

This is an author produced version of a paper presented at
IASTED International Conference on Internet and Multimedia Systems

and Applications (EuroIMSA), 21-23 February 2005.
This paper has been peer-reviewed but may not include the final

publisher proof-corrections or pagination.

Citation for the published paper:
M. Andersson, J. Cao, M. Kihl, and C. Nyberg, 2005,

"Admission Control with Service Level Agreements for a Web Server",
Proceedings of the IASTED International Conference on Internet and

Multimedia Systems and Applications, EuroIMSA 2005 : February 21-23,
2005, Grindelwald, Switzerland.

ISBN: 0-88986-484-5. Publisher: ACTA Press.

ADMISSION CONTROL WITH SERVICE LEVEL AGREEMENTS FOR A
WEB SERVER

Mikael Andersson, Jianhua Cao, Maria Kihl and Christian Nyberg
Department of Communication Systems

Lund Institute of Technology
email: mike,jcao,maria,cn@telecom.lth.se

ABSTRACT
One problem with web servers is that they are sensitive
to overload. The servers may become overloaded during
temporary traffic peaks when more requests arrive than the
server is designed for. Because overload usually occurs
rather seldom, it is not economical to overprovision the
servers for these traffic peaks, instead admission control
mechanisms can be implemented in the servers. This pa-
per investigates two overload control strategies with per-
formance bounds for a web server. In service level agree-
ments, we bound average response times and throughputs
for all service classes. Each request is sorted into a class,
where each class is assigned a weight representing the in-
come for the web site owner. Then a linear optimization
algorithm is applied so that the total revenue for the web
site during overload is maximized.

KEY WORDS
Electronic commerce, Optimization Techniques, Protection
and security

1 Introduction

Web sites on the Internet can be seen as server systems with
one or more web servers processing incoming requests at a
certain rate. The web servers have a waiting-queue where
requests are queued while waiting for service. Therefore,
a web server can be modelled as a queueing system in-
cluding a server with finite or infinite queue. One prob-
lem with web servers is that they are sensitive to overload.
The servers may become overloaded during temporary traf-
fic peaks when more requests arrive than the server is de-
signed for. Because overload usually occurs rather seldom,
it is not economical to overprovision the servers for these
traffic peaks, instead admission control mechanisms can be
implemented in the servers. The admission control mech-
anism rejects some requests whenever the arriving traffic
is too high and thereby maintains an acceptable load in
the system. In this paper we study two admission control
strategies based on percent blocking where we assume that
the traffic rate are known.

Other papers have been presented in this area of re-
search. Chen et al. describes in [1] an admission control
scheme that divides requests into classes and then tries to
guarantee a maximum response time for prioritized classes.

Lee et al. describe a similar admission control scheme in
[2]. Zhang et al. [3] develop a profit-aware QoS policy for
web servers, where each request generates a certain profit
to the site owner depending on the response time. Kan-
odia and Knightly propose an admission control scheme
without profit optimization where requests are given prior-
ities and response time limits called Latency-Targeted Mul-
ticlass Admission Control (LMAC) [4]. Also, control the-
oretic methods have been applied to web servers, see e.g.
[5].

In this paper we use a web server model that consists
of a processor sharing node with a queue attached to it. A
more thorough investigation of the model can be found in
previous works, [6] and [7], by Cao et al. From the studies
by Kihl and Widell [8] and Menasce et al. [9], we have
introduced a set of classes that each request to a typical
E-commerce site can be sorted into. The classes have dif-
ferent attributes such as revenue, throughput, service time
requirements. Together with the class definition, we set up
a service level agreement that the E-commerce site should
uphold. The service level agreement regulate the through-
put for each class as well as the maximum allowed average
response time.

