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Abstract

Models for materials with nonlinear electromagnetic response are exam-
ined. Three simple physical causes for nonlinear behavior are presented: elec-
tronic polarization, molecular direction and electrostriction. Some introduc-
tory results and approximations for nonlinear, dispersive media are given,
such as the phase-matching criterion, Miller’s rule, the Born approximation
and the slowly varying amplitude approximation. However, the emphasis is
on instantaneously reacting media, i.e., materials with no or negligible mem-
ory. For these models, the inverse scattering problem of determining the field
dependent permittivity and permeability from the scattered field is solved.
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D. Sjöberg

Inverse Problems, 15(2), 431–444, 1999 (in press)

• Paper II

Simple wave solutions for the Maxwell equations in bianisotropic, nonlinear
media, with application to oblique incidence

D. Sjöberg
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Linear Nonlinear

Figure 1: To the discussion on nonlinearity in the supermarket.

1 Introduction

How can we explain the term nonlinear? As the name suggests, it is a non-property,
a nonlinear material is characterized by not having a property called “linear”. This
is a rather odd way of classifying things; instead of saying what they are, we try
to say what they are not. However, the concept of linearity is deeply rooted in our
everyday experiences. When we go to the supermarket and weigh the fruit we want
to buy, we expect two oranges to weigh twice as much as one orange. This is the
essence of linearity; when we get one output for a certain input, we expect to get
twice as much when we double the input.

Strangely enough, the concept of nonlinearity is upset in the same supermarket,
when we come to the candy department. This is the residence of the signs saying
“Buy three, pay for two!” Thus, we pay say 5 crowns for one chocolate bar, but when
we buy three, we only pay 10 crowns, not 15! This is an example of non-linearity.

Another situation where we see that a linear model cannot apply, is the speed
of cars on a highway. When there are few cars on the road, each driver is relatively
free to choose his/her own speed. Though, when the number of cars increases, there
is less space to maneuver in. This results in an overall reduction of speed, which
ultimately may turn into a total standstill, as all commuters probably are aware of.
This is an example of saturation, which is a typically nonlinear phenomenon.

The latter example of nonlinearity, i.e., cars influencing each others speed on the
highway, actually has many similarities with electromagnetic waves propagating in
nonlinear materials. The nonlinearity of the cars is that the speed depends on how
many cars there are. In the nonlinear materials we study in this thesis, the speed of
the electromagnetic waves depends on the electromagnetic energy in the media, i.e.,
the density of the electromagnetic fields. This causes waves with high amplitudes
to travel slower than waves with low amplitudes, just as cars on an empty highway
can travel much faster than the cars on a jammed one.

In this thesis, we also discuss the so called inverse scattering problem. This is a
term that we use for a kind of scattering problem where we can measure the effects
of something, e.g., the reflected field from a surface, and wish to extract some
information on the cause of this effect, e.g., what material the surface was made
of. We have all experienced this problem, for instance when being X-rayed at the
dentists in order to determine whether our teeth have cavities or not. The inverse
scattering problem treated in this thesis, is to determine the nonlinear properties of
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Nonlinear process Response time [s]

Electronic polarization 10−15

Molecular direction 10−12

Electrostriction 10−9

Table 1: Approximate response times for different nonlinear processes. From [6,
p. 163]

a slab or half space based on measurements of the reflected and transmitted fields.
A few general references to inverse problems are [3, 12, 22, 35, 36], and some inverse
problems regarding nonlinear materials are treated in [23, 38, 46].

The topic of nonlinear wave propagation has been the subject of considerable
investigation during the years. Much analytical work was made during the 60s and
70s, e.g., [7, 8, 26–28, 34, 49]. Many results from this period are collected in [4], as well
as suggestions for further investigations. Nonlinear optics is a well established field
with vast literature, of which only some is given here [2, 6, 51]. Methods based on
the theory of partial differential equations as well as variational principles, suited for
wave propagation in nonlinear materials, are presented in [14]. Some basic theory on
nonlinear partial differential equations is found in [42], some more advanced in [29].
Recent results regarding nonlinear hyperbolic differential equations are reported in
[24]. A suitable numerical method for nonlinear wave propagation is finite differences
in the time domain, FDTD [30, 54, 61].

In this introductory part of the thesis, we explain in Section 2 some physical
processes which lead to nonlinear behavior, and present a way to mathematically
model these in Section 3. In Section 4 we give some more detailed theory regarding
the enclosed papers, and the inverse scattering problem of determining the material
parameters from oblique incidence of a plane wave is solved in Section 5.

2 Physical causes for nonlinear phenomena

In this section we describe three simple processes, which contribute to a nonlinear
electromagnetic response from a material. These examples are electronic polariza-
tion, molecular direction and electrostriction. In Table 1 we list the approximate
response times of the different processes.

2.1 Electronic polarization

A very simple model of the electromagnetic properties of a material is a collection
of individual atoms, where the different atoms do not have a significant influence
on each other. This is the same assumption as for an ideal gas, and if the wave
functions for the individual atoms are known, it is possible to explicitly calculate
the constitutive relations from quantum mechanics [6, Chap. 3]. In this thesis, we
are content with a simpler, phenomenological, model of the atoms.
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−q + q

p = qd

E E

Figure 2: The atom is subjected to an electric field E. Its response can be modeled
with two separated charges ±q, creating an electric dipole moment p proportional
to the separation d. A restoring force acts on the charges, modeled with a spring
connecting the charges in the figure.

Negatively charged electrons are orbiting a nucleus with positive charge. Since
the electrons are orbiting the nucleus very fast, the mean positions of the electrons
coincide with the position of the nucleus, and the atom appears electrically neutral
without any electric dipole moment. However, when an external electric field is
applied, the charges are separated and an electric dipole moment is created, see
Figure 2.

The strength of this electric dipole moment depends on the restoring force be-
tween the electron and the nucleus. For small displacements, this force is propor-
tional to the separation between the charges, i.e., it behaves as a linear spring.
However, when we apply a very strong external field, the situation becomes so
asymmetric that we must add some additional terms to the restoring force in order
to properly model the material response. For isotropic materials, it can be shown
that only terms with odd exponents appear in a power series of the restoring force,
see [38], [6, p. 29] and [50, p. 740],

F = a1r + a3r
3 + a5r

5 + . . . (2.1)

where F denotes the restoring force and r denotes the separation between the
charges. The term a1r correspond to the linear response, and is in general much
larger than the other terms.

2.2 Molecular direction

Many molecules are not symmetric, which results in an intrinsic electric dipole
moment. A typical example of such a molecule is water, H2O, where the center
of the negative charges is close to the oxygen atom and the center of the positive
charges is close to the two hydrogen atoms. Normally, the thermal excitation causes
the molecules to vibrate so vividly, that the electric dipole moments are randomly
oriented and make no contribution to the total electric dipole moment. However,
when a strong external field is applied, the dipoles tend to be aligned along the
electric field. The effect of this can be modeled with a field dependent refractive
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δn

We/kT

Figure 3: Dependence of the nonlinear refractive index on the electromagnetic
energy We ∼ E2 and the thermal energy kT , where k is the Boltzmann constant and
T is the absolute temperature. The horizontal line indicates refractive index when
the molecules are completely aligned, i.e., when the material is saturated. Based
on [6, p. 183].

index,

n(E) = n0 + δn(E),

where n0 correspond to the refractive index at low field strengths, i.e., the linear
response. The nonlinear response δn depends on how strong the electromagnetic
energy is compared to the thermal energy, as is seen in Figure 3.

Since the asymmetric molecules become aligned along the electric field, the mate-
rial has different properties in different directions. The nonlinear effect of molecular
direction is thus an anisotropic effect. From Figure 3 we also see that the material
can be expected to saturate for large fields, i.e., when the field is large enough, the
molecules are totally aligned and cannot contribute more to the materials electro-
magnetic response. A more extensive treatment of molecular direction can be found
in [5], [6, pp. 178–185] and [10, p. 203].

2.3 Electrostriction

The third nonlinear effect presented here, is the interaction between an applied
electric field and mechanic forces called electrostriction. This is a macroscopic effect,
where the dipoles in the material induced by an external field attract each other so
strongly, that the material is compressed. Since the refractive index depends on
the density of the material, this implies a refractive index which grows with the
electric field. Some general remarks on electrostriction are found in [40, pp. 55–56]
and [53, pp. 149–151], and a thorough treatment of electromechanical coupling is
given in [16, 45].
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Since electrostriction implies a coupling between electric fields and mechanic
forces, this effect may generate acoustic waves in the material. This is the origin of
Brillouin scattering in optical fibers, where electromagnetic waves are scattered by
acoustic waves with much slower propagation speed [1, p. 371].

3 Constitutive relations and some common ap-

proximations

In this section we study a nonlinear, anisotropic, homogeneous, dispersive dielec-
tric material with local constitutive relations. The analysis is easily generalized to
bianisotropic materials, but we only wish to point out some general aspects. We
do not treat wave propagation in nonlinear dispersive materials in this thesis, but
some early results can be found in [43, 59, 60]. Numerous examples of nonlinear
constitutive relations can be found in [10, 16, 17].

3.1 Expansion of the polarization functional

We assume a constitutive relation between polarization and electric field as

P (r, t) = {PE}(r, t),

where P is an operator, for which we assume that the following calculations are
valid. For weak electric fields, the operator may be expanded in a Volterra series,
see [9], [50, p. 783] and [57, p. 21],

{PE}i(r, t) =ε0
{∫

dt1χ
(1)
ij (t1)Ej(r, t− t1)

+

∫
dt1

∫
dt2χ

(2)
ijk(t1, t2)Ej(r, t− t1)Ek(r, t− t2)

+

∫
dt1

∫
dt2

∫
dt3χ

(3)
ijkl(t1, t2, t3)Ej(r, t− t1)Ek(r, t− t2)El(r, t− t3)

+ . . .
}
,

(3.1)

where we have assumed the Einstein convention that summation occurs over multiple
indices, and alphabetical indices refer to the spatial coordinates x, y and z. The
integrations are over all real numbers, which implies that the kernels χ(n) must
contain step functions to ensure causality, i.e., χ

(1)
ij (t) = H(t)χ

(1)
ij (t), see e.g., [25, p.

332] and [32, 56]. The Volterra series is a generalization of the Taylor series for
functionals, and functionals which can always be expanded in such a manner are
called analytic functionals [57, p. 21].

From the Volterra series we see an immediate effect of the nonlinear constitutive
relations: the generation of harmonics. It suffices to study what happens with a
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field that varies as a cosine in time, i.e., E(t) ∼ cos(ω0t). The second term in the
above series then contains terms proportional to

cos(ω0(t− t1)) cos(ω0(t− t2))

=
1

2
[cos(ω0(t− t1) + ω0(t− t2)) + cos(ω0(t− t1)− ω0(t− t2))]

=
1

2
[cos(2ω0t− ω0(t1 + t2)) + cos(ω0(t2 − t1))],

which implies terms with frequencies 2ω0 and zero. In the next section we treat
these processes more systematically by applying a Fourier transform in time and
space to the constitutive relation.

3.2 Fourier transformation of the polarization functional

We define the four-dimensional Fourier transform of a scalar function f of time and
space by 

f(r, t) =
1

(2π)4

∫
d3k

∫
dωf(k, ω)ei(k·r−ωt)

f(k, ω) =

∫
d3r

∫
dtf(r, t)e−i(k·r−ωt),

where we distinguish the transform from the function by their arguments. We apply
this transform to the n:th term in the Volterra series, which we denote by P

(n)
i (r, t),

where

P
(n)
i (r, t) = ε0

∫
dt1· · ·

∫
dtnχ

(n)
ip1...pn

(t1, . . . , tn)Ep1(r, t− t1) . . . Epn(r, t− tn).

