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Autonomous Calibration Algorithms

for Planar Networks of Cameras ?
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aDepartment of Information Engineering, University of Padova, Via Gradenigo 6/A, IT-35131 Padova, Italy

bDepartment of Mathematics, Polytechnic of Turin, Corso Duca degli Abruzzi, 24, IT-10192 Torino, Italy

Abstract

This paper deals with the problem of the angular calibration for a network of cameras, namely the problem of estimating a
common orientation reference frame. In the proposed set–up each camera obtains noisy measurements of its relative orientation
with respect to some other cameras. The set of measurements can be described by a graph having the cameras as nodes and
having an edge between two cameras if a relative orientation measurement is available. The paper proposes a novel two-step
algorithm based on a choice of a basis for the set of graph cycles. The first step consists in computing a set of integer numbers,
which provides a first rough estimate of the orientations. The second step exploits this information to build up a suitable
quadratic minimization problem. Two actual implementations, corresponding to two different basis of cycles, are described
and compared in terms of the worst–case scenario. Finally, through numerical simulations the algorithm is compared with
another algorithm proposed in the literature for solving the same problem.

Key words: Distributed control, Cameras, Graph Theory, Communication protocols, Decentralized systems

1 Introduction

In the last years much effort has been devoted by the scientific community to develop leaderless distributed strategies
for solving problems involving interacting agents which need to achieve a common goal. The advantages of these
strategies, if compared with the centralized ones, are in terms of robustness of the resulting systems with respect
to communication and/or agent failures, and in terms of adaptivity to environmental changes and simplicity in the
system tuning. On the other hand, distributed strategies, based on local exchange of information among peer agents,
can be more difficult to design and optimize and often exhibit slower convergence to the regime working conditions.

A large set of cameras communicating each other through a network is a widely used architecture in application
areas like video surveillance and motion capture [1]. In a network of cameras one of the most crucial problems is
calibration. For each camera this consists in understanding what is its position and orientation with respect to a
global and common reference coordinate system. The importance of this information is clear in case the camera
network is used for instance to track an external mobile object. Indeed, in this case, if the object is exiting from
the sensing region of the i-th camera and it is entering in the sensing region of the j-th camera, then, in order to
avoid to loose the target, the camera i has to communicate to the camera j where it has to move in order to see the
object. It is manifest that both cameras must share the same coordinate system in order this to be possible.
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Usually, calibration is set off-line by human operators, or by a centralized unit. In any case it is usually a rather
time consuming stage of the system setting. The algorithm we propose in this paper aims to complete this task
autonomously, and requires no or very limited centralized coordination. This also allows the possibility to re–calibrate
periodically and this is useful especially in case when some of the cameras are mobile.

The calibration problem over Euclidean spaces has recently been studied by Barooah and Hespanha in a great detail
(see [2–4]). The problem considered there is the localization using noisy relative measurements, namely determining
the coordinates of a set of vectors in a Euclidean space starting from the knowledge of some noisy differences of
those vectors.

The cameras calibration problem is similar in the sense that each camera can be characterized by a position and
an orientation in space. Some well–known methods in computer vision permit to obtain quite easily and efficiently
relative positions and orientations of pairs of cameras whose sensing regions overlap. Then the problem that has to be
solved is to determine, from these relative positions and orientations, the position and the orientation of the cameras
with respect to a common reference coordinate system. Cameras calibration can be casted into an optimization
problem (or a consensus) over the manifold SE(3). Under certain assumptions one can show that this problem can
decoupled into the estimation of the position and the estimation of the orientation. The latter can be seen as an
optimization (or a consensus) over the manifold SO(3). Moreover, under some further assumptions, the calibration
over SO(3) can be reduced to the calibration over the simpler manifold SO(2).

This class of problems has already attracted much attention in the last years. In [5,6] a consensus algorithm on SO(2)
based on the gradient flow of a potential defined using the chordal distance is studied. In [7] a similar approach
based on the geodesic distance is proposed in order to study the more general calibration problem on SE(3). The
drawback associated with both these approaches is that, in case we have many cameras, the proposed potentials
exhibit a great number of local minima.

In [8] the problem of calibration on SO(2) is considered when measurements of relative orientations are affected
by additive noise. The authors propose a procedure to obtain a new set of relative orientations which is ensured
to sum up to multiples of 2π over a chosen family of cycles, an idea which closely resembles what we propose in
the present paper. The new set of relative orientations is then spread along a spanning tree to obtain an estimate
of the orientations. Finally, in [9] an estimation algorithm is proposed for a model of the measurements in which
some of them are ideal, while others are completely random. The estimate of the orientations is obtained via the
computation of the eigenvector associated with the largest eigenvalue of a suitable Hermitian matrix.

The algorithm proposed in this paper is based on a non-convex optimization problem, as in [5,7]. We restrict ourselves
to the simple case of calibration over SO(2), and the cost to be minimized is based on the geodesic distance over this
manifold. The set of available relative measurements is described by a graph G = (V, E), where the set of nodes V
represents the set of cameras and where the set of edges E represents the available relative orientation measurements
between pairs of cameras. Our main idea is to break the estimation problem into two parts: first we estimate a
combinatorial object, which is a set of integers, each associated with an edge in E . Intuitively, these integers take
care of the fact that measurement noises along the cycles in the graph do not sum up to 0, in general. Once this
is done, the original optimization problem over a manifold can be reduced to a quadratic optimization problem,
which can be easily solved using classic algorithms. The idea of using cycles has already been proposed in [10] in the
context of localization over Euclidean spaces in order to improve the quality of the estimates. In fact, we propose
two versions of the algorithm. One version is based on sets of cycles associated with spanning trees. Another version
instead is based on sets of minimal cycles. Notice finally that the proposed method is consistent in the sense that,
if there is no measurement noise, the solution given by the algorithm coincides with the true one.

This research has previously partially appeared in [11], and it is here enriched both in theoretical depth and as for
simulative comparison with the existing literature.

The paper is organized as follows: in Section 2 we collect several useful graph theoretical definitions and results.
In Section 3 and Section 4 we respectively formulate the optimization problem to be solved and we explain how it
relates with the cameras calibration problem. Section 5 is devoted to the description of the proposed algorithm and
to a worst–case analysis of its performance. In Section 6 it is shown how to distribute the algorithm over the network
for the two particular choices of the set of cycles mentioned above, while in Section 7 we compare their performance.
Finally, Section 8 proposes numerical simulations and a comparison with the algorithm proposed in [8]. Section 9
draws the conclusions.
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2 Some tools from graph theory

In this Section we recall some known facts from algebraic graph theory which will be instrumental in the development
of the paper.

