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Preface

The work presented in this thesis was carried out in the framework of the Danish

Industrial PhD Fellowship Programme, which is administered and financially supported

by the Danish Academy of Technical Sciences. The project took place, partly at Bang &

Olufsen Medicom a/s, and partly at Lund institute of Technology.

Bang & Olufsen Medicom has carried out research and development of various techniques

for optical biopsy and spectroscopic analysis of biological media since 1990. The efforts

have been aimed primarily at applications such as non-invasive tissue glucose monitoring,

extracorporeal hemodynamic monitoring, and optical immunoassays. Likewise, the

Medical Optics Group at Lund institute of Technology has, for more than a decade,

performed extensive research in a wide range of techniques for optical biopsies and

spectroscopic analyses of biological media.

Being a joint project between industry and academia, the objectives and the outcome of

the work presented here therefore had to comply with scientific standards as well as the

demands to commercial potential. Accordingly, the overall goal of this project has been to

develop and improve optical methods and techniques for non- or minimal-invasive real-

time medical diagnosis and monitoring of patients. In order to meet the commercial

interests, the work has been specifically aimed at so-called Home Care and Doctors Office

applications. Consequently, the presented methods have been based on continuous wave

measurements, because such techniques in general imply relatively simple technology,

which in turn enables compact, robust, and cost-effective implementation.

The introduction in Chapter 1 provides further details of the background, the objectives,

and the applied methods of the project. Chapter 2 discusses the physical basis of light

interacting with biological media. Next, a description of various light propagation models

is given in Chapter 3. Then, the applied instrumentation and some practical aspects of

carrying out bio-optical measurements are discussed in Chapter 4. Finally, various

multivariate analysis techniques that have been applied to extract information from the

measurements are presented in Chapter 5.
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Abstract

The main topic of this thesis is real-time quantification of relevant chromophores and light

scattering elements in biological media. The presented methods and instrumentation are

based on continuous wave (steady-state) optical measurements of (a) spatially-resolved

diffuse reflectance from bulk media and (b) combined spatially-resolved and goniometric

measurements of re-emitted light from thin samples. These two configurations address

applications for non-invasive medical diagnostics (optical biopsy), and in vitro diffuse

spectroscopy of turbid samples (e.g. whole blood analysis and immunoassays),

respectively.

The physical basis of light-tissue interaction, i.e. absorption and scattering, is discussed,

as well as various theoretical models for light propagation in turbid biological media, e.g.

Monte Carlo simulations, diffusion theory, and the adding-doubling method. The optical

properties are extracted from the measurements using multivariate calibration and analysis

techniques. Therefore, a general introduction to such methods is also included, e.g.

principal component analysis, multiple polynomial regression, and Newton-Raphson

prediction algorithms. Finally, some of the prototype instrumentation developed during

the project is presented, e.g. a fiber probe system, an integrating sphere setup, and a

hybrid goniometric/spatially-resolved system.
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Nomenclature

Basic quantities Units

t Time s

ω Angular frequency rad/s

r Distance m

r Position vector m

V Volume m3

A Area m2

n Normal vector -

s Direction vector -

s Solid angle sr

Q Energy J

W Energy density VQW /= J/m3

P Power tQP /= J/s (=W)

Electromagnetic terms

E Electric field V/m

H Magnetic field A/m

J Electric current density EJ σ= A/m2

P Polarization EP χε0= As/m2

S Poynting vector HES ×= W/m2

k Wave vector rad/m

k Wavenumber λπ /2== kk rad/m

c Speed of light in medium ncc /0= m/s

λ Wavelength ωπλ /2 c= m

χ Electric susceptibility -

σ Electric conductivity A/Vm

rε Relative permittivity -

cn Complex refractive index rcn ε= -

n Refractive index )Re( cn -

0c In vacuo speed of light 000 /1 µε=c m/s

0µ In vacuo permeability Vs/Am

0ε In vacuo permittivity As/Vm
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Optical properties