We emphasize again that the indices p1, . . . , pn are summed over, allowing the mate-
rial to be anisotropic. Following the approach in [9], we apply the four-dimensional
Fourier transform to this expression, use the inverse Fourier transform to express
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the space-time dependence of the electric fields, and change the order of integration:

P
(n)
i (k, ω) = ε0

∫
d3r

∫
dt

∫
dt1· · ·

∫
dtnχ

(n)
ip1...pn

(t1, . . . , tn)

· Ep1(r, t− t1) . . . Epn(r, t− tn)e−i(k·r−ωt)

= ε0

∫
d3r

∫
dt

∫
dt1· · ·

∫
dtnχ

(n)
ip1...pn

(t1, . . . , tn)e−i(k·r−ωt)

· 1

(2π)4n

∫
d3k1· · ·

∫
d3kn

∫
dω1· · ·

∫
dωn

· Ep1(k1, ω1) . . . Epn(kn, ωn)ei
∑n
j=1[kj ·r−ωj(t−tj)]

= ε0
1

(2π)4n

∫
d3k1· · ·

∫
d3kn

∫
dω1· · ·

∫
dωn

·
∫
dt1· · ·

∫
dtnχ

(n)
ip1...pn

(t1, . . . , tn)ei
∑n
j=1 ωjtj

· Ep1(k1, ω1) . . . Epn(kn, ωn)

·
∫
d3r

∫
dte−i[(k−

∑n
j=1 kj)·r−(ω−

∑n
j=1 ωj)t]

= ε0
1

(2π)4n−4

∫
d3k1· · ·

∫
d3kn

∫
dω1· · ·

∫
dωn

· χ(n)
ip1...pn

(ω1, . . . , ωn)Ep1(k1, ω1) . . . Epn(kn, ωn)

· δ(k −
n∑
j=1

kj)δ(ω −
n∑
j=1

ωj),

where we have used the well-known representation of the δ-distribution

1

(2π)4

∫
d3r

∫
dte−i(k·r−ωt) = δ(k)δ(ω).

Since the δ-distribution contributes to the integrals only when its argument is zero,
we interpret the final expression as a sum of all terms ε0

1
(2π)4n−4χ

(n)
ip1...pn

(ω1, . . . , ωn) ·
Ep1(k1, ω1) . . . Epn(kn, ωn) which satisfy

n∑
j=1

kj = k and
n∑
j=1

ωj = ω.

These are the only ones contributing to the n:th order field with wave vector k and
frequency ω. The result for the wave vectors is called phase-matching, and is very
important in nonlinear optics. To create a wave with frequency equal to the sum of
two frequencies, we must orientate the beams containing the constituent frequencies
so that the phase-matching criterion is satisfied. Since many nonlinear materials
are anisotropic, this involves a careful choice of polarization. Observe that since
the integrations are performed over both positive and negative frequencies, the new
frequency can also be the difference between two frequencies.

In [6] the phase-matching criterion is derived using the Maxwell equations, but
we have shown it to be a consequence of the constitutive relation only. This has
earlier been shown in [9].
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3.3 Miller’s rule in the time domain

It is possible to express the nonlinear kernels χ(n) from the expansion (3.1) in the
linear kernel χ(1), see e.g., [6, p. 27] and [50, p. 786]. This is called Miller’s rule
in nonlinear optics, and was found empirically in the 60s. We show how it can be
derived in our time domain analysis.

In this section we temporarily neglect the vector character of the fields, and
study linearly polarized fields, e.g., P = Px̂. Homogeneous dispersive materials can
be modeled by a differential equation, see [19] and [50, p. 784],

LP + f(P ) = E, (3.2)

where L is a linear differential operator in time and f(P ) is a nonlinear term of
order P 2 for small P . For a Lorentz model with one resonance frequency, i.e., where
the atoms are modeled with charges subjected to a restoring force as in Section 2.1,
we have L = k( ∂

2

∂t2
+ ν ∂

∂t
+ ω2

0), where ω0 denotes the resonant frequency and ν the
collision frequency, i.e., the linewidth. f(P ) then represents the nonlinear correction
to the restoring force. Assuming small nonlinearities, we expand the function f as

f(P ) = a2P
2 + a3P

3 + . . .

and make the perturbation Ansatz

P = λP (1) + λ2P (2) + λ3P (3) + . . . ,

with the right hand side of (3.2) equal to λE. The scalar parameter λ varies contin-
uously from 0 to 1, where 1 corresponds to the physical situation at hand. Collecting
terms of corresponding orders in λ, we have for λ and λ2{

P (1) = L−1E

P (2) = −a2L−1[P (1)]2 = −a2L−1[L−1E]2.

We assume that the linear operator L−1 exists and is bounded and invariant under
time translations. The operator can then be represented by a convolution [32], and
by comparing with (3.1) we identify

L−1E = ε0

∫
χ(1)(t1)E(t− t1)dt1.

The equation for P (2) is now

P (2) = −a2ε
3
0

∫
χ(1)(t1)

[∫
χ(1)(t2)E(t− t1 − t2)dt2

]2

dt1

= −a2ε
3
0

∫∫∫
χ(1)(t1)χ(1)(t2)χ(1)(t3)E(t− t1 − t2)E(t− t1 − t3)dt1dt2dt3

= −a2ε
3
0

∫∫ [∫
χ(1)(t1)χ(1)(t2 − t1)χ(1)(t3 − t1)dt1

]
E(t− t2)E(t− t3)dt2dt3,
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and once again by comparing with (3.1) we conclude that

χ(2)(t1, t2) = −a2ε
2
0

∫
χ(1)(t′)χ(1)(t1 − t′)χ(1)(t2 − t′)dt′. (3.3)

Thus we can express the nonlinear susceptibility χ(2) in the linear kernel χ(1). For
isotropic materials the coefficient a2 is zero, and the lowest order nonlinear suscep-
tibility χ(3) is

χ(3)(t1, t2, t3) = −a3ε
3
0

∫
χ(1)(t′)χ(1)(t1 − t′)χ(1)(t2 − t′)χ(1)(t3 − t′)dt′. (3.4)

Since the linear susceptibility is rather thoroughly investigated, this result may sim-
plify the analysis of dispersive nonlinear materials, and provide reasonable models
for small nonlinear effects. We see that all susceptibilities χ(n) are products of
χ(1) in some sense, but the expressions are more complicated for the higher order
susceptibilities.

3.4 The Born approximation

Having discussed properties of the constitutive relations alone in the previous sec-
tions, we now turn to the propagation of electromagnetic waves in nonlinear dielec-
tric media. In a dielectric material the electric flux density D depends on electric
field strength E only, i.e., D = ε0E+P , and the magnetic flux density B is propor-
tional to the magnetic field strength H , i.e., B = µ0H . With these prerequisites,
the source free Maxwell equations

∇×E +
∂

∂t
B = 0

∇×H − ∂

∂t
D = 0

(3.5)

can be written as a second order differential equation in E

∇2E − 1

c2
0

∂2

∂t2
E = µ0

∂2

∂t2
P = µ0

∂2

∂t2
PE.

A common method to analyze this equation, is to split the polarization functional
in a linear and nonlinear part, i.e., P = PL + PNL, where the linear part is

{PLE}i(r, t) = ε0

∫
dt1χ

(1)
ij (t1)Ej(r, t− t1).

We write the above differential equation as

∇2E − 1

c2
0

∂2

∂t2
(1 +

1

ε0
PL)E = µ0

∂2

∂t2
PNLE.

We denote the left hand side of this equation by LE and the right hand by SE,
where L is a linear differential operator, for which there are standard methods to
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calculate a solution for many classes of materials [31, 33, 54, 61], especially for one-
dimensional wave propagation. Arguing that the nonlinear contribution SE is small,
we make the Ansatz

E = E0 +E1 +E2 + . . . ,

where LE0 = 0, LE1 = SE0 and

LEn = S
n−1∑
j=0

Ej − L
n−1∑
j=0

Ej = S
n−1∑
j=0

Ej − S
n−2∑
j=0

Ej,

for n ≥ 2. Observe that the last expression does not reduce to SEn−1, since the
operator S is nonlinear. When we have solved the starting equation LE0 = 0, we
calculate SE0, solve LE1 = SE0 for E1 and then keep iterating for higher order
terms. This is the Born iterative procedure, which is likely to converge for small
nonlinearities. In this thesis, we are not concerned with convergence of this series,
since we use a different approach to the nonlinear wave propagation, which is further
developed in Section 4 and the enclosed papers.

3.5 Slowly varying amplitude and solitons

Before turning to the analysis used in the enclosed papers, we briefly mention a
common approximation for fixed frequency. We have previously mentioned that
a prominent feature of nonlinear media is the generation of new frequencies. For
materials with a cubic term in the polarization functional, there is a nonlinear
contribution at the basic frequency. This has inspired the slowly varying amplitude
approximation, where the (linearly polarized) electric field propagating in the z-
direction is assumed to have a carrier frequency ω0 with an envelope A,

E(r, t) = x̂ReA(z, t)ei(kz−ω0t),

where A(z, t) is supposed to vary slowly in space and time compared to the expo-
nential factor. This approximation leads to the nonlinear Schrödinger equation for
the envelope [1, 6, 21],

i
∂A

∂z
− 1

2
k2
∂2A

∂τ 2
+ γ|A|2A = 0,

where τ = t − kz/ω0 is a time variable relative to the wave front. The factor
k2 = d2k

dω2 |ω=ω0 is a measure of the dispersion, and γ is a measure of the nonlinearity.
This is the basic equation modeling the propagation of solitons in lossless media. The
existence of soliton solutions was experimentally verified by Mollenauer et al [44],
and a theoretical treatment is found in [20, 21].

4 Instantaneous constitutive relations

This thesis is concerned with electromagnetic wave propagation in nonlinear media
which responds instantaneously to excitation. This means that the Volterra series
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in the previous section is reduced to a power series, i.e., in the isotropic case

P (r, t) = ε0(χ(1)E(r, t) + χ(2)E(r, t)2 + χ(3)E(r, t)3 + . . . ),

where we have assumed a linear polarization.1 We generalize this to an instantaneous
constitutive relation between the electric and magnetic fluxes D and B and the
electric and magnetic field strengths E and H , i.e.,{

D(r, t) = D(E(r, t),H(r, t))

B(r, t) = B(E(r, t),H(r, t)).

A note of caution is appropriate here: the above model permits an immediate cou-
pling between the D and H fields, and between the B and E fields. This implies
a nonreciprocal medium, see e.g., [37, p. 403], [32] and [47, Chap. 8]. There is an
ongoing debate regarding the existence of such materials, see e.g., [39, 48, 52, 55],
but no definite results can be presented at this stage. The possible existence of
nonreciprocal media is easily handled in the framework presented in this thesis, and
is therefore not excluded.

Following the approach in Paper II, we introduce the six-vectors [41]

e =

(√
ε0E√
µ0H

)
and d =

( 1√
ε0
D

1√
µ0
B

)
,

where ε0 and µ0 are the permittivity and permeability in vacuum, respectively. All
components of e and d now have the same dimension, i.e.,

√
energy/volume, and

the instantaneous constitutive relations are written

d(r, t) = d(e(r, t)).

Using the operator

J =

(
0 −I
I 0

)
the source free Maxwell equations (3.5) are now written

[∇× J] · e+
1

c0

ε(e) · ∂te = 0, (4.1)

where 1/c0 =
√
ε0µ0 is the speed of light in vacuum, and the dimensionless ε(e)

denotes the field gradient of the constitutive relation ∇ed, as in Paper II. The
components of ∇ed are [∇ed]nm = ∂

∂em
dn(e). We see that (4.1) is a quasilinear

partial differential equation, i.e., it is linear in the derivatives of e. The quasilinearity
implies that it is possible to use the superposition principle for the derivatives,
which permits us to use linear wave-splitting techniques [13, 15, 58]. However, the
nonlinearity causes the fields to couple through ε(e), which makes the splitting local

1For isotropic materials χ(2) is always zero, since P must be an odd function of E, see (2.1).
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Known Unknown

Direct ei, ε(e) es

Inverse ei, es ε(e)

Table 2: The known and unknown quantities for the direct and the inverse scat-
tering problem, respectively. ei denotes the incident field, es denotes the scattered
field (which may be the reflected and/or the transmitted field, depending on the
situation), and ε(e) denotes the material parameters.

in both space and time, which complicates the propagation. This is clearly seen in
Paper I, where a problem of one-dimensional nonlinear wave propagation is treated,
and waves traveling in different directions couple through a field dependent wave
speed.