An undirected graph is a couple G = (V, E), where V = {1, . . . , N} is the set of nodes, and E is a subset of unordered
pairs of elements of V called edges 1 . We let M := |E|. An orientation on G = (V, E) is a pair of maps s : E → V and
t : E → V such that e = {s(e), t(e)} for every e ∈ E . According to this definition, s(e) and t(e) are called the source
and terminal node of the edge e, respectively. Assume from now on that we have fixed an orientation (s, t) on G. The
incidence matrix A ∈ {±1, 0}E×V of G is defined by putting Ae,s(e) = 1, Ae,t(e) = −1, and Ae,v = 0 if v 6= s(e), t(e).

Given a graph G = (V, E), a spanning tree T = (V, ET ) of G is a connected subgraph of G which is a tree. Notice
that |ET | = N − 1.

A path h of length n is an ordered sequence of nodes h = (v1, v2, · · · , vn+1) such that {vi, vi+1} ∈ E for all i = 1, . . . , n.
A path h = (v1, v2, · · · , vn+1) is said to be closed if v1 = vn+1. A closed path h = (v1, v2, · · · , vn, v1) is said to be a
cycle if n ≥ 3 and vi 6= vj for all i, j ∈ {1, . . . , n} with i 6= j. The support of a path is given by the set of its edges,
namely, if h = (v1, v2, · · · , vn+1), then supp(h) := {e ∈ E | e = {vi, vi+1}, ∃i = 1, . . . , n}.

Consider now ZE , the Z-module of Z-valued row vectors whose components are labelled by E . Given r ∈ ZE , we
define its support as

supp(r) := {e ∈ E | r(e) 6= 0}

We now associate with every path h, an element rh ∈ ZE as follows. First, if h = (v1, v2), we put

rh(e) =

{
Aev1 , if e = {v1, v2}
0, otherwise.

Then, for a generic path h = (v1, v2, · · · , vn+1) we define rh(e) as rh(e) =
∑n
i=1 r(vi,vi+1)(e). In particular, for paths

h with non-repeating edges, rh is built by assigning rh(e) = 1 if the edge e appears in h and it is crossed with the
same orientation of G, assigning rh(e) = −1 if the edge e appears in h and it is crossed with the reverse orientation
of G and finally assigning rh(e) = 0 if the edge e does not appear in h.

Denote now by Γ the Z-submodule of ZE generated by all the vectors rh as h varies in the set of closed paths. It
holds true that Γ has dimension equal to M −N + 1, i.e. there exist rh1

, . . . ,rhM−N+1
forming a Z-basis of Γ. This

fact is well known in the slight different context where no orientation is considered and where vector spaces are used
[12]. The following proposition, whose proof is given in the Appendix, clarifies the situation in our setting.

Proposition 2.1 We have that

(1) Γ = {r ∈ ZE | rA = 0};
(2) Γ has dimension equal to M −N + 1.

The following proposition is also proved in the appendix.

Proposition 2.2 Let rh1
, . . . rhM−N+1

be a Z-basis of Γ. Defined moreover R ∈ Z(E\ET )×E to be the matrix having
rh1

, . . . ,rhM−N+1
as rows. Then

(1) kerR = ImA, where kerR := {K ∈ ZE |RK = 0} and ImA := {K ∈ ZE |K = Ah, ∃h ∈ ZV}.
(2) there exists X ∈ ZE×(E\ET ) such that RX = I where I is the identity matrix.

1 More precisely an edge is a subset of V with two elements.
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3 Problem Formulation

The estimation problem over SO(2) we want to study can be described as follows. Assume we have a graph G = (V, E)
with an orientation s : E → V and t : E → V. With each node v ∈ V of the graph we associate an angle θ̄v ∈ [−π, π)
and similarly with each edge e ∈ E we associate an angle ηe ∈ [−π, π). We call the angle θ̄v the orientation of v. Our
aim is to find an estimate of the angles θ̄v, v ∈ V, from the knowledge of ηe, e ∈ E , knowing that these represent a
measure of the relative orientation among s(e) and t(e), in the sense that

ηe = (θ̄s(e) − θ̄t(e) + εe)2π (1)

where εe ∈ [−π, π) are measurement noise terms, which have to be considered small and independent, and where
(x)2π := x − 2πq2π(x) with q2π(x) := bx+π

2π c, x ∈ R. Notice that the function q2π(x) is a quantizer such that

x ∈ [−π, π) if and only if q2π(x) = 0, so that (x)2π = x. If we stack the angle θ̄v and ηe in suitable column vectors
we can rewrite (1) in the compact form

η = (Aθ̄ + ε)2π, (2)

where (·)2π is done componentwise.

The estimator is in principle a function θ̂ : [−π, π)E → [−π, π)V mapping the available data η into an estimate θ̂(η)
of θ̄. Its performance can be evaluated using the index

W (θ̂) =
1

N
‖(θ̂ − θ̄)2π‖2 =

1

N

N∑
v=1

(θ̂v − θ̄v)2
2π. (3)

Notice that W is in principle a function of θ̄, ε, namely W = W (θ̄, ε). If we have a probabilistic model of θ̄ and ε
the considered index is the expected value of W .

Remark 3.1 The definition of W is reasonable since the values θ̄v’s and θ̂v’s are angles, so they are coincident if

they differ of integer multiples of 2π, namely if (θ̂v − θ̄v)2π = 0.

The estimator proposed in this paper is based on the minimization of the following least–square cost

V (θ) =
∑
e∈E

(θs(e) − θt(e) − ηe)2
2π = ‖(Aθ − η)2π‖2, (4)

through which one aims to find a set of estimates θ̂1, . . . , θ̂N whose differences along the edges fit the measurements
ηe.

Remark 3.2 Notice that V (θ+α1) = V (θ), ∀θ ∈ [−π, π)V and ∀α ∈ R, where 1 is the vector with all entries equal
to 1. This feature naturally arises from the fact that the cost is build on relative measurements and is unavoidable
unless we impose a further constraint. In fact, we will assume in the sequel that node 1 is the anchor and knows
its orientation, which, with no loss of generality, can be assumed to be zero, i.e. θ̄1 = 0. By adding this constraint,

namely imposing that θ̂1 = 0, we can avoid this source of ambiguity.

Remark 3.3 Minimizing the cost V (θ) seems to be reasonable, since, in case of noiseless measurements, we have
V (θ) = 0 and θ1 = 0 if and only if θ = θ̄. In other words V (θ) has only one global minimum for θ ∈ (−π, π]V such
that θ1 = 0, which is θ = θ̄. However, V (θ) has, even in the noiseless case, multiple local minima, as it will be shown
in the next example. The same problem occurs if we choose a slightly different cost based on the chordal distance, as
it has been shown in [5]. In order to avoid such local minima, the classic approach is to initialize the gradient based
minimization algorithm in a suitable region in such a way that the convergence to the global minimum is ensured.
A deep analysis of this region for a large class of manifolds is done in [13], but it is beyond the scope of this paper.
Our approach is different, and it is motivated by the following simple example.

