the Y-Z plane in the
GSM system.

Since the solar wind data contain numerous gaps, a selec-
tion based on data quality was made. The data were scanned
to compile a list of intervals that were at least 24 hours long,
contained less than 10% missing data, and contained no data
gaps longer than 3 samples (i.e., 15 min). A search through
the 14-month period gave 39 intervals covering 20,900 sam-
ples, 1740 hours. Thirtytwo of these intervals are used as
training data (16,900 samples) and seven as test data (4000
samples).

Most of the intervals are separated from each other by 4
days or more since IMP 8§ is unable to measure the solar
wind conditions during 4 to 8 days in each 12.5-day orbit.
However, two of the test intervals are separated from the
preceding training intervals by 3 and 4 hours, respectively.
As pointed out by Vassiliadis et al. [1995], the separation
between training and test periods must be larger than the
autocorrelation length of the AE index to be certain that the
training and test data are uncorrelated. For the AE index,
this length is 1 to 3 hours. Considering that the separations
are larger than the autocorrelation length and that the test
data intervals are very long, the results should not be biased
by such an effect.

4. Studies and Results
4.1. Parameter Studies

A neural network should do more than just be a good
"predictor.” It should also be a tool to improve our under-
standing of the physics that control the solar wind coupling
to the auroral electrojets. Here we perform a few parame-
ter studies to investigate the abilities of neural networks as
predictors, while at the same time point out some possible
physical interpretations of the results. Training a sequence
of networks using different lengths of the solar wind history
tells us something about the timescales of the dissipation
processes that determine the magnetospheric system mem-
ory. Similarly, varying the solar wind parameters used as
input to the networks tells us something about the physics of
the energy transfer to the magnetosphere. Also, the question
of linearity or nonlinearity of magnetospheric processes can
be addressed by a suitable parameter study.

Such studies raise the question of the stability of the results.
Will they still hold with another choice of network architec-
ture? This question can also be addressed by a parameter
study. Training a sequence of networks on one specific prob-
lem, while varying the network architecture, gives us an
estimate of the influence our choice of network architecture
has on the results. In this study, the network architecture
is varied by the number of hidden nodes and thus also the
number of weights in the network.

The performances of the networks referred to in this sec-
tion are defined by equations 12, 13, and 14. They are
calculated over the whole test set, and so they constitute re-



GLEISNER AND LUNDSTEDT: SOLAR WIND - AURORAL ELECTROJET RELATIONS

alistic performances averaged over both quiet and disturbed

times.
4.1.1. Solar wind history and the magnetospheric sys-

tem memory. Many correlation studies have used solar wind
data at a single point in time to cross correlate with a geo-
magnetic activity index at a slightly later point in time. At
some time delay At, mostly between 20 and 60 min, a max-
imum correlation of 0.50-0.70 was found [e.g., Baker et al.,
1981, 1983]. By applying filters or neural networks to the
same problem, a whole time history of solar wind inputs can
be used. This allows us to study the magnetospheric system
memory of previous inputs, which in turn depends on the
efficiency and timescales of the dissipation processes in the
magnetosphere.

For each set of solar wind variables, we have trained a
sequence of networks using different temporal lengths of
the solar wind history. The length L varies from 20 to 100
min. All plots of a network performance measure versus L
show the same general characteristics as in Figures 2 and
3. The network performance improves with increasing L
until it saturates at L=~100 min. The network performance
is not improved by including solar wind data older than 100
min. This is interpreted as the length of the magnetospheric
system memory for previous inputs, as seen by the neural
network. The same result is reached with all three network
diagnostics: », RMSE, and ARV. The empirical value of
the length of the magnetospheric system memory found here
is of the same order as the linear filter timescales (~ 2 hours;
Bargatze et al. [1985]), the nonlinear filter timescales (~ 1.5
hours; Vassiliadis et al. [1995]), and also as estimates of the
total duration of substorms (~ 2-4 hours; Lui [1991]).

4.1.2. Solar wind input parameters. The proper choice
of variables to use as input to the networks is determined
by the actual mechanisms of energy transfer from the solar
wind to the magnetosphere. These are only partly known
and several mechanisms may operate concurrently. After 3
decades of solar wind measurements, we know that n, V,
and B, control much of the geomagnetic activity [Snyder et
al., 1963; Arnoldy, 1971]. The IMF component B, has also
been shown to exert an influence on the magnetosphere and
ionosphere [e.g., Heppner, 1972]. Other possible candidates
are the IMF comporient B, and the ionic composition of the
solar wind plasma. As the solar wind undergoes a shock
before arrival at the magnetopause, the plasma temperature
is strongly determined by the solar wind bulk speed V. The
temperature is thus considered unimportant.

The neural networks are first trained with five different
sets of solar wind input variables according to Figure 2. The
variables are shown to the networks separately. They are
not combined into coupling functions. After training, we
study the network diagnostics r, RM SE, and ARV. The
results, in terms of the correlation coefficient r, are shown
in Figure 2. With only V and B, as input, the correlation
is 0.83. Adding either n or B, increase the correlation
somewhat, while adding both n and B, gives the highest
correlation, 0.87 (network E in Figure 2). Using B, in
addition to V and B, , does not improve the correlation. The
correlations referred to here are for 100 min of solar wind
input. With a shorter solar wind history, the correlations are
correspondingly lower.
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Figure 2. The correlation between observed and computed
AFE versus the length of the solar wind input sequence, for
each set of solar wind variables listed in the figure. No
assumptions were made about the combination of the solar
wind variables used as input to the networks.

Can the results in Figure 2 tell us something about the
coupling of the auroral electrojets to the solar wind? We
have to remember that the neural networks reveal covaria-
tions rather than causal relationships, even though causality
often underlies the covariations. The first network in Figure
2 use V and B,, while the second use V, B;, and n. Adding
n gives an improvement. This suggests that the density n
has a component that varies together with AE, independent
of V and B,. From networks A and C in Figure 2, the same
is suggested for B,. Similarly, networks C and E in Figure 2
tell us that there is a component of n that varies together with
AE, independentof V, B;,and By. The IMF component B,
does not improve the correlation. Altogether, this study sug-
gests that all four variables, », V, By, and B, vary together
with A E partly independent of the other variables, while B,
does not. Our interpretation is that all four variables, n, V,
By, and B, add some important information about the solar
wind input. This is basically a confirmation of the generally
accepted view put forward by many authors. However, the
significant influence of the density found here, is not often
stressed in discussions of the solar wind forcing of the auroral
electrojets. In terms of an improved correlation, the effect
of adding the density » is comparable to the effect of adding
the IMF component B,. Also, the absence of an influence
from B; is worth noting.

A standard approach in studies of the interaction between
the solar wind and the magnetosphere has been to combine a
few solar wind variables into a coupling function. The linear
correlation between the coupling function and a geomag-
netic activity index has then been calculated. Some of the
most widely used coupling functions are V' B, [Burton et al.,
19751, V2B, [Murayama et al., 1980], eV B2sin*(8/2)
[Perreault and Akasofu, 1978], p'/?V B, [Murayama, 1986],
and p!/SV Bsin®(6/2) [Bargatze et al., 1986]. Here p de-
notes the dynamical pressure. Most coupling functions have
been developed based on an idea of which energy coupling
mechanisms are most important. Vasyliunas et al. [1982]
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argued that the coupling functions should have dimensions
of power, and from dimensional analysis they showed that
many of the previously used expressions were dimensionally
incorrect. Of the coupling functions mentioned above, only
the last one is dimensionally correct according to Vasyliunas
et al. [1982], equation 12. However, it can be questioned
whether this diménsional requirement is valid when the pur-
pose is to compute a quantity such as AE that does not
have dimensions of power and that certainly does not de-
pend linearly on the magnetospheric energy input. Further,
as was also pointed out by Vasyliunas et al., the dimensional
analysis is not equally applicable to all timescales. The di-
mensional equality holds only if no energy is intermediately
stored before dissipation. The timescale for energy storage
in the magnetotail is of the order of 1 hour. It could then be
argued that dimensional analysis does not impose any serious
restrictions on coupling functions that connect the solar wind
conditions with the high-time resolution AE index. In this
study, we therefore investigate coupling functions regardless
of their dimensions. Instead, we systematically test functions
of the form n®V? B together with V B, and the coupling
function ¢. ’

In the second part of the parameter study, the networks are
trained with time series of solar wind coupling functions as
input. The parameters and the results are shown in Figure 3.
The networks with V B, and V B, as input perform equally
well, an indication that A F is nearly independent of B, when
the IMF is directed northward. The solar wind parameter ¢
gives approximately the same correlation as V B, when using
100 min of input data. As shown in Figure 3, the networks
with € as inputare less sensitive to the length of the Solar wind
history than the networks that use other coupling functions.
Such behavior would be seen for a parameter with a long-
correlation length in the solar wind. Since ¢ includes B,,
which tends to have a longer-correlation length than B,, we
can speculate that this is indeed the reason for the relative
insensitivity of ¢ to the history length L. This property gives
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Figure 3. The correlation between observed and comiputed
AE versus the length of the solar wind input sequence, for
each solar wind variable listed in the figure. The basic solar
wind variables were here combined to coupling functions
which were used as input to the networks.
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¢ a relative advantage when using a very short solar wind
history. However, from a physical point of view, ¢ is not
fully comparable to the other coupling functions since it also
includes B,.

Among the coupling functions that do not contain any
correction for the density variations, V3B, turns out to be
the best, marginally better than V2B;. It is interesting to
note that V3 B, performs equally well to V and B, given as
separate inputs, when using 100 min of input data. However,
when using a shorter solar wind history, there is a discrepancy
between V3B, and the individual variables V and B, . This
discrepancy becomes systematically larger with a smaller
L. The same behavior is also seen for V2B,, with just a
marginally lower correlation than V3 B,.

Two of the coupling functions include corrections for vari-
ations in the solar wind dynamic pressure. Simple scalings
of VB, and V2B, with p!/2 give n!/2V2 B, and n!/2V3B,,
respectively. Both of these are superior to the other func-
tions, and n'/2V3 B, provides the best coupling function in
this study. _

4.1.3. Linear versus nonlinear networks. The standard
feed-forward neural network can be regarded as a nonlinear
generalization of the linear filter. It is in fact a very gen-
eral nonlinear model. Since the problem of computing the
AE index from solar wind data is inherently nonlinear, we
expect neural networks to perform better than linear filters.
However, in a study by Hernandez et al. [1993], it was
found that a linear filter actually performed slightly better
than a neural network. The reason was that large amplitude
variations were clipped by the nonlinear networks, while the
linear networks showed no such tendencies. Hernandez et al.
concluded that further exploration of this issue is necessary.

To address this question, two sequences of networks are
trained, each with n, V, B,, and B, as input. The networks
in one sequence have linear activation functions, while the
other networks have the usual nonlinear activation functions
in the hidden layer. The performances of the networks are
shown in Figure 4. It is found that the nonlinear networks
perform significantly better than the linear networks, both on
individual substorms and as an overall result. This is true
also for other choices of input data, such as the coupling
functions in Figure 3. Further, we could not find that the
nonlinear networks were more prone to cut large amplitude
variations than the linear networks. Both types of networks
fail to predict the largest variations of the highest frequencies,
but the nonlinear networks are always better than the linear.

4.1.4. Number of hidden nodes. As the number of input
data to a network is increased, the number of weights is
also increased. With a large number of free parameters in
the network, overfitting problems may arise with devastating
effects on the generalization performance [Hertz et al., 1991].
There is also a lower limit to the number of hidden nodes
and the number of weights in a network. The number of free
parameters of the network has to be large enough to represent
the full complexity of the problem. In most neural network
studies, it is essential to know these lower and upper limits
to the number of hidden nodes and the number of weights.