It can be shown via thermodynamic considerations that ε(e) must be a symmet-
ric, positive definite operator for a passive material, i.e., a material which does not
produce energy [11]. For such ε(e), the Maxwell equations are hyperbolic and the
waves propagate with finite speed [18].

Further properties of the instantaneous constitutive relations are shown in the
enclosed papers.

5 The inverse scattering problem

We solve the inverse scattering problem of finding the nonlinear permittivity and
permeability of an isotropic, homogeneous half space, using oblique incidence of
plane electromagnetic waves from vacuum. The pertinent constitutive relations are

ε(e) =

(
ε(
√
ε0E)I 0
0 µ(

√
µ0H)I

)
.

The scattering situation is as in Paper II, Figure 1: an incident plane wave ei(r, t) =
ei(k̂i · r− c0t) is impinging from vacuum on a half space of nonlinear material. The
unit vector k̂i denotes the propagation direction of the incident field. The nonlinear
material is contained in z > 0, and the plane of incidence is in the y-z plane.
This implies that there is no propagation in the x direction. The incident plane
wave causes a reflected field er and a transmitted field et, with unit propagation
directions k̂r and k̂t, respectively. The difference between the direct and the inverse
scattering problem is summarized in Table 2.

5.1 Analysis of the boundary conditions

Using the results in Paper II, we have the following condition on the tangential field
strengths:

ėi‖ + ėr‖ = ėt‖, (5.1)
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where the dots denote time differentiation and the subscript ‖ denotes components
parallel to the interface between the materials, i.e., x and y components. The fields
satisfy the equations 

ėi = [k̂i × J] · ėi

ėr = [k̂r × J] · ėr

ε · ėt =
c0

c
[k̂t × J] · ėt,

(5.2)

where c0/c =
√
εµ is the propagation speed in the nonlinear material relative the

speed of light in vacuum. Snell’s law [25, p. 303] implies

kiy = kry =
c0

c
kty, (5.3)

where ki,r,ty = ŷ · k̂i,r,t, i.e., the sine of the angles of incidence, reflection and trans-
mission, respectively.

Observing that kiz = −krz , we use Snell’s law to write (5.2) as

1

kiz
[I− kiyŷ × J] · ėi = [ẑ × J] · ėi

− 1

kiz
[I− kiyŷ × J] · ėr = [ẑ × J] · ėr

c

c0

1

ktz
[ε− kiyŷ × J] · ėt = [ẑ × J] · ėt.

(5.4)

Since [ẑ × J] · ėi,r,t = [ẑ × J] · ėi,r,t‖ , we multiply (5.1) with [ẑ × J] and use (5.4) to
obtain

1

kiz
[I− kiyŷ × J] ·

{
ėi − ėr

}
=

1

ktz

c

c0

[ε− kiyŷ × J] · ėt. (5.5)

This equation involves the normal component of the fields, which can be eliminated
by using (5.2),

ėtz = ẑẑ · ėt = ẑẑ · c0

c
ε−1 · [k̂t × J] · ėt

=
c0

c
ε−1 · ẑẑ · [k̂t × J] · ėt

=
c0

c
ε−1 · ẑẑ · [ktyŷ × J] · ėt‖

= kiyε
−1 · ẑẑ · [ŷ × J] · ėt‖,

where we have used the isotropy of the material to conclude that ε−1 commutes



14

with ẑẑ, and Snell’s law (5.3). We use this result for the right hand side of (5.5),

1

ktz

c

c0

[ε−kiyŷ × J] · ėt =
1

ktz

c

c0

[ε− kiyŷ × J] ·
{
ėt‖ + ėtz

}
=

1

ktz

c

c0

[ε− kiyŷ × J] · {I + kiyε
−1 · ẑẑ · [ŷ × J]} · ėt‖

=
1

ktz

c

c0

[
ε− [I− ẑẑ] · kiy[ŷ × J]− (kiy)

2[ŷ × J] · ε−1 · ẑẑ · [ŷ × J]
]
· ėt‖

=
1

ktz

c

c0

[ε+ (kiy)
2J · ε−1 · J · x̂x̂] · ėt‖,

where the last line follows from explicitly expanding the cross product operations
and using the isotropy properties of ε. The product J · ε−1 · J is(

0 −I
I 0

)
·
(

1
ε
I 0

0 1
µ
I

)
·
(

0 −I
I 0

)
=

(
− 1
µ
I 0

0 −1
ε
I

)
= − 1

εµ

(
εI 0
0 µI

)
,

and we conclude that (kiy)
2J · ε−1 · J = −(kiy)

2(c/c0)2ε = −(kty)
2ε, since 1/εµ =

(c/c0)2 and kiyc/c0 = kty. Thus the right hand side of (5.5) is

1

ktz

c

c0

[ε− kiyŷ × J] · ėt =
1

ktz

c

c0

[ε− (kty)
2ε · x̂x̂] · ėt‖

=
1

ktz

c

c0

ε · [I− (kty)
2x̂x̂] · ėt‖

=
1

ktz

c

c0

ε · [(ktz)2x̂x̂+ ŷŷ] · ėt‖.

The same calculations for the left hand side of (5.5) implies

1

kiz
[(kiz)

2x̂x̂+ ŷŷ] ·
{
ėi‖ − ėr‖

}
=

1

ktz

c

c0

ε · [(ktz)2x̂x̂+ ŷŷ] · ėt‖.

From (5.1) we have ėt‖ = ėi‖ + ėr‖, and we write the above equation for both x and
y components: 

kiz
{
ėix − ėrx

}
= ktz

c

c0

ε ·
{
ėix + ėrx

}
1

kiz

{
ėiy − ėry

}
=

1

ktz

c

c0

ε ·
{
ėiy + ėry

}
.

(5.6)

Since we can measure the incident and reflected fields and the angle of incidence,
the only unknowns in the above equations are ktz and c

c0
ε. The latter is

c

c0

ε =
1
√
εµ

(
εI 0
0 µI

)
=

(√
ε
µ
I 0

0
√

µ
ε
I

)
=

(
1
η
I 0

0 ηI

)
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where we have introduced the dimensionless wave impedance η =
√
µ/ε. The ex-

plicit representation of (5.6) is now written, where we have moved kiz to the right
hand side of the equations,

Ėi
x − Ėr

x =
ktz
kiz

1

η
(Ėi

x + Ėr
x)

Ḣ i
x − Ḣr

x =
ktz
kiz
η(Ḣ i

x + Ḣr
x)

Ėi
y − Ėr

y =
kiz
ktz

1

η
(Ėi

y + Ėr
y)

Ḣ i
y − Ḣr

y =
kiz
ktz
η(Ḣ i

y + Ḣr
y).

(5.7)

We see that if we use TE or TM polarization of the incident field, either the second
and the third, or the first and the fourth, equations will be zero on both sides. The

equations left can then determine only one of the quantities ktz
kiz
η and kiz

ktz
η. However,

if we use an incident field that is a mixture of TE and TM polarizations, we have
two linearly independent equations and can obtain both quantities. The alternative
is to make two measurements, with TE and TM polarizations of the incident field,
respectively.

When we have determined both ktz and η, we can determine the nonlinear per-
mittivity ε and permeability µ from the relations

1

εµ
=

(
c

c0

)2

=

(
kty
kiy

)2

=
1− (ktz)

2

(kiy)
2

µ

ε
= η2.

At this stage, we have determined the material parameters ε and µ as functions of the
tangential fields only. By considering the continuity of the flux components normal
to the surface, we are able to conclude the total field strengths in the material, and
thus determine ε and µ as functions of the total field strengths E and H. This
procedure is not shown explicitly.

5.2 Numerical results

A program has been written in Matlab based on the methods in Paper II to
calculate the reflected field, and we use the formulae in (5.7) to find the permittivity
and permeability. The constitutive functions used in the calculations are

ε(E) = 2 +
E2

1 + E2

µ(H) = 1 +
1

2

H2

1 +H2
,

where we have scaled the fields to be non-dimensional (and therefore excluded the
factors

√
ε0 and

√
µ0), see Paper I for a discussion on the scaling. The incident field



16

0 0.5 1 1.5 2 2.5 3 3.5
2

2.2

2.4

2.6

2.8

3
Reconstruction of permittivity

E

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.1

1.2

1.3

1.4

1.5
Reconstruction of permeability

H

Figure 4: Reconstruction of the field dependent permittivity and permeability
with noise of amplitude ±10−5. Solid line is reconstruction and the dots are exact
values.

is a Gaussian pulse in time of amplitude 5, where both the E and the H field have
components in both the tangential directions, i.e., we use both TE and TM polar-
ization at the same time. The angle of incidence is 30◦, and Figure 4 demonstrate
the field dependence of the permittivity and permeability of the nonlinear medium.
Note that at this stage we commit the inverse crime [12, p. 121], i.e., using the
same algorithm for both direct and inverse problem. Work is at progress to remedy
this deficiency. To demonstrate at least the continuity of our algorithm, we perturb
the data from the direct problem with uniformly distributed random numbers in the
range ±10−5. Using the range ±10−3 causes the reconstructions to seem useless, but
one must remember that the material parameters are to be integrated in order to
get the fluxes, see Paper II Section 5. Since integration is a smoothening procedure,
we expect the flux reconstruction to remain good, which is verified in Figure 5.
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Figure 5: Upper row: Reconstruction of the permittivity and permebility with
noise of amplitude ±10−3. Lower row: Reconstruction of the constitutive functions
D(E) and B(H).
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Abstract

This paper addresses the inverse problem of reconstructing a medium’s
instantaneous, nonlinear response to electromagnetic excitation. Using reflec-
tion and transmission data for an almost arbitrary incident field on a homo-
geneous slab, we are able to obtain the nonlinear constitutive relations for
both electric and magnetic fields, with virtually no assumptions made on the
specific form of the relations. It is shown that for a nonmagnetic material,
reflection data suffices to obtain the electrical nonlinear response. We also
show that the algorithms are well posed. Numerical examples illustrate the
analysis presented in this paper.

1 Introduction

There has been an increased interest in nonlinear electromagnetic materials recently,
much due to the progresses in nonlinear optics. This is especially so for the nonlinear
effects in optical fibers, i.e., the experimental verification of soliton solutions [13, 14,
21], and the use of different field-dependent scattering mechanisms for amplification
of a propagating signal [1]. Some chaotic effects have also been studied [10].

The research in this field is largely conducted in the frequency domain, where
the nonlinearities manifest in the generation of multiple frequencies. In this paper,
we study nonlinear effects in the time domain, where the nonlinearities rather cause
the steepening of a propagating pulse. This steepening may ultimately turn into
a shock solution, where the pulse becomes discontinuous after a finite propagation
time, although we will endeavour to avoid shock solutions in this paper.

We study a material which has an instantaneous, nonlinear response, i.e., we
do not consider memory effects of any kind. We further assume the material to
be passive, isotropic and homogeneous, and solve the problem of reconstructing
the constitutive relations. Then we are able to reconstruct the nonlinear relation
between E and D as well as between H and B with reflection and transmission
data from a finite slab for an (almost) arbitrary input signal. Since no further
assumptions have to be made regarding the specific form of the constitutive relations,
the reconstruction is model independent.