Example 3.1 Consider the ring graph with 3 agents in figure 1, and assume for sake of simplicity that θ̄1 = θ̄2 =
θ̄3 = 0. Consider the ideal noiseless case, so that η12 = η23 = η31 = 0. Assuming that we have fixed θ1 = 0, we have
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to find θ2, θ3 ∈ (−π, π] such to minimize the cost

V (θ1, θ2, θ3) = θ2
2 + θ2

3 + (θ2 − θ3)2
2π =


θ2

2 + θ2
3 + (θ2 − θ3)2 θ2 − θ3 ∈ (−π, π],

θ2
2 + θ2

3 + (θ2 − θ3 − 2π)2 θ2 − θ3 ≥ π,
θ2

2 + θ2
3 + (θ2 − θ3 + 2π)2 θ2 − θ3 < −π.

(5)

It can be verified that this cost has three local minima θ2 = θ3 = 0, θ2 = 2
3π, θ3 = − 2

3π and θ2 = − 2
3π, θ3 = 2

3π being

θ2 = θ3 = 0 the global minimum in which V = 0 while the other two are only local minima where V = 4
3π

2.

1

2 3

Fig. 1. A simple ring with 3 agents. On the right panel, the three regions in which [−π, π) is partitioned, with the contour
lines of the quadratic functions in (5).

4 Cameras calibration

The proposed problem has a certain interest in applications such as calibration [7] or orientation localization [8]
of networks of cameras. In this Section we describe the calibration problem and we relate it to the problem stated
above.

Consider a group of cameras perceiving some environment for surveillance purposes. Each camera is modeled as an
ideal pin-hole device, which consists in a plane, called the image plane, and a point, called the optical center. A point
in the environment is sensed by the camera through its radial projection, through the optical center, on the image
plane. The sensing region of the camera is the set of points for which this projection exists. To model the perception
of a point we endow each camera with a local reference frame, denoted by Σv, so that a point in the sensing region
of camera v is identified, by v, as a set of coordinates in Σv.

Fix now an external reference frame Σ0. Without loss of generality we can assume that its origin lies on the ground,
which is assumed to be a plane, and that it has one axis perpendicular to the ground and pointing “upward”. In
such a reference frame, the pose of the camera v is identified by an element (gv, Rv) ∈ SE(3) = R3 × SO(3). The
set SO(3) = {R ∈ R3×3 : RTR = I, det(R) = +1}, is the set of rotations in 3D, while R3 denotes here the set of
translations. The quantity (gv, Rv) maps the local reference frame Σv into the external reference frame Σ0. More
precisely, given a point in the environment whose coordinates in Σ0 and Σv are, respectively, p0, pv ∈ R3, then

p0 = Rvpv + gv. (6)

For coordination purposes, it is necessary that the cameras obtain as good as possible estimates of their (gv, Rv).
Assume in fact that an agent is exiting from the sensing region of camera v and is entering in that of camera u,
and call pv its coordinates in Σv. Then u can easily find the coordinates of the agent in its reference frame Σu using
twice (6) to obtain

pu = RTuRvpv +RTu (gv − gu). (7)

Thus, if each camera has a good estimate of its pose w.r.t. a common external reference frame, they can exchange
information on the position of agents in the environment they are monitoring.
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An estimate of the gv’s can be obtained through the consensus-like optimization procedures based on relative
measurements as proposed in [3]. In this paper, instead, we concentrate on the estimate of Rv, which we call from
now on the rotational calibration problem.

In order to estimate the Rv’s, the cameras communicate and exchange information with some of the others. The
admissible communications are modeled through an undirected communication graph G = (V, E) in which V =
{1, . . . , N} is the set of nodes, and E is the set of edges. An edge {v, u} ∈ E exists if and only if the cameras u and
v are able to exchange information and, moreover, their sensing regions overlap.

The mutual information used to achieved rotational calibration is the relative orientation among pairs of cameras.
Given the poses (gv, Rv) and (gu, Ru) of cameras v and u, we define Rvu := RTuRv the relative orientation of v with
respect to u. Notice that Rvu appears in (7) when relating the coordinates of a point in Σu given those in Σv, and
that Ruv = RTvu.

Assume now {u, v} ∈ E . Then the quantities Ruv and Rvu, as well as the relative translations gu − gv and gv − gu,
can be obtained by the cameras v and u through the so–called eight points algorithm [14]. In general, this relative
orientation is corrupted by noise. In our setting, the two cameras can thus only compute the following noisy version
of Rvu

R̃vu = RTuNvuRv, (8)

where Nvu ∈ SO(3) is a rotational error. Since the two cameras compute these quantities on the basis of the same

dataset, then we can assume that R̃uv = R̃Tvu, which implies Nuv = NT
vu.

Σ0

Σv

Σ′
v

Σu

Σ′
u

hv

hu

ḡv

ḡu

Fig. 2. Description of a network of cameras satisfying the assumptions. It is shown the external reference frame Σ0 and, for
each camera, the “natural” local reference frame Σ′v (in dotted lines) and the chosen local reference frame Σv (in solid lines).

Rotational calibration in SO(2) is related to the previous problem when the following assumptions hold:

• each camera is deployed in the environment at a known height with respect to the ground, which is assumed to
be a plane;
• each camera knows the perpendicular to the ground, and sets its reference frame Σv to have one specific axis

(common to all the cameras) along this direction and pointing “upward”.

Remark 4.1 The natural reference frame Σ′v of camera v is the optical reference frame, which has two axis lying
on the image plane and the z-axis perpendicular to it and crossing the optical center [14]. Implicitly, we assume that
the camera v knows its tilt and roll angles, so that it is also able to compute the rotational matrix which transforms
Σ′v in Σv.

In the general case, the element (gv, Rv) ∈ SE(3) possesses six degrees of freedom in the sense that gv and Rv can be
parameterized using three independent scalars, and three angles, respectively. The previous assumptions correspond
to fixing one of such scalars (the height with respect to the ground) and two of such angles (tilt and roll), in the
sense that the pose (gv, Rv) of the camera v is such that, ∀v ∈ V,

gv =

[
ḡv

hv

]
Rv = R(θ̄v) :=


cos θ̄v − sin θ̄v 0

sin θ̄v cos θ̄v 0

0 0 1

 (9)
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Observe that ḡv ∈ R2 is the position, projected on the ground, of camera v, hv ∈ R is the known height of the origin
of the reference frame Σv, and the angle θ̄v ∈ [−π, π) represents the rotation about the z axis needed to align Σv
with Σ0.