Requests can be rejected in numerous ways, but since
the requests generate different revenues for the site owner,
it is a good idea to optimize the total profit during over-
load. Two different control strategies are therefore inves-
tigated that optimizes the total profit. One controller ac-
knowledges the request’s class attribute whereas the other
one disregards the class attribute. The latter one is intro-
duced as a comparison to the class dependent controller.
Their performance regarding the ability to hold the service
level agreement and the generated profit during overload is
studied. One important thing to consider is that a rejection
requires processing. It is not enough to simply disconnect
the client, instead some ”rejection page” should be sent.
The rejection action therefore costs about the same amount
of work as a small static web page. This is included in our
model and the simulations show that this affects the total
profit in an overloaded server. Also, the connection setup
processing is considered. Before any rejections can be per-
formed, the web server must set up a connection to see what
kind of request that is coming. This connection setup pro-
cessing has to be performed for all requests, not only the
admitted ones.

Requests

Rejected

Admitted

Served

Processor sharing

Figure 1. The web server model.

The rest of the paper is organized as follows; Section
2 describes the web server model we use and explains the
concept of classes and the service level agreement. Sec-
tion 4 defines the admission control problem that can be
formulated as two alternate linear programming problems.
Section 5 shows simulations that compare the two methods
investigated in this paper. Section 6 discusses the results
while the last section concludes the work.

2 Preliminaries

We describe the web server model that we use and we also
define classes in a commercial web site context.

2.1 Classes

It is natural to define a set of request classes when it comes
to a server system like the web server. The type of classes
that are considered depends on the web site. In this work,
as will be shown, we have chosen to adopt and extend the
request types found in the works of Kihl and Widell [8] and
Menasce et al. [9]. In [8] they investigate admission control
strategies for commercial web sites using different types
of requests, for example Buy, Browse and Pay requests.
The request types correspond to the different stages that a
visitor to the site goes through in a typical session.

2.2 Model description

In [6] and [7] we show how a web server can be modeled
as a single server queue with a processor sharing discipline.
The queue length is restricted to a certain number of jobs.
The model used here is similar (Figure 1).

The difference is that in this work, there is no max-
imum number of threads in the web server. The server
serves N classes of requests. The arrival processes of all
classes are assumed to be Poisson. The arrival rate for the
customers of class i is λi. The mean service requirement
for the customers of class i is vi besides the connection
setup time, denoted as vinit. The connection setup time
is the same for all classes. For each received request a
TCP connection has to be set up. To be able to determine
what class the request belongs to, the HTTP header must
be parsed in the HTTP layer. The total arrival rate of all

classes is therefore

Λ =
N∑

i=1

λi (1)

Since the service discipline is processor sharing, the
actual service time distribution can be neglected. Let the
customer of class (N +1) represent the ”rejection service”.
In some papers dealing with admission control, the rejec-
tion service is neglected. Instead, some sort of message
should be sent to the rejected visitor that notifies about the
rejection. The rejection service required must be less than
the originally requested service to be of any practical use.
We assume that a rejection requires vrej amount of service
and

vrej ≤ mini(vi), (i = 1..N) (2)

For requests of class i, the probability that the request
will be served normally, that is without rejection is denoted
xi. If the request is rejected, it will become a request of
class (N + 1). This gives

λN+1 =
N∑

i=1

(1 − xi)λi (3)

3 Admission Control

We will investigate two admission controllers based on
percent blocking:

CAC-CI, Contract-based Admission Control - Class
Independent: The customers are accepted with probability
xi = x, disregarding their class identity.

CAC-CD, Contract-based Admission Control - Class
Dependent: The customers of class i are accepted based
on their class identity, with probability xi. For the CAC-CI
controller the server utilization is

ρ =
N∑

i=1

λi · (vinit + x · vi + (1 − x) · vrej) (4)

and for the CAC-CD controller

ρ =
N∑

i=1

λi · (vinit + x · vi + (1 − xi) · vrej) (5)

It follows from the model that the average response time
for served customers of class i is

wi =
vinit + vi

1 − ρ
(6)

where ρ is the server utilization and thus depends on the
type of admission control in question.