Previous work in the field include the propagation of pulses in nonlinear slabs,
where the paper by Kazakia and Venkataraman deserves special attention [18]. They
have obtained an analytical solution for the propagation of a step function through
a slab with some special constitutive functions. Reference [24] presents a method
to solve the reflection and refraction problem at oblique incidence on a nonlinear
half space. The wave propagation in more complicated nonlinear materials has
appeared, i.e., mixed nonlinearities [19], bi-anisotropic and bi-isotropic media [5],
and nonlinearities in chiral media [2, 23].

Though much work has been done on the direct problem of wave propagation in
nonlinear media, our solution of the inverse problem of reconstructing the material
seems to be novel. It extends and improves the results in [20], where the inverse
problem is solved for a nonmagnetic material, based on measurements inside the
material.
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In Section 2 we formulate the stratified Maxwell equations, introduce the consti-
tutive relations for the studied materials and try to interprete the dynamics in terms
known from the linear case. The main theory is contained in Section 3, where we
formulate the necessary boundary conditions and state the solution to our inverse
problems. Some numerical results are contained in Section 4.

2 Prerequisites

2.1 The Maxwell equations in one spatial dimension

In a source-free environment the Maxwell equations are

∇×E(r, t) + ∂tB(r, t) = 0

∇×H(r, t)− ∂tD(r, t) = 0.

Since we wish to study a homogeneous medium, it is sufficient to observe variations
for only one direction. We thus assume that the fields depend on only one spatial
variable, say z, in a Cartesian coordinate system (x, y, z). Then the curl operator
can be written ∇ × =ẑ × I∂z = J∂z, where J denotes a rotation π/2 around the
z-axis, and the Maxwell equations become

J · ∂zE(z, t) + ∂tB(z, t) = 0

J · ∂zH(z, t)− ∂tD(z, t) = 0.

We now assume the fields to be linearly polarized and the material to be isotropic,
i.e., the D and B fields are parallel to the E and H fields, respectively, which vary
only in amplitude. This means we can write the Maxwell equations in a scalar form,

∂zE(z, t) + ∂tB(z, t) = 0

∂zH(z, t) + ∂tD(z, t) = 0,

where E and D denote an arbitrary transversal component, say x, of J ·E and J ·D,
respectively. H and B denote the corresponding component of H and B, respec-
tively. The geometry of the scattering situation studied in this paper is depicted in
Figure 1.

2.2 Constitutive relations, passive materials

We consider the field strengths E and H to be the primary fields, and the flux
densities D and B as effects of these. If we assume that the material responds
instantaneous to excitation, we are studying the following situation:

D(z, t) = ε0Fe(E(z, t))

B(z, t) =
1

c0

Fm(η0H(z, t)),
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Figure 1: The scattering geometry studied in this paper.

where the constants c0 = 1/
√
ε0µ0 (speed of light in vacuum), ε0 (permittivity of vac-

uum), and η0 =
√
µ0/ε0 (wave impedance of vacuum) are explicit for convenience.

As usual, µ0 denotes the permeability of vacuum. The functions Fe(E) and Fm(η0H)
are continuously differentiable scalar functions of one variable, and generalize the
linear optical responses, F lin

e (E) = εrE and F lin
m (η0H) = µrη0H. This kind of non-

linear constitutive response with similar dynamics is investigated in [20], [3, Chap.
2], and [11, Chap. 6]. In nonlinear optics similar relations are often used, although
frequently in the context of the frequency domain [1, 4].

Some thermodynamic restrictions can be put on the constitutive relations [6], but
these deal mainly with the symmetry of cross terms, i.e., ∂D

∂H
and ∂B

∂E
, which we do not

take into account here. Reference [20] discusses the restrictions on the functions Fe

and Fm in order to model passive media; though they call it dissipative.1 The result
is that for a passive, nonmagnetic material, F ′e(x) ≥ a > 0 is a sufficient condition.
In this paper we generalize this to materials which also have F ′m(x) ≥ b > 0, and
call these positive passive.

When demanding isotropy, we have the implication that a change of sign in the
electric and magnetic fields leads to a change of sign in the electric and magnetic
fluxes, i.e., (E,H) → (−E,−H) ⇒ (D,B) → (−D,−B). This is also true for
crystals with an inversion symmetry, see [4, Chap. 1] for further discussions of
material properties. This property implies that the constitutive functions should be
odd functions of their argument, which will be important in the following.

Eliminating the D andB fields using the constitutive relations, the scalar Maxwell
equations become

∂zE +
1

c0

F ′m∂tη0H = 0

∂zη0H +
1

c0

F ′e∂tE = 0,
(2.1)

where we have dropped the arguments of the functions F ′m, F ′e for simplicity.

1With a passive material we mean that the electromagnetic energy produced in a region is
nonpositive for all times, i.e., the material is not active.
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2.3 The dynamics as a symmetric system, physical inter-
pretation

Though it is possible to directly introduce the well known Riemann invariants
1
2
(
∫ E

0

√
F ′e(x) dx ±

∫ η0H

0

√
F ′m(x) dx) as in [3, Sec. 2.4] or [11, Sec. 6.13], we wish

to follow a different approach, where we try to interprete our variables and make
comparisons to the linear case. We start by formulating the dynamics as(

F ′e∂tE
F ′m∂tη0H

)
+ c0

(
0 1
1 0

)
∂z

(
E
η0H

)
= 0,

which after division by the square root of the derivative of Fe and Fm leads to( √
F ′e∂tE√
F ′m∂tη0H

)
+ c0

 0 1√
F ′eF ′m

1√
F ′eF ′m

0

( √
F ′e∂zE√
F ′m∂zη0H

)
= 0.

We now introduce the functions,

ge(E) =

∫ E

0

√
F ′e(x) dx

gm(η0H) =

∫ η0H

0

√
F ′m(x) dx.

These functions can be thought of as the generalizations of the linear expressions√
εrE and

√
µrη0H. The product of the derivative of the functions, g′eg

′
m, which

appears in the wave speed below, can be viewed as the generalization of
√
εrµr, the

relative refractive index. Furthermore, for an isotropic, positive passive material,
the g-functions are odd and monotone, since the integrands are always even and
positive. With these new functions we can write the dynamics as

∂t

(
ge(E)
gm(η0H)

)
+

c0

g′e(E)g′m(η0H)

(
0 1
1 0

)
∂z

(
ge(E)
gm(η0H)

)
= 0,

which in the new variables u1 = ge(E) and u2 = gm(η0H) is the symmetric system

∂t

(
u1

u2

)
+ c(u1, u2)

(
0 1
1 0

)
∂z

(
u1

u2

)
= 0, (2.2)

where the wave speed c is

c(u1, u2) =
c0

g′e(g
−1
e (u1))g′m(g−1

m (u2))
= c0

(
d

du1

g−1
e (u1)

)(
d

du2

g−1
m (u2)

)
. (2.3)

This result generalizes the nonmagnetic case given in [20].

3 Methods to solve the inverse problem

In this section we demonstrate the methods used to solve the propagation problem
and to resolve the boundary conditions. We also state our inverse problems of
reconstructing the materials constitutive relations.
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3.1 Wave splitting

The symmetric system (2.2) can be written as a system of one-dimensional wave
equations with the wave splitting [8, 9, 20],(

u1

u2

)
=

(
1 1
1 −1

)(
u+

u−

)
⇔

(
u+

u−

)
=

1

2

(
1 1
1 −1

)(
u1

u2

)
.

This change of variables is exactly the introduction of the Riemann invariants of
the one-dimensional Maxwell equations, which was mentioned in Section 2.3. The
dynamics (2.2) now becomes

∂t

(
u+

u−

)
+ c(u+ + u−, u+ − u−)

(
1 0
0 −1

)
∂z

(
u+

u−

)
= 0, (3.1)

with c defined by (2.3). This is a system of one-dimensional wave equations, which
couple only through the wave speed c.

Analytical solutions for the wave propagation have been found in [18, 22] for
some special constitutive relations. These solutions could be used to benchmark an
algorithm for the wave propagation, though this is not performed in this work.

3.2 Propagation along characteristics

We can solve the propagation problem of the system (3.1) via the method of charac-
teristics. A characteristic curve for this kind of differential equation is one on which
the dependent variables are constant. We study the development of the variables
u±(z, t) on the paths (z, t) = (ζ±(τ), τ), where ζ±(τ) = ζ0 ±

∫ τ
0
c(u′) dτ ′. The no-

tation c(u′) is short hand for c(u(ζ±(τ ′), τ ′)), and u = (u+, u−). The variation of
u±(z, t) along these curves are

d

dτ
u±(ζ±(τ), τ) =

∂u±

∂t
+
dζ±(τ)

dτ

∂u±

∂z
=
∂u±

∂t
± c(u)

∂u±

∂z
= 0,

since u± satisfy the differential equations ut ± cuz = 0. Thus, we conclude that u+

is constant along the characteristic path ζ(τ) = ζ0 +
∫ τ

0
c(u′) dτ ′, and u− is constant

along the characteristic path ζ(τ) = ζ0 −
∫ τ

0
c(u′) dτ ′.

This means we can find the values of the fields at a point (z, t) if we can trace the
characteristics to some boundary where they are known. If only one of the waves is
present, it is particularly simple; then the characteristics are straight lines, with a
slope given by the boundary values [20].

We see that since the slope of the characteristics is governed by the boundary
values, they may cross each other if we do not choose these boundary values carefully.
When two characteristics cross each other, we have two possible solutions to the wave
equation, and a shock occurs.

Theorem 3.1 in [20] concerns the extent of the shock-free region for one-way
wave propagation in a semi-infinite media with given boundary conditions. This
can be used to estimate how fast the incident field may vary in order not to create
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a shock in the slab. The suitable boundary conditions are u+(z, 0) = u−(z, 0) = 0,
u+(0, t) = h(t) and u−(0, t) = 0, for which the theorem states that there can be no

shock in the region 0 ≤ z ≤ d if sup
{
− d
dt

1
c(u+(0,t),u−(0,t))

}
= sup

{
− d
dt

1
c(h(t),0)

}
≤ 1

d
.

Since c0
c(u+,0)

= g′e(g
−1
e (u+))g′m(g−1

m (u+)), the condition will be

sup
t

{
−(
g′′e
g′e
g′m + g′e

g′′m
g′m

)h′
}
≤ c0

d
. (3.2)

We see, that we can always avoid shocks by using a signal with sufficiently small
variation, i.e., the derivative of h(t) should be small compared to 1/(g

′′
e

g′e
g′m + g′e

g′′m
g′m

).

Also, if this quantity and h′ have the same sign, there is no risk of a shock. With
positive second derivatives of ge,m, this means that shocks can only occur when
h′ < 0, i.e., on the decreasing part of a signal.

3.3 Boundary conditions

Since we want to study propagation in a nonlinear slab, we must solve the problem of
satisfying the boundary conditions. In this paper, we are studying a slab imbedded
in vacuum. The generalization to more general linear materials follows from the
method used.

The solution is based on the wave splitting, which allows us to determine in
which direction the energy of the fields are travelling. In the surrounding vacuum,
the splitting corresponds to the appropriate identification of incident, reflected and
transmitted field. The boundary conditions we have to satisfy are the usual, i.e.,
continuity of the tangential electric and magnetic field strengths. Since we are
assuming normal incidence, this means continuity of the total fields E and H. Inside
the slab, the electric and magnetic fields can be expressed as

Eslab = g−1
e (u+ + u−)

η0Hslab = g−1
m (u+ − u−).

In vacuum, the magnetic field strength is related to the electric field strength via
η0H

± = ±E±, where the ± indicate right(left) propagating fields, i.e., waves trav-
elling towards higher(lower) z-values.