Another consequence of the previous assumptions and the exact knowledge of the tilt and roll angles is that the eight
point algorithm naturally provides a matrix R̃vu having the structure described in (9), namely there exists ηvu ∈
[−π, π) such that R̃vu = R(ηvu). By exploiting now the relations R(θ)R(ϕ) = R(ϕ+θ) and R(θ)T = R(θ)−1 = R(−θ),
the model in (8) for measurement of the relative orientation can be rewritten, as in (1), as ηvu = (θ̄v − θ̄u + εvu)2π,
where εvu ∈ [−π, π) is such that Nvu = R(εvu).

Given two elements R1, R2 ∈ SO(3), their geodesic can be be seen as the shortest path joining R1 and R2 on the
manifold, and the geodesic distance d(R1, R2) between R1 and R2 is simply the length of their geodesic (see [15] for
more formal definitions and properties). For elements of SO(3) of the type given in (9) we have

d(R(θ1), R(θ2)) = |(θ1 − θ2)2π|

Consequently, one can see that ∑
{u,v}∈E

d(R(θu)TR(θv), R(ηuv))
2 = V (θ)

namely the cost function proposed in Section 3 corresponds to summing up the squared geodesic distances between
R(θu)TR(θv) and the measurements R(ηuv) along all the edges of the graph. Notice that this cost already appeared
in [7].

5 Description of the proposed algorithm

5.1 The regions of convexity of the cost functions

For each K ∈ ZE define the region

RK(η) := {θ ∈ [−π, π)V : Aθ − η − 2πK ∈ [−π, π)E}. (10)

These regions are convex and form a partition of [−π, π)V . Most of them can actually be empty. It can be seen that,
if θ ∈ RK(η), and only for these points, we have

V (θ) = ‖Aθ − η − 2πK‖2,

therefore V (θ) is purely quadratic and convex in RK(η). For this reason, in each RK(η) there can be at most one
local minimum of V (θ).

Let K̄ ∈ ZE be such that θ̄ ∈ RK̄(η), namely let K̄ identify the region in which the vector of orientations θ̄ lies.
Equation (10) yields to

q2π(Aθ̄ − η) = K̄.

On the other hand, from (2) we have that

η = Aθ̄ + ε− 2πq2π(Aθ̄ + ε).

Since we assumed that ε ∈ [−π, π)E , we can argue that

K̄ = q2π(Aθ̄ − η) = q2π

(
− ε+ 2πq2π(Aθ̄ + ε)

)
= q2π(Aθ̄ + ε)

where we used the fact that q2π(x+ 2πk) = q2π(x) + k, if k ∈ Z. Consequently, the vector of measurements can be
expressed as

η = Aθ̄ + ε− 2πK̄. (11)
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5.2 Estimation of the convexity region

The idea which inspires the algorithm we are going to propose is first to obtain an estimate K̂ of K̄ and then to

obtain θ̂ by minimizing the reshaped cost

VK̂(θ) := ‖Aθ − η − 2πK̂‖22 (12)

which corresponds to restricting V (θ) to the region RK̂(η) and then extending the quadratic form to RV .

Example 5.1 Let’s consider again the Example 3.1. Assume we are still in the ideal noiseless case, so that η12 =
η23 = η31 = 0. Since we fixed θ1 = 0, then V is function only of θ2, θ3. As shown above V (0, θ2, θ3) is quadratic in
the three regions corresponding to the case θ2 − θ3 ∈ (−π, π], to the case θ2 − θ3 ≥ π and to the case θ2 − θ3 < −π.
These three regions correspond to RK(0) in the three cases K = (K12,K23,K31) = (0, 0, 0), K = (0,−1, 0), and
K = (0, 1, 0). The other regions are empty. This is depicted in right panel on figure 1.

The idea of how to estimate K̄ comes from the observation that the relative differences of the actual orientations
θ̄v along a cycle must necessarily sum up to a multiple of 2π. More precisely, let h be an oriented cycle and let rh
be its representative vector as explained in Section 2. Then, from (11), using the fact that rhA = 0, we obtain that

rhη + 2πrhK̄ = rhε

and so we can argue that
q2π(rhη) + rhK̄ = q2π(rhη + 2πrhK̄) = q2π(rhε).

On the other hand, if it happens that the algebraic sum of the noise along the cycle h is below π in modulus, namely
if |rhε| < π, then we obtain that q2π(rhε) = 0. This yields

rhK̄ = −q2π(rhη). (13)

Observe that in this case rhK̄ could be exactly computed on the basis of the measurements η along the cycle h. This
would suggest to define implicitly the estimation K̂ by imposing rhK̂ = −q2π(rhη) for any cycle h. However, the
resulting system of equations would not be solvable in general due to the non–coherence of the noises along cycles.
What can be done is to choose a basis for Γ, and impose the constraint on the corresponding cycles.

Inspired by the previous observations, assume that a generic basis of Γ is given, and let R ∈ Z(E\ET )×E the matrix
whose rows are the elements of the basis. Denote by K̂R the estimate of K̄ we want to obtain using R. More
precisely, we want to find K̂R satisfying the following system of equations on ZE in matrix form

RK̂R = −q2π(Rη). (14)

By Propositions 2.1 and 2.2 we obtain that the general solution of this equation is

K̂R = −XRq2π(Rη) +Ah (15)

where XR is the matrix, introduced in Proposition 2.2 such that RXR = I and h is any column vector in ZV .

Once K̂R has been selected, the final solution θ̂R (which depends on the choice of R) is determined by minimizing
the cost

VK̂(θ) = ‖Aθ − η − 2πK̂R‖22.
The solution of the previous minimization is the solution of the following linear equation

ATAθ̂R = ATη + 2πAT K̂R. (16)

As done above, in order to avoid the non uniqueness due to the kernel of A, we fix θ1 = 0. Then consider the vector
ξ ∈ RV defined by ξ1 = 1 and ξv = 0 for any v 6= 1. It is well-known [16] that there exists a symmetric matrix
G ∈ RV×V such that {

GATA = I − 1ξT ,
Gξ = 0.

(17)
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This matrix is called the Green matrix associated to the graph G. Using the properties of G and the expression of
K̂R we obtain

θ̂R = GATη + 2πGAT K̂R = GATη − 2πGATXRq2π(Rη) + 2πGATAh.