The purpose of admission control is to guarantee that
the served customers enjoy reasonable service times. Let

τi be the upper bound of the average response time for cus-
tomers of class i. We want

wi ≤ τi, ∀i = 1, .., N. (7)

We require that for customers of class i, the minimum ac-
ceptance probability must be αi. For the CAC-CI con-
troller, this means

max αi ≤ x ≤ 1 (8)

and for type CAC-CD admission control

αi ≤ xi ≤ 1 (9)

Now, given τ1, τ2, ...τN and α1, α2, ...αN we define the so
called service level agreement to be

S = ({τi}N
i=1, {αi}N

i=1). (10)

The service level agreement is considered broken if one or
more of its constraints are violated. For example, if the
response time for a certain class i exceeds τi or less than αi

requests gets served, the service level agreement is broken.

Usually there are infinitely many admission control
policies that satisfies the service level agreement.

Let γi be the revenue (potential or real) for serving a
class i customer. We can therefore restrict our attention to
those policies that maximize the reward. Since the CAC-
CI controller accepts customers regardless of class identity,
this is equivalent to maximize the throughput i.e.

maxx ·
N∑

i=1

γi · λi (11)

For type CAC-CD, it is slightly more complicated but still,
the objective function is linear,

max
N∑

i=1

γi · λi · xi (12)

To summarize we give a list of parameters and variables in
Table 1.

4 Linear programming formulations

Since both of the objective functions for the controllers are
linear, it is now feasible to set up linear programming for-
mulations. For the CAC-CI and CAC-CD controllers they
can be formulated as follows:

Table 1. Parameter list

Variable Description
N number of customer classes
i,j=1..N indices of the customer class
λi arrival rate for class i
vi average service requirement for class i
γi revenue for request of class i
vinit,rej service requirements for setup and rejec-

tion
αi acceptance rate guarantee
τi mean service time guarantee
ρ server utilization

CAC-CI: maximize

x ·
N∑

i=1

γi · λi

subject to (for all i = 1..N)

vinit + vi ≤ τi(1 −
N∑

j=1

λj(vinit + xvj + (1 − x)vrej)

(13)

max
i

αi ≤ x ≤ 1 (14)

CAC-CD: maximize

N∑

i=1

γi · λi · xi

subject to (for all i = 1..N)

vinit + vi ≤ τi(1 −
N∑

j=1

λj(vinit + xjvj + (1 − x)vrej)

(15)

max
i

αi ≤ x ≤ 1 (16)

CAC-CI. The CAC-CI problem can be solved explicitly as
follows:

From 13, we have

x ≤ 1 − (vinit + vrej)
∑N

j=1 λj − vinit+vi

τi∑N
j=1 λj(vj − vrej)

= li

Let K:= arg maxj
vinit+vj

τj
. Clearly the CAC-CI problem

has a solution
max xi ≤ lK .

If the condition above is satisfied the optimal solution for
the CAC-CI problem is

x = lK .

CAC-CD. The CAC-CD problem can be solved by any lin-
ear programming solver, e.g. CPLEX [10] quite easily.

We will examine the necessary and sufficient condi-
tions for the existence of a solution.

By the definition of wi and 7, we have

ρ ≤ 1 − vinit + vi

τi
∀i = 1, .., N

On the other hand, we can achieve the smallest server uti-
lization when we reject all customers and still fulfill the
service level agreement:

Let K:= arg maxj
vinit+vj

τj
. Hence the problem has a

solution

N∑

j=1

λj(vinit + αj + (1 − αj)vrej) ≤ 1 − vinit + vK

τK

Let ρi := λi/Λ. The condition above implies

Λ ≤
1 − vinit+vj

τj∑N
j=1 ρj(vinit + αj + (1 − αj)vrej)

The similar condition for the CAC-CI controller is

Λ ≤
1 − vinit+vj

τj∑N
j=1 ρj(vinit + αs + (1 − αj)vrej)

where αs = maxi αi.