It is possible to define differential reflection and transmission coefficients relating
infinitesimal changes in the incident field to infinitesimal changes in the reflected and
transmitted field, respectively, i.e., dEr = r·dEi and dEt = t·dEi. These differential
coefficients look exactly like the linear expressions, where the square roots of the
permittivity and permeability

√
ε and

√
µ are replaced by

√
F ′e(E) and

√
F ′m(η0H),

respectively. This method is used in [18] to solve the boundary problem, but in
this paper we will prefer to simply state the boundary conditions in explicit form
and solve these numerically for the desired fields when implementing the forward
problem.
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3.3.1 The left boundary

In vacuum, z < 0, we have an incident field from the left Ei, and a reflected field
into vacuum, Er. In the slab two fields are present: a right propagating field u+, and
a left propagating field u−. The continuity of electric and magnetic fields implies
that {

Ei + Er = g−1
e (u+ + u−)

Ei − Er = g−1
m (u+ − u−)

⇔
{
ge(E

i + Er) = u+ + u−

gm(Ei − Er) = u+ − u−.
(3.3)

This gives two, generally nonlinear, equations from which the desired fields u+ and
Er can be determined:{

2Ei = g−1
e (u+ + u−) + g−1

m (u+ − u−)

2u− = ge(E
i + Er)− gm(Ei − Er).

The incident field is given, but also the left propagating field u− can be thought of
as known. This is because this field can be traced back in time via a characteristic
curve into the slab, and is therefore, from a computational point of view, known.
Since the g-functions are monotone for a positive passive material, their inverses
are too. This means that the right hand sides of the equations above, treated as
functions of u+ and Er, are invertible, and we can find all desired fields numerically.

3.3.2 The right boundary

At the right boundary, z = d, we have just a transmitted field in the vacuum, but
we still have both right and left propagating fields in the slab. Continuity of the
fields now gives {

Et = g−1
e (u+ + u−)

Et = g−1
m (u+ − u−)

⇔
{
ge(E

t) = u+ + u−

gm(Et) = u+ − u−.
(3.4)

From this we get the following equations to determine u− and Et:{
2u+ = ge(E

t) + gm(Et)

2u− = ge(E
t)− gm(Et).

We can consider the field u+ as known, since it can be traced back in time into the
slab. The same conclusions as above about the solvability of these equations apply
here.

3.4 Inverse problems

The objective of this paper is to find methods from which the material properties
can be obtained from measurements outside the slab, i.e., the incident, reflected,
and transmitted fields.
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3.4.1 Reflection

If we can ignore the left-propagating field at the left boundary, i.e., u− = 0, the
boundary conditions (3.3) become

Ei + Er = g−1
e (u+)

Ei − Er = g−1
m (u+).

A situation where this approximation applies is a half space (see [20]) or a sufficiently
thick slab, where the reflection from the right boundary, z = d, does not appear
until after some time. This delay is at least one completed roundtrip for a wave
propagating with maximal speed, 2d/(supu c(u)). For the models considered in this
paper, the speed is maximal for infinitesimally small fields, i.e., when the right
propagating field at the left boundary, u+(0, t), is equal to zero until t = 0, there
will be no left propagating field at the left boundary, u−(0, t), separated from zero
until t > 2d/c(0).

In the case of the approximation u− = 0, the relation between the measurable
quantities Ei + Er and Ei − Er becomes

ge(E
i + Er) = gm(Ei − Er),

and the composite function g−1
e (gm(·)) (or its inverse g−1

m (ge(·))) can be determined.
The fields E = ±g−1

e (gm(η0H)) are the electric fields which combined with η0H
gives a right(left) propagating wave in the slab. Differentiating this relation, we get

dE = ± g′m(η0H)
g′e(E)

η0dH, which lets us define a differential wave impedance relative to

vacuum as g′m(η0H)
g′e(E)

.
In nonlinear optics, the materials can often be considered as nonmagnetic. This

implies gm(x) = x, and we can easily determine the electric response function ge,
from which we get Fe or the wave speed c. We see that the range of the input signal
Ei puts bounds on the domain of the reconstructed function ge. Thus, we can not
gain information on how the material responds to fields greater than those we probe
with, unless we extrapolate our results.

3.4.2 Transmission

If we neglect the fields that are reflected at the right boundary, z = d, we are consid-
ering a problem where the wave speed depends on only one variable, and the u+-fields
propagate independently of the u−-fields. This means that the characteristic curves
for the right-going fields are straight lines, which can be used to our advantage.
Since the left propagating wave induced by an internal reflection is in general rather
small compared with the direct wave, this is an acceptable approximation.

We assume that for z = 0+, the right propagating field u+(0, t) considered as
a function of time has a pulse shape, i.e., it is continuous with finite support, and
has only one extremum, e.g., a maximum. This implies that there are two times
for which u+ assumes the same value, i.e., u+(0, t1) = u+(0, t1 + τ) for some time
separation τ . Since the wave speed depends only on u+ when we neglect the left
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Figure 2: Method for extracting the travel time for different field amplitudes.
Since equal amplitudes travel with equal speed, they arrive with the same time
separation and the travel time is t′1 − t1.

propagating field u−, these two points of equal amplitude will travel with the same
speed, and thus appear with the same time separation on the right side of the
slab, i.e., u+(d, t′1) = u+(d, t′1 + τ) for some time t′1. This can be used to find the
propagation time corresponding to the amplitude in question, t′1 − t1, and thereby
the wave speed c(u+) = d/(t′1 − t1).

One complication is that we can only measure the fields outside the slab, but
using the boundary conditions (3.3) and (3.4),{

2u+ = ge(E
i + Er) + gm(Ei − Er)

2u+ = ge(E
t) + gm(Et),

we find that there is a one-to-one correspondence between the incident field strength
and the u+-level, and between the transmitted field strength and the u+-level. This
means that if Ei(t1) = Ei(t1+τ), then there is a time t′1 for which Et(t′1) = Et(t′1+τ),
and we can find our transmission time t′1 − t1.

In other words, we take a segment of a certain length τ of the time axis, and
fit this into the curves Ei(t) and Et(t). The time difference between the fits is the
travel time for this particular amplitude, see Figure 2. This does not work with
shock solutions, but the only consequence is that we cannot get any information on
the travel time for the amplitudes over which the shock occurs.

We have the following relationships determined by reflection data and transmis-
sion time:

Ei + Er = g−1
e (gm(Ei − Er))

c(Ei + Er, Ei − Er) =
c0

g′e(E
i + Er)g′m(Ei − Er)

.

If we denote the measurable quantities Ei + Er and Ei − Er by e and h, we have
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the experimentally determined functions

e(h) = g−1
e (gm(h))

c(e, h) =
c0

g′e(e)g
′
m(h)

.
(3.5)

The derivative of e with respect to h is de
dh

= g′m(h)
g′e(e)

, corresponding to the differential

wave impedance. We can thus find g′e(e)
2 = F ′e(e) and g′m(h)2 = F ′m(h) by combining

these relations:

F ′e(e) =
c0
dh
de

c(e, h(e))
⇒ Fe(e) =

∫ h(e)

0

c0dh
′

c(e(h′), h′)

F ′m(h) =
c0

de
dh

c(e(h), h)
⇒ Fm(h) =

∫ e(h)

0

c0de
′

c(e′, h(e′))
.

(3.6)

From these expressions we conclude that there is a one-to-one correspondence be-
tween Fe,m and c(e, h) once the relation between e and h is given. Since this is
given by ge(e) − gm(h) = 0, and ge,m are monotone functions, this is a one-to-one
relation. With shockfree propagation of a pulseshaped signal, the transmitted signal
should also be pulseshaped, see e.g., the example in Figure 2. Then the wavespeed
c(e, h(e)) = c(e(h), h) must be unique, and we conclude that the reconstructed func-
tions are unique, always exist, and depend continuously on the data. Thus the
algorithm is well posed.

3.5 Implementation of the forward problem

In order to obtain the reflected and transmitted fields from the slab, an algorithm
using finite differences has been implemented in Matlab. The algorithm is based
on interpolating the wave speed and fields between two neighboring points in the
grid with a linear function, and tracing the characteristics back one time step. The
tracing is made by searching for the point in the grid for which the interpolated
wave speed points to the new grid point. The method is described in [12, Chap. 8].

This method does not handle discontinuous solutions very well, but rather smears
the discontinuity over 10-20 grid points. Since we never use shock solutions in our
reconstruction algorithm, this is not a problem. When tested, the travel time for
shocks seems to be correct, though.

For numerical reasons, it is advantageous to scale the problem. We have access
to two different scalings; one scales the spacetime and one scales the fields. The
scaling is most obvious when looking at the original Maxwell equations,

∂z

(
E
η0H

)
+

1

c0

(
0 F ′m(η0H)

F ′e(E) 0

)
∂t

(
E
η0H

)
= 0.

When multiplying this equation by a factor a, and introducing the new fields Ẽ = aE
and H̃ = aη0H, we get

∂z

(
Ẽ

H̃

)
+

1

c0

(
0 F ′m(H̃/a)

F ′e(Ẽ/a) 0

)
∂t

(
Ẽ

H̃

)
= 0.



11

There is no problem incorporating the factor 1
a

in the constitutive relations, e.g.,

when F ′e(E) = ε1 + ε3E
2, we have F ′e(Ẽ/a) = ε1 + ε3

a2 Ẽ
2 = ε1 + ε̃3Ẽ

2 = F̃e
′
(Ẽ). We

see that the fields can be quite arbitrarily scaled, as long as we scale the constitutive
relations as well. In our simulations, we have chosen to use a factor a such that the
nonlinear terms in the constitutive relations are of the same order as the linear ones,
when using a numerical field strength of a few units.

We also see that we still have the possibility to scale the spacetime, since this
only effects the differential operators. Note that this is true only for homogeneous
media; for inhomogenous media we would have to scale the constitutive relations
once again. In our simulations, we have chosen to scale the spacetime so that the
vacuum wave speed c0 is 1, and the slab has width 1. The slab is discretized with
100 grid points in space, and the step size in time is chosen the same as that in
space. This guarantees that when tracing the characteristics back in time, we stay
within the nearest grid points in space.

Since we can scale the field strength and spacetime individually, and must avoid
shock solutions but still have substantial nonlinear effects, our results will apply to
situations with either strong fields and short propagation distances, or weak fields
and long propagation distances. Of course, the concepts strong–weak and short–
long, must be related to the exact physical media being modeled.

4 Numerical results

4.1 Reflection

When implementing this reconstruction, it is difficult not committing the inverse
crime, i.e., using the same algorithm for both simulating data and reconstructing
the constitutive functions, leading to a perfect match [7, p. 121].

It is therefore meaningless to present any results for reconstruction with pure
reflection data, unless some measured data is available, which is not the case at the
present time. The reconstruction is anyway used in the transmission reconstruction,
where we get good results.

4.2 Transmission

Simulations have been run, giving reflection and transmission data for a given input
signal and the constitutive relations

Fe(E) = 1.5E + 2
E3

1 + E2

Fm(H) = H + 2
H3

1 +H2
,

where we have used the scaling in Section 3.5 to define dimensionless variables and
functions. These constitutive relations describe a Kerr material with saturation,
i.e., it behaves as a material with a nonlinear behavior for weak fields, and as a
linear material for strong fields.
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. Observe that it is slightly positive for large field
strengths, about 0.022.

We have previously stated that the condition (3.2) must be satisfied to avoid

shock solutions. Figure 3 depicts the function which, when multiplied with ∂Ei

∂t
,

should be less than c0/d = 1. Since the function is mostly negative, we see that

the greatest danger is when ∂Ei

∂t
< 0, i.e., on the trailing edge of the pulse. This

can be avoided by using an incident field wich decays sufficiently slow. When the
derivative is positive, there is an upper limit on ∂Ei

∂t
set by the reciprocal of the

greatest positive value of the function in Figure 3, i.e., 1/0.022 = 46. Thus, we can
use an incident field which rises very rapidly, but not instantly. We want it to rise
fast enough so that its peak value is obtained before the reflected field at the back
has returned; this gives us an exact map of the relation ge(E) = gm(H), since then
ge(E)− gm(H) = 2u− = 0. The incident field used is depicted in Figure 4.