Recall that we look for an estimate in [−π, π)V , thus the nodes need to project onto this set the computed solution.
This can be done entry–wise, and corresponds to the choice

h := −q2π

(
GATη − 2πGATXRq2π(Rη)

)
.

Using the definition of Green matrix, one can show that h1 = 0, thus obtaining

θ̂R = GATη − 2πGATXRq2π(Rη) + 2πh =
(
GATη − 2πGATXRq2π(Rη)

)
2π
∈ [−π, π)V . (18)

A simple continuity argument then shows that, when the threshold ε̄ tends to 0, the estimate θ̂R converges to θ̄.
In other terms, if the noise is small, we have a guarantee that our solution is close to the true θ̄. In the following
Sections we formally prove this statement.

5.3 Performance analysis of the proposed algorithm

As mentioned in Section 3, in order to evaluate the performance of the proposed algorithm, we need to estimate the

index W = 1
N ‖(θ̂ − θ̄)2π‖2 defined in (3). Observe that, since η = Aθ̄ + ε − 2πK̄ and XRq2π(Rη) = −K̂R + Ah

then (18) can be rewritten

θ̂R = GATη − 2πGATXRq2π(Rη) + 2πh

= GATAθ̄ +GATε− 2πGAT K̄ + 2πGAT K̂R − 2πGATAh+ 2πh

Since θ̄1 = 0 and h1 = 0 we can argue that

θ̂R = θ̄ +GATε+ 2πGAT (K̂R − K̄), (19)

which shows that the computed estimate differs from the vector of actual orientations by a term depending only on
the measurement noise. The second term is instead related to the ability to correctly identify the region in which θ̄
lies.

The previous equation yields

W =
1

N
‖(θ̂ − θ̄)2π‖2 =

1

N
‖(GATε+ 2πGAT (K̂R − K̄))2π‖2.

This equality implies that, in case RK̂R = RK̄, namely if we have that K̂R = K̄ +Ah for some h, then

W =
1

N
‖(GATε+ 2πGATAh)2π‖2 =

1

N
‖(GATε+ 2πh)2π‖2

=
1

N
‖(GATε)2π‖2 ≤

1

N
‖GATε‖2.

Notice that the term 1
N ‖GATε‖2 has been already studied in the literature (see [2,4,17]), since it characterizes the

performance of the calibration algorithm over vector spaces. In these papers the electrical analogy is used. The graph
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G is considered as an electrical network where there is a resistance of 1 Ohm along all the edges in G. If we denote
by Rv1 the effective resistance among the node v and the anchor node 1, then it can be shown that

1

N
E‖GATε‖2 =

σ2

N

∑
v∈V
Rv1,

where we are assuming that the components of the noise vector ε have zero mean and variance σ2. This result allows
to obtain the estimate of 1

NE‖GATε‖2 as a function of the number of nodes for some families of graphs. For example,
if the graph is a line, then

1

N

∑
v∈V
Rv1 ≈ N.

If the graph is a 2D grid, then
1

N

∑
v∈V
Rv1 ≈ logN,

while if the graph is a grid in dimension greater or equal to 3, then 1
N

∑
v∈V Rv1 is bounded from above by a constant

independent of N . This qualitative behavior can be of interest for the designer. We will show this feature in the
examples proposed in Section 8.

Remark 5.1 Observe that, since

RK̂R = −q2π(Rη) = −q2π(Rε− 2πRK̄) = RK̄ − q2π(Rε),

then RK̂R = RK̄ occurs if the components of the vector Rε belong to [−π, π), and so if ||Rε||∞ < π 2 . If the
components of the noise vector ε are supported in [−ε̄, ε̄], since ||Rε||∞ ≤ ε̄||R||∞, then

||R||∞ <
π

ε̄

implies that RK̂R = RK̄. Notice finally that, if the rows of R are obtained from a set of closed paths, then ||R||∞
is simply the maximum length of the paths in this set. For this reason it is convenient to choose R whose rows are
obtained from paths of minimum length. This fact inspires the algorithms proposed in the next Section.

6 Distributed algorithms for rotational calibration

In this Section we will propose two possible distributed implementations of the rotational calibration algorithm
proposed in the previous Section. Observe that the proposed algorithm is based on two steps. The first consists
in the estimation of K̄ based on formulas (14) and (15). The second step consists in the estimation of θ̄ based
on formula (16). Distributed implementations of the second step have already been proposed in the literature (see
[4,18]). We propose here two distributed implementations of the first step, which are based on two ways to select
the set of cycles as a basis of Γ.

6.0.0.1 Fundamental cycles Fix a spanning tree T = (V, ET ) of G. Order arbitrarily the edges in E \ ET as
e1, . . . , eM−N+1 and consider cycles h1, . . . , hM−N+1 in G such that for each i we have that supp(hi) ⊆ ET ∪{ei} and
rhi(ei) = 1. In words, cycle hi is constructed with the edges in ET ∪{ei} and oriented in such a way that rhi(ei) = 1.
Such cycles are called (T -)fundamental cycles.

2 We recall that, if x ∈ Rn, then ||x||∞ = maxi{|xi|} and if M ∈ Rn×m, then ||M ||∞ = maxi{
∑

j |Mij |}. According to these

definitions we have that ||Mx||∞ ≤ ||M ||∞||x||∞.
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6.0.0.2 Minimal cycles Fix again a spanning tree T = (V, ET ) of G. Another possible construction is the
following iterative one:

• Among all cycles whose edges are all in ET except one, choose one of minimal length. Call it h1 and call e1 the
only edge in h1 which is not in ET .
• Suppose edges e1, . . . , ei and cycles h1, . . . , hi have been selected. Among all cycles whose edges are all in ET ∪
{e1, . . . ei} except one, choose one of minimal length. Call it hi+1, and call ei+1 the only edge in hi+1 which is not
in ET ∪ {e1, . . . ei}. Such cycles are called (T -)minimal cycles.

Both the fundamental and the minimal cycles provide a basis of Γ as shown in the next Lemma whose proof is given
in the Appendix.

Lemma 6.1 Fix a spanning tree T = (V, ET ) of G. The subsets of Γ:

{rh |h T -fundamental cycle} , {rh |h T -minimal cycle}

are both Z-basis of Γ.

6.1 The Tree-algorithm

In this distributed implementation the agents are supposed to be the nodes and the edges composing the graph G.
Fix a spanning graph T rooted at the anchor node 1. In order to obtain K̂, we need first to obtain the value rhiη,
for each cycle h belonging to the set of the fundamental cycles. This value will be stored by the agent associated to
the edge ei, which is the edge in hi not belonging to T . For the computation of rhiη, first the measurements are
propagated along the tree starting from the root. In other words, given a node v and called f(v) its father, we set

θ̂FE, 1 = 0 and

θ̂FE, v = θ̂FE, f(v) + ηv,f(v). (20)

As a side effect, we also obtain a first estimate θ̂FE of θ̄. Then each edge ei not belonging to T can compute rhiη
as

rhiη = θ̂FE, s(ei) − θ̂FE, t(ei) + ηei .