All networks discussed above have eight hidden riodes.
Since the number of input variables varies from 4 io 80,
there is an accompanying large variation in the number of
weights. Will this variation cause any systematic effects in
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Figure 4. Comparison of linear and nonlinear networks.
Both sequences of networks used n, V', By, and B, as input.
The networks with nonlinear activation functions performed
significantly better than the linear networks. Other input
data gave similar results.

the parameter studies above? Would the results and the gen-
eral conclusions still hold with other choices of the number of
hidden nodes and thus also the number of weights? A partial
answer to these questions is given in Figure 5. Using the so-
lar wind variables n, V, By, and B, as input, two sequences
of networks are trained, one with 20 min, and the other with
100 min of input data. For each of these sequences, the num-
ber of hidden nodes is varied from 1 to 16. In both cases,
the number of hidden nodes has to be less than five to show
any decrease in performance. With 100 min of input data,
there is a tendency of overfitting when using more than 14 to
16 hidden nodes. There is such a tendency with 20 min of
input data as well, although not so clear as in the 100 minute
case. There has to be more than 16 to 20 hidden nodes to
show clear signs of overfitting. By our choice of eight hid-
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Figure 5. Network performance with 20 and 100 min of

solar wind input data and a varying number of hidden nodes

and thus also a varying number of weights in the networks.

In both cases, the number of hidden nodes had to be less than
five to show a decrease in performance.
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Figure 6. Observed and computed AE index using n, V,

By, and B, during 100 min as input. The interval started on

the morning of March 2 (0810 UT), and ended in the evening

the same day (21.05 UT).

den nodes in all the networks, we avoid the problems of too
few or too many weights, both for those networks with few
input variables and those with many. We thus conclude that
there are no systematic effects due to a varying number of
weights in the networks that alter the conclusions made in
the parameter studies.

4.2. Qualitative Abilities of the Networks

In addition to some general comments on the qualitative
abilities of the networks, we have chosen 2 consecutive days
in March 1974 to represent the results. The 2 days are divided
into 2 intervals: the first begins on the morning of March 2
(0810 UT) and the second begins in the evening the same
day (2135 UT).

4.2.1. General. As seen in Figures 6 and 7, the fit be-
tween observation and prediction is far from perfect. During
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Figure 7. Observed and computed AE index using n, V,
By, and B, during 100 min as input. The interval started
in the evening of March 2 (2135 UT) and ended in the early
morning of March 4 (0510 UT).
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disturbed times, the observed AE index often exceeds the
predicted AE by quite a large factor. It is obvious that some
structures in the A £ index are missed by the networks. Such
structures are the large and sudden excursions mostly at-
tributed to intensifications of the westward electrojet caused
by substorm expansions. However, the reverse relation be-
tween observation and prediction does not seem to occur.
The networks very rarely predict an intensification where no
such structures are seen in the observed AE index. There
are occasions, such as the one in Figure 6, when the predic-
tions somewhat overestimate AE, but the overestimates are
always small and connected with broad features with dura-
tions longer than 1 hour. Only substorms that lack large and
sudden excursions in the AF index, are overestimated.

4.2.2 March 2. The interval is shown in Figure 6. It
stretches over 800 min and covers two substorms, one peak-
ing at ~500 nT and the other at ~900 nT. The computed
AEF (dotted line) looks very much like a smoothed version
of the observed AE. The network handles the broad features
well, while narrow features are harder to predict. The first
peak is one of the few that the network actually overpredicts,
although not very much. Common features that are unpre-
dicted are the large and sudden excursions, such as those seen
at 190 min and at the top of the second peak. In the 5-min
averaged AF data, the narrowest peaks consist of only one
value rising above the other.

4.2.3 March 2 to March 4. The interval is shown in Figure
7. Tt stretches over 2000 min from the evening of March 2
to early morning of March 4. It covers six broad peaks.
The highest of them reach ~1150 nT, while the others reach
~500 to 700 nT. This interval is somewhat more disturbed
than the first, and the number of large and sudden excursions
is correspondingly higher. It is even more obvious during
this interval that the network acts as a low-pass filter and
flattens out the high-frequency structures. For three of the
six peaks, the predictions almost reach the same height as the
observed AE, while the other three are flattened out below
the observed AE.

5. Discussion and Conclusions

The work described here demonstrates the abilities of ar-
tificial neural networks as predictors of an auroral electrojet
index of high-time resolution. The networks are tested on
a large (~ 330 hours) and nonselected data set from 1973-
1974, a period that includes both quiet and exceptionally
disturbed conditions. Various solar wind inputs are used,
and some are found superior. The results of this study can
be summarized:

1. Nonlinear networks are superior to linear networks.

2. Individual solar wind variables as input are superior
to composite variables, such as the commonly used
coupling functions.

3. One hundred minutes of solar wind data are required as
input to the networks. This is interpreted as the length
of the magnetospheric system memory for previous
inputs.
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4. With the solar wind variables n, V, By, and B, as
input to the network, 76% of the AE index variance is
accounted for. All four variables are needed. Removal
of any of them impairs the network performance.

5. The IMF component B, does not improve the network
performance.

6. Among the coupling functions with no correction for
the density variations, V3B, and V2B, give the high-
est correlations.

7. Asimple scaling with p'/2improves the coupling func-
tions. Consequently, p'/2V B, is superior to V B,
and p'/2V2 B, is superior to V2 B,. The best coupling
function in this study is p'/2V2B,.

8. The coupling function ¢ does not perform as well as
V3B, or V2B, with 100 min of input data. Since it
is relatively insensitive to the history length L, it has,
however, a relative advantage over the other coupling
parameters for short input data sequences.

That nonlinear networks are found to be superior to their
linear counterparts should come as no surprise, as there have
been many suggestions of a nonlinear component in the mag-
netospheric response to the solar wind conditions. At the
same time, it has been suggested that nonlinear feed-forward
neural networks do not offer any advantages over linear fil-
ters in terms of prediction accuracy [Hernandez et al., 1993].
This is not what we found in the present study. Further
explorations are necessary to find out why our conclusions
differ.

An advantage that the neural network technique offers is
that it allows the use of individual solar wind variables as
input, rather than some coupling function. We do not have to
assume very much about the energy-coupling mechanisms.
When combining individual solar wind variables to a cou-
pling function, some information on the solar wind is lost. If
the coupling function does not fully describe the energy cou-
pling between the solar wind and the magnetosphere, some
of the lost information may turn out as essential. We would
therefore expect networks using coupling functions never to
perform better than networks with individual variables as in-
put. This is also what we found here. We also found that
the best coupling functions can be nearly as good as the cor-
responding individual variables when using a long history
length L, while they are less successful for shorter L. The
relation between the coupling function and the individual
variables vary with the history length L, as is evident from a
comparison of Figures 2 and 3.

While there are no theoretical reasons to use coupling
functions as input to the neural networks, there are some im-
portant practical aspects to consider. As described in section
4.1.4, the number of weights in the network is not allowed to
increase too much. It is often important to keep the number
of input nodes small, while still give the network all essential
data. The advantage of using coupling functions is that it
reduces the number of input nodes and thus the number of
weights in the network.
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The three graphs that show a correlation plotted against
the length of the solar wind history, show the same gen-
eral trends; the correlation increases with L until it saturates
at L~100 min. This is consistent with results from previ-
ous studies using other techniques and is interpreted as the
length of the magnetospheric system memory for previous in-
puts. The "magnetospheric system" in this context includes
only the part of the magnetosphere that controls the solar
wind-auroral electrojet coupling. There are also magneto-
spheric processes that develop on longer timescales, such as
the growth and decay of the ring current and the associated
geomagnetic storm. Influences from such longer timescale
processes are not modeled by feed-forward neural networks
with an integration time of only 100 min. There are, how-
ever, other types of neural network architectures that can take
different timescales into account.

With the solar wind variables n, V', By, and B, as inputto
the network during 100 min, a correlation coefficient r~0.87
was found. This means that 76% of the variance of the AE
index is accounted for. We also found that removal of any
of the four variables makes the network less accurate. Our
interpretation is that all four variables, n, V, By, and B, add
some important information about the solar wind input. We
could, however, not find any influence from B,.. The present
study also shows that V2B;, and rather surprisingly also
V3B, is superior to both V B and e. Asdiscussed in section
4.1.2, the dependence of the correlation on history length L
is weaker for ¢ than for the other coupling functions, possibly
as a result of a longer-correlation length in the solar wind.
The coupling functions can be further improved by including
a correction for the solar wind dynamic pressure. A simple
scaling of V2B, with p'/2 gives the parameter n!/2V3B,
which provides the best coupling function in this study. V B,
is also improved by such a scaling. With n!/2V3 B; as input
to a network during 100 min, 71% of the AF index variance
is accounted for.

How do these results compare to previous studies using
other techniques? Using linear filters with various coupling
functions as input and AE or AL as output, the prediction
accuracy reported is around 40% [Clauer, 1986; McPherron
et al., 1988]. In a recent linear filter study, Blanchard and
McPherron [1995] were able to predict 47% of the variance
in the AL index from a time series of V B;. These prediction
accuracies refer to data for which the linear filters have not
been specially fitted. The filters have generally been found to
vary with the level of geomagnetic activity, and the response
is bimodal for moderate levels of activity and unimodal for
high levels of activity [Bargatze et al., 1985; McPherron et
al., 1988].

The nonlinear studies that followed have led to an in-
creased prediction accuracy. Vassiliadis et al. [1995] used
both nonlinear moving-average filters and nonlinear state-
input models to describe the response of AL to the solar
wind input at a 2.5-min resolution. For out-of-sample predic-
tions, the nonlinear moving-average filter accounted for 67%
of the AL index variance, while the single-step state-input
model had a prediction accuracy of 86%. For multiple-step
predictions, this accuracy decreased to around 70%. Her-
nande: et al. [1993] used neural networks to predict AL at
a 2.5-min resolution. They reported a prediction accuracy
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of 76% for a nonlinear feed-forward network and slightly
higher for a linear network. The only previous paper claim-
ing significantly higher correlations than the present study is
Goertz et al. [1993]. They used a low-dimensional analogue
model to predict the auroral electrojet index AE at a time
resolution of 2.5 min and found a correlation coefficient of
092 (ie., r>~85%). However, the stated correlation was
criticized by McPherron and Rostoker [1993], based on the
fact that all data had been filtered to remove high-frequency
components. Together with a partly biased selection of test
data and a nearly constant solar wind velocity, this made
McPherron and Rostoker [1993] conclude that the equations
and parameters would not do well for other intervals.

To compare different prediction methods is a difficult task.
The correlations between observed and computed geomag-
netic activity indices depend on the type of activity index,
averaging of data, and the statistical properties of the samples
used for training and testing. In the present study we have
used the 5-min averaged AE index. We have been cautious
to use a large and nonselected test set, not used in training
the networks. The presented correlations should therefore
be valid for continuous predictions made during a long time
span.

In summary, we have shown the usefulness of artificial
neural networks as predictors of the AE index. We have
investigated some properties of these predictors and the abil-
ities of various solar wind input data, including some of the
frequently used coupling functions. The importance of along
enough solar wind history has been stressed. Two applica-
tions of the neural networks suggest themselves. The first is
forecasting of the geomagnetic activity 30 to 70 min ahead.
A prerequisite for this is a spacecraft continuously monitor-
ing the solar wind at the Sun-Earth libration point L;. With
the use of an Earth-orbiting spacecraft, the lead time is corre-
spondingly shorter. A major advantage of the feed-forward
neural network in real-time applications is the very fast pro-
cessing of data. The filtering of the solar wind input through
the network will not be a limiting part of a future real-time
forecast system. The second application is to study the solar
wind forcing of the auroral electrojets by simulated input
data. The neural network can be regarded as an empirical
description of the dynamical processes connecting the solar
wind with the auroral electrojets. The dynamical properties
of the neural network should thus be able to reveal something
of the dynamical properties of the real magnetosphere.
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Abstract. Geomagnetic storms and substorms develop
under strong control of the solar wind. This is demon-
strated by the fact that the geomagnetic activity indices
Dst and AE can be predicted from the solar wind alone.
A consequence of the strong control by a common
source is that substorm and storm indices tend to be
highly correlated. However, a part of this correlation is
likely to be an effect of internal magnetospheric
processes, such as a ring-current modulation of the
solar wind-A4E relation.