It should be stressed that it is not necessary to make the measurement of reflected
and transmitted fields simultaneously. This is because the reflected field is only used
to establish the relation between the electric and the magnetic fields necessary to
create only a forward propagating field u+, i.e., E = g−1

e (gm(H)).
Figures 4 and 5 show the calculated fields and the reconstructed constitutive

functions. The fields are calculated using the full forward problem, i.e., the left
propagating field u− in the slab is present. The mean relative error in the recon-
struction was 2.3% for Fe and 2.5% for Fm.

The algorithm is based on neglecting the field reflected from the back edge.
To investigate the validity of this approximation the following test has been made.
The left propagating field was neglected in the solution of the forward problem,
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Figure 4: Incident, reflected and transmitted fields.

i.e., we used straight characteristics. Then we used the full forward problem, and
compared the travel times obtained in the two cases. The mean relative difference
between them was 0.19%, which shows that the approximation is good, at least for
the materials studied in this paper.

In Figure 6 we have depicted the travel time as a function of the incident field
strength for the two methods, as well as the difference between them. It is clearly
seen that the greatest difference in travel time is for small field strengths. Remember
that the expression for the slowness is c0

c(u+,u−)
= g′e(u

+ + u−)g′m(u+ − u−), which

means that the error in travel time when neglecting u− should be small when u+ is
relatively large.

5 Discussion and conclusions

It has been shown that it is possible to reconstruct the constitutive functions of
a nonlinear slab, with the help of reflection and transmission data, not necessarily
measured simultaneously. The algorithm is based on the fact that equal amplitudes
travel with almost equal and constant speeds. When one of the constitutive functions
is known, for instance for a nonmagnetic material, the other function is obtained
with reflection data only. The algorithm seems to be robust and simple, and may be
useful for measuring instantaneous nonlinear effects, with virtually no assumptions
made on the specific form of the constitutive function, i.e., the inverse algorithm is
model independent.

Since the algorithm is based on shock free propagation, it is necessary to con-
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Figure 5: Reconstructed functions, from the fields in Figure 4. The circles are the
reconstructed values, and the solid lines are the true functions.

struct a suitable input signal. When measuring reflected and transmitted field simul-
taneously, the input signal should rise fast enough so that its maximum is reached
before the first reflection from the back boundary turns up, and then decrease slow
enough not to create a shock in the transmitted field. This may be a difficult field
to create.

The neglection of u− in the propagation corresponds to the first term in a series
expansion of the slowness at u− = 0, i.e., c0

c(u+,u−)
= c0

c(u+,0)
+O(u−). The term O(u−)

is proportional not only to u− but also to the derivative of the slowness, which
is proportional to the second derivative of the constitutive relations. A material
is defined as weakly nonlinear if this second derivative is small compared to the
reciprocal of the field strength. We then expect our method to work well for such
materials, since the neglected term is a product of two small quantities. The series
approach can in principle be used to establish a definite bound on the error in travel
time, deduced directly from the constitutive relations. Though, this is a formidable
problem, which is under current research. A rigorous analysis of such an expansion
of the slowness may also be used to further develop the reconstruction algorithm
presented in this paper, and will probably clarify which properties of the constitutive
relations are important for the wave propagation.

An interesting fact is that it is conceivable to have a material with nonlinear
behavior in both electric and magnetic fields. If the media changes from being
dominantly electric to being dominantly magnetic, or vice versa, we may get a very
small reflection for a very strong incident wave. This might have some implications
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Figure 6: Amplitude-dependent travel time as a function of the incident field
strength. (a) Travel time when using straight characteristics, i.e., neglecting the
left propagating field u−. (b) Travel time when using the full forward problem. (c)
The difference in travel time for the two methods.

on the theory of nonreflecting materials, or provide a new kind of electric shutter.
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Abstract

Using simple waves and six-vector formalism, the propagation of elec-
tromagnetic waves in nonlinear, bianisotropic, nondispersive, homogeneous
media is analyzed. The Maxwell equations are formulated as an eigenvalue
problem, whose solutions are equivalent to the characteristic directions of the
wave front. Oblique incidence of plane waves in vacuum on a half space of
nonlinear material is solved, giving reflection and transmission operators for
all angles of incidence and all polarizations of the incident field. A condition
on Brewster angles is derived.

1 Introduction

Wave propagation in nonlinear media is a wide and quickly expanding area. In
particular, the nonlinear optics field has been very prosperous [1, 3]. One of the
most exciting areas is that of solitons, i.e., pulses which have a very specific shape,
in which the nonlinear steepening effects are precisely balanced by the dispersive
broadening, thereby producing a pulse that is temporally or spatially unchanged
during propagation. This delicate balance can only be understood by studying both
contributing effects. In this paper, we are devoted to the nonlinear effects which
occur in materials with no memory, i.e., no dispersion.

Whereas the linear dispersion has been thoroughly investigated, e.g., [4, 14, 20],
the nonlinear properties may not have received enough attention. Some early works
are summarized in [2], and especially the papers on wave propagation in nonlinear
dielectrics [5, 6, 17, 21, 29] are worthy of attention. A prominent feature of nonlinear
wave propagation, where the nonlinearity acts as an amplitude-dependent wave
speed, is the formation of shock waves. These are discontinuous waves, which must
be interpreted in a generalized way as weak solutions, see e.g., [28, pp. 369–373],
and the theory of these has been thoroughly studied [15, 18, 27, 31]. It is often argued
that the shock waves are eliminated by the linear dispersion, see e.g., [1, pp. 117–
120], but since we are ignoring dispersion in this study, we expect our model to be
accurate only when we are not in the vicinity of any shock formations.

An often encountered problem when studying nonlinear materials is that of find-
ing suitable constitutive relations. In the treatise of Eringen and Maugin [9, 10], the
constitutive relations for virtually every reasonable situation are presented. Some
important thermodynamic restrictions are presented in [8]. The derivation of con-
stitutive relations from a quantum mechanical point of view is presented in [3], and
some theory about nonlinear dielectrics is found in [7].

This paper aims to improve the understanding of a nonlinear optical response,
i.e., an instantaneous nonlinear response. Earlier works, as reported above, have of-
ten made some important restrictions, such as assuming the material to be isotropic
or uniaxial. Here we present a theory describing wave propagation in bianisotropic
materials. We show that a generalized form of plane waves, called simple waves, can
be used to analyze the wave propagation, and we reformulate the Maxwell equa-
tions as an eigenvalue problems. A brief presentation on simple waves in partial
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differential equations is given in [19, p. 52], and a more extensive treatment is given
in [16, Chap. 3]. There are also some related results in [13, p. 47].

The paper is organized as follows: in Sections 2 and 3 we present the simple
wave Ansatz and the six-vector formalism, which are the basic tools used in this
paper. This is applied to the Maxwell equations in Section 4, which transforms the
dynamics into an eigenvalue problem. Special notice is taken to isotropic media.
In Section 5 we introduce the theory on how to classify materials. We then apply
our formalism in Section 6 to the problem of a plane wave obliquely impinging on a
nonlinear half space and solve the problem of finding the reflected and transmitted
fields. Some results on suitable conditions on the Brewster angles are also presented,
as well as a numerical example.

2 Simple wave Ansatz

Plane waves constitute a powerful tool in the analysis of wave phenomena in linear
materials. The concept of plane waves transforms the problem of three spatial
dimensions into a problem along the propagation direction. Simple waves are the
generalization of this concept. They have previously been used in the description of
nonlinear electromagnetic waves [5, 6], and are explained in basic books on partial
differential equations [19, p. 52]. They also define the characteristics of the wave
equation.

The simple wave Ansatz is suitable for materials which respond instantaneously
to excitation, and states that the fields depend only upon a scalar parameter, which
we denote φ. This parameter is a function of space and time. For an isotropic, linear
media the simple wave Ansatz reduces to the usual phase function, φ(r, t) = k·r−ωt.

It is obvious that if a quantity u depends on space and time as u(r, t) = u(φ(r, t)),
the spatial gradient ∇φ representents a propagation direction. We identify the
quantity − ∇φ/φt|∇φ/φt| as the propagation direction and |φt|/|∇φ| as the propagation
speed, where φt denotes the time derivative of φ. The minus sign comes from
implicit differentiation of the equation φ(r, t) = constant, which is the equation of
the wave front.

3 Six-vector formalism

When describing bianisotropic phenomena, it is often advantageous to use the six-
vector formalism, see e.g., [24]. In this approach, we make no real distinction between
the electric and magnetic fields, but rather treat them as components of a single
field. We define our fields as 

e =

( √
ε0E√
µ0H

)
d =

(
1√
ε0
D

1√
µ0
B

)
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where ε0 and µ0 denote the permittivity and permeability of vacuum, respectively.
The six-vector fields now both have the same dimension, i.e.,

√
energy/volume.

The scalar product between two six-vectors a and b is defined as a·b =
∑6

i=1 aibi.
Operations with three-vectors on six-vectors are understood in the obvious manner,
i.e., the scalar and cross products are

v · e =

(
v · √ε0E
v · √µ0H

)
, and v × e =

(
v ×√ε0E
v ×√µ0H

)
.

Using the operator J =

(
0 −I
I 0

)
, which is formed from the three-dimensional

spatial identity operator I, we write the source free Maxwell equations as

∇× e− 1

c0

J · ∂td = 0,

where c0 denotes the wave speed in vacuum, 1/
√
ε0µ0. The spatial differential op-

erator ∇ is treated as a three-vector, and is sometimes merged with the operator J
to form the symmetric operator ∇× J, as in [12]. This approach will be beneficial
later on in this work.

4 The Maxwell equations as an eigenvalue prob-

lem

The constitutive relation for a material with no memory, i.e., where the fluxes d
depend only upon the present values of the field strengths e, can be written

d(r, t) = d(e(r, t)). (4.1)

We now apply the simple wave Ansatz together with the constitutive relation,{
e(r, t) = e(φ(r, t))

d(r, t) = d(e(φ(r, t))).

This means that the curl operator turns into a cross product, ∇×e = ∇φ×e′, and
the time derivative becomes ∂td = φt[∇ed] · e′, where the prime denotes differenti-
ation with respect to φ. The operator ∇e denotes the field gradient operator, i.e.,
[∇ed]nm = ∂

∂em
dn(e). Since we write the linear constitutive relations as d = ε · e,

where ε is a six-dyadic, we denote [∇ed] by ε(e), and often suppress the argument
to obtain a less cumbersome notation.

With the simple wave Ansatz, the Maxwell equations contain the generic field
e′ = d

dφ
e. However, for reasons that become more obvious below we prefer to use

the time derivative, ė = ∂te = φte
′. This choice also becomes advantageous when

implementing the equations later on. Since φ(r, t) = constant is the equation for
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the wave front, we identify the wave slowness 1/c and the propagation direction k̂
of the simple wave by the following expressions,

1

c
=
|∇φ|
|φt|

k̂ = − ∇φ/φt|∇φ/φt|
= −∇φ

φt
c.

Using these expressions, we write the Maxwell equations as

1

c
k̂ × ė+

1

c0

J · ε · ė = 0.

This is an eigenvalue problem, which becomes more obvious in the form

c

c0

ė = ε−1 · [k̂ × J] · ė, (4.2)

which follows from J−1 = −J and J · [k̂ × I] = [k̂ × J]. Observe that [k̂ × J]
is a symmetric operator. The dyadic ε is postulated to be positive definite and
symmetric, and is thus invertible. In the linear case, it is possible to show that ε
has to be a symmetric, positive definite dyadic in order to model passive media [12].
The assumptions made on the dyadic ε is a natural generalization of the result in
the linear case.