Now we build K̂ as follows. For each edge e in T , we assign K̂e = 0. Instead, for each edge ei not belonging T , we
assign

K̂ei = −q2π(rhiη).

Observe that this assignment of K̂ ensures that, for all the fundamental cycles hi, it holds

rhiK̂ = K̂ei = −q2π(rhiη)

that is needed to correctly estimate K̄. Once K̂ is obtained, the nodes can compute in a distributed way the

components
(

argminθ‖Aθ − η − 2πK̂‖
)

2π
.

6.2 Minimal cycles-algorithm

The second algorithm exploits the construction of a set of minimal cycles for the graph. The procedure in this case
is not fully distributed, in the sense that we must assume that each minimal cycle is associated with an agent which
carries on the computations associated with this cycle.

Fix a spanning tree T = (V, ET ) of G and let h1, . . . , hM−N+1 be the set of minimal cycles. Benote by e1, . . . , eM−N+1

the associated edges forming the set E \T ordered in the way described above. As in the previous case, assign K̂e = 0
for any e ∈ T . Consider now the remaining edges e1, e2, . . . , eM−N+1. We know that cycle h1 has edges in T ∪ {e1}.
Since K̂e = 0,∀e 6= e1 for any e in the support of h1, we can assign

K̂e1 = −q(rh1
η).
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Algorithm 1 Tree-Algorithm

(Input variables)
θ̄1, value of the anchor;
ηe, e = 1, . . . ,M ;
T spanning tree;

(Step A: first estimate θ̂FE)

θ̂FE,1 = 0;
for i = 1, . . . , N do

for j = 2, . . . , N do

if j is a son of i in T then θ̂FE,j = θ̂FE,i + ηj,i;

(Step B: estimate K̂)
for e ∈ E do
K̂e = q2π(θ̂FE,s(e) − θ̂FE,t(e) − ηe);

(Step C: second estimate θ̂)

compute
(

argminθ‖Aθ − η − 2πK̂‖
)

2π
s.t. θ1 = 0.

Then, we proceed iteratively, and at the i-th iteration we already computed K̂e1 , . . . , K̂ei−1
. In order to assign K̂ei ,

observe that the following relation must be satisfied

rhiK̂ = −q2π(rhiη).

Therefore, we derive

K̂ei = −q2π(rhiη)−
∑
j 6=i

rhi(ej)K̂ej .

In order to achieve this computation, the agent associated with the cycle hi has to know ηej and K̂ej for each edge

ej belonging to hi. As a consequence, this agent needs to receive the values of K̂ej from the agents associated to

adjacent cycles, before being able to compute K̂ei . After the estimation of K̂, the remaining steps are the same as
those of the previous algorithm.

Algorithm 2 Minimal cycles-algorithm

(Input variables)
1: ηe, e = 1, . . . ,M ;
2: T spanning tree;
3: r1, . . . , rM−N+1 minimal cycles set;

(Step A: computation of b = −q2π(Rη))
4: for i = 1, . . . ,M −N + 1 do bhi = −q2π(rhiη);

(Step B: estimate K̂)

5: for e ∈ ET do K̂e = 0;

6: for i = 1, . . . ,M −N + 1 do K̂ ē = bhi −
∑i−1
j=1 rhi(ej)K̂ej ;

(Step C: second estimate θ̂)

7: compute
(

argminθ‖Aθ − η − 2πK̂‖
)

2π
s.t. θ1 = 0.

This second algorithm allows much better performance than the first one, but it requires a greater amount of
communication and collaboration among nodes. In fact, as already mentioned, it is required that an agent is associated
with each cycle, and it must know all the measurements along the edges of its cycle.

Let us illustrate how the Minimal cycles-algorithm works with the following simple example.
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Example 6.1 Consider the simple graph in Figure 3. For such a graph, the minimal cycles are h1, . . . , h5, and the
edges are 1, . . . , 13. Assume that b1 = 1, b2 = 2, b3 = b4 = b5 = 0, where b = −q2π(Rη). Edges 1, . . . , 8 form a

spanning tree T of the graph. First of all, set K̂1 = . . . K̂8 = 0. Now, cycles h1 and h2 are made of edges of the tree
apart from the edges 9 and 10 respectively. Thus h1 sets K̂9 = 1, while h2 sets K̂10 = −2, since the direction of 10
is incoherent with the orientation of h2. Once this is done, we know the value of K̂ along all the edges of h3 and h4,
apart from 12 and 11 respectively. In order to guarantee that the sum over the cycles h3 and h4 is equal to b3 and b4
respectively, we can derive K̂12 = 2 and K̂11 = 1. Finally, all the edges e 6= 13 of h5 have have their corresponding
K̂e already assigned, so it suffices to set K̂13 = −3. Now the sum of K̂ over the five minimal cycles corresponds to
b entry–wise.

h1

h2 h3

h4

h5

1 2

3

4 5

6

7 8

9

10

11

12

13

Fig. 3. A simple graph to show how the second algorithm works.

7 Resilience against measurement noise for different graph topologies

In this Section we compare the two algorithms we have proposed for several different graph topologies. We concentrate
on grid-like topologies, since they can be used to model real networks of cameras. In order to draw the comparison,
consider the graphs shown in figure 4. In both cases we have a line–like graph with many nodes deployed along
one dimension, and the chosen spanning trees are shown in thick lines. They are rooted on the anchor on the most
left-top node. The set of the minimal cycles basis is simply the set of squares which form the graph.

Fig. 4. Two examples of spanning trees for a line–like graph. The proposed algorithms work in a similar manner for the one
on the right, while the Minimal cycles-algorithm is far more effective for the one on the left.

For the graph on the left, if we take the tree and we add the last edge on the right we obtain a cycle with maximum
length N . On the contrary, the minimal cycles are of length L0 = 4. As an immediate consequence, the Minimal
cycles-algorithm has much better performance since the upper bound ε̄ < π

4 is independent on the number of nodes.

On the other hand, in order the Tree-algorithm, to produce a good estimate K̂, the magnitude of the noise should
decrease with the dimension of the graph.

If we consider instead the spanning tree on the right, we can see that the fundamental cycles have length 4 as well,
since the spanning tree is chosen in a much better way. In this case, the two algorithms have the same performance.