aµ Absorption coefficient aaa Cρµ = m-1

sµ Scattering coefficient sss Cρµ = m-1

g anisotropy factor >=< θcosg -

s'µ Reduced scattering coefficient ss g µµ )1(' −= m-1

θ Scattering angle rad

)(cosθp Scattering phase function -

mfp Mean free path 1)( −+= samfp µµ m

C Absorption/scattering cross-section AC δ= m2

ρ Absorber/scatter volume density m-3

δ Absorption/scattering efficiency factor

R Diffuse reflectance W/m2

T Diffuse transmittance W/m2

Radiometric quantities

F Radiant flux W/m2

E Irradiance W/m2

φ Fluence rate W/m2

I Intensity W/sr

L Radiance W/m2sr

N Photon distribution m-3sr-1

Multivariate data analysis notation

X Data matrix -

Y System matrix -

BK, Calibration coefficient matrices -

p Loading vectors -

T Score matrix -

x Explicit (independent) variables -

y Implicit (dependent) variables -

ŷ Predicted (estimated) implicit variables -

I Number of samples -

J Number of explicit variables x -

M Number of implicit variables y -



Chapter 1 

Introduction

During the recent years optical techniques, especially lasers, have found increasing

applications in the medical field, and a new interdisciplinary field denoted biomedical

optics has evolved. This field covers a wide range of therapeutic and diagnostic

techniques, as illustrated in Figure 1.1.

(a) (b) (c)

(d) (e) (f)

Figure 1.1. Schematic illustrations of optical applications in medicine:

(a) photodynamic therapy, (b) laser surgery, (c) thermotherapy, (d) optical

tomography, (e) optical biopsy, and (f) in vitro diffuse spectroscopy.

In general, it is common to all medical applications of optical methods that they may

relieve the patients of some of the discomfort associated with the more conventional

counterparts of the optical methods. For instance:

a) Photodynamic therapy (optical/chemical treatment of tumors) causes less pain and

less subsequent cicatrization.
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b) Laser surgery (cutting, removal, and/or welding of tissue) provides pinpoint

selectivity and causes minimal bleeding.

c) Optical tomography (e.g. optical mammography) is non-ionizing as opposed to

radiography.

d) Optical thermotherapy enables rapid and selective deposition of heat energy.

e) Optical biopsies (non- or minimal-invasive spectroscopic analysis of biological

tissue) are performed without any cutting or removal of tissue.

f) Medical applications of in vitro diffuse spectroscopy (e.g. optical immunoassays)

require relatively small samples and provide fast analysis.

Thus, optical methods in general exhibit a substantial potential for a wide range of

medical diagnostic and therapeutic applications. However, only optical biopsies and in

vitro diffuse spectroscopy, that is item (e) and (f) from the above list, will be considered in

this context.

Optical biopsy encompasses several techniques, for example: laser-induced fluorescence

spectroscopy, Raman spectroscopy, and traditional transmission- or reflectance

spectroscopy in the visible (VIS), near-infrared (NIR), or the infrared (IR) wavelength

region. These techniques each have a series of advantages and drawbacks; e.g. Raman

spectroscopy has high specificity but low sensitivity, whereas IR spectroscopy is

hampered by high water absorption and pour transmission in optical fibers. Furthermore,

several of these techniques also imply complex instrumentation, which makes clinical

implementation awkward. Applying so-called spatially resolved continuous wave

techniques, as demonstrated in the following chapters, can circumvent many of these

inconveniences.

The light propagation in turbid biological media is jointly governed by the absorption and

scattering properties of the medium. In Figure 1.2 it is illustrated how a beam of light

enters a bulk turbid medium and migrates in a diffuse manner due to scattering elements

within the medium. In turn, the light that is not absorbed by the medium will be re-emitted

back through the surface as diffuse reflectance. Consequently, diffuse reflectance

measurements on skin tissue carries information on various tissue constituents such as

glucose, melanin, oxyhemoglobin, bilirubin etc.
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Figure 1.2. Light propagation in a turbid media with varying

absorption and scattering properties

Since the diffuse reflectance is jointly governed by the absorption and scattering

properties in an obscure manner, it is imperative to be able to determine both properties

simultaneously, even if the desired information is embedded in the absorption properties

exclusively. Naturally, the absorption and scattering properties also determine light

propagation, and with that, the deposition of energy during therapeutic applications. In

order to optimize the treatment in such applications, accurate determination of the

absorption and scattering properties is therefore important in these cases as well.