The present work extends previous studies of nonlin-
ear AE predictions from the solar wind. It is examined
whether the AE predictions are modulated by the Dst
index.This is accomplished by comparing neural net-
work predictions from Dst and the solar wind, with
predictions from the solar wind alone. Two conclusions
are reached: (1) with an optimal set of solar-wind data
available, the AE predictions are not markedly improved
by the Dst input, but (2) the AE predictions are improved
by Dst if less than, or other than, the optimum solar-
wind data are available to the net. It appears that the
solar wind—AE relation described by an optimized neural
net is not significantly modified by the magnetosphere’s
Dst state. When the solar wind alone is used to predict
AE, the correlation between predicted and observed 4E
is 0.86, while the prediction residual is nearly uncorre-
lated to Dst. Further, the finding that Dst can partly
compensate for missing information on the solar wind,
is of potential importance in operational forecasting
where gaps in the stream of real time solar-wind data are
a common occurrence.

Key words. Magnetospheric physics (solar wind —
magnetosphere interactions; storms and substorms).
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1 Introduction

Variations in the solar wind can be detected at the
Earth’s surface as small disturbances of the main
geomagnetic field. The disturbances are caused by
variations in the strength and location of electrical
currents flowing in the ionosphere and magnetosphere.
These currents are energized by the solar-wind interac-
tion with the magnetosphere and respond dynamically
to variations of the solar-wind forcing.

At middle and low latitudes the ring current and the
magnetopause currents dominate the geomagnetic re-
cords. At higher latitudes, a system of ionospheric
electrojet currents and field-aligned currents is more
pronounced. The complicated time-varying pattern of
geomagnetic disturbances generated by these currents, is
transformed into a number of geomagnetic indices that
quantify the global level of geomagnetic activity (e.g.,
Mayaud, 1980; Baumjohann, 1986). Geomagnetic dis-
turbances at low and middle latitudes are monitored by
the Dst index at a relatively coarse 1-h resolution. At
higher latitudes, transient disturbances are monitored by
the AL, AU, and AE indices at a time resolution from one
to a few minutes.

The modern definition of a magnetic storm is based
on the strength of the ring current, as quantified by the
Dst index (Gonzalez et al., 1994). The magnetic substorm
is defined from transient geomagnetic disturbances in
the auroral zone (Rostoker et al., 1980). Observations
show that major storms are always accompanied by
intense and frequent substorms, but that substorms can
occur in the absence of a magnetic storm. The most
intense substorms are usually found within the main
phase of storms. In agreement with these observed
storm/substorm relations, the Dst and AE indices tend to
be correlated (e.g., Davis and Parthasarathy, 1967,
Akasofu, 1981; Cade et al., 1995).

The correlation between substorm and storm indices
is largely a consequence of the fact that both processes
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are controlled by the solar wind (McPherron, 1997), as
demonstrated by the many studies of geomagnetic-
activity prediction from the solar wind. A part of the
correlation is, however, likely to be an effect of internal
magnetospheric processes, such as a ring-current mod-
ulation of the solar wind—A4E relation. In particular, the
observed relations between Dst and the location of the
maximum electrojet currents (Feldstein, 1992; Feldstein
et al., 1997) could play a role.

Predictions of Dst and AE from the solar wind alone
demonstrate that magnetic storms and substorms are
dynamically controlled by the solar wind. The first of
many prediction studies were based on linear tech-
niques: linear cross-correlations between solar-wind
parameters and geomagnetic-activity indices (e.g., Arn-
oldy, 1971; Murayama, 1986) and linear moving-aver-
age filters (e.g., Bargatze et al., 1985; Clauer, 1986;
McPherron et al., 1988). More recently, nonlinear
input-state space reconstructions have been employed
(Vassiliadis, 1993; Vassiliadis ef al., 1995).

During the last few years, prediction schemes based
on artificial neural networks (ANNs) have been devel-
oped. The first ANN studies dealt with predictions of
the Dst index from hourly averaged solar-wind data
(Freeman et al., 1993; Lundstedt and Wintoft, 1994; Wu
and Lundstedt, 1996; Gleisner et al., 1996). Correlations
between observed and predicted Dst were as high as 0.91
over a large and varied test set covering all phases of the
solar-activity cycle (Wu and Lundstedt, 1997). ANNs
were found to give better predictions of the Dst index
than other techniques.

ANNSs were also applied to predictions of the auroral
electrojet index AL at 2.5-min resolution (Hernandez
et al., 1993), but the results were not conclusive due to a
serious clipping problem. Recently, Gleisner and Lund-
stedt (1997) showed that ANNs can be used to predict
the 5-min AF index from solar-wind data, though not
with the same high correlation as the hourly Dst index.
They also identified an optimal set of solar-wind data (n,
V, By, and B, during 100 min) for use in 4E predictions.
Less information on the solar wind than the optimum,
led to a decrease of prediction accuracy.

An advantage of the neural network technique is that
a very diversified set of input data can be handled
simultaneously. Any parameters that contribute infor-
mation on the solar wind or on the magnetospheric state
can be included in the input. The Dst¢ index, either
measured or predicted, can be used along with a
sequence of solar-wind data as input to AE predictions.
If, in fact, the ring current modulates the solar wind-4E
relation, we can expect the networks based on both Dst
and the solar wind to be superior to networks based on
the solar wind alone.

The present paper address two aspects of nonlinear
AE predictions. Firstly, we examine whether the 4AE
predictions are improved by Dst when an optimal set of
solar-wind data are available. A clear improvement
would indicate that the solar wind-4E relation is
significantly modified by the magnetosphere’s Dst state.
Secondly, we examine to what extent Dst can improve
predictions when less than the optimum solar-wind data

are available. As Dst indirectly contain information on
recent solar-wind conditions, it is not unlikely that the
Dst index can partly compensate for a loss of solar-wind
data. Practical experiences of short-term forecasting
based on real-time data (Gleisner and Lundstedt, not yet
published) show that loss of information on the solar
wind are a common occurrence. One often has to use
less than, or other than, the optimum set of solar-wind
parameters. Methods to make the networks more
tolerant to loss of input information are therefore of
potential importance in operational forecasting.

2 Artificial neural networks

The following description focuses on the particulars of
the ANN models that are used in the present study. A
broader view of artificial neural networks can be found
in, e.g., Hertz et al. (1991).

2.1 Network setup

An artificial neural network is an assembly of intercon-
nected nodes where the strength of the connection
between any two nodes is determined by a modifiable
weight (Fig. 1). Each node is fed by the sum of the
weighted outputs from all the nodes in the previous
layer, and pass on the output to all the nodes in the
following layer. An additional node, the bias node, is set
to 1.0 and connected to all hidden and output nodes in
the network. The incoming signal at a node is processed
by an activation function, usually a nonlinear, saturat-
ing function for a hidden node and a linear function for
the output node.

The ANNs used in the present study all have one
hidden layer and one output layer. For an input data

Fig. 1. Network with (left) input nodes and (right) the single output
node. The input signal, {I;k =1,2,...,m}, is propagated to the
output, through the hidden nodes where the signal is transformed by
nonlinear functions. The input Iy is a bias that is set to 1.0 and
connected to all hidden and output nodes in the network
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vector, {I!;k=1,2,...,m}, with m components, the
network output is given by

0“=90[Z W’;‘QH(ZijIf*'Bj) +9] ; (1)
7 %
where

gu(x) =tanh(x); go(x) =x . ()

Each input-output sample {I}, 0%} is labeled by super-
script u. Index j refers to a hidden layer node, index &
refers to an input layer node, and in the output layer
there is only a single node. The weight 7} thus connects
a hidden layer node with an output layer node, while wj
connects input and hidden layer nodes. The terms 6; and
0 are the weights associated with the bias input .

2.2 Network training

Network training is the process of adjusting the weights
until the network produces a response similar to the
input-output samples in the training set. The network’s
ability to produce a correct output is monitored by the
cost function

1
2 th

where OF is the actual output of the network, T* is the
correct output (or “target”), and Qi is the number of
samples in the training set.

This nonlinear optimization problem is solved using
a modified gradient-descent method referred to as error
back-propagation (Rumelhart et al., 1986). The weights
are iteratively adjusted according to the gradient-descent
rule

Ot
C(w) = do(or-1)*, ©)
p=1

ow

where 7 and « are constant parameters and ¢ denote the
iteration. In each iteration only a subset of the training
set is used, and the weights are updated in an
approximate gradient direction. This subset consists of
QOvat samples that in each iteration are randomly selected
from the set of training data. The three parameters that
control the training process have here been assigned the
values

oC
Wil — W+ Aw;  Aw, = — (—) +aAw,_ , 4
t

Obvat = 1000 ,
7=0015
=090 .

Variations on this basic training procedure are more
thoroughly discussed by Hertz et al. (1991).
2.3 Generalizing with a trained network

Much of the practical use of neural networks is based on
their ability to make sensible generalizations. This

ability can be formally defined as the average network
performance on a randomly chosen new data sample
(Hertz, 1993). The generalization ability can be estimat-
ed by the network performance on a ftest set which
contain data that are not used during training.

The training procedure described above optimizes the
network’s ability to memorize the training data. In order
to optimize the generalization ability, the training
procedure needs to be constrained. This is done by
excluding a small part of the training set from the actual
training, and using these data (the validation set) to
determine when to stop the iteration. In this way the
problem of overfitting is avoided, or at least lessened.

In the present study, a network’s generalization
ability is quantified by two measures: the correlation
coefficient between observed and predicted AE,

1 0
=1
r= Orst -

(0" = (0))(4E* — (4E))

5
p— ; )
and the mean-squared error normalized by the variance
of the observed AE data,

1 Ost )2
o szl (O* — AE")
I/;el = b} . (6)

OUE

Here, the averages of the computed output O (i.e.,
predicted 4E) and the observed AE are denoted (O) and
(AE), respectively, while o and o4 are the correspond-
ing standard deviations.

3 Data
3.1 Data sources and selection

The 5-min averaged solar-wind data were obtained from
the IMP 8 database at NSSDC. In the present study, we
used all intervals of data from a 14-month period (Nov.
1973 to Dec. 1974) that were at least 24 h long,
contained less than 10% missing data, and contained
no data gaps longer than 3 samples (i.e., 15 min). This
selection gave 40 intervals covering 21600 samples: 32
intervals (1400 h) were used to train the networks and 8
intervals (400 h) were used as an independent test of
network performance.

The solar-wind data included the proton number
density n, the wind speed V, the three components of the
interplanetary magnetic field, By, B,, and B;, given in the
Geocentric Solar Magnetospheric (GSM) reference sys-
tem. We also used the southward component of the
magnetic field, By, defined as B, = —B, when B, < 0 and
B; = 0 when B, > 0.

The AE data were obtained from World Data Center
Cl in England. The original 2.5-min averages were
averaged over 5 min to be consistent with the solar-wind
data. The hourly Dst data, uncorrected for the solar-
wind dynamic pressure, were provided by NSSDC
through the OMNIweb database.
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3.2 Data characteristics

The period of study (Nov. 1973 to Dec. 1974) was a
geomagnetically very active period. The solar wind was
largely dominated by long-lasting high-speed streams
associated with coronal holes. Within the body of the
high-speed streams, periods of large-amplitude Alfvén
waves occurred, generating sustained substorm activity
(Tsurutani et al., 1995). The period of study also
includes one major (Dst=—204 nT) geomagnetic
storm, and several moderate (—100 nT < Dst <
—50 nT) and weak (—50 nT < Dst < —25nT) storms.
The occurrences of AE and Dst during the 1800 h of
study are shown in Fig. 2.

The tendency of substorms to become more
frequent and intense during magnetic-storm conditions,
is demonstrated by the correlation between AE and Dst
over the 1800 h of data: » = 0.58 based on the 5-min
AE index and r = 0.62 based on the hourly averaged
AE.