If we consider the ring graph in Figure 5, we can easily see that there is only one minimal cycle. Here the two
proposed algorithms coincide. In such a case, the Tree-algorithm is better, since it is easier to implement and
completely distributed, it requires less information on the topology of the network, as well as less communications.

Indeed, consider the 2D grid on the right in Figure 5. The comb-shaped spanning tree is the one in thick line. Here
we see that the maximum length of the fundamental cycles grows as

√
N . Since it can be proved that the maximum

length of fundamental cycles in any spanning tree on a 2D grid grows at least as
√
N , the chosen spanning tree already

achieves the maximum resilience to measurement noise. On the contrary, the minimum cycles always have length
equal to 4. Thus, in this case the Minimal cycles-algorithm has always better performance than the Tree-algorithm.
Notice that the choice of the spanning tree is fundamental to draw a comparison between the algorithms.
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Fig. 5. On the left a ring graph, for which the two algorithms have the same performance. On the right, a grid graph.

8 Numerical results

In this Section we provide numerical comparison between the two approaches we propose in this paper, and the
frame localization algorithm proposed in [8].

In the first experiment we simulate the Tree-algorithm and the Minimal cycles-algorithm on square grids of size
N = n2, for n ranging from 3 up to 20. An example of square grid is depicted in Figure 6 (left panel), where
n = 4. In the same Figure, we also depict the type of spanning tree we use to build the T -fundamental cycles. The
construction is analogous for different values of n.

anchor anchor

Fig. 6. On the left a square grid graph for n = 4. On the right the correspondent spanning tree used in simulations.

In all simulations we set θ̄1 = 0, while, for v ∈ {2, . . . , N}, θ̄v is randomly sampled from a uniform distribution
on [−π, π). The values of the noises εe, e ∈ E , are randomly sampled from a uniform distribution on [−ε̄, ε̄], where
ε̄ = π

8 . For each n, the values we plot are averaged over 200 trials. Different θ̄ and a different set of noises are
generated for each trial.

On the left panel of Figure 7, we plot the estimate error

W (θ̂) =
1

N
‖(θ̄ − θ̂)2π‖2

for both the Tree-algorithm and the Minimal cycles-algorithm. On the right panel, we plot the error on K̄ defined
as

eK =
1

M
‖K̄ − K̂‖2.

The choice for ε̄ was dictated by the inequality

π

L0
=
π

4
>
π

8
= ε̄,

which implies that the Minimal cycles-algorithm always correctly estimates K̄. On the contrary, observe that, in

the case of the Tree-algorithm, eK is zero only for low values of n. To conclude, notice that the behavior of W (θ̂) in
the case of minimal cycles is approximately logarithmic in the number of nodes N , as predicted in Section 5.3. As
expected, the Minimal cycles-algorithm outperforms the Tree-algorithm.

The second experiment concerns the comparison with the procedure proposed in [8], which we call FL for Frame
Localization. The goal of this algorithm, as ours, is to obtain an estimate of θ̄ from the measurements η. The basic
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Fig. 7. Average error on the orientations (modulo 2π) and error on K̄ in case of 2 − D grid with N = 9, . . . , 400. The
circle–marked plot corresponds to the Minimal cycles-algorithm, the crossed-marked one to the Tree-algorithm.

idea of the FL algorithm is that measurements along cycles of the graph should sum up to multiples of 2π, as it
happens in a noise–free scenario. Thus, in the FL algorithm first of all a Z–basis of Γ is selected. Then, it aims to
solve the following minimization problem

ψ̂ = arg min
ψ∈RE s.t. (Rψ)2π=0

||(ψ − η)2π||2, (21)

where the rows of R ∈ Z(E\ET )×E are the Z–basis of Γ. In order to minimize the expression in (21), the authors
propose the following iterative procedure{

ψ(0) = η

ψ(t+ 1) = ψ(t)− κRT (Rψ(t))2π

where κ is a strictly positive real number. If κ is small enough, then the algorithm converges to a vector ψ∞ such that

(Rψ∞)2π = 0 (Theorem 12, [8]). Once ψ∞ is determined, the estimate θ̂ can be found spreading the information
from the anchor, similarly to what is done in (20).

Remark 8.1 It is worth remarking that, for both the Tree-algorithm and the Minimal cycles-algorithm, it is pos-
sible to provide a closed form expression for the estimate of θ̄, see (19). Further research might lead to a better
understanding of the influence of the measurement noise on the algorithm performance. Instead, as far as the FL
algorithm is concerned, no closed formula is known for ψ∞, which seems to depend on the choice of the parameter
κ. Moreover, there is no guarantee that ψ∞ is the solution to the minimization problem in (21).

In the comparisons, we use the same set of measurements for all the estimation algorithms, and the FL algorithm is
run taking the families of T -fundamental cycles and the minimal cycles. The results of the first simulation are shown
in Figure 8, left panel. In this case, the threshold for the error is again set at ε̄ = π

8 . The plots are the averaged value

of W (θ̂) over 200 simulations. The Figure depicts the plots for the Tree-algorithm, the Minimal cycles-algorithm,
and the FL algorithm run using the T -fundamental cycles. The plot for FL algorithm run using the minimal cycles
is not shown, since it overlaps the plot of the Minimal cycles-algorithm.

It can be seen from the Figure that, for low values of n, K̄ is correctly estimated by the Tree-algorithm and all the
algorithms seem to provide similar performance. For higher values of n, the FL algorithm seems to perform better
on the T -fundamental cycles. This suggests that also for the FL algorithm the length of the cycles influences the
performance.

On right panel in Figure 8, we propose a second comparison in case the measurements are corrupted by a large
noise, setting ε̄ = π

3 . Notice thus that, in this case, there is no guarantee that K̄ is correctly estimated, even if we
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exploit the minimal cycles. The plotted values are obtained averaging over 100 simulations on grids of dimension
n = 3, 4, . . . , 10. In this case, we show the plots of the results using the FL algorithm on both T -fundamental cycles
and minimal cycles. As in the previous simulations, the Tree-algorithm is always outperformed by the FL algorithm,
but it is also true that the Minimal cycles-algorithm gives the best performance. From our numerical experiments,
the FL algorithm has somehow an intermediate performance, and they show anyway that the shorter the cycles are,
the better the estimates are.
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Fig. 8. Comparison with the Frame Localization algorithm. On left panel, average error on the orientations (modulo 2π) in case
of 2−D grid with N = 9, . . . , 400 and small measurement noise. On the right panel, in the case of N = 9, . . . , 100 with large
measurement noise. The plot compares the Minimal cycles-algorithm (cross–marks), the Tree-algorithm (circle-marks), the FL
algorithm using T -fundamental cycles (square-marks), and the FL algorithm using minimal cycles (diamond-marks). On the
left panel, the results of FL algorithm on minimal cycles are not shown since they overlap those of Minimal cycles-algorithm.

