
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Distributed Wireless Control Using Bluetooth

Eker, Johan; Cervin, Anton; Hörjel, Andreas

Published in:
New Technologies for Computer Control 2001

2002

Link to publication

Citation for published version (APA):
Eker, J., Cervin, A., & Hörjel, A. (2002). Distributed Wireless Control Using Bluetooth. In New Technologies for
Computer Control 2001 Elsevier.

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/01f8747c-9b70-4aac-8633-17c77e673666


IFAC Conference on New Technologies for Computer Control, Hong Kong, P.R. China, November 2001.

Distributed Wireless Control Using Bluetooth

Johan Eker

Department of Electrical Engineering and Computer Science
University of California at Berkeley

337 Cory Hall, Berkeley, CA 94720-1770, US
johane@eecs.berkeley.edu

Anton Cervin

Department of Automatic Control
Lund Institute of Technology

Box 118, SE 221 00 Lund, Sweden
anton@control.lth.se

Andreas Hörjel

ConnectBlue
Stora Varvsgatan 11 N:1

SE 211 19 Malmö, Sweden
andreas.horjel@connectblue.se

Abstract
Bluetooth is currently emerging as one of the most
promising personal wireless network technologies.
The automation industry is also showing interest
in using Bluetooth for more industrial applications.
However, problems with unreliable links and time
delays must be explicitly addressed in any wireless
control application. This paper discusses two specific
problems that may occur when using Bluetooth in
a control loop: long random delays and bit errors.
Simple solutions to these problems are presented.
The ideas have been tried out, both in simulations
and in experiments, on a rotating inverted pendulum
controlled over a Bluetooth network.

1. Introduction
In a distributed control system the sensors, the actu-
ators and the controller are physically displaced and
communicate over a network. The main advantage of
this setup is flexibility. It allows us to use the same
control computer for several control loops and it re-
lieves us from the potential problem of placing the
controller close to the controlled process. It also al-
lows us to build our control systems in a hierarchical
fashion. The cost for using networks has decreased
radically over the last years which has made dis-
tributed solutions much more appealing. However,
a downside to using a distributed approach is that
delays will be introduced in the control loops due to
latencies in the network communication. The delays
will lead to decreased phase margins in the control
loops and potentially unstable systems.

In this paper a wireless Bluetooth radio network is
used. Going wireless has some obvious advantages;

without cables we have a much greater freedom to
physically distribute the nodes. It is possible to place
actuators and sensors without worrying about the
location of the control node. For example, it allows
us the place the sensor and actuator on a mobile
object and still run the controller from a stand-still
platform. However, going wireless will also result
in less dependable systems. The likelihood of a
wireless link containing bit errors is several orders of
magnitude larger than for a wired link. This means
that the possibility of a message being corrupt or
delayed due to retransmissions is much larger.

Two particular problems are studied in this paper.
In the first case, we assume that we have a reli-
able connection, i.e. the underlying network protocol
guarantees that there will be no corrupted messages.
The cost for this is that messages may be retransmit-
ted several times, causing lengthy delays. The im-
plications for the controller design is that we must
explicitly deal with the varying time delays. In the
second case, we assume an unreliable connection. We
will receive possibly scrambled messages, but we will
have a short and nearly constant delay. The problem
in this case is to detect and handle the bit errors.
We use a model-based observer approach for error
detection and correction.

The two problem cases have been simulated in MAT-
LAB/SIMULINK and then implemented and run over
a wireless Bluetooth link controlling a rotating in-
verted pendulum. To control the experiments, ran-
dom delays and bit errors were artificially introduced
by fault injection in the Bluetooth protocol stack.
More details about the Bluetooth-pendulum imple-
mentation are available in [Hörjel, 2001].



Process

Sensor
Actuator

Controller

y(t)

y(k)u(k)

u(t)

Figure 1 The distributed system configuration used in
the paper. The communication between the sensor, the
actuator, and the controller is over a wireless link.

2. The Setup
The distributed control configuration is shown in
Figure 1. The feedback loop consists of three parts:
the sensor, the controller, and the actuator. The
sensor node is time-driven while the controller and
actuator nodes are event-driven. The sensor samples
the process periodically and sends the measurement
values to the controller. Upon receipt, the controller
calculates a new control signal and sends it to
actuator node which outputs the value. In our setup,
the sensor node and the actuator node are located in
the same hardware unit, called the Remote I/O.