4 AE prediction studies

All ANNS in the present study were trained with 16700
samples of the “correct” input-output relation and
tested on 4700 input-output samples that were not used
during training. One set of networks was trained with
the solar-wind quantities used as individual input
variables (the solid symbols in Fig. 4). Another set of
networks was fed with coupling functions (the solid
symbols in Fig. 5). A third set of networks was fed with
both Dst and a sequence of solar-wind data (the open
symbols in Figs. 4 and 5).

| z§ U

0O 200 400 600 800 1000 1200 1400 1600 1800
Time (h)

D00 e i Fon 5
0 200 400 600 800 1000 1200 1400 1600 1800
Time (h)

Fig. 2. Occurrences of 4E and Dst during the period of study. The
data consist of 40 intervals covering 1800 h selected from the period
Nov. 1973 to Dec. 1974

4.1 Predictions from the solar wind alone

The basic properties of AE predictions with ANNs that
are fed with solar-wind data have been demonstrated by
Gleisner and Lundstedt (1997). Figure 3 shows an
example of predictions with a network that is fed with
100 min of solar-wind n, V', By, and B,. The predicted 4E
disturbances resemble a smoothed version of the
observed disturbances. The accuracy of the predictions
depend on the physics encoded into the network: the
temporal length of the input sequence and the set of
solar-wind variables being fed to the network.

The predictions improve with increasing temporal
length of the input sequence for all sets of input
variables that are used in this study. Predictions
continue to improve up to an input sequence length
T =100 min. For much longer input sequences, the
predictions starts to deteriorate as an increased number
of weights in the networks makes the overfitting
problem worse.

It is evident from Figs. 4 and 5 that there are
significant differences between the various combinations
of solar-wind parameters. The differences most likely
reflect their different abilities to account for the actual
mechanisms of energy transfer from the solar wind. The
results in Fig. 4 show that it is essential to use all four
variables n, V, B,, and B,. Although V and B, are the
most important quantities, the exclusion of » or B,
impairs the network performance.

Due to the risk of overfitting, the number of input
variables should be as small as possible in order to
minimize the number of weights. While the nets must be
fed with all relevant information, this information
should be given in the form of as few input parameters
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i \ ]
800 |- 5‘ —
L ‘ |
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Fig. 3. Observed and predicted AE based on 100 min of solar-wind
parameters n, ¥, By, and B,. This particular interval started on the
morning of 2 March 1974 (08.10 UT), and ended two days later on 4
March 1974 (07.15 UT)
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Fig. 4. a Normalized mean-squared error and b correlation between
observed and predicted 4E, for different sets of solar-wind variables
and temporal lengths of the input sequence. The solid symbols mark
predictions from the solar wind alone, while the open symbols mark

as possible. The temporal length of the input sequence is
determined by the physics of the solar wind-auroral
electrojet relation and cannot be reduced in any simple
manner. One way of reducing the number of inputs is to
combine individual solar-wind variables into coupling
functions. This must be done with care, as all coupling
functions are not equally relevant as a measure of the
coupling between the solar wind and the magnetosphere.

A comparison of networks fed with different coupling
functions demonstrate their different abilities to account
for the observed AE activity. The function VB, can be
interpreted as the rectified dawn-to-dusk component of
the solar-wind electric field. It is generally believed to be
one of the most important quantities determining the
rate of energy transfer from the solar wind to the
magnetosphere. The results in Fig. 5 show, however,
that the predictions are improved if VB; is properly
scaled with velocity ¥V and density n. The parameter
V2B, scaled with the square root of the solar-wind
dynamic pressure, p ~ n¥?, was the coupling function
that gave the most accurate predictions.

In general, the use of individual solar-wind variables
is superior to the use of coupling functions. We have still
not found a single function of solar-wind parameters
that can summarize all relevant information contained
in the individual variables. Relevant information on the
solar wind is clearly being lost when measured variables
are combined into coupling functions.

4.2 Predictions from the solar wind and Dst

The predictions described in Sect. 4.1 are based solely
on solar-wind data. To each network we now add an

predictions from Dst and the solar wind. The AE predictions are only
improved by Dst if less than the optimum solar-wind data are
available to the net

additional input node which is fed with the hourly Dst
index. The other input nodes are still fed with a sequence
of solar-wind data. All networks are trained with data
from the same training set as before, and tested on the
same test data.

The predictions in this part of the study are thus
based on both Dst and the solar wind. Dst contain
information on the magnetospheric state, particularly
the ring current, but also indirectly on previous solar-
wind conditions. Improvements of the AE predictions
can be the result of the magnetosphere’s Dst state
modulating the solar wind-4E relation. If the modula-
tion is significant, we can expect a marked improvement
of the AE predictions even when the optimum solar-
wind data are available. However, any improvements of
the AE predictions can also be the result of Dst indirectly
providing information on the past solar-wind condi-
tions. In this case we expect to find no improvements
when the optimum solar-wind data are available, but
some improvements when less than the optimum solar-
wind data are available.

The results of the network runs are shown in Figs. 4
and 5, where the cases with and without the Dst input
can be compared (the open and solid symbols, respec-
tively). The influence that Dst has on the 4E predictions
obviously depends on the amount of solar-wind infor-
mation that is fed to the network along with the Dst
index. The AE predictions are not markedly influenced
by Dst when the network has access to at least 100 min
of interplanetary parameters n, V, B,, and B,. If less
solar-wind data are available (Fig. 4), or if coupling
functions are used (Fig. 5), the Dst¢ input improves the
AE predictions. The more information on the solar wind
that is lacking, either due to a too short input sequence
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Fig. 5. a Normalized mean-squared error and b correlation between
observed and predicted 4E, for different coupling functions and
temporal lengths of the input sequence. The solid symbols mark
predictions from the solar wind alone, while the open symbols mark
predictions from Dst and the solar wind. The AE predictions are

or due to relevant solar-wind quantities being left out,
the larger the difference is between the cases with and
without Dst.

As stated in Sect. 3.2, the linear correlation between
AE and Dst is 0.58 over the 21600 training and test
samples. When an optimized ANN use the solar wind
alone to predict AE, the correlation between prediction
and observation is 0.86 for data not used during
training. The prediction residual is nearly uncorrelated
to Dst: r = 0.05. A large part of the AE variations can
thus be explained by a nonlinear mapping from solar-
wind data without the need to invoke an explicit
Dst — AE relation.

We conclude that the ANNSs in the present study do
not detect a significant Dst influence on the AE predic-
tions when an optimal set of solar-wind data are
available. Two identical 100-min sequences of solar-wind
data would give nearly the same predicted 4AE irrespective
of the Dst level. This means that the solar wind-4E
relation, as described by an optimized ANN, is not
significantly modified by the magnetosphere’s Dst state.

A second conclusion is that the AE predictions are
improved by Dst if less than, or other than, the optimum
solar-wind data are available. It appears that missing
information on the solar wind is partly compensated by
the Dst index. This finding is of potential importance in
operational forecasting where gaps in the stream of real-
time solar-wind data are a common occurrence.

5 Conclusions and discussion

We conclude that the auroral electrojet index AE can be
predicted from solar-wind data alone. However, even

Correlation coefficient r
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improved by Dst for all the coupling functions tested here. The
largest improvements occur when much information on the solar-
wind conditions are missing. Some information is always lost
when measured solar-wind variables are combined into coupling
functions

though a nonlinear mapping of solar-wind data can
explain a large part of the AE variations, there could still
be an independent influence from the ring current acting
to modulate the AE index.

From the present study, in which we have compared
AE predictions from Dst and the solar wind with
predictions from the solar wind alone, two conclusions
are reached: (1) with an optimal set of solar-wind data
available, the AE predictions are not markedly improved
by the Dst input, but (2) the AE predictions are improved
by Dst if less than, or other than, the optimum solar-
wind data are available to the net. It appears that the
solar wind-AE relation described by an optimized neural
net is not significantly modified by the magnetosphere’s
Dst state, but that missing information on the solar wind
can be partly compensated by the Dst index. When the
solar wind alone is used to predict AE, the correlation
between predicted and observed 4E is 0.86, while the
correlation between prediction residual and Dst is
very small, » = 0.05. Thus, we have not been able to
detect a significant Dst modulation of the solar wind-4E
relation.

The AE index is, by its very definition, not sensitive to
the Dst disturbance field generated by the ring current
(Mayaud, 1980). Due to the limited latitude coverage of
the geomagnetic observatories that are used to estimate
AE, the AE index depends not only on the strength of the
electrojet currents, but also on their location (Kamide
and Akasofu, 1983; Akasofu et al., 1983; Baumjohann,
1986). Several studies have shown that the location of
the maximum electrojet currents can be observationally
related to the strength of the ring current as measured by
Dst (Feldstein, 1992; Feldstein et al., 1994, 1997; Popov
and Feldstein, 1996; Sumaruk et al., 1989), and also to



1274 H. Gleisner, H. Lundstedt: Ring current influence on auroral electrojet predictions

the general level of geomagnetic activity as measured by
Kp (Grafe et al., 1983). During time-periods between
substorm expansions, a relation between Dst and the
latitudes of maximum eastward and westward electrojets
is found, whereas the latitude of the maximum westward
electrojet during a substorm expansion is not similarly
related to Dst (Feldstein et al., 1997). To the extent that
the observed Dst-auroral electrojet relations are inde-
pendent of the solar wind, we would expect the
magnetosphere’s Dst state to modulate the solar wind-
AE relation. It appears, however, that the neural nets do
not detect such a modulation. A conceivable reason
could be that the dependence on the magnetospheric Dst
state is relatively weak compared to the solar-wind
dependence. It must also be noted that the maximum
westward electrojet during substorm expansions, which
is not clearly related to the Dst index, is a major
contributor to the AE index.

With the availability of real-time solar-wind data
from the Sun-Earth libration point LI, short-term
forecasting of geomagnetic activity has now become
possible. To produce forecasts that are as accurate and
reliable as possible, it is important to make use of all
data that contain information on the recent solar-wind
conditions, but also all data that contain relevant
information on the dynamical state of the magneto-
sphere. In the present work, we have studied the impact
of an hourly ring-current index (Dsf) that can be
accurately predicted, on a high-time resolution auro-
ral-electrojet index (4E). The conclusions show that the
Dst index would not markedly improve the forecasts
when an optimal set of solar-wind data are available.
However, in an operational setting, occasional data gaps
are a common occurrence. This is now handled by
temporarily using a network with a shorter solar-wind
input sequence than the optimum. There are also
intervals of time when not all the solar-wind parameters
are available. In such less-than-optimal circumstances,
the additional information contained in the hourly Dst
index can improve the forecasts.
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Abstract. This study shows how locally observed geo-
magnetic disturbances can be predicted from solar-wind
data with artificial neural network (ANN) techniques.
After subtraction of a secularly varying base level, the
horizontal components Xg, and Yg, of the quiet-time,
daily variations are modeled with radial-basis function
networks taking into account seasonal and solar-activity
modulations. The remaining horizontal disturbance com-
ponents AX and AY are modelled with gated, time-
delay networks taking local time and solar-wind data as
input. The observed geomagnetic field is not used as in-
put to the networks, which thus constitute explicit non-
linear mappings from the solar wind to the locally ob-
served geomagnetic disturbances.

The ANNSs are applied to data from Sodankyla Geo-
magnetic Observatory located near the peak of the au-
roral zone. It is shown that 73% of the AX variance,
but only 34% of the AY variance, is predicted from a
sequence of solar-wind data. The corresponding results
for prediction of all transient variations Xg, + AX and
Ysq + AY are 74% and 51%, respectively. The local-
time modulations of the prediction accuracies are shown,
and the qualitative agreement between observed and pre-
dicted values are discussed. If driven by real-time data
measured upstream in the solar wind, the ANNs here
developed can be used for short-term forecasting of the
locally observed geomagnetic activity.

1 Introduction

The peak geomagnetic activity occurring in the northern
auroral zone can be related to prior solar-wind condi-
tions, as demonstrated by many studies of the AE, AU,
and AL indices. The relations can be highly complicated,
particularly during substorms when the magnetospheric
response to the solar wind contain a dominating non-
linear component [Bargatze et al., 1985; McPherron et
al., 1988]. Nonlinear models have been developed to pre-
dict the peak activity from solar-wind data [ Vassiliadis,
1993; Vassiliadis et al., 1995; Gleisner and Lundstedt,
1997; Weigel et al., 1999]. These models have provided

an improved understanding of the magnetospheric re-
sponse to the solar wind, and have given us a set of tools
for making operational forecasts.

