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Abstract

The composition of the labour force is an important economic factor for a country.
Often the changes in proportions of different groups are of interest.

I this paper we study a monthly compositional time series from the Swedish Labour
Force Survey from 1994 to 2005. Three models are studied: the ILR-transformed series,
the ILR-transformation of the compositional differenced series of order 1, and the ILR-
transformation of the compositional differenced series of order 12. For each of the
three models a VAR-model is fitted based on the data 1994-2003. We predict the time
series 15 steps ahead and calculate 95 % prediction regions. The predictions of the
three models are compared with actual values using MAD and MSE and the prediction
regions are compared graphically in a ternary time series plot.

We conclude that the first, and simplest, model possesses the best predictive power of
the three models.
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1 Introduction

The composition of the labour force is an important economic factor for a country. It is usually
measured in absolute numbers, i.e. how many people that at given time was employed, how many
that was unemployed, and how many that was not in the labour force. Often however it is not the
absolute number of people that is of interest, but the relative. I this paper we present three simple
time series models for the relative labour force data and examine their predictive power.

1.1 Compositions

A composition is a vector of non-negative components summing to a constant, usually 1, or put
symbolically, a vector & such that

= (x1,...,2p); x1>0,...,2p>0; 1+ +xp=1.

Compositions arise in many different areas. The geochemical compositions of different rock spec-
imens, the proportion of expenditures on different commodity groups in household budgets, and
the party preferences in a party preference survey are all three different examples of compositions
from different scientific areas.

The sample space of a composition x is referred to as the Simplez, SP. It has been known, though
not always acknowledged, since the days of Pearson (1897), that normal statistical methods are
not applicable to elements of the simplex, i.e. compositions. See Aitchison (1986, ch. 3), or the
reprint 2003, for a detailed description of the problems with standard methods on compositions.

The major way, following the ideas of Aitchison, of resolving these problems has been through a
logratio transformation from the D-part Simplex, S, to the real space R¢ or RP, where d =
D — 1. The most popular transformations are the additive logratio transformation (ALR) and the
centred logratio transformation (CLR) (Aitchison, 1986), and more recently the isometric logratio
transformation (ILR) (Egozcue and others, 2003). The three transformations are related, see for
instance Barcel6-Vidal and others (2007).

1.2 The Geometry of the Simplex
The Simplex utilizes its own geometry, based on the Simplicial distance (Aitchison, 1986)
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where g(x) = (x129 - -ID)I/D is the geometric mean. The inner product of two compositions is
thus, following Egozcue and others (2003), defined as
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The inner product can be used to construct the norm, || - ||s, of a composition

I [[5= (x,x)s.

The Simplex also has the basic operation perturbation, &, which is analogous to addition in the
real space, and inverse perturbation, ©, which is analogous to subtraction (Aitchison, 1986). This
means that the distance between two compositions also can be calculated as

As(z,y)=[[zoy|s -



1.3 The ILR Transformation

A D-part Simplex is spanned by a d-part basis. Let vy,...,v4 be any orthonormal basis of S”.
Such a basis can be constructed as
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where C(x) = (21,...,2p)/ Zi’;l x; is the closure operation. The ILR transformation of a com-
position x is then defined as
ilr (x) = ((:1:, V1)S, .-, <a:,'vd>5).

The names derives from the fact that the transformation retains distances:

[z Sy |[s=[ilr (2) —ilr (y) |
where || - || is the normal real space norm. (Egozcue and others, 2003)

Like the ALR transformation the ILR is a transformation from from SP to R¢, but unlike the
ALR and the CLR the resulting components of the ILR transformation are hard to interpret.
(The components of the ALR transformation are the logarithm of the relative magnitude of a
component compared to a reference component and the components of the CLR transformation
are the logarithm of the relative magnitude of a component compared to the geometric mean.) The
ILR result in a much more complex vector. For example, if © = (x1, 22,23, x4)" then the resulting
vectors of the different transformations are the following
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where g(x) is the geometric mean as before.

1.4 Compositional Time Series

A time series of compositions is referred to as a Compositional Time Series (CTS). Compositional
time series arise in many different situations, e.g. party preference surveys, labour force surveys or
pollution measurements.