2.1 The Network
Bluetooth is currently emerging as one of the most
promising personal wireless network technologies.
It is primarily designed as a cable replacement be-
tween for example a cell phone and a PDA, but
there is a growing interest to also use it in indus-
trial applications. Up to eight Bluetooth units may
be connected in a so called Piconet. The communi-
cation protocol is time divided, with a slot-length of
625 µs. One unit acts as the master, and the slaves
are only allowed to transmit if they were addressed
by the master in the previous slot. The radio uses the
Industrial-Scientific-Medical (ISM) frequency band,
which ranges in Europe and the USA from 2.400
to 2.4835 GHz. The maximal data rate is 1 Mb/s,
but the useful data rate is much lower. Interference
is avoided by using a frequency-hop, spread spec-
trum technology, with 1600 hops per second. This
gives relatively short packet length and good inter-
ference protection. For more information on Blue-
tooth see [Bluetooth Consortium, 2001].

2.2 Bluetooth in the Loop
The implementation structure is shown in Figure 2.
In our setup the controller is the master and the
Remote I/O is a slave. The theoretical minimum

Inverted
Pendulum

Remote I/O

Harald
Bluetooth
Protocol

Stack

Bluetooth
Hardware

Bluetooth
Hardware

Harald
Bluetooth
Protocol

Stack

Controller

Figure 2 The implementation structure.

round-trip delay in Bluetooth is 2 ⋅ 625 µs. However,
the length of the data packets, the Bluetooth protocol
stack, and the communication between the Bluetooth
hardware and the computer hardware bring the
minimum round-trip delay up to 17 ms in our
implementation. Still, this is fast enough to control
the inverted pendulum, which is a process with fast
and unstable dynamics.

3. The Pendulum Controller
The rotating inverted pendulum used in the experi-
ments is shown in Figure 3. The objective is to con-
trol the pendulum angle θ and the arm angle φ to
zero by applying the torque u to the rotating arm.
The non-linear equations of motion can be written

αθ̈ −αφ̇2 sinθ cosθ + γ φ̈ cosθ − ε sinθ = 0

γ θ̈ cosθ − γ θ̇ 2 sinθ + 2αθ̇φ̇ sinθ cosθ
+(β +α sin2 θ )φ̈ = u

Introducing the state vector

x =
θ θ̇ φ φ̇


and linearizing around the upright equilibrium a
state-space description is given by

dx
dt
=


0 1 0 0

a21 0 0 0

0 0 0 1

a41 0 0 0

 x +


0

b2

0

b4

u

The full state vector is directly measurable on the
process. The sampling interval for digital control was



θ
φ

Figure 3 The rotating inverted pendulum used in the
experiments. The objective is to stabilize the pendulum
in the upright position θ = 0.

chosen as h = 60 ms. Discrete state-feedback con-
trollers were designed based on an linear-quadratic
(LQ) formulation where the control should minimize
the cost function

J = lim
T→∞

1
T

E
{∫ T

0

(
xT Q1 x + uT Q2u

)
dt
}

The cost J can also be measured and used to compare
the performance of different control schemes for the
pendulum.

4. Coping with Varying Delays
Delay in the control loop always has an adverse effect
on control performance. For example, a constant
delay of one sample decreases the phase margin
of the system by 11 to 34 degrees, assuming that
the sampling interval has been chosen according to
the rule of thumb 0.2 ≤ ω h ≤ 0.6 [Åström and
Wittenmark, 1997]. Here, h is the sampling interval
and ω is the cross-over frequency of the closed-loop
system.

The case of constant delay is easy to cope with in
the control design. The sampled-data description of
the plant including the control delay will simply be of
higher order, and design can be made using standard
techniques. The control law has the form

u(k) = −L
 x(k)

u(k− 1)

 .

where L is a constant feedback gain vector, x(k) is
the state vector and u(k−1) is the old control signal.

The case of randomly varying delays is more difficult.
A simple but non-optimal solution is to do static
delay compensation for the mean delay.

The optimal LQ-controller for random sensor-to-
controller and controller-to-actuator delays was de-
rived in [Nilsson et al., 1998]. The controller per-
forms dynamic delay compensation by adjusting the
feedback gain according to the actual delays. The op-
timal control law has the form

u(k) = −L(τ sc
k )
 x(k)

u(k− 1)

 (1)

where the feedback gain vector L is now a function
of the sensor-to-controller delay τ sc

k in the current
sample.

In Figure 4, the cost J as a function of the amount
of stochastic delay has been computed for different
control schemes. When the delay becomes very long,
the dynamically compensating controller is still sta-
ble (J < ∞), while the other control schemes become
unstable.