The solution to (4.2) gives conditions on the wave speed and propagation direc-
tion in terms of the fields. In the linear case, only the directions of the field will be
important, but for nonlinear materials there is also a dependence on the amplitude.
For an isotropic material, where

ε(e) =

(
ε(E)I 0

0 µ(H)I

)
,

the conditions are

c =
c0√

ε(E)µ(H)
and k̂ · ė = 0 ⇒ ė =

( 1√
ε
v

1√
µ
k̂ × v

)
, (4.3)

where the three-vector v is orthogonal to k̂. Observe that it is the direction of the
derivatives of the fields that are important, not the fields themselves.

For a given propagation direction k̂ the operator ε−1 · [k̂×J] has six eigenvectors
ėj, j = 1, . . . , 6. Since the operator is not symmetric, these solutions are not
guaranteed to be mutually orthogonal. We symmetrize the operator by

c

c0

(
√
ε · ėj) =

[√
ε
−1 · [k̂ × J] ·

√
ε
−1
]
· (
√
ε · ėj),

where we have used the square root of the positive definite and symmetric dyadic ε,
which is also positive definite and symmetric. It is concluded that the eigenvectors√
ε · ėj are real and orthogonal, which imply that the eigenvectors ėj are real and
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linearly independent. The operator
√
ε
−1 · [k̂ × J] ·

√
ε
−1

is a congruence transfor-
mation (see e.g., [11, p. 251]) of [k̂ × J], which has the (double) eigenvalues −1,
0 and 1. Since the signs are preserved under congruence transforms, we conclude
that for a given propagation direction k̂ there are two modes propagating in the
+k̂-direction (positive eigenvalues) and two modes propagating in the −k̂-direction
(negative eigenvalues), while two modes do not propagate with respect to k̂ at all

(zero eigenvalue). The last two can be written explicitly as ė5,6 =
(±k̂
k̂

)
.

5 Classification of materials

Materials are often classified as, e.g., isotropic, bi-isotropic or uniaxial depending
on the invariance under symmetry transformations. In our formulation, the natural
way to classify the materials is by the corresponding invariance of the dyadic ε(e).
This is motivated by the following way of writing the constitutive relations (4.1):

d(e) =

∫ e

0

ε(e′) · de′,

where the integral should be understood in terms of integration along a parametrized
curve in R6. The prime is not to be confused with time differentiation, it is only
denoting the integration variable. When applying a spatial transformation S on the
field strength e, we get

d(S · e) =

∫ S·e

0

ε(e′) · de′ =
∫ e

0

ε(S · e′′) · S · de′′,

where we have made the change of variables e′ = S · e′′. Materials are classified
depending on which group of transformations S that satisfies d(S · e) = S · d(e),
i.e., which group of transformations that commutes with ε.

Since this must hold for all transformations in the bi-isotropic case, we see that
an ε(e) as

ε(e) =

(
ε(E,H)I ξ(E,H)I
ζ(E,H)I µ(E,H)I

)
,

describes a bi-isotropic material, where ε, ξ, ζ and µ are scalar functions of the field
strengths. Common restrictions on constitutive relations, [8, 12], say that ξ = ζ,
and if they are equal to zero, the material is said to be isotropic.

6 Oblique incidence

To demonstrate the possible application of the simple wave approach, we analyze
the problem of a plane electromagnetic wave obliquely impinging from vacuum on a
nonlinear half space. The problem has been studied to some extent in [5, 6], though
they specialize their treatment to a uniaxial material with nonlinearity in electric
field only, where the optical axis is in a special direction.
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Figure 1: The geometry of the problem of oblique incidence.

6.1 Geometry and boundary conditions

The geometry of the problem is depicted in Figure 1. The incident field is a plane
wave, and we make the Ansatz

ei(r, t) = e(k̂i · r − c0t)

er(r, t) = e(k̂r · r − c0t)

et(r, t) =
∑

etj(φj(r, t)),

where c0 denotes the wave speed in vacuum. We thus assume that the transmit-
ted field may consist of several simple waves, as we can expect from the linear,
anisotropic case. The number of those is restricted to two in Section 6.5. The usual
boundary conditions apply, i.e., the tangential components of the field strengths
should be continuous and the normal component of the fluxes should be continuous
(no sources at the interface). We write this as{

ei‖ + er‖ = et‖

ẑ · (di + dr) = ẑ · dt.
(6.1)

The latter condition is not used in the present analysis.

6.2 Reflection law and Snell’s law

Since the boundary conditions (6.1) must hold for all times on the surface z = 0,
we can differentiate them with respect to both time and y. The simple wave Ansatz
implies that the operator ∂y equals 1

c
ky∂t, where ky = ŷ · k̂. Using this result and

et(r, t) =
∑
etj(φj(r, t)) we write the time and y derivative of the tangential fields
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as 
ėi‖ + ėr‖ =

∑
(ėtj)‖

1

c0

kiyė
i
‖ +

1

c0

kryė
r
‖ =

∑ 1

cj(et)
ktyj(ė

t
j)‖.

These conditions are satisfied if the following holds:

kiy = kry =
c0

cj(et)
ktyj, (6.2)

for all values of j, cf., phase-matching [22, p. 104]. The quotient between the wave
speeds corresponds to the refractive index, and since kiy and ktyj are the sines of the
angles of incidence and transmission, respectively, (6.2) is the well-known Snell’s
law. This is a purely kinematic law, so it is not surprising that it is valid also in the
nonlinear case. Note that since there are several possible values for the wave speed
cj, there are several possible angles of transmission.

Since the propagation directions are normalized and there is no propagation in
the x-direction, we now also have the normal reflection law for the reflected field,
i.e.,

k̂r = kiyŷ − kiz ẑ.

The transmitted field is more complicated, since it involves the wave speed, which
may depend on the field strength.

6.3 Decomposition of the propagation direction

It seems natural to consider a decomposition of the propagation direction k̂ in (4.2)
in a y and z part. Using Snell’s law and |k̂tj| = 1, we find

c0

cj
k̂tj =

c0

cj
ktyj ŷ +

c0

cj
ktzj ẑ = kiyŷ +

c0

cj

√
1− (

cj
c0

kiy)
2 ẑ.

Using the eigenvalue problem (4.2) for each simple wave in the nonlinear material,
we get

ε · ėtj =
c0

cj
[k̂tj × J] · ėtj

[ε− kiyŷ × J] · ėtj =
c0

cj
ktzj[ẑ × J] · ėtj

cj
c0

1

ktzj
ėtj = [ε− kiyŷ × J]−1 · [ẑ × J] · ėtj.

Since the operator [ε − kiyŷ × J]−1 · [ẑ × J] is independent of j, all simple waves in
the nonlinear material are found from the same eigenvalue problem,

λjaj = [ε− kiyŷ × J]−1 · [ẑ × J] · aj, (6.3)
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where λj denotes the number cj/(c0k
t
zj) and aj is shorthand for ėtj. The correspond-

ing problem for the vacuum fields is easily found,

± 1

kiz
ėi,r = [I− kiyŷ × J]−1 · [ẑ × J] · ėi,r, (6.4)

where the ± comes from krz = −kiz. The operator [I− kiyŷ×J]−1 is positive definite,
since |kiy| < 1. If all eigenvalues to ε are greater than one, i.e., the material is denser
than vacuum, the operator [ε− kiyŷ × J]−1 is also positive definite.

6.4 Properties of the eigenvectors

The eigenvalue problem (6.3) is put in a symmetric form in the same manner as
in Section 4. We observe that [ε − kiyŷ × J] is positive definite and symmetric. In

this section we temporarily denote this operator C. By multiplying (6.3) with
√

C,
which is also positive definite and symmetric, we obtain

λj
√

C · aj =
√

C
−1 · [ẑ × J] ·

√
C
−1 ·
√

C · aj
λjuj =

[√
C
−1 · [ẑ × J] ·

√
C
−1
]
· uj.

The λj:s are now eigenvalues to a symmetric operator, which implies that they are

real. The symmetric operator
√

C
−1 · [ẑ× J] ·

√
C
−1

is a congruence transformation
of [ẑ × J], which has the (double) eigenvalues −1, 0 and 1. Since the signs are
preserved under congruence transformations, the eigenvalues can be characterized
by

λ1,2 > 0

λ3,4 < 0

λ5,6 = 0.

Since the uj:s are eigenvectors to a symmetric operator, they are real and mutually

orthogonal. This implies that aj =
√

C
−1 · uj are linearly independent vectors.

The eigenvectors corresponding to λ5,6 can be constructed from a5,6 =
(±ẑ
ẑ

)
, which

implies that a1,2,3,4 are the only eigenvectors needed to form the tangential fields.
The sign of the eigenvalue indicates in which direction each mode represented

by an eigenvector is propagating, i.e., a1,2 represent waves propagating in the +z-
direction and a3,4 represent waves propagating in the −z-direction, while a5,6 rep-
resent waves which do not propagate with respect to z at all.

6.5 Transmission operator

Temporarily introduce the dyadic

A = kiz[I− ẑẑ] · [I− kiyŷ × J]−1 · [ẑ × J].
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From (6.4) we see that ėi,r‖ = ±A · ėi,r‖ . By multiplying the boundary condition

ėi‖ + ėr‖ = ėt‖ with A we now have

ėi‖ − ėr‖ = A · ėt‖.

In the previous section, we found that only the eigenvectors a1,2,3,4 involve the
tangential fields. Specifically, a1,2 correspond to waves travelling in the +z-direction.
To this end, the transmitted tangential field is expanded as

ėt‖ =
2∑
j=1

αj[I− ẑẑ] · aj, (6.5)

provided there are no sources in the region z > 0, i.e., no waves travelling in the
−z-direction. We have now restricted the number of simple waves in the nonlinear
material to two. From (6.3) follows

A · [I− ẑẑ] · aj = kiz[I− ẑẑ] · [I− kiyŷ × J]−1 · [ẑ × J] · [I− ẑẑ] · aj
= λjk

i
z[I− ẑẑ] · [I− kiyŷ × J]−1 · [ε− kiyŷ × J] · aj,

where we have used [ẑ × J] · [I− ẑẑ] = [ẑ × J]. The operator

B = [I− kiyŷ × J]−1 · [ε− kiyŷ × J]

= I + [I− kiyŷ × J]−1 · [ε− I]
(6.6)

is positive definite with eigenvalues greater than one. The boundary conditions are
ėi‖ + ėr‖ =

2∑
j=1

αj[I− ẑẑ] · aj

ėi‖ − ėr‖ =
2∑
j=1

αjλjk
i
z[I− ẑẑ] ·B · aj.

(6.7)

By adding these equations, we eliminate the reflected field, and obtain

2ėi‖ =
2∑
j=1

αj[I− ẑẑ] · [I + λjk
i
zB] · aj. (6.8)

The only unknown quantities in this equation are the coefficients αj. If we multiply
the equation by a1,2 from the left, we obtain a 2×2 system, which is used to extract
the coefficients α1,2:{

2a1 · ėi‖ = α1a1 · [I− ẑẑ] · [I + λ1k
i
zB] · a1 + α2a1 · [I− ẑẑ] · [I + λ2k

i
zB] · a2

2a2 · ėi‖ = α1a2 · [I− ẑẑ] · [I + λ1k
i
zB] · a1 + α2a2 · [I− ẑẑ] · [I + λ2k

i
zB] · a2.

(6.9)
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This system is always solvable provided the following determinant is non-zero:

∆ =(a1 · [I− ẑẑ] · [I + λ1k
i
zB] · a1)(a2 · [I− ẑẑ] · [I + λ2k

i
zB] · a2)

− (a2 · [I− ẑẑ] · [I + λ1k
i
zB] · a1)(a1 · [I− ẑẑ] · [I + λ2k

i
zB] · a2)

=(a1 · v1)(a2 · v2)− (a2 · v1)(a1 · v2)

=a1 · (v1v2 − v2v1) · a2,

where we have introduced the vectors v1,2 = [I− ẑẑ] · [I+λ1,2k
i
zB] ·a1,2 = R1,2 ·a1,2.