5 Experiments

In all simulations we set a total arrival rate, Λ. The arrival
rates for the different classes were then determined by the
request type distribution derived from [8] where the ratio of
”leaving customers” were ignored. The distribution origi-
nally comes from the work of Menasce et al. [9], where
the occasional buyer on a web site is studied. The buyer’s
requests are categorized into the classes shown in Table 2
and then the rates of each class are determined. The service
times for each class has been taken from the simulation val-
ues in [8].

In all experiments, the work required in the connec-
tion setup phase was set to 0.005 seconds. The rejection
work was also set to 0.005 seconds. The queueing model
and the admission control algorithms were implemented as
a discrete event simulation program in Java. Two sets of
simulations were performed; one set where the CAC-CI
controller was used, and one where the CAC-CD controller
was used. Both methods were evaluated for their ability to
enforce the service level agreement. In all simulations, the
total arrival rate was increased from 10 to 60 requests per
second, in steps of 5 requests per second. Table 2 shows the
simulation configuration for both controllers with required
service times vi, distribution di, request revenue γi, accep-
tance rate guarantee αi and mean service time guarantee τi

Table 2. Class Parameters

Description vi di γi αi τi

1 Browse 0.015 0.41 1 0.2 1.5
2 Search 0.030 0.40 1 0.4 3.0
3 Select 0.015 0.17 1 0.6 1.5
4 Add 0.015 0.014 5 0.8 1.5
5 Pay 0.035 0.006 10 1.0 3.0

for classes 1 to 5. For the CAC-CD controller optimization
of the linear programming formulation was performed by
using the Java version of lpsolver [11].

The simulations evaluated the controllers in terms of
response times, throughput counted as admitted requests
and the total profit generated at each arrival rate.

6 Results and Discussion

Figure 2 shows the response time for each class as a func-
tion of the total arrival rate. It can be seen that the CAC-
CD is capable of keeping the agreed response time lim-
its whereas the CAC-CI controller cannot at higher arrival
rates.

Figure 3 shows the throughput as a percentage, of
completed requests for each class. The solid lines in the di-
agrams represent the agreed minimum service level. When
it comes to throughput, each class receives the contracted
amount of throughput with the CAC-CD controller. The
CAC-CI breaks the contract at higher rates for classes 3, 4
and 5.

The two methods were compared from a profit per-
spective in Figure 4. The figure shows the profit per second
versus arrival total rate. As can be seen for the CAC-CD
controller, requests from classes 4 and 5 are more likely to
be admitted at the expense of requests in class 1, 2 and 3
in higher arrival rates. The reason is that higher individ-
ual request revenue is generated in class 4 and 5. It may
seem strange that the total profit decreases after its peak at
λ = 40. The decline of total profit when the aggregrated
traffic rate reaches a certain limit is mainly due to that the
server is busy with rejection most of the time in that traffic
rate region. This implies that the server should be prop-
erly dimensioned in order to achieve the best performance,
i.e. maximum profit, when the service of rejection can-
not be neglected. For CAC-CI however, the total profit is
lower at higher arrival rates. The controllers behave the
same, profit-wise, up until λ = 35, after which the CAC-
CD yields more total profit.

7 Conclusions

We have presented and compared two admission control
strategies for a web server. The CAC-CI controller disre-
gards the request’s class property resulting in inferior per-

0 20 40 60
0

1

2

3

4
Class 1

R
es

po
ns

e
tim

e

Arrival rate
0 20 40 60

0

1

2

3

4
Class 2

R
es

po
ns

e
tim

e

Arrival rate
0 20 40 60

0

1

2

3

4
Class 3

R
es

po
ns

e
tim

e

Arrival rate

0 20 40 60
0

1

2

3

4
Class 4

R
es

po
ns

e
tim

e

Arrival rate
0 20 40 60

0

1

2

3

4
Class 5

R
es

po
ns

e
tim

e

Arrival rate

Figure 2. Response times per class. Dashed lines are CAC-CI, dash-dotted are CAC-CD. Straight lines represent maximum
response times.