4.1 Dynamic Delay Compensation with
Intelligent I/O

Dynamic delay compensation works better the
shorter the controller-to-actuator delay is compared
to the sensor-to-controller delay. If the controller
is located at the actuator, the delay in the current
sample can be known exactly and the correct gain
can be applied. Modifying the setup is of course not
a real solution, but using an I/O with only very
limited computational power, this ideal behavior can
be emulated closely. The idea is illustrated on the
pendulum controller.

The optimal feedback gain depends on the distribu-
tion of the round-trip delay. For the case of heavy

0 0.2 0.4 0.6 0.8
100

150

200

250

300

350

400

450

500

α

J

Dynamic delay     
compensation   

Static mean−delay
compensation     

No delay     
compensation 

Figure 4 Values of the cost function J for the pendulum
controller under different schemes. In this plot, the
control delay is uniformly distributed on [0,α h].



disturbances and frequent retransmissions, we as-
sume the exponentially decaying delay distribution
shown in Figure 5.

The optimal gain vector is computed using the
formulas in [Nilsson et al., 1998], and the result in
shown in Figure 6. We notice that the optimal gain
can be closely approximated by a linear function of
the delay τ . Approximating Eq. 1, we write

u(k) � −L0

 x(k)
u(k− 1)

− dL
dτ

 x(k)
u(k− 1)

τ

In the controller node, x(k) and u(k− 1) are known,
but τ is still unknown. However, the controller can
precompute

û(k) = −L0

 x(k)
u(k− 1)


and

λ(k) = −dL
dτ

 x(k)
u(k− 1)


These two scalars are then sent to the Remote I/O.
If the I/O keeps track of the round-trip delay τ , it
can do the simple adjustment

u(k) = û(k) + λ(k)τ

before applying the control signal to the process.

4.2 Simulation
The suggested delay compensation scheme was sim-
ulated against the nonlinear pendulum model. The
pendulum was disturbed by white process noise and
the round-trip delay in the control loop varied be-
tween 20 and 55 ms according to the distribution
shown in Figure 5. The simulation result is shown
in Figure 7. This was compared to a controller which
was designed for a constant delay of 20 ms (the nomi-
nal round-trip delay). The result of this simulation is
shown in Figure 8. For this particular control prob-
lem, the dynamic delay compensation scheme was
able to reduce the cost J by about 30 %.

20 30 40 50 60
0

0.2

0.4

τ [ms]

Figure 5 The assumed delay distribution.

20 25 30 35 40 45 50 55
−7

−6

−5

−4

−3

−2

−1

0

1

2

L(1) 

L(2) 

L(3) 

L(4) 

L(5) 

τ [ms]

Figure 6 Optimal gain vector (full lines) and linear
approximation (dashed lines).

0 2 4 6 8 10
−1

−0.5

0

0.5

1
θ (full), φ (dashed)

0 2 4 6 8 10
−1

−0.5

0

0.5

1

Time [s]

u

Figure 7 Simulation of the pendulum controller with
random communication delays and dynamic delay com-
pensation.

0 2 4 6 8 10
−1

−0.5

0

0.5

1
θ (full), φ (dashed)

0 2 4 6 8 10
−1

−0.5

0

0.5

1

Time [s]

u

Figure 8 Simulation of the pendulum controller with
random communication delays and static delay compen-
sation.



Figure 9 Experiment on the Bluetooth-pendulum setup
with random communication delays. At time 244, the dy-
namic delay compensation is turned off, and the pendu-
lum starts to oscillate. A large part of the increase in the
cost is due to unmodeled friction.

4.3 Experiment
The dynamic delay compensation was also tried
on the distributed Bluetooth-pendulum setup. The
random delays were not due to actual disturbances
but were injected in the control loop on purpose. The
result of an experiment is shown in Figure 9. Due to
unmodeled friction, the pendulum easily started to
oscillate when the delay compensation was turned
off.

5. Coping with Faulty Messages
Another problem that might occur is bit errors in
the Bluetooth packets due to disturbances. These er-
rors are currently handled by the Bluetooth base-
band layer. When an error is encountered in the
baseband layer, the packet is wasted and a retrans-
mission is requested. This retransmission may need
several tries before the packet can be delivered error
free. The retransmission scheme can result in large
delays in the loop if the disturbance is heavy. The
delays will lead to decreased control performance,
as explained in the previous section. An alternative
solution is to reconstruct the information from the
faulty packages, and hence avoid the long random
delays.