In conventional in vitro absorption spectroscopy on turbid media, the effect of scattering

is often ignored; or rather simple correction schemes are adopted. In both cases, this leads

to errors in the spectroscopic analysis. Therefore, analogous to the diffuse reflectance

measurements, the accuracy of such applications would also benefit from simultaneous

determination of the absorption and scattering properties. Accordingly, the work presented

in the following focus partly on methods for optical biopsy and patient monitoring based

on spatially resolved diffuse reflectance measurements as illustrated in Figure 1.3(a), and

partly on methods for diffuse in vitro spectroscopy on thin turbid biological samples as

illustrated in Figure 1.3 (b).
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(a) (b)

Figure 1.3. The primary measurement configurations discussed in this

thesis: (a) Diffuse reflectance measurements on bulk samples and (b)

goniometric and spatially resolved measurements on thin samples

It has been shown that the optical properties (the absorption and scattering properties)

may be extracted with good accuracy using time-resolved or frequency-domain methods.

However, these methods also typically imply bulky and expensive equipment, thus steady

state; also called continuous wave methods are advantageous in many practical

applications, because the relatively simple technology promotes design of cost-efficient

and portable equipment. Consequently, all methods and techniques presented in this work

are based on continuous wave measurements.

The task of extracting information on biological constituents from diffuse reflectance and

transmittance measurements is a so-called inverse problem. In order to adopt a suitable

inversion scheme for this problem, proper light propagation models must be employed.

While the geometric configuration of the cuvette/slab setup in Figure 1.3(b) is fairly

regular, and therefore can be described by relatively simple models, the morphology of

the skin tissue in Figure 1.3(a) is rather complex and consequently implies complex

models too. As a compromise between accuracy and simplicity, single or multi-layered

models are often implemented using either Monte Carlo simulations or diffusion theory as

discussed in Paper VI.
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Figure 1.4. Illustration of the inversion scheme for extracting

absorption and scattering properties using multivariate calibration

and analysis.

When a suitable light propagation model has been chosen, the final step in solving the

inverse problem is to associate the measured output from the setups in Figure 1.3 to the

optical properties of the medium in question. If the light propagation models provide

closed form analytic expressions the inversion scheme is simple. However, if the models

provide numerical solutions only, such as Monte Carlo simulations, the inversion scheme

has to be based on some sort of multivariate calibration and prediction algorithms as

illustrated in Figure 1.4.

Integrating spheres are widely used to measure the total diffuse reflectance and

transmittance from thin slabs or cuvettes in setups equivalent to Figure 1.3(b). The optical

properties may then be determined from such measurements using e.g. the inverse adding-

doubling method. This method may, however, prove to be to slow for real-time

applications involving hyper-spectral measurements. Thus, Paper II presents a novel,

faster and even more accurate algorithm for optical property predictions from integrating

sphere measurements. The actual integrating sphere setup may also prove to be too bulky

and inconvenient for clinical use. Hence, Paper V presents a method for extracting the

optical properties from slab geometries using goniometric measurements in combination

with spatially resolved measurements of the transmittance and reflectance. This hybrid

method thus enables more compact and handy implementation than analogous integrating

sphere setups.
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In order to measure diffuse reflectance profiles as illustrated in Figure 1.3(a), and to carry

out immediate extraction of the optical properties, a fiber optic probe system was also

developed during the project, as described in Paper III. The design and geometric

configuration of this probe was determined on the basis of the investigations described in

Paper I. The probe system was calibrated and tested on a matrix of liquid phantoms with

well-known optical properties, and preliminary clinical tests were also performed. The

fiber probe is capable of extracting the optical properties at four arbitrary wavelengths,

which is sufficient for numerous clinical diagnostic applications. But in some instances, a

broader wavelength range is needed. Hence, Paper IV provides a presentation of hyper-

spectral measurements and analysis of reflectance profiles using a Fourier spectrometer.



Chapter 2 

Optical response of biological media

For more than a century it has been demonstrated that light has a dual nature. In many

instances it is convenient to describe light as a particle phenomenon, i.e. as photons

carrying discrete packets of energy. The particle model is well suited for treating light-

matter interaction on a microscopic level, e.g. energy transitions in atoms and molecules.

In other instances it is more appropriate to consider light as electromagnetic waves,

especially when describing the polarization, phase, and interference properties of the light.