Even though there has only been relatively few papers published about CTS, there has been several
approaches to CTS. Larrosa (2005) and Aguilar Zuil and others (2007) have reviewed the different
approaches to CTS.

The first to discuss and use an ALR approach to CTS seem to be Aitchison (1986) and Brunsdon
(1987), which were followed by Smith and Brunsdon (1989) and Brunsdon and Smith (1998). In
that approach the CTS is transformed with an ALR, and the transformed series is then analysed
with standard models, e.g. VAR or VARMA.

There has also been some ideas on how to model the time series on the Simplex. Apart from
Aitchison and Brunsdon, Billheimer and Guttorp (1995) and Billheimer and others (1998) have used
autoregressive and conditional autoregressive models. Barcelé-Vidal and others (2007) introduced
a compositional ARIMA model.



2 Data

Data consists of a monthly series from the Swedish Labour Force Survey (AKU), conducted by
Statistics Sweden, from 1976 to 2005 (see Persson and Henkel (2005) for a description of the Swedish
Labour Force Survey). The labour force is divided into three groups: Employed, Unemployed and
Not in the labour force. The time series and the ILR-transformed series are plotted in figure 1. As
can be seen from the plot there was a major decrease in employment in the early 1990’s during the
Swedish fiscal crisis, constituting a structural change in the series. To avoid having to model the
change, we only consider the series after 1994. This shortened series is plotted in Figure 2 together
with the ILR-transformed series. In this shortened series there are no evident structural changes.

The time series from January 1994 up to December 2003 is used for modelling. The remaining
time series (January 2004-March 2005) is used for model evaluation.

3 Analysis

We investigate three models.

I:zy = ilr(x)
M:z; = ilr(x;oxi )
IMI: 2z, = ilr(xi©xi-12)

In the models the x is the untransformed time series defined in section 2. Model II and IIT are the
equivalences of the ordinary difference operator of order 1 and 12 respectively. The transformed
time series are thereafter modelled using traditional VAR modelling technique.

3.1 VAR models

We assume a vector autoregressive (VAR) model for simplicity. The observation at time ¢, z;, is
assumed to depend on the m earlier observations. It is defined as

ze=v+A1zi 1+ Aszp o4+ AnzZi_pm €

where v is a constant and €; is the error term. In model I and IT we also add seasonal dummy
variables to account for the seasonal variation in the series.

3.2 Order Selection Criteria

We use order selection criteria to choose the number of lags, m, to include in the different models.
Four criteria are used: the Akaike Information (AIC), the Hannan-Quinn (HQ), the Schwartz (SC)
and the Final Prediction Error (FPE) criteria. According to the different criteria, one should
choose should the m that minimizes the respective functions
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AIC(m) = 1n|25(m)|+2mTK
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where K is the dimension of z; (here K = 2), T is the length of the time series, and |S(m)| is
the determinant of the ML-estimate of the residual covariance matrix. The criteria are based on
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Figure 1: The top plot shows the time series in a ternary time series plot, where the top corner of the Simplex
represents 100 % Unemployment, the bottom left corner 100 % Employment, and the bottom right corner that
100 % of the population are Not belonging to the labour force. The middle plot shows the three components of the
time series in a standard time series plot. (Note that the vertical axis has been cut and has different scales.) The
bottom plot shows the ILR-transformed series. (The second component of the transformed series is plotted with a
dashed line.) In all three plots the structural change in the series during the early 1990’s is clearly visible, as well
as the seasonal pattern.
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Figure 2: The top plot shows the time series from 1994 to 2005 in a ternary time series plot. The middle plot
shows the three components of the time series in a standard time series plot. (Note that the vertical axis has been
cut and has different scales.) The bottom plot shows the ILR-transformed series. (The second component of the
transformed series is plotted with a dashed line.)