20 40 60
0

0.2

0.4

0.6

0.8

1

Class 1

T
hr

ou
gh

pu
t (

%
)

Arrival rate
20 40 60

0

0.2

0.4

0.6

0.8

1

Class 2

T
hr

ou
gh

pu
t (

%
)

Arrival rate
20 40 60

0

0.2

0.4

0.6

0.8

1

Class 3

T
hr

ou
gh

pu
t (

%
)

Arrival rate

20 40 60
0

0.2

0.4

0.6

0.8

1

Class 4

T
hr

ou
gh

pu
t (

%
)

Arrival rate
20 40 60

0

0.2

0.4

0.6

0.8

1

Class 5

T
hr

ou
gh

pu
t (

%
)

Arrival rate

Figure 3. Throughput per class. Dashed lines are CAC-CI, dash-dotted are CAC-CD. Straight lines represent minimum through-
put.

20 40 60
5

10

15

20

25
Class 1

P
ro

fit
Arrival rate

20 40 60
6

8

10

12

14

16
Class 2

P
ro

fit

Arrival rate
20 40 60

3

4

5

6

7

8
Class 3

P
ro

fit

Arrival rate

20 40 60
1

1.5

2

2.5

3

3.5

4

4.5
Class 4

P
ro

fit

Arrival rate
20 40 60

1

1.5

2

2.5

3

3.5

4
Class 5

P
ro

fit

Arrival rate
20 40 60

20

25

30

35

40

45
Total

P
ro

fit

Arrival rate

Figure 4. Profit per class. Dashed lines are CAC-CI, dash-dotted are CAC-CD.

formance compared to the CAC-CD controller that does
regard class property. Both controllers optimize the total
profit given the constraints given in the service level agree-
ment concerning response times and throughput. The fact
that each request is associated with an initialization work
(even for rejected requests) and that rejections also cost in
terms of processing power is considered.

Acknowledgments

The work has been supported by The Swedish Research
Council under contract no. 621-2001-3053 and also by the
Swedish Emergency Management Agency.

References

[1] X. Chen, H. Chen, and P. Mohapatra, “Aces: An ef-
ficient admission control scheme for qos-aware web
servers,” Computer Communications, no. 26, p. 1581,
2003.

[2] S. C. Lee, J. C. Lui, and D. K. Yau, “A proportional-
delay diffserv-enabled web server: Admission control
and dynamic adaptation,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 15, no. 5, 2004.

[3] Q. Zhang, E. Smirni, and G. Ciardo, “Profit-driven
service differentiation in transient environments,” in
In Proceedings of MASCOTS, 2003, p. 230.

[4] V. Kanodia and E. W. Knightly, “Ensuring latency tar-
gets in multiclass web servers,” IEEE Transactions on
Parallel and Distributed Systems, vol. 14, no. 1, 2003.

[5] M. Andersson, “Performance modeling and control
of web servers,” Department of Communication Sys-
tems, Lund Institute of Technology, Tech. Rep. 160,
2004, lic. Thesis.

[6] J. Cao, M. Andersson, C. Nyberg, and M. Kihl, “Web
server performance modeling using an m/g/1/k*ps
queue,” in In Proceedings of International Confer-
ence on Telecommunication (ICT), 2003.

[7] M. Andersson, J. Cao, M. Kihl, and C. Nyberg, “Per-
formance modeling of an apache web server with
bursty arrival traffic,” in In Proceedings of Interna-
tional Conference on Internet Computing (IC), 2003.

[8] N. Widell and M. Kihl, “Admission control schemes
guaranteeing customer qos in commercial web sites,”
in In Proceedings of IFIP and IEEE Conference on
Network Control and Engineering (NETCON), 2002.

[9] D. Menasce, V. Almeida, R. Fonseca, and M. Mendes,
“Business-oriented resource management policies
for e-commerce servers,” Performance Evaluation,
vol. 42, 2000.

[10] “Cplex,” http://www.ilog.com/products/cplex/.

[11] “Linear programming solver, washington univer-
sity in saint louis,” http://www.cs.wustl.edu/ java-
grp/help/LinearProgramming.html.