Our solution to the bit-error problem is to run an
observer (a pendulum model) in the controller node,
in parallel with the real process. When samples
are received from the sensor node, the potentially
disturbed measurement value is compared bitwise to
the output from the pendulum model. If there is an
error in one of the most significant bits, there will be
a sudden jump in the measurement compared to the
observer output. The idea is illustrated in Figure 10.

5.1 Filter design
The bit error filter is designed as a standard state-
observer that runs concurrent with the process and
checks the validity of the Bluetooth packets when

Furuta

Pendulum

Controller

Bit Error

Filter

Furuta

Pendulum

Observer

u

xfaulty

xestimated

xcorrected

Figure 10 The block diagram for the bit-error filter. The
bit-error corrector uses estimates from the observer to
detect and correct bit errors from the process.

they arrive at the controller node. The packets con-
tain the 4 sampled states of the system, represented
as 4 times 12 bits. The bit error corrector locates a
faulty bit by first computing the difference ∆ between
the sampled state and the estimated state. The dif-
ference indicates if and which bit that is incorrect.
Assuming that there is a single bit error, the bit po-
sition is related to a bit value 2nbit as

∆ = hxfaulty − xestimh � 2nbit (2)
The potential faulty bit is thus computed as

nbit = round
(

log(∆)
log(2)

)
(3)

The bit is then flipped if nbit is above some threshold
value. Tuning of the threshold values is critical
to the performance of the filter. There will always
be a difference between the sampled state and
the observer state, so we should only attempt to
correct the sudden large errors which indicate faulty
bits and which are not just modeling uncertainty
and measurement noise. In our experiments, the
threshold values had to be set at different levels
for the different process states, some measurements
being noisier than the others.

5.2 Simulation
The bit-error filter was first tried out in simulations.
In one particular simulation, a single bit error was
injected into 5 % of the packets containing the θ
measurement. The filter was then tuned to remove
errors in the 8 most significant of the 12 bits. The
simulation of the bit-error correction is shown in
Figure 11. Without the filter, the control deteriorated
completely, as shown in the simulation in Figure 12.



0 0.5 1 1.5 2
0

1000

2000

3000

4000
True states

0 0.5 1 1.5 2
0

1000

2000

3000

4000
Disturbed states

0 0.5 1 1.5 2
0

1000

2000

3000

4000

Time [s]

Corrected states

Figure 11 Simulation of the pendulum controller with
random bit errors in the θ measurements. The large
bit errors are detected and corrected, and the estimated
states are very close to the true states.

0 0.5 1 1.5 2
0

1000

2000

3000

4000

Time [s]

True states

Figure 12 Simulation of the pendulum controller with
random bit errors but without the bit-error correction.
The performance deteriorates completely.

5.3 Experiment
The bit-error corrector was also tried on the
Bluetooth-pendulum setup. Now, the round-trip de-
lay in the loop was constant and equal to 20 ms. A
bit error was injected in 5 % of the θ measurement
values. The result of an experiment with and with-
out error correction is showed in Figure 13. When
the bit-error filter was turned off, the pendulum soon
fell down.

6. Conclusion
A distributed wireless control system has been de-
scribed, where Bluetooth is used to communicate

Figure 13 Experiment on the Bluetooth-pendulum
setup with random bit errors in the θ measurements.
At time 210, the bit-error correction is turned off, and
the pendulum soon falls down due to the large erroneous
control signals.

between the sensor node, the controller node, and
the actuator node. Two specific problems when using
Bluetooth have been identified and simple solutions
have been presented. An intelligent I/O can be used
to compensate for random delays that might occur
due to retransmissions. An observer-based bit-error
filter might be used to deal with faulty packages. The
ideas have been tried out, both in simulations and in
real experiments, on a rotating inverted pendulum.

7. References
Åström, K. J. and B. Wittenmark (1997): Computer-

Controlled Systems, third edition. Prentice Hall.

Bluetooth Consortium (2001): “The Bluetooth speci-
fication 1.1.” http://www.bluetooth.com.

Hörjel, A. (2001): “Bluetooth in control.” Master
Thesis TFRT-5659 ISRN LUTFD2/TFRT--5659-
-SE. Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

Nilsson, J., B. Bernhardsson, and B. Wittenmark
(1998): “Stochastic analysis and control of real-
time systems with random time delays.” Auto-
matica, 34:1, pp. 57–64.