Geomagnetic AFE indices are, however, limited to the
time domain. They do not give any information about
the location of the peak activity, or about the simultane-
ous activity at other locations. For some purposes, this
neglect of the spatial domain may limit the usefulness
of the prediction models, particularly at high latitudes
where geomagnetic variations have a considerable degree
of spatial structure. The most valuable predictions will
be those that describe the geomagnetic variations at par-
ticular locations, or the spatial distribution of geomag-
netic disturbances. Such predictions would have decisive
advantages over predictions of geomagnetic indices.

Several models have been developed that describe
the ionospheric convection patterns and geomagnetic ac-
tivity in the polar caps as a linear, static function of
solar-wind parameters [e.g., Feldstein and Levitin, 1986;
Papitashvili et al., 1994; Weimer, 1996]. These models
provide spatial information that go beyond geomagnetic
indices. However, while valuable for the knowledge they
provide, the models are mainly valid in an average sense
and/or for intervals dominated by quasi-steady convec-
tion effects. Another approach has been to model the
geomagnetic disturbance patterns without any reference
to the solar-wind driver, thus providing a "nowcast” of
the disturbance field [Rostoker and Nashi, 1997].

A different type of model for the nonlinear relations
between the solar wind and the geomagnetic activity at
auroral-zone latitudes, has been reported by Vassiliadis
et al. [1998] and Valdivia et al. [1999]. They presented
a nonlinear, dynamic model based on a generalization
of the nonlinear filters previously used by Vassiliadis et
al. [1995] for prediction of the AL index. The model de-
scribes how the spatially resolved magnetic disturbances,
as measured by a latitudinal chain of magnetometers, de-
velop under the influence of an external solar-wind input.

In the present study, we have developed artificial
neural networks (ANNs) for prediction of the geomag-
netic disturbances at specific locations. The methods em-
ployed are similar to those used by Gleisner and Lund-



stedt [1997] for prediction of the AE index. The most
important difference is the use of gating networks to syn-
thesize predictions produced by specialized networks into
a single predicted value.

The ANNSs are here applied to geomagnetic data from
Sodankyld Geomagnetic Observatory (SOD) located at
64° geomagnetic latitude. To extract the disturbance
field from the observed geomagnetic records, we first de-
fine a quiet-time reference field using radial-basis func-
tion networks. These networks describe the quiet-time
daily variations, Xs, and Ys,, and their seasonal and
solar-activity modulations. The horizontal disturbance
components, AX and AY, are obtained by subtrac-
tion of the quiet-time reference field from the observed
geomagnetic data. The local disturbance field is then
modeled with gated, time-delay networks taking local
time (LT) and a sequence of solar-wind data as input
(Fig. 1) The observed geomagnetic field is not used as
input to the networks, which thus constitute explicit
nonlinear mappings from the solar-wind input to a lo-
cal geomagnetic-activity output.

The data sets are described in section 2. A brief de-
scription of ANNS is given in section 3, with more specific
details of the present models in section 4. In section 5,
some of the results are presented, which are then further
discussed in section 6.

2 Data Sets

The solar-wind parameters considered in this study are
the wind speed, V', the proton number density, n, and the
southward component, B,, of the interplanetary mag-
netic field as measured in the GSM coordinate system.
These data were obtained from the records of the earth-
orbiting spacecraft IMP-8. No attempts were made to
correct the data for the time it takes the solar wind to
propagate from the IMP-8 position to the magnetopause.
The years 1978 to 1985 were scanned for time intervals
with long, nearly unbroken sequences of solar-wind data.
A total number of 165 intervals was found that had less
than 10% missing data, had no data gaps longer than 15
minutes, and that were at least 8 hours long. The mag-
netic records from SOD contain a few short data gaps
that were linearly interpolated. The original geomagnetic
data were converted from 1-min to 5-min averages to be
consistent with the solar-wind data.

The 165 intervals were divided into a training set
(110 intervals; 15550 samples) and a test set (55 inter-
vals; 7550 samples). The test data are not used during
training; their only role is to evaluate the network per-
formance. The method used to select the test data was
simply to use every third interval for testing. As the origi-
nal 165 intervals were selected based on the availability of
solar-wind data (which is largely governed by the IMP-8
orbit and thus uncorrelated to the geomagnetic activ-
ity), the selection is wholly random in relation to the
geomagnetic disturbance conditions. For this reason, the
test data should constitute a reasonably representative
sample. The standard deviations for the horizontal dis-
turbance components are 95 nT and 29 nT, respectively,
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as calculated over the test set. The corresponding figures
based on all data from the years 1978 to 1985 are very
similar: 99 nT and 33 nT, respectively.

The data that are used for the daily variation model
consist of geomagnetic observations from UT days that
are both globally and locally quiet. First, all the truly
quiet days from the 5 international quietest days for the
months were selected. The criteria for a day to be ”truly
quiet” are based on the Ap and Kp indices [Mayaud,
1980]. Then, days that are globally quiet, but locally
disturbed based on the local K index, were removed from
the selection. To ensure that all levels of solar activity
are represented, two complete solar cycles (1976-1998)
were scanned for quiet days, which provided data for
more than a thousand days. Any irregular, small-scale
variations that still appear in the selected data are not
interesting for the regular variations. Hence, we used one
hour averages centered on half hours to fit and evaluate
the daily variation model. Half of these data were used
to train the networks, and half of the data were used to
evaluate, or test, the networks.

3 Artificial Neural Networks

In the present study, two types of feed-forward networks
are used: the time-delay network (TDN), which is a feed-
forward network with the input organized as a time-
delay line, and the radial-basis function network (RBN),
which is a feed-forward network with gaussian transfer
functions at the hidden nodes [Haykin, 1999]. TDNs are
used to predict the geomagnetic disturbances AX and
AY from local time and solar-wind data, whereas RBNs
are used to predict the quiet-time daily variations Xg,
and Ys, from local time, season, and the solar-activity
index F 10.7-

The TDN can be viewed as a layered structure of in-
terconnected nodes, where the strength of the connection
between any two nodes is determined by a modifiable
weight. The output of a TDN is given by

O =Y " Wjtanh() w I} +6;) + 0 (1)
j k

where {I';k = 1,2,...,m} is an input data vector with
m components. The specific input vectors to the TDNs,
predicting the geomagnetic disturbances AX and AY,
are more thoroughly described in section 4.3. Superscript
u labels the input-output samples. Index j refers to a
hidden node and index k refers to an input node. An ad-
ditional input node, the bias node, is set to a fixed value
and connect to all hidden and output nodes through the
weights 6; and 6.

The RBN can similarly be viewed as a layered struc-
ture of interconnected nodes, but instead of the sigmoid-
shaped function which is the common choice for TDNs,
a gaussian transfer function is used at the hidden nodes.
The output of a RBN is given by

0 =Y Wye(- Y TS )
J &

o2



A neural network-based local model for prediction of geomagnetic disturbances 3
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Fig. 1. Block scheme of the ANN model for the geomagnetic dis-
turbance components AX and AY. Each box indicates a time-
delay network that takes local time (LT) and a sequence of solar-
wind data (SW) as input. The two leftmost networks predict AX<
and AX™, i.e. the positive and negative northward disturbances.
The final prediction of AX is produced by a gating network that
synthesize the predicted AX€ and AX™ into a single value.

where w;;, defines the center of the gaussian function for
the j-th hidden node, and o defines the width of the
gaussian shape. The specific input vectors to the RBNs,
predicting the regular, daily variations Xs, and Yg,, are
described in section 4.2.

The response properties of an ANN is determined by
the set of weights. The network is optimized, or trained,
by adjusting the weights until the network produce a re-
sponse similar to the input-output samples in the train-
ing set. The network’s ability to produce a ”correct” out-
put is monitored by the cost function

1 Qtrn

= 2th ;

C(w) (o —1#y? ®3)

where w is the set of weights, O* is the actual output of
the network, T# is the ”correct” output (or target), and
Qtrn is the number of samples in the training set.

The TDNs in the present study are optimized using
the Levenberg-Marquardt algorithm [Press et al., 1992;
Hagan and Menhaj, 1994]. At the cost of an increased
complexity and memory requirement, this method is
much faster than the more commonly used error back-
propagation algorithm. The RBNs are optimized with
the orthogonal least squares algorithm [Chen et al., 1991;
Wintoft and Lundstedt, 1999], which is fast but also re-
quires a large amount of computer memory.

Much of the practical use of neural networks relies on
their ability to make sensible generalizations. This ability

can be defined as the average performance on a randomly
chosen data sample. The generalization ability is usually
estimated by the network performance on the test set.
However, the cost function C(w) measures a network’s
ability to memorize the training data. In order to achieve
an ability to generalize to new data, rather than a perfect
fit to the training data, the training procedure need to
be constrained. This is done simply by excluding a small
part of the training set from the actual training, and use
these data, the validation set, to determine when to stop
the iteration. In this way the problem of overfitting is
avoided, or at least lessened.

4 The Model
4.1 Geomagnetic field variations

For the purposes of this study, the northward and east-
ward horizontal components of the observed geomagnetic
field are described by a base level, {Xo, Y5}, on which
regular, daily variations, {Xg,,Ys,}, and magnetic dis-
turbances, {AX, AY'}, are superposed.

X () = Xo(t) + Xgq(t) + AX(2)
Y (t) = Yo(t) + Ygq(t) + AY (2)

The secularly varying base level and the regular, daily
variations together describe a quiet-time reference level,
and the disturbance field is defined as the departure from
this reference. It is assumed that the quiet-time refer-
ence field provides an adequate description of the geo-
magnetic variations during periods of weak solar wind-
magnetosphere interactions. This assumption of a well
defined quiet-time ground state makes it possible to sep-
arate contributions to AX from eastward and westward
ionospheric currents, respectively.

4.2 The quiet-time reference field

The base level {Xo, Y} is defined by quiet-time annual
means, where the means only involve the selection of
quiet days described in section 2. The secular variation
of the base level is modeled by a piecewise linear fit to
these annual means. During the period 1978 to 1985, the
average change per year of the base level was -20 nT and
+17 nT for X, and Yj, respectively.

The traditional way of modeling the regular, daily
variation is by harmonic analysis. The data used as input
to the analysis are normally the departures of hourly
averages from a daily reference level, often taken to be
the midnight value. To account for seasonal and solar-
cycle modulations of the daily variation, separate sets of
harmonic coefficients are required for each month of the
year and for different solar-activity levels.

It was recently pointed out by Sutcliffe [1999] that
ANN methods have certain advantages over harmonic
analysis. We have chosen to model the regular variations
with radial-basis function networks taking into account
seasonal and solar-activity modulations. Unlike the tra-
ditional harmonic analysis, we use the baseline {Xo, Yo}
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Fig. 2. Computed quiet-time, daily variations X g4 and Ys, at SOD during summertime, for both low (Fio.7 = 75) and high (Fi0.7 = 200)
solar-activity levels. The regular variations were computed with radial-basis function networks taking local time, day number, and Fio.7

as input.

as a reference in the computation of the regular varia-
tions. The radial-basis networks were designed to have
one hidden layer with 36 nodes and a single, linear out-
put node. Each net take LT, day number, and solar ac-
tivity as input and produce a component of the daily
variation as output. Solar activity is quantified by Fi¢.7,
the daily values of the solar 10.7 cm radio flux. Day num-
ber and LT are each split into two inputs using sine and
cosine functions. Each net thus have a total number of
five inputs, and the input data vector I* in Eq. 2 has
five elements. Examples of computed quite-time, daily
variations {Xgq,Ys,} are shown in Fig. 2.

4.3 The geomagnetic disturbance field

The disturbance field, {AX, AY'}, is obtained by sub-
tracting the quiet-time reference field from the observed
data. At a given location, the disturbance field is as-
sumed to be a function of LT and a finite-length se-
quence of solar-wind data. This function is highly com-
plicated, being nonlinear and possibly nonstationary. A
part of the nonlinearity is a result of the fact that sev-
eral current systems contribute to the disturbance field.
The eastward and westward electrojets, generating posi-
tive and negative AX disturbances, are known to behave
differently and to have partly different physical causes.
Another complication is the implementation of a proper
LT modulation of the geomagnetic response to the solar
wind.