Table 1: Values for the four selection criteria for one to six lags for model I. The minimum value for each criterion
is marked with bold face.

m 1 2 3 4 5 6
AIC(m) —14.04 —14.12 —14.32 —14.38 —14.37 1431
HQ(m) ~13.77 ~13.81 ~13.97 —13.99 ~13.94 ~13.84
SC(m) ~13.37 ~1335  —13.46 —13.42 ~13.31 ~13.15
FPE(m) | 7.99-10~7 7.39-10~7 6.06-107 5.73-10~7 5.82-10°7 6.20-10""7

Table 2: Values for the four selection criteria for one to six lags for model II. The minimum value for each criterion
is marked with bold face.

m 1 2 3 4 5 6
AIC(m) 14.03 —14.28 —14.33 —14.32 —14.27 —14.30
HQ(m) —~13.75 —~13.97 —13.98 —13.93 —13.84 —13.83
SC(m) —13.35 —13.51 —13.46 —13.36 —13.21 —~13.14
FPE(m) | 8.12-1077 6.31-107 6.01-10~7 6.08-10"7 6.40-107" 6.26-10""

different theoretical ideas and have slightly different properties. It can however be shown, that for
T > 16, SC(m) < HQ(m) < AIC(m). (Liitkepohl, 2005)

3.3 Prediction Regions

Predictions for 15 months ahead are calculated, and assuming bivariate normality 1 — a prediction
regions I,, are also calculated as

Ly={p: (2 — 'S5 (2 —p) < X5(2)}

where 2}, is the prediction & steps ahead and Xz, is the associated covariance matrix. (For model
IT and III, the 33, are also adjusted for the differencing.) The confidence regions I,, are then
transformed back to S using the inverse ILR transformation. The predictions are also transformed
back as

@, = ilr ' (&)
M@ = il ' (%) ®x
Ml:& = il (%) @z

The analyses are carried out using the R environment (R Development Core Team, 2008), primarily
utilizing the compositions (van den Boogaart and others, 2006) and vars (Pfaff, 2008) packages.
The ternary time series plots have been made in Matlab.

4 Results

The values of the model selection functions for the three models are presented in Tables 1-3. The
minimum value for each criterion and model is marked with bold face. For model I the AIC, HQ
and FPE all suggested four lags, and a VAR(4)-model with seasonal dummy variables was fitted
to the data. Also for model II, three of four criteria agreed, recommending three lags. A VAR(3)-
model with seasonal dummies was therefore fitted to the data. For the third model, two criteria
(AIC and FPE) recommended five lags, and two criteria (HQ and SC) recommended three lags.
As values of the functions for three and five lags are quite similar (compared to the differences



Table 3: Values for the four selection criteria for one to six lags for model III. The minimum value for each criterion

is marked with bold face.

m 1 2 3 4 5 6
AIC(m) —13.19 —13.29 —13.47 —13.49 —13.51 —13.43
HQ(m) —12.90 —12.96 —13.09 —13.08 —13.05 —12.93
SC(m) —12.47 —12.47 —12.54 —12.46 —12.37 —12.20
FPE(m) | 1.87-10"¢ 1.70-107% 1.43-107% 1.39-107% 1.38-10=¢ 1.49.10°6

Table 4: Mean Absolute Deviations (MAD) and Mean Squared Errors (MSE) for the three models.

Model I I III
MAD | 0.0560 0.0571 0.1234
MSE | 0.0038 0.0036 0.0233

between five and two lags), based on parsimony, a VAR(3)-model was chosen with no seasonal
dummy variables.

The computations yield the following models

1.3 [ —0.127 | +' 0.737 —0.003 | — 0.202 —0.111 | .
et | —0.045 | | —0.165  0.507 | “*7' " | —0.109 —0.010 | **7?
[ 0.420 0.481 —0.433 —0.494 -
1 0043 0.226}%3*[ 0.199 0.177}%4*‘4517@)
0.5 — [ —0.002 ] N [ —0.220  0.031 ] N 0.012 —0.046 |
#0001 | T —0.135 —0.446 | F1T | —0.228 0432 | F12
[ 0.444  0.469 «
1 —0178 —0.180 ] #t-3 + Asp(?)
N 0.002 N 0.545 —0.204 | _ N 0.155 —0.121 | _
et 0.000 —0.071  0.462 | <t —0.079  0.086 | <2
N 0.224 0.195
0.147 0.357 | *t3

where Agp are the estimates of the seasonal dummy variables coefficients (not shown).