Moreover, the wave model is also convenient for describing light-matter interactions on

the macroscopic level, such as specular reflection, refraction, etc. Hence, it is possible to

consider light propagation and interaction both as a particle and a wave phenomenon. It is

difficult, though, to set up any rules for which approach to employ in a specific situation.

In general, it is often convenient to adopt both the wave and the particle approach, either

simultaneously or consecutively, to obtain the best overall picture. As it appears from the

discussion in the next chapter, the task of modeling multiple scattered light by wave

theory is intractable and does not yield any solutions of practical relevance. Thus, most

optical modeling of light in turbid media is based on so-called transport theory, which

basically builds on the photon approach. The photon migration within a turbid medium, as

described by transport theory1, is governed by a set of macroscopic optical properties: 2

the absorption coefficient µa, the scattering coefficient µs, and the anisotropy factor g

(sometimes referred to as the asymmetry factor). Although transport theory basically is

empirical and hence also the optical properties, they can principle be derived from

electromagnetic wave theory. Therefore, this chapter will first give a review of some basic

concepts of electromagnetic wave theory, and thereby provide a fundamental physical

understanding of the optical properties introduced subsequently. Finally, examples and

spectra of biological important chromophores (absorbing molecules) and scattering

components will also be given. The definitions and concepts introduced in this chapter

will thus provide a platform for the discussions of multiple scattering and the light

propagation models introduced in Chapter 3.
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2.1 Electromagnetic wave theory

In electromagnetic terms a bulk non-scattering medium may be approximated by a

homogeneous and isotropic continuum of free charges and small dipoles3-5 as shown in

Figure 2.1.

(a) (b)

Figure 2.1. (a) Medium with a homogeneous distribution

of dipoles and free charges. (b) Same medium exposed to

an electric field E

When the medium in Figure 2.1(a), is exposed to the electric field E the directions of the

free charges and the orientations of the dipoles seek to align in the direction of E as shown

in Figure 2.1(b). The "willingness" of the dipoles to align and of the charges to move in

the direction of E is quantified by the electric susceptibility χ  and the electric

conductivity σ  of the specific medium, respectively. The net polarization P and the net

electric current density J is then given by the so-called constitutive relations.

EP

EJ

χε

σ

0=

=
(2.1)

Where 0ε  is the in vacuo permittivity. In Eq.(2.1), it is assumed that the electric field E

(along with J and P) is time harmonic.

})(Re{)( tiet ωω −= EE (2.2)

Where, ω  is the angular frequency of the harmonic fields and t is the time.
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In real life, certainly not all fields are time harmonic, but fortunately it can be shown that

any anharmonic field can be composed from superposition of time harmonic fields by

Fourier techniques.

2.1.1 Maxwell equations

Any electromagnetic field and thus also electromagnetic waves must satisfy the Maxwell

equations. In the time harmonic case, these may be written in complex form as6:

),(),(

0),(

),(),(

0)),((

0

0

0

ωεωεω

ω

ωωµω

ωεε

rErH

rH

rHrE

rE

r

r

i

i

−=×∇

=⋅∇

=×∇

=⋅∇

(2.3)

Where, H is the magnetic field, r  is the position vector, rε  is the relative complex

permittivity, and 0µ is the in vacuo permeability. In the above, it was implicitly assumed

that the medium was non-magnetic, i.e.

HB 0µ= (2.4)

Hence, the behavior of the time-harmonic electromagnetic fields, in the unbounded

medium shown in Figure 2.1, is fully described by the Maxwell equations in Eq. (2.3).

Where, the medium specific properties, given by the constitutive relations in Eq. (2.1), are

embodied in rε .

ωε
ωσωχε

0

)(
)(1 ir ++= (2.5)

2.1.2 Electromagnetic waves

From the Maxwell equation it can be shown that any electromagnetic wave propagation

must satisfy the following wave equations.

0),(),(

0),(),(

2
0

22
2

2
0

22
2

=+∇

=+∇

ωωω

ωωω

rHrH

rErE

c

n

c

n

c

c

(2.6)
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Where 0c  is the in vacuo speed of light, and cn  is the complex refractive index

rc inn εκ =+= (2.7)

The simplest solutions to Eq. (2.6) yield the equations of the plane harmonic wave.