A single ANN constitute a function that is both lo-
cally and globally nonlinear. We can, however, expect the
overall solar wind-geomagnetic activity relations to be
more accurately described by several ANNs that are spe-
cialized on separate regimes of the input-output space.
The outputs of the specialized networks can be synthe-
sized into a single value by a gating function, which it-
self can be implemented by a neural network [Rama-
murti and Ghosh, 1998; Weigel et al., 1999]. The use of
specialized networks and gating functions increases the

dynamical range of the neural networks, and should be
considered when the input-output space consists of sep-
arate regimes with widely different characteristics.

We choose to train separate TDNs on positive and
negative AX disturbances, and then use a gating net-
work to synthesize the two predictions into a single value.
The gating network is an ordinary TDN taking the two
specialized AX predictions as input, along with LT and
solar-wind data (see Fig. 1). The AY disturbances are
predicted with a single TDN. The basic reason for sep-
arating positive and negative disturbances for AX, but
not for AY, is that positive and negative AX distur-
bances for clearly represent two different regimes, namely
the effects of the eastward and westward electrojets, re-
spectively. It is not obvious that positive and negative
AY disturbances represent separate regimes.

One way to deal with the LT modulation of the ge-
omagnetic response would be to develop separate net-
works for different intervals of LT. We choose instead to
use LT as an additional input to each network and to let
the network find its own LT modulation as an integrated
part of the overall mapping from the solar wind to the
geomagnetic response. The overall network configuration
is shown in Fig. 1.

The input to the networks consist of an 80-min se-
quence of the solar-wind dynamic pressure, vnV?2, and
the coupling function, V2B;. All solar-wind parameters
have a time resolution of 5 minutes. Each net also use
LT, split into two inputs using sine and cosine functions.
Each net thus have 16 inputs with vnV?2, 16 inputs with
V2B, and 2 inputs that determine the local time. The
input data vector I* in Eq. 1 thus has a total number of
34 elements.

5 Results

The observed test data and the corresponding predic-
tions are shown in Fig. 3. The quality of the predictions



A neural network-based local model for prediction of geomagnetic disturbances 5

Predicted and observed AX at SOD

Predicted and observed AY at SOD

tooor predicted tooor predicted |
500 5001- 1
E E
£ £
x >
3 2 observed
0 )
500~ 500\~ 1
o 100 20 0 o 500 o 100 : a00 o 500
Time [h] Time [h]

Fig. 3. Predicted and observed horizontal disturbance components AX and AY at SOD. The predictions were made with gated time-
delay neural networks taking local time and a sequence of solar-wind data as input. All test data are shown; 55 separate intervals have
been concatenated into a single sequence, and the predicted values have been vertically shifted.

are measured by three statistics: the RMS errors, the
average relative variances, ARV, and the linear correla-
tions, p, between observed and predicted values. In Table
1, results from predictions of AX and AY are shown, to-
gether with the corresponding results from predictions of
all transient variations, X5, + AX and Yg, + AY.

During training, the ANNs are optimized with re-
spect to the the sum square difference between network
output and observed values. After network optimiza-
tion, only very small improvements (in the least-squares
sense) are possible by a simple linear transformation of
the network outputs. We can then interpret p? as the
fraction of the observed variance that is accounted for
by the model [Reiff, 1983]. The quantity 1-ARV has a
similar interpretation: it is a measure of the accuracy of
the predictions relative to the accuracy of just using a
simple average.

5.1 Accuracy of disturbance predictions

The transient variations of the geomagnetic field con-
sists of a regular part, {Xgq, Ysq}, and an irregular part,
{AX,AY}. These two parts can not be separated un-
ambiguously. Rather, as emphasized in section 4.1, the
irregular variations are defined as the departure from the
quiet-time field model. It is only the total transient vari-
ations, {Xgq+AX,Ys,+AY'}, that can be directly com-
pared to observations. The irregular variations, or distur-
bances, can only be compared to a combination of obser-
vation and model. However, if the average regular vari-
ations are small compared to the irregular variations, a
comparison between observed and predicted {AX, AY}
still provides relevant information. The same would be
true if we had a perfect model for the regular variations.
The better our quiet-time field model is, the less strict

is the requirement that the regular variations should be
small compared to the irregular variations.

The observed and predicted { AX, AY'} are compared
under the assumption that the regular variations are
small and/or that our quiet-time reference field can ad-
equately account for the regular variations. It is found
that the RMS prediction error for AY is smaller than
the error for AX by a factor of two: 24 nT and 49 nT,
respectively. This is largely a result of the observed AY
variance being smaller than the AX variance. Taking the
observed variances into account, predictions of AX are
considerably more accurate than predictions of AY: only
34% of the AY variance is predicted from the solar-wind
data, while 73% of the AX variance is predicted.

The variation of the RMS prediction errors with local
time is shown in Fig. 4 (solid lines), together with the
variation of the observed standard deviations (dashed
lines). For both AX and AY the RMS errors are small-
est around local noon. However, the variance of the ob-
served data is also smallest around noon. In relation to
the observed variances, the predictions are in fact most
accurate around midnight.

The predicted variations {Xg, + AX,Ys, + AY} are
also compared to observations. From Table 1, we see that
the prediction of the eastward component, Ys, + AY,

Table 1. Quality of geomagnetic-activity predictions at SOD. The
upper panel shows the results from predictions of the disturbance
field. The lower panel shows the corresponding results from pre-
dictions of all transient variations, including both the regular and
irregular parts.

RMSE P p? ARV

AX 49nT 085 0.73 0.27
AY 24nT 058 0.34 0.66
Xsq+AX | 49nT 086 074 0.26

Ysq + AY 24nT 071 0.51 0.49



can explain 51% of the observed variance. This should
be compared to the predictions of AY alone that only
explain 34% of the observed variance. For the north-
ward component, the corresponding figures are 74% and
73%, respectively, i.e. predictions of Xg, + AX are only
marginally better than predictions of AX alone. These
differences between the northward and the eastward
components is related to the fact that at SOD we can
expect the average intensity of the regular variations to
be small compared to the irregular variations for X, but
not for Y. The regular variations, Yg,, contribute signif-
icantly to the total variance of Y, whereas X5, does not
similarly contribute to the total variance of X.

5.2 Qualitative results

All 55 intervals included in the test set are shown in
Fig. 3. The dominating features of the disturbance record
are reproduced by the predictions, although with under-
estimated amplitudes and a tendency to be broadened.

Four of these 55 intervals are shown in more detail in
Fig. 5. Dotted lines show observed values, and the solid
lines show the predictions. The relations between obser-
vation and prediction show the same qualitative char-
acteristics as predictions of the AF index: the predic-
tions are effectively smoothed versions of the observa-
tions. Much of the small-scale, high-frequency variations
are not being reproduced, especially in the AY records.
Some intensifications of AX are also missed. This can
be seen in intervals #13 and #30: both intervals start
with a -200 nT AX disturbance that is not predicted.
A rather odd feature can be seen in the AY record of
interval #13. The disturbance at the end of the interval
is being predicted, but with the wrong sign.

One source of error is when predicted disturbances
have a relatively correct appearance, but are shifted in
time compared to the observations. An example of this

RMS prediction errors

2 4 6 8 10 1'2 1‘4 16 18 20 22 24
Local time

Fig. 4. The RMS prediction errors (solid lines) and the observed

standard deviations (dashed lines) for the disturbance field, as a

function of local time. The results are based solely on the test data.
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behaviour can be seen in the AX record of interval #35.
The steep 150 nT rise at approximately 3.5 hours after
the beginning of the interval is being predicted, but the
prediction lies ahead of the observation. The fact that
no allowance is made for the travel time between IMP-8
and the subsolar magnetopause is a contributing factor
to these kind of errors.

Apart from the above limitations, the main features
of the disturbance records are actually being predicted.
The two substorm-like features in the AX record of in-
terval #5 are accurately predicted, although the magni-
tude of the disturbances are underestimated. The simul-
taneous disturbances in AY are also reproduced. The
prediction of the large AX depression in interval #13
show similar characteristics. Interval #30 ends with two
positive AX intensifications: both are predicted, but the
largest have only half the observed amplitude.

5.8 Accuracy of the daily variation model

Although the main topic of this paper is prediction of
geomagnetic disturbances, the accuracy of the daily vari-
ation model is also of some interest. As described in sec-
tion 2, the test data consist of hourly averages from more
than 500 quiet days. The RMS errors are around 9 nT
for X5, and 6 nT for Yg,, and the correlations between
observed and modeled values are 0.80 for X5, and 0.90
for Ys,.

It should be emphasized that the solar-activity in-
dex Fjo7 does not provide the neural networks with
enough information to accurately account for the day-to-
day variability of the daily variations. A part of the day-
to-day variability may have internal ionospheric causes
[Greener and Schlapp, 1979], and at high latitudes much
of the variability depends on the solar-wind conditions
and on magnetospheric processes. The role of Fjg7 is
mainly to account for variations of the solar ionizing radi-
ation on a solar-rotational or solar-cycle time scale [Lean,
1987], and not to account for the day-to-day variability.

6 Discussion

This study shows how the locally observed geomagnetic
variations can be predicted from solar-wind data with
ANN techniques. It also shows what accuracies to expect
using relatively simple neural networks. Several ways to
improve on the networks are not explored in this paper
to keep the networks as simple as possible.

We found a large difference between the prediction
accuracies of AX and AY: 73% of the observed AX vari-
ance is predicted, whereas only 34% of the observed AY
variance is predicted. The predictability from solar-wind
data appears to be higher for AX than for AY. Several
effects may contribute to this. One potentially important
factor is the different spatial scales of the source cur-
rents. Large-scale ionospheric electrojet currents have a
predominant east-west flow direction. These are the cur-
rents that generate AX. The spatial scales of currents
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Fig. 5. Predicted and observed disturbance components AX and AY for four of the 55 intervals in the test set. The dotted lines show
the observed values, and the solid lines show the predictions.

2 6 10
Time [h]

Predicted and observed AY at SOD (interval #5)

UT 19:20 10 may 1978

600
—800 -
o ; 1‘5
Time [h]
Predicted and observed AY at SOD (interval #13)
400 UT 23:50 15 april 1979
200

—600 -
—800|
o 1z s« s e z s s
Time [h]
Predicted and observed AY at SOD (interval #30)
00 UT 00:05 24 july 1983

—800 -
o ; X |‘5
Time [h]
Predicted and observed AY at SOD (interval #35)
400~ UT 05:25 25 september 1983

o

2 6
Time [h]



flowing in the north-south direction, which are the cur-
rents that generate AY, tend be smaller, often being
associated with current vortices or the Harang disconti-
nuity [Untiedt and Baumgjohann, 1993].

The predictions presented here are based on a finite-
length sequence of solar-wind data, and the neural net-
works are purely feed-forward, i.e. they have no feedback
connections. This has two consequences. Firstly, distur-
bances caused by current system with an internal time
scale longer than the input sequence are not accurately
reproduced. For example, the slow variations caused by
the ring current decay are not accounted for. While this
effect is relatively small for an individual station near the
peak of the auroral zone, it can become important for
stations at sub-auroral latitudes. Secondly, during pro-
longed periods of constant solar-wind input the predicted
disturbances settle onto a predicted output that vary
only with local time. Under these circumstances only the
directly driven geomagnetic response can be predicted.

Nevertheless, the prediction accuracies obtained show
that ANN techniques can be used to make useful predic-
tions of the geomagnetic disturbance field at particu-
lar locations. Further, the characteristics of ANN make
them suitable for real-time operation. Using real-time
solar-wind data from the sun-earth libration point Ly,
forecasts up to an hour ahead of the locally observed
geomagnetic disturbances should be possible within the
limitations that are described in this paper.
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Abstract. Neural networks with internal feedback from
the hidden nodes to the input [Elman, 1990] are devel-
oped for prediction of the auroral electrojet index AE
from solar-wind data. Unlike linear and nonlinear ARMA
models, such networks are free to develop their own inter-
nal representation of the recurrent state variables. Fur-
ther, they do not incorporate an explicit memory for past
states; the memory is implicitly given by the feedback
structure of the networks. It is shown that an Elman re-
current network can predict around 70% of the observed
AE variance, using only a single sample of solar-wind
n, V, and B, as input. A neural network with identi-
cal solar-wind input, but without a feedback mechanism,
only predicts around 45% of the AE variance. It is also
shown that 4 recurrent state variables are sufficient: the
use of more than 4 hidden nodes does not improve the
predictions, and with less than 4 hidden nodes the net-
work performance drops. The Elman recurrent networks
are compared to time-delay networks taking a sequence
of time-lagged solar-wind data as input. To reach com-
parable prediction accuracies as the recurrent network,
a time-delay network needs up to 100 minutes of solar-
wind input data.