4.1 Predictions

For each of the three models predictions are calculated for the next 15 periods (months). To
compare the accuracy of the predictions the Mean Absolute Deviations (MAD) and Mean Squared
Errors (MSE) are calculated as

Yici l®meod s

MAD =
n

MSE — i lzeo @ ||Z
n

where n is the number of predictions. The values for three models are presented in Table 4. We
note that model I and II yield almost the same MAD and MSE values, thus indicating the same
predictive ability. Model IIT on the other hand seems to have much poorer predictive ability. The
predictions and the actual values of the time series are presented in Table 5. In the table we can
see that model IIT tend to overestimate the employment rate and underestimate the unemployment



Table 5: Actual and predicted values for the period January 2004 to March 2005. E is the percentage Employed,
U the percentage Unemployed, and N is the percentage of the population Not in the labour force.

Time Actual values Predictions
Model 1 Model II Model III
E U N E U N E U N E U N

Jan 2004 723 45 232|726 4.6 228|735 39 225|728 39 233
Feb 2004 719 4.6 235|724 44 233|726 4.6 228|733 34 233
Mar 2004 73.0 4.5 226|728 4.1 231|725 43 232|738 35 227
Apr 2004 735 4.2 223|729 4.1 23.0]| 730 4.0 23.0| 738 35 227
May 2004 73.2 4.1 227|732 3.8 23.0]|73.0 40 229|741 33 226
Jun 2004 74.7 4.6 20.7 | 75.7 4.7 196 | 734 3.8 228 | 76.5 3.9 19.7
Jul 2004 76.8 4.6 18.7 | 76.6 50 183|759 4.6 194 | 77.0 4.1 18.9
Aug 2004 744 43 213|744 48 208|769 49 182|746 4.2 212
Sep 2004 73.2 4.5 224|733 4.3 224|747 47 206|744 3.8 218
Oct 2004 73.0 3.8 232|734 4.1 226|737 42 221|739 4.0 22.1
Nov 2004 72.8 3.8 234|731 40 229|737 39 223|729 42 229
Dec 2004 72.8 4.0 232|731 41 228|735 39 226|735 39 225
Jan 2005 723 4.2 235|722 46 23.1|735 40 225|719 50 232
Feb 2005 71.8 4.4 238|723 43 233|727 45 228|721 44 235
Mar 2005 72.0 4.2 238 | 72.6 4.2 233|728 4.1 23.0]| 725 4.5 23.0

rate, whereas the other two models perform better. It is however also interesting to note that model
IT from August 2004 and onwards constantly overestimates the employment rate, underestimates
the proportion not in the labour force, but gets the unemployment rate fairly accurate. Model I
on the other hand only makes small, non-systematic errors.

To give the complete picture, the predictions and prediction regions are also plotted on a ternary
time series plot in Figure 3. We note that model I and II manage to predict the true values very
well, whereas model III clearly deviates, confirming the previous analyses. The plot though allows
us to compare the prediction regions, which is hard to do non-graphically.

From the plot it is clearly visible that the first model has the smallest prediction regions, though
the regions of model III is only slightly larger for the first twelve predictions. Model III though
has less accurate predictions. Model IT has the largest prediction regions, at least for predictions
three steps or more ahead. The model thus has the poorest predictive power.

This indicates that the model of choice would be model I since it manages to get the predictions
accurate and have a good predictive power.

5 Conclusions

We have in this paper demonstrated that the ILR-transformation can be utilized to analyse Com-
positional Time Series. Three different models have been constructed and analysed. The first and
simplest model produced the best predictions with the best predictive power.

The models could of course have been improved if exogenous variables had been introduced. It
has however not been our aim to perfectly model the temporal changes in the Swedish work force,
but to examine to possibilities for time series modelling of compositional data.

In two of the models we used the difference operator, on the compositional time series. This
produces a result that can be interpreted within the simplicial framework. It is however not clear
how e.g. a cointegration model could be interpreted within the simplicial framework. And of course,
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Figure 3: Predictions and confidence regions plotted in the simplex. The actual values are plotted with black, and
the predictions of model I in green, of model II in red and of model III in blue. (The top corner of the Simplex
represents 100 % Unemployment, the bottom left corner 100 % Employment, and the bottom right corner that
100 % of the population are Not belonging to the labour force.) As can been seen both the first and the second
model manages to predict the time series very well. Model I though produces smaller confidence regions.

it is unsatisfactory that the coefficients of the model, Ay, not easily interpreted.
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