The operators R1,2 are obviously positive semi-definite, where the semi-definiteness
comes from the projection [I − ẑẑ]. It is conjectured that these properties imply
∆ > 0.

Using the explicit inverse of a 2× 2-matrix, we can write the solution to (6.9) as

α1 =
2

∆

{
(a2 · [I− ẑẑ] · [I + λ2k

i
zB] · a2)(a1 · ėi‖)

−(a1 · [I− ẑẑ] · [I + λ2k
i
zB] · a2)(a2 · ėi‖)

}
α2 =

2

∆

{
(a1 · [I− ẑẑ] · [I + λ1k

i
zB] · a1)(a2 · ėi‖)

−(a2 · [I− ẑẑ] · [I + λ1k
i
zB] · a1)(a1 · ėi‖)

}
.

(6.10)

This can be written as α1,2 = 2
∆
b1,2 · ėi‖ by introducing the vectors{

b1 = (a2 · [I− ẑẑ] · [I + λ2k
i
zB] · a2)a1 − (a1 · [I− ẑẑ] · [I + λ2k

i
zB] · a2)a2

b2 = (a1 · [I− ẑẑ] · [I + λ1k
i
zB] · a1)a2 − (a2 · [I− ẑẑ] · [I + λ1k

i
zB] · a1)a1.

(6.11)

The map between a1,2 and b1,2 has the same determinant as the map between the
coefficients α1,2 and the incident field, i.e., ∆, which was assumed greater than zero
previous in this section. This implies that the vectors b1,2 are linearly independent.
We now formulate the relation ėt‖ =

∑2
j=1 αj[I− ẑẑ] ·aj as a dyadic relation between

incident and transmitted fields,

ėt‖ =
2

∆
[I− ẑẑ] · [a1b1 + a2b2] · ėi‖

=T‖ · ėi‖,
(6.12)

where we have introduced the notation T‖ for the transmission operator acting on
the tangential fields. Since the transmitted field consists of only the modes a1,2, the
transmission operator extends to the total transmitted field:

ėt =
2

∆
[a1b1 + a2b2] · ėi‖ = T · ėi‖. (6.13)

Since the vectors b1,2 are linearly independent, they represent the two different
polarizations of the incident field which generate the two possible modes a1,2 in the
nonlinear material.
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6.6 Reflection operator and Brewster angles

It is well known that at certain angles and polarizations of the incident field there
is no reflected field at all — the Brewster angles [22, 25, 26]. From (6.7) we see that
the reflected field can be written

2ėr‖ =
2∑
j=1

αj[I− ẑẑ] · [I− λjkizB] · aj.

Using α1,2 = 2
∆
b1,2 · ėi‖ we find the following relationship between the reflected and

incident field:

2ėr‖ =
2

∆

[{
[I− ẑẑ] · [I− λ1k

i
zB] · a1

}
b1

+
{

[I− ẑẑ] · [I− λ2k
i
zB] · a2

}
b2

]
· ėi‖

=
2

∆
[I− ẑẑ] · [b′1b1 + b′2b2] · ėi‖

=2R‖ · ėi‖.

This is the reflection operator R‖ for the tangential fields, which is represented as a
factorization in the simple dyads b′1b1 and b′2b2, where b′1,2 = [I− λ1,2k

i
zB] · a1,2.

Since the vectors b1,2 are linearly independent, we see that the Brewster angles
are characterized by{

ėi‖ = β[I− ẑẑ] · bj
0 = [I− ẑẑ] · [I− λjkizB] · aj

j = 1, 2, (6.14)

where β is a scalar. This means that if the incident field is polarized along bj and
aj is in the null space of [I − ẑẑ] · [I − λjk

i
zB], there is no reflected field. These

conditions determine the possible Brewster angles. We have

0 = [I− ẑẑ] · [I− λjkizB] · aj

= [I− ẑẑ] · [I− cj
c0

kiz
ktzj

(I + [I− kiyŷ × J]−1 · [ε− I])] · aj

= [I− ẑẑ] · [I− cj
c0

kiz
ktzj

(I +
1

(kiz)
2
[I + kiyŷ × J− (kiy)

2ŷŷ] · [ε− I])] · aj,

where we have introduced the explicit inverse [I− kiyŷ × J]−1 = 1
(kiz)2 [I + kiyŷ × J−

(kiy)
2ŷŷ], which can be verified by straightforward calculations. The y-component of

this equation is

0 = ŷ · aj −
cj
c0

kiz
ktzj

(ŷ +
1

(kiz)
2
[ŷ − (kiy)

2ŷ] · [ε− I]) · aj

= ŷ · aj −
cj
c0

kiz
ktzj

(ŷ + ŷ · [ε− I]) · aj

= ŷ · aj −
cj
c0

kiz
ktzj

ŷ · ε · aj.
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In Section 4 it was shown that a propagating field in an isotropic material is described
by aj = ( 1√

ε
vj,

1√
µ
k̂×vj), where the three-vector vj is orthogonal to k̂, and the only

possible wave speed is
cj
c0

= 1√
εµ

. In the remainder of this section, we suppress the

index j, and separate the two modes in the end. The Brewster angles can now be
found from the y-component defined above. By explicitly considering both electric
and magnetic fields we have

ŷ ·
( 1√

ε
v

1√
µ
k̂t × v

)
=

1
√
εµ

kiz
ktz
ŷ ·
( √

εv
√
µk̂t × v

)
( 1√

ε
ŷ · v

1√
µ
k̂t · (v × ŷ)

)
=
kiz
ktz

( 1√
µ
ŷ · v

1√
ε
k̂t · (v × ŷ)

)
( 1√

ε
ŷ · v

1√
µ
ktz ẑ · (v × ŷ)

)
=
kiz
ktz

( 1√
µ
ŷ · v

1√
ε
ktz ẑ · (v × ŷ)

)
.

It is now obvious that one of the following sets of conditions have to be satisfied in
order to satisfy the Brewster angle criterion.{

ŷ · v = 0
√
εktz =

√
µkiz

or

{
ẑ · (v × ŷ) = 0
√
µktz =

√
εkiz.

Observe that ẑ · (v× ŷ) = 0 is equivalent to x̂ · v = 0, i.e., the first set of conditions
corresponds to TE-polarization and the second to TM-polarization. Remember
that kiz = cos θi and ktz = cos θt, where θi,t denote the angles of incidence and
transmission, respectively, and we have recovered the well known results for linear
isotropic materials. Since we in general have θt < θi, only one of the above possible
Brewster angles is feasible.

An interesting question is whether it always suffices to study the y-component of
our original Brewster-angle-condition in (6.14). This is a problem that goes beyond
the scope of this paper.

6.7 Algorithm for the direct problem

In this section we summarize the algorithm for solving the direct problem of prop-
agating the incident field through a boundary between vacuum and a nonlinear,
nondispersive, homogeneous, bianisotropic halfspace.

We have to calculate the eigenvectors a1,2, the eigenvalues λ1,2 and the operator
B to obtain the reflection and transmission dyadics. These quantities are determined
from the relations {

λjaj = [ε− kiyŷ × J]−1 · [ẑ × J] · aj
B = [I− kiyŷ × J]−1 · [ε− kiyŷ × J],

i.e., we have to solve an eigenvalue problem (first row), extract the eigenvectors
corresponding to positive eigenvalues, and calculate the operator B. These calcula-
tions are evaluated at the transmitted field values at a specific time. The operators



13

are supposed to act on time derivatives of the fields. We discretize the problem
with central differences in time, and use the previously calculated values for the
transmitted fields in the solution of the eigenvalue problem.

Once we have calculated the tangential fields, it is an easy task to obtain the
normal components of the fields. For the transmitted fields these are already given
by the transmission operator, see (6.13), and for the reflected field they are given

by the relation k̂r · ėr = 0, which implies ėrz = −kry
krz
ėry.

The algorithm can be summarized as follows, where the indices denote at which
time level the different quantities are to be evaluated.

(eigenvalue problem)j ⇒ (λ1,2)j, (a1,2)j

(B)j = B((et)j)

(T)j = T((λ1,2)j, (a1,2)j, (B)j)

(R‖)j = R‖((λ1,2)j, (a1,2)j, (B)j)

(ėi‖)j =
(ei‖)j+1 − (ei‖)j−1

2∆t
(et)j+1 = (et)j−1 + 2∆t(T)j · (ėi‖)j
(er‖)j+1 = (er‖)j−1 + 2∆t(R‖)j · (ėi‖)j

(erz)j+1 = −
kry
krz

(ery)j+1

6.8 Numerical example

The algorithm in the previous section has been implemented for a nonlinear, anisotropic
material, and the result is depicted in Figure 2. We have scaled the fields to obtain
dimensionless field strengths and substantial nonlinearities for field strengths of a
few units, see e.g., [23, 30]. The constitutive relation is characterized by the dyadic
ε, which is represented in the xyz-coordinate system as

ε =


2 + E2 0 0 0 0 0

0 3 + E2 0 0 0 0
0 0 4 + E2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

Thus, the material is non-magnetic, anisotropic with principal axis in the xyz-
directions, and has a nonlinear permittivity depending on the square of the electric
field strength. The angle of incidence is 70◦, and the incident field has the magnetic
field perpendicular to the plane of incidence, i.e., in the x-direction,

ei(r, t) = f(t− k̂i · r/c0)

(
−k̂i × x̂

x̂

)
, f(t) = e0

√
|t|.

The time dependence of the amplitude of the incident field is chosen so that its
square, which is proportional to the field energy in vacuum, depends linearly on time.
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Figure 2: Oblique incidence on an anisotropic Kerr material. Observe that the
horizontal scales can be used both as time and energy of the incident field. The
diagrams show the squares of the incident, reflected and transmitted fields, and the
two possible transmission angles.

This implies that the horizontal scales in Figure 2 can be used both as time and
energy. We see that the reflected field displays a strong dependence on the incident
field energy, whereas the transmitted field has a more moderate dependence.

It is clearly seen that the Brewster angle occurs when the incident energy is
approximately 18. Had the principle axis of the material not been in the xyz-
directions, we would have needed another polarization of the incident field to obtain
a reflected field that is zero.

The possible transmission angles start off as clearly separated, as can be expected
for an anisotropic material, but become more and more equal as the incident energy
increases. This can be interpreted from the material dyadic: when the electric field
strength grows, the diagonal elements become essentially E2. Thus the material
becomes more and more isotropic, i.e., it has only one possible angle of transmission.
Observe that due to our choice of polarization of the incident field, only one of the
modes is excited.
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7 Conclusions

In this paper, we have introduced the concept of simple waves, as a means to analyze
wave propagation problems in nonlinear materials with instantaneous response. We
have applied the method to the problem of oblique incidence of a plane electromag-
netic wave on a nonlinear material, and found that the direct problem can be solved
for all materials and all possible polarizations of the incident wave.

The drawback of the simple wave solutions, is that they do not apply to mate-
rials with dispersion, i.e., materials with memory. Our mathematical model with
instantaneous nonlinearity, predicts that all reasonable waves eventually turn into
shocks. It is often argued that the presence of linear dispersion eliminates these
shocks, see e.g., [1, pp. 117–120]. Therefore, we can expect our model to be accu-
rate only when there is no shock-like behaviour and the dispersion effects are small,
i.e., for sufficiently smooth and slowly varying pulses. It is possible to calculate
what propagation distances are necessary for the shock to develop, which means we
can estimate the region of validity for our model.

The methods presented in this paper may be useful to propagate the wave front
when studying wave propagation in more advanced materials. Temporal disper-
sion and inhomogeneous media may appear as lower order terms in the Maxwell
equations, and can be treated as sources to the fields treated here.
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