1 Introduction

Auroral electrojet activity, as measured by the geomag-
netic indices AU, AL, and AE, depends on both the
external solar-wind forcing and the internal dynamics of
the magnetosphere. The important roles played by the
solar-wind density, velocity, and magnetic field have been
extensively studied during the last 30 years, first using
statistical, correlative methods [e.g., Arnoldy, 1971; Mu-
rayama and Hakamada, 1975], and later using linear fil-
ters [e.g., Tyemori et al., 1979; Clauer et al, 1981]. The
studies based on linear filters have demonstrated the fun-
damental nonlinearity of the geomagnetic response to the
solar wind [Bargatze et al., 1985)], and have contributed
to a better understanding of the time scales involved.
A consequence of the findings by Bargatze et al., is
that accurate predictions of geomagnetic activity from
solar-wind data require nonlinear methods. Vassiliadis

[1993], Price et al. [1994], and Vassiliadis et al. [1995]
used a locally linear, but globally nonlinear, filter tech-
nique to predict the AE and AL indices. These nonlinear
filters were developed from ideas put forward by Casdagli
[1992] and Hunter [1992]. The range of applications for
the nonlinear filters have later been extended to the ring
current index Dst [Klimas et al., 1998], and to spatial
patterns of geomagnetic disturbances at high latitudes
[Valdivia et al., 1999].

Neural networks is a related technique that rela-
tively recently has found a wide range of applications.
Different type of neural networks have been developed
for prediction of geomagnetic indices. Time-delay net-
works (TDNs), taking a sequence of time-lagged solar-
wind data as input, were used by Lundstedt and Wintoft
[1994] and Gleisner et al. [1996] to predict Dst one hour
ahead. Later studies by Wu and Lundstedt [1996,1997)
have shown that Elman recurrent networks (ERNs) can
predict the Dst index from a single sample of solar-wind
data, i.e. with no explicit reference to time-lagged solar-
wind inputs.

In 1993, Hernandez et al. published a study on AL
predictions using two types of neural networks: a non-
linear ARMA filter and a nonlinear MA filter, the latter
being identical to a TDN. This work was extended by
Weigel et al. [1999] to address certain problems due to
clipping of high amplitude variations. In 1997, Gleisner
and Lundstedt presented a study on AF predictions using
TDNs. It was shown that up to 100 minutes of solar-wind
data is required, and that the use of raw solar-wind pa-
rameters gives more accurate AF predictions than any
of the most common coupling functions (i.e. a function
that combines several solar-wind parameters into a sin-
gle quantity). Takalo and Timonen [1997] also studied
AE predictions using nonlinear ARMA filters fed with a
time-lagged sequence of solar-wind data and AE itself.

The two types of recurrent neural networks that have
been used to predict geomagnetic indices are thus nonlin-
ear ARMA filters and Elman recurrent networks. Unlike
nonlinear ARMA filters, ERNs are free to develop their
own representation of the states that are fed back to the
input. Further, they do not incorporate an explicit mem-



ory for past states, other than the most recent. The mem-
ory is implicitly given by the feedback structure of the
network. If fed with a single sample of solar-wind data,
any dynamic behaviour of an ERN must be the result
solely of the network’s feedback structure. The studies
by Wu and Lundstedt [1996, 1997] show that ERNs have
the ability to approximate at least a part of the under-
lying dynamics of the solar wind-Dst relation. The aim
of the present study is to evaluate the abilities of ERNs
to model the dynamics of the solar wind-AF relation.

2 Neural Networks
2.1 Nonlinear, dynamic mappings

At the most general level, the geomagnetic activity, O,
can be described as a function of a vector, I, of time-
lagged solar-wind inputs

Ot = F(It_l) (1)

where
Loo={L,Lio,... L1} (2)

and T is the temporal length of I. A more powerful
assumption is that the geomagnetic activity depends on
both the solar-wind input and prior geomagnetic activity

Oy = F(It—ly Ot—l) (3)

where
01 ={0¢-1,0¢-2,...,0i_1,} (4)

and Tp is the temporal length of O. Alternatively, it is
a set of internal states, Y, that is fed back to the input

Ot = F(It—lth—l) (5)

where Y; represents the internal state at time ¢. An in-
teresting difference between the feedback mechanisms of
Egs. 3 and 5, is that in the former equation the time
dimension is explicitly represented by a memory for past
outputs. In Eq. 5, there is no explicit memory for past
states (other than the most recent), and time is only
represented implicitly by its effects on processing.

Egs. 1 to 5 could represent low-dimensional magne-
tospheric dynamics at the most general level. The sim-
plest possible implementations are the linear moving-
average (MA) filter and the auto-regressive moving-
average (ARMA) filter. For a magnetosphere with linear
response properties, these filters would be perfectly suf-
ficient. However, as the study by Bargatze et al. [1985]
pointed out, the response properties vary with the level
of geomagnetic activity. The magnetospheric response is
in fact nonlinear.

One way of introducing nonlinearities is to approx-
imate F locally by linear MA or ARMA filters whose
response properties vary between different regions of the
input-state space. Such locally linear, but globally non-
linear, filters have been used by Vassiliadis et al. [1993,
1995] to study the auroral electrojet response to the so-
lar wind, and the technique has also been described by
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Fig. 1. The time-delay network (TDN) with a sequence of solar-
wind data to the left and a single output node to the right. The
processing performed at the hidden nodes is nonlinear, while the
output node performs a linear, weighted summation.

Klimas et al. [1996] in a broader context of nonlinear,
magnetospheric dynamics.

Neural networks have much in common with the non-
linear filters, but they also differ from them in important
respects. For a neural network, the function F is both
locally and globally nonlinear. The time-delay network
(Figure 1, and further described in section 2.2), with
a sequence of time-lagged solar-wind data as input, is
essentially a realization of Eq. 1. An Elman recurrent
network (Figure 2, and further described in section 2.3),
with feedback of internal network activations to a set of
context nodes at the input, is a realization of Eq. 5.

2.2 Time-delay networks

Standard feed-forward neural networks are described
thoroughly in many text books [e.g., Haykin, 1999].
Time-delay networks are simply feed-forward networks
that are fed with a temporal sequence of time-lagged ex-
ternal inputs [Lapedes and Farber, 1987; Waibel, 1989].
It is the organization of the input data that gives the
TDN a dynamic behaviour; the mapping itself is static.
The processing performed on the input data is given by

Niia Nin
0" = go(D_ Wign(D_ wilt) + Bly) (6)
=1 k=0

where the input-output samples {I}', O#} are labeled by
superscript u. Index j refers to a hidden node and index
k refers to an input node. The bias input, Iy, is assigned
a fixed value and is connected to all hidden and output
nodes in the network through a set of bias weights. In
the present study, the activation functions for nodes in
the hidden and output layers are

gn(z) = tanh(z) ; go(z) == (7)



Auroral electrojet predictions with dynamic neural networks

Fig. 2. The Elman recurrent network (ERN) with feed-back con-
nections from the hidden nodes to a set of context nodes at the
input. The processing performed at the hidden nodes is nonlinear,
while the output node performs a linear, weighted summation.

The incoming signals at a hidden node are thus processed
by a nonlinear, differentiable, saturating function, and
the processing performed at the output node is simply a
linear, weighted summation.

The number of input and output nodes is determined
by the set of data to which the network is applied, while
the number of hidden nodes, Np;q, essentially is a free
parameter. The factors that should be considered when
determining Np;q4 are briefly discussed in section 4.1.

2.3 Elman recurrent networks

Partially recurrent networks often incorporate the essen-
tial features of time-delay networks, but they also in-
clude a limited set of fixed feedback connections [Jor-
dan, 1989; Cleeremans et al., 1989; Elman, 1990]. The
recurrent networks devised by Elman [1990] feed back
the hidden-node activations to a set of context nodes at
the input. Unlike the TDN, the dynamical properties of
an ERN is a result of the mapping itself being dynamic.
The processing performed by an ERN is given by

Nhia Nin Neon
0f =go(>" WighO_winIf + > wie Y2 ,)+ BIy) (8)
=1 k=0 =1

where index ¢ denotes the context units and ¢ is a time
variable. Similar to a TDN, the external input data to
the ERN are organized as a temporal sequence of time-
lagged data. This sequence is normally relatively short.
It often consists of only the current input data, i.e. the
ERN is not fed with any time-lagged input data at all.
The activation functions are the same as for the TDN de-
scribed above, nonlinear at the hidden nodes and linear
at the output node.

The actual feedback of an ERN is performed by copy-
ing the hidden node activations onto the context nodes.
No weights are associated with the feedback connections,

which are kept fixed during the training process. This is
an important property of a recurrent network. As the
modifiable connections are purely feed-forward, we can
use the same training algorithm as for a TDN.

2.4 Network training

A network’s ability to produce a ”correct” output is
quantified by

trn

(0r —TH)? 9)

MO

Clw) = %

Il
N

where w is the set of weights, O is the actual output
of the network, T# is the "correct” output (or target),
and Q¢ is the number of input-output samples in a
set of training data. Network training is the process of
optimizing the cost function, C'(w), under certain re-
strictions. In the present study we have used the er-
ror back-propagation algorithm [Rumelhart et al., 1986).
The weights are iteratively updated according to the rule

Aw; «~ -7 (g—g) + aAw;_1 (10)

Wip1 < w;+ sz (11)
where w is a single weight and subscript ¢ denote the
iteration. Normally, it is only a subset of the Q¢,p, train-
ing samples that is used in each iteration, and the actual
update is in an approximate gradient direction. The size,
Qpat, of this subset is a parameter that, along with 7 and
a, controls the training process. For TDNs, the Q¢ sam-
ples in the training batch are selected wholly randomly
from the training set. For ERNs, intervals of data, rather
than individual samples, are randomly selected.

In the present study, the parameters that control the
training process have been assigned the values

800 for TDNs
Qbar = { 3000 — 10000 for ERNs (12)
0.012
= 13
g Qbat ( )
a =090 (14)

The varying batch size, Qpqt, for the ERNs is a con-
sequence of the fact that the batch consists of a fixed
number of data intervals, rather than a fixed number
of samples. Further, the training process is more unsta-
ble for ERNs than for TDNs, requiring either a smaller
learning rate, n, or a larger batch size, Qp,:. We have
chosen the latter.

Much of the practical use of neural networks relies
on their ability to make sensible generalizations. This
ability can be defined as the average performance on a
randomly chosen data sample. However, the cost func-
tion C(w) measures a network’s ability to memorize the
training data, rather than the ability to generalize to new
data. In order to optimize the generalization ability, the
training procedure need to be constrained. This is done



by excluding a small part of the training set from the ac-
tual training, and use these data to determine when to
stop the iteration. In this way the problem of overfitting
is avoided, or at least lessened.

3 Data Set

The data were obtained from the Bargatze data set, orig-
inally compiled for linear MA filter studies [Bargatze et
al., 1985]. These data, or subsets of them, have been used
in several studies of magnetospheric dynamics [e.g., Her-
nandez et al., 1993; Vassiliadis et al., 1995; Takalo and
Timonen, 1997; Weigel et al., 1999]. A similar data set,
largely overlapping in time but with a lower time reso-
lution (5 min instead of 2.5 min), was used in the study
by Gleisner and Lundstedt [1997].