)(
0

)(
0

ti

ti

e

e

ω

ω

−⋅

−⋅

=

=

rk

rk

HH

EE
(2.8)

Where k is the wave vector indicating the direction of propagation, and E0 and H0 are

constant vectors. In fact, plane waves are physically unrealizable, because they are infinite

in time and space. However, they are very useful, because any finite physical wave can be

constructed by superposition of harmonic plane waves with different wavelengths,

directions, and polarizations.

2.1.3 The Poynting vector

In many cases involving electromagnetic waves, the main interest is the energy transport.

This is quantified readily by the Poynting vector S.

HES ×= (2.9)

Hence, S specifies the magnitude and the direction of the rate of transfer of

electromagnetic energy. For time-harmonic fields, S oscillates with ω , it is therefore

often more convenient to apply the time averaged Poynting vector.

*}Re{
2
1 HES ×= (2.10)

The magnitude of the time averaged Poynting vector is equal to the irradiance E, which is

a widely used quantity in the framework of transport theory discussed in the next chapter.

S=E (2.11)

Finally, the time-averaged Poynting vector for a plane harmonic wave is given by.

z

z

plane ecn eES 0

4

2
0002

1 λ
κπ

ε
−

= (2.12)
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Naturally, in this case, the direction of the energy flux is the same as the direction of

propagation; i.e. ze  is parallel to k.

2.2  Absorption

From Eq. (2.12) it appears that there is an exponential attenuation of the irradiance of the

plane wave as a function of the distance in the propagation direction. This relation is

commonly known as Beer's law

zaeEzE µ−= 0)( (2.13)

Where 0E  is the irradiance at the distance z = 0, and aµ  is the absorption coefficient.

0

4

λ
κπµ =a (2.14)

Thus, the absorption coefficient aµ  of a medium at a given wavelength λ  is proportional

to the imaginary part κ  of the complex refractive index cn . Note that the irradiance E,

which is a scalar, should not be confused with the electric field vector E. Moreover, E is

often referred to as intensity, but in this context, the intensity I denotes power per solid

angle, as stated in Section 3.1.2.

2.2.1 Absorption coefficient, cross-section, and mean free path length

The above definition of aµ  is derived on the basis of macroscopic electromagnetic terms

where the medium is assumed to be a continuum. However, from a microscopic point of

view, absorption takes place in discrete elements (atoms and molecules) as illustrated in

Figure 2.2. In this approach, it is convenient to define aµ  in probabilistic terms1.

Accordingly, µa is defined such that when a photon travels an infinitesimal distance dz,

the probability for absorption by a chromophore is given by dzaµ . This is analogous to

defining µa as the reciprocal of the absorption mean free path length mfpa

ia
a fpfpfp

i

mfp ...

1

21 ++
==µ (2.15)

Where ifpfp ...1 are the distances (free path lengths) traveled by each photon before

absorption occurs (see Figure 2.2(a)).



26

The volume density of absorbing elements aρ  and µa are connected through the

absorption cross-section6 Ca

aaa C ρµ = (2.16)

Which in turn is defined by

aaa AqC = (2.17)

Where, Aa is the geometrical cross-section of the absorbing element and qa is the

absorption efficiency as shown in Figure 2.2(b).

(a) (b)

Figure 2.2. Graphical illustration of (a) absorption free path

lengths, and (b) the absorption cross-section

2.2.2 Photons and molecular transitions

The quantum theory states that the energy of a photon is given by

0

0

λ
c

hephoton = (2.18)

It is also stated that a molecule only can absorb photons with energies corresponding to

transitions between the specific energy levels of the molecules, as indicated by the

Jablonski diagram in Figure 2.3. The transitions can in general be divided into high-

energy electronic transitions corresponding to light in the UV and VIS region, and low-

energy vibrational or rotational transitions corresponding to light in the NIR and IR

region7,8. The Jablonski diagram also shows how the energy from an incident photon is
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either dissipated through internal heat conversion or partly re-emitted leading to

fluorescence or phosphorescence. The energy may also be converted by photochemical

reactions, but heat dissipation is normally the dominant effect.