9 Conclusions

This paper proposes two versions of an algorithm which allows a network of cameras to autonomously calibrate, more
precisely to determine an estimate of their orientations w.r.t. a common reference frame. This algorithm is suitable
to be distributed rather easily over the cameras which can act as agents in a multi-agent system. The proposed
algorithm is based on a two steps procedure. In the first step, the algorithm estimates a vector of integers K̄
coding the region of convexity which the global minimum is believed to belong to. In the second step, the algorithm
performs the computation of the minimizer belonging to the selected region of convexity. Compared with other
existing algorithms, this procedure permits to understand the properties of the proposed solution and to understand
when this solution is correct.

More investigations are needed for obtaining in this field of research, in the following directions.

• We believe that the proposed algorithm could be improved by obtaining a better estimate of the vector of integers
K̄ based on the maximum a posteriori MAP estimation or on the maximum likelihood ML estimation.
• A more refined performance analysis has to be done, in terms of the error to gain the estimate K̄, and in terms

of the index W (θ) proposed in (3).
• Finally, the more general case of cameras deployed in R3, and thus rotational calibration in SO(3), needs to be

addressed.
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A Appendix: Proofs

In this Appendix, we give some algebraic properties of the row vectors rh associated with the paths h. We start by
observing that,

(r(v1,v2)A)v =
∑
e∈E

r(v1,v2)(e)Aev = A{v1,v2},vA{v1,v2},v =


1, if v = v1,

−1, if v = v2,

0, if v 6= v1, v2.

In other words, r(v1,v2)A = 1v1−1v2 , where the symbol 1v means the column vector in RV with the entry of position
v equal to 1 and all the other entries equal to 0. Observe moreover that, if h = (v1, v2, · · · vn, vn+1), then

rhA =

n∑
i=1

r(vi,vi+1)A =

n∑
i=1

1vi − 1vi+1
= 1v1 − 1vn+1

.

The latter equality proves that rhA = 0, if h is a closed path.

Proof [Proof of Proposition 2.1]

(a) The fact that Γ ⊆ {r ∈ ZE | rA = 0} follows from the previous arguments.
(b) Fix a spanning tree T = (V, ET ) of G and let e1, . . . , eM−N+1 be the edges in E \ ET . Select the family cycles

h1, . . . , hM−N+1 by taking hi to be the only cycle in G with edges in ET ∪{ei} and such that rhi(ei) = 1. We now

prove that the rhi ’s generate {r ∈ ZE | rA = 0}. Let r ∈ ZE such that rA = 0 and let r̃ := r−∑M−N+1
i=1 r(ei)rhi .

Notice that r̃A = 0 and that supp(r̃) ⊆ ET . We show now that these facts imply r̃ = 0. Indeed, if supp(r̃) ⊆ ET
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and supp(r̃) 6= ∅, then supp(r̃) would include at least one leaf, namely a node v∗ such that there exists only
one edge e∗ ∈ supp(r̃) containing v∗. In this case

0 = (r̃A)v∗ =
∑
e

r̃(e)Aev∗ = r(e∗)Ae∗v∗ ,

which yields r̃(e∗) = 0, a contradiction.
(c) It remains to prove the Z-independence of the row vectors rh1

, . . . rhMN+1
. Assume that αi ∈ Z are such that∑

i αirhi = 0. Then, for any ` = 1, . . . ,M −N + 1, we have that

0 =
∑
i

αirhi(e`) = α`rh`(e`) = α`,

which shows that αi = 0.

Proof [Proof of Proposition 2.2] 1) First observe that, if we have two matrices R,R′ ∈ Z(E\ET )×E formed by two
different Z-bases of Γ, then kerR = kerR′ easily follows from the algebra of matrices over Z (see [19]). It remains to
prove the assertion for a particular choice of the Z-basis of Γ. Consider the Z-basis rh1

, . . . rhM−N+1
of Γ, built from

a spanning tree T of G as described in point b) of the proof of Proposition 2.1. The fact that ImA ⊆ kerR follows
from Proposition 2.1. At this point, the only thing to be shown is that kerR ⊆ ImA. Let K ∈ kerR. Since rows in
R form a basis of Γ, we have that rhK = 0 for every closed path h. Let us fix a node v0 ∈ V. Then for each node
v ∈ V, let γv be the path in the tree T connecting v0 to v. Define now the column vector h ∈ ZV with components

hv := rγvK =
∑
e∈E

rγv (e)Ke ,

where rγv is the row vector in ZE associated with the path γv. We now show that Ke = ht(e)−hs(e), for each e ∈ E .
A straightforward consequence is that K = Ah, i.e. K ∈ ImA. Consider the closed path h defined merging the paths
γs(e), (s(e), t(e)) and −γt(e), where we recall that −γt(e) denotes the path obtained by reversing γt(e). Observe that
rh = rγs(e) + r(s(e),t(e)) − rγt(e) . It follows that

0 = rhK = rγs(e)K + r(s(e),t(e))K − rγt(e)K
= hs(e) +Ke − ht(e)

whence the thesis holds.

b) This follows from the fact that ZE/Γ is a torsion free module, and consequently it is free, being Z a principal
ideal domain (see [20]).

Proof [Proof of Lemma 6.1] The fact that the rows in ZE obtained from a set of fundamental cycles form a basis of
Γ follows from the the part (b) of the proof of Proposition 2.1. The fact the rows in ZE obtained from the minimal
cycles form a basis of Γ is consequence of the following arguments. We order the edges putting first the edges in T
and the edges e1, . . . , eM−N+1. Let RF be the matrix having rows rhF1 , . . . , rhFM−N+1

, and RM be the matrix having

rows rhM1 , . . . , rhMM−N+1
, where hFi and hMi are the fundamental and the minimal cycles, respectively. Then, from

the proposed construction, RF and RM can be partitioned as

RF = [R′F I], RM = [R′M T ],

where I is the identity matrix of dimension M −N + 1, T ∈ Z(E\ET )×E is a square lower triangular matrix with 1
on the diagonal and R′F , R

′
M ∈ Z(E\ET )×ET . Observe that T−1 ∈ Z(E\ET )×(E\ET ) and, since the rows of RF generate

Γ while the rows of RF belong to Γ, then there exists a matrix Z ∈ Z(E\ET )×(E\ET ) such that RM = ZRF . As a
consequence, Z = T and R′M = ZR′F = TR′F . Finally, we can argue that RF = T−1RM , which shows that the rows
of RM generate the same submodule generated by the rows of RF which is Γ.
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