The data set contains solar-wind data from the Earth-
orbiting spacecraft IMP-8, observed between November
1973 and December 1974: velocity, V', proton number
density, n, and the interplanetary magnetic field compo-
nents B,, By, and B, given in Geocentric Solar Magne-
tospheric (GSM) coordinates. The data set also includes
the geomagnetic activity index AF at a time resolution
of 2.5 minutes. The AE data have been time shifted to
account for the solar-wind travel time from the IMP-8
position to the magnetopause.

The data are divided into 34 intervals covering 42216
samples. Each interval contains isolated auroral activity
preceded and followed by relatively quiet periods. The
intervals are ordered from low to high activity, such that
interval 1 is very quiet and interval 34 very disturbed.
Every third interval is used as test data to ensure that
the networks are tested on a variety of activity levels.
The test data are not used during training; their only
role is to evaluate the network performance.

4 Studies
4.1 Network setup: input parameters and network size

Neural networks are completely data based in the sense
that the model parameters, i.e. the network weights, are
determined solely from the data available during the
training process. Physics enter the neural-network model
through the choice of physical quantities to use as in-
put and output data. The input data should contain a
maximum amount of information on the solar wind, but
should also exclude all data that are of no relevance for
the geomagnetic activity.

Another consideration is the risk for overfitting, which
was briefly addressed by Gleisner and Lundstedt [1997].
The overfitting problem increases with the number of
free parameters in the network, i.e. both with the num-
ber of input data and with the number of hidden nodes.
The negative effects of overfitting can be reduced by a
proper choice of training procedure, but they can not
be completely compensated for. An excessive number of
weights tends to decrease the performance of any neural
network.
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Fig. 8. Correlation between observed and predicted test data
as a function of 77, the temporal length of the solar-wind input
sequence. The predictions are based on solar-wind parameters n,
V, and B:. The performance of the Elman recurrent network (®)
is nearly independent of 7', whereas the performance of the time-
delay network (m) depends strongly on T7j.

The number of weights in the network, and thus the
number of input data, should be as small as possible,
while still be large enough to represent the full com-
plexity of the problem. This should favour the use of
solar-wind coupling functions. However, previous stud-
ies have shown that it is better to use the raw solar-
wind parameters n, V, and B,, than to use any of the
most common coupling functions constructed from these
parameters [Gleisner and Lundstedt, 1997], presumably
because a loss of relevant information when combining
separate solar-wind parameters into a single quantity.

In the present studies, we have used the solar-wind
parameters n, V, and B, as input to the networks. The
networks have 10 hidden nodes and a single output node.
For an ERN, the number of context nodes, N¢on, is iden-
tical to the number of hidden nodes, Nj;q. The basic
ERN, which only use a single solar-wind sample as in-
put, have 3 input nodes in addition to the 10 context
nodes, one each for n, V, and B,

I, = {nty Vi, Bz,t}

The basic TDN, which take a 100-min sequence of solar-
wind data as input, have a total number of 120 input
nodes, 40 each for n, V, and B,

I, = {TLt7 ey N30, Vgt V}—sgsz,t, ce. 7Bz,t—39}

In addition to the solar-wind inputs, each network also
have a bias input connected to all hidden and output
nodes as shown in Figures 1 and 2.
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Fig. 4. Correlation between observed and predicted test data as
a function of the number of context nodes for an Elman recurrent
network. The predictions are based on the solar-wind parameters
n, V, and B;. Four recurrent state variables are sufficient: the pre-
diction accuracy does not improve by adding more than 4 context
nodes, and with less than 4 context nodes the network performance
drops.

4.2 Length of the solar-wind input sequence

It is the organization of the input data that gives the
TDN a dynamic behaviour; the mapping itself is static.
Based on a time-lagged vector of past solar-wind inputs,
the TDN can display such properties as delayed response
and modulation of the response properties by prior in-
puts. For a TDN, it is crucial that the temporal size, T7,
of the time-delay line is large enough to accommodate
all relevant dependences on prior solar-wind inputs. The
performance of a TDN is systematically improved with
a larger T7, up to roughly 100 minutes.

Contrary to the TDN, the dynamical properties of
the ERN is a result of the mapping itself being dynamic.
If the network input consists of only the instantaneous
solar-wind data, i.e. if no time-lagged solar-wind data are
presented to the ERN, any dynamic behaviour must be
the result solely of the network’s feedback structure. If, in
fact, important aspects of the solar wind-AE dynamics
are encoded in the feedback structure, we can expect the
performance of the network to be relatively independent
of Tr. This property of the ERN differs markedly from
the TDN, and can be used as an indicator of the role
played by the feedback.

To study this aspect of recurrent networks, a se-
quence of ERNs were trained with different temporal
lengths of the solar-wind input sequence, from 2.5 to
60 minutes. A corresponding sequence of TDNs were
trained on identical input data. All networks used the
solar-wind parameters n, V, and B, as input. The re-
sults are shown in Figure 3, where the correlation be-
tween predicted and observed values over the test set is
plotted as a function of T7.

As expected from previous studies, the performance
of the time-delay network is strongly dependent on T7.
A TDN with an input-sequence length, 77, around 80
to 100 minutes, predicts 70% of the observed AE vari-
ance. With T7 = 2.5 min, i.e. with only the instantaneous
solar-wind data presented to the network, the TDN only
predicts 45% of the observed variance.

Unlike the time-delay network, the performance of
the recurrent network is nearly independent of the input-
sequence length T7. Using only the instantaneous solar-
wind data, i.e. with Ty = 2.5 min, the ERN predicts 71%
of the AFE variance, which is marginally better than the
best performing TDN.

We thus conclude that adding time-lagged solar-wind
data to the ERN input does not result in an improved
prediction accuracy as measured by the correlation be-
tween observed and predicted values. The dynamical be-
haviour of an ERN appears to be entirely due to the feed-
back structure of the network, and this feedback struc-
ture can replace a sequence of time-lagged solar-wind
data.

4.3 Number of recurrent state variables

For an ERN that is fed with only the instantaneous solar-
wind parameters, i.e. that does not receive any time-
lagged external inputs, the number of recurrent state
variables becomes an important design parameter of the
network. This number provides an upper limit to the
dimensionality of the dynamics that can be described by
the network. To clarify the role played by the number
of state variables, we trained a sequence of ERNs with
a varying number of context nodes, and thus a varying
number of recurrent state variables. The external solar-
wind input consists of a single sample of solar-wind n,
V, and B,. The results are summarized in Figure 4.

With 4 context nodes, the ERNs predict 71% of the
AE variance. The prediction accuracy does not improve
by adding more context nodes, but with less than 4 con-
text nodes the network performance suddenly drops. We
conclude that 4 recurrent state variables are sufficient to
give the network a dynamic behaviour that accounts for
71% of the observed AE variance. A larger number of
state variables does not contribute significantly to im-
proved predictions.

The drop in network performance from 4 to 3 con-
text nodes is rather abrupt (Figure 4). The performance
for 2 or 3 context nodes is, however, relatively high com-
pared to TDNs with short sequences of solar-wind data.
Around 66% of the observed variance is still predicted
with only 2 context nodes, corresponding to a TDN us-
ing around 45 minutes of solar-wind input data.

4.4 Qualitative results

All test data are shown in Figure 5: the TDN results are
presented in Figure 5a, and the ERN results in Figure 5b.
The 11 test intervals have been concatenated into a sin-
gle sequence and observed values are vertically shifted.
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T T T

3000 1

2500+ B

2000 1

AE [nT]

1500

10001
observed

500

predicted

2000 4000 10000 12000

6000 8000
Time [samples]

h L L
2000 4000 6000 8000 10000 12000 14000

Time [samples]

Fig. 5. Observed and predicted AE for (a) the basic time-delay network using 100 minutes of n, V, and B. as input, and (b) the
basic Elman recurrent network using a single sample of n, V, and B, as input. All test data are shown; 11 separate intervals have been
concatenated into a single sequence, and the observed values have been vertically shifted.

Observe that the number of test data are not exactly the
same for TDNs and ERNs. This is due to the different
temporal lengths, 77, of the solar-wind input sequences.
For the TDN, T} corresponds to 40 samples, whereas for
the ERN it corresponds to a single sample. The first 40
samples are lost from each data interval when using a
TDN. When using an ERN, only a single sample is lost
from each interval.

Figure 5 gives a rough overview of the correspon-
dence between observation and prediction. The dominat-
ing features of the observed AFE record are reproduced
by the predictions. The amplitudes are, however, under-
estimated and most narrow, high-frequency features are
broadened and some of them are even completely missed.
An interesting observation is that even though the statis-
tical performance of the ERN is slightly better than the
performance of the TDN, this is not immediately obvious
from a visual inspection of Figures 5a and 5b. In fact,
it rather tends to give the opposite impression. Several
of the dominating features are less underestimated and
less broadened by the TDN. The ERN appears to pro-
duce smoother predictions than the TDN. This is also
confirmed by the variability of the predicted AE: the
ERN predictions have a standard deviation of 184 nT,
compared to 194 nT for the TDN predictions. As a com-
parison, the standard deviation of the observed test data
is 235 nT.

Despite these obvious differences, the TDN and the
ERN predictions are relatively similar, even down to
small-scale details. Compare, for example, the interval
from ¢ = 2000 up to the large peak near ¢ = 6000. There
is a one-to-one correspondence between the peaks of the
two predictions. The same features of the AF records
are predicted by both the TDN and the ERN. Where
observed features fail to be predicted, as the two narrow
peaks around ¢t = 13000, they are simultaneously missed
by both the TDN and the ERN.

Figure 6 compares, in much more detail, the pre-
dicted and observed values for the TDN (left column)
and the ERN (right column). Four of the 11 test data
intervals are presented: Bargatze intervals 12, 15, 18, and
27. Most comments on the qualitative aspects of Figure
5 are confirmed by the higher resolution of Figure 6. An
interesting case where the TDN and the ERN predictions
differ is shown in test interval 9 (Bargatze interval 27).
In the TDN plot (bottom left of Figure 6), the activity
around ¢t = 1600 shows three peaks reaching approxi-
mately 400 nT and a fourth peak, barely discernible just
after the second peak, that reach 250 nT. The corre-
sponding part of the ERN plot (bottom right of Figure
6) shows only two peaks. The first and the second peaks
are not resolved and instead form a broad feature in the
ERN plot. The third, smaller peak is not found at all in
the ERN plot. It probably contributes to a broadening
of the base of the first two unresolved peaks. The last of
the four peaks is shown in the ERN plot, but it is much
broader than in the TDN plot. However, for the most
part the TDN and the ERN produce predictions that
are very similar. The broad activity around ¢ = 1200 in
the same two plots, is an example of nearly identical pre-
dictions, and many more nearly-identical features can be
found in the other plots of Figure 6.

In general, the ERN tends to smooth out high-
frequency AF variations more than the TDN. The ten-
dency of the TDN to produce predictions with narrow
features that not exactly correspond to observations, is
probably a part of the explanation to why the ERN is
somewhat better than the TDN from a statistical point
of view, while a visual inspection of the two predictions
gives the opposite impression.

5 Conclusions

The aim of this study is to evaluate the abilities of ERNs
to approximate the dynamics of the solar wind-AF rela-
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tion. This was done by a comparison with TDNs, whose
predictive capabilities are better known. The results
show that Elman recurrent networks can predict approx-
imately the same fraction of the observed AE variance
as the time-delay networks. The predictions are, how-
ever, qualitatively somewhat different. The TDN tends
to produce predictions with a more irregular appearance,
while the ERN tends to smooth out high-frequency ir-
regularities. Observed high-amplitude disturbances tend
to be more broadened and underestimated by the ERN
than by the TDN. Still, the statistical performance of
the ERN is somewhat better than that of the TDN.
The preferred network configurations are vastly dif-
ferent for the two types of network. While a TDN may
require up to 100 minutes of solar-wind data, the ERN
only requires a single sample of solar-wind parameters.
With an equal number of hidden nodes, the number of
weights is much larger for the TDN than for the ERN.
The ERN can be very simple and still produce relatively
accurate predictions: from 1 to 4 input nodes (depend-
ing on what solar-wind parameters are used), 4 context
nodes, 4 hidden nodes, and a single output node. In fact,
with only 2 hidden nodes, an thus 2 context nodes, the
ERN produce predictions that are surprisingly accurate.
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