Figure 2.3. Jablonski diagram illustrating the energy

levels of chromophores

Accordingly, absorption spectra may be considered as optical fingerprints that reveal

important information on the molecular structure, configuration, and quantity of the

various chromophores in a medium.

2.2.3 Biological chromophores

Figure 2.4 shows various absorption spectra of some important chromophores in human

skin tissue. Water constitutes about 75 % of the tissue9 and is therefore a major

chromophore, but, as it appears from Figure 2.4, the water absorption is significant in the

upper part of the near-infrared (NIR) region only ( λ > 1400 nm). In the lower part of the

visual (VIS) and ultraviolet (UV) region ( λ < 500 nm) various proteins, such as melanin10

and hemoglobin11, dominate the absorption. The main function of melanin in the skin is to

protect the organism from UV radiation. Although melanin is a very strong absorber it is

only localized in a very thin layer (the epidermis) as discussed in Section 4.1.1. Thus, the

overall effect of hemoglobin is moderate, but naturally there are large individual

variations due to race, suntan, etc. Hemoglobin is also a strong absorber situated in the red

blood cells. However, the blood content of tissue may be as low as a few percent. Thus the

over-all effect of hemoglobin absorption is also moderate. As it appears from Figure 2.4,

the spectra of oxy-hemoglobin and deoxy-hemoglobin deviates. This is widely used to

measure the local blood oxygenation states of tissues optically, normally by recording the

diffuse reflectance at ≈λ  660 nm and at the isobestic point at ≈λ  805 nm, where the



28

two hemoglobin spectra coincide.  The perhaps most import feature of the spectra shown

in Figure 2.4 is the in general relatively low absorption in the lower NIR region (600 nm <

λ < 1400 nm). This region facilitates deep light penetration into the tissue and is therefore

called the diagnostic and therapeutic window.

Figure 2.4. Absorption spectra of typical skin tissue chromophores:

water12, melanin10, oxyhemoglobin, and deoxy-hemoglobin11. Note that

the spectra is  scaled to the typical volume fractions of the

chromophores in the tissue.

2.3 Scattering

Snell's law of refraction is well known in the field of geometrical optics. It states that a ray

of ray of light entering a medium with a different refractive index, as illustrated in Figure

2.5(a) is refracted and reflected according to

2211 sinsin θθ nn = (2.19)

In case of unpolarized light, the fraction of the reflected power also called the specular

reflectance r , is given by Fresnel's formula
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Note that any references to the refractive index henceforward simply imply the real part n

of the complex refractive index nc, as defined by Eq. (2.7). Typical values of n  relevant

for biomedical optics are: 33.1=watern , 4.1=tissuen , and 52.1=glassn .

(a) (b) (c)

Figure 2.5. Graphical illustration of (a) refraction at a well-defined

boundary, (b) scattering by a discrete particle, and (c) scattering by

continuous refractive index variations

Light refraction may serve as a simple analogy to elastic light scattering, which also are

caused by variations in n. The term elastic indicates that the light energy is preserved

during the scattering event. Inelastic scattering, such as Raman scattering, will not be

considered here8. Hence, a scattering medium may be conceived as an ensemble of

discrete randomly distributed scattering particles with a refractive index sn  different from

that of the surrounding medium nm, i.e.

1≠=
m

s

n

n
m (2.21)

Where, m denotes the relative refractive index. A scattering medium may, however, also

be described as continuum with refractive index fluctuations as shown in Figure 2.5(c).

Although, the latter approach probably provides a more accurate description of turbid
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biological media it also involves complex mathematical calculations and modeling6,13.

Consequently, the major part of the scattering calculations applied in biomedical optics is

based on the discrete scattering element approach illustrated by Figure 2.5(b).

2.3.1 Scattering coefficient, cross-section, and mean free path length

Analogous to absorption cross-section, the effective scattering cross-section and the

scattering coefficient may be defined as

sss AqC = (2.22)

Where sC  is related to the geometrical cross-section of the scattering element As through

the scattering efficiency qs. Still analogous the absorption case, the scattering coefficient

µs can be interpreted as.

sss C ρµ = (2.23)

Where, sρ  is the volume density of the scattering elements. Finally, the scattering mean

free path length is defined as

s
smfp

µ
1= (2.24)

2.3.2 Amplitude scattering matrix

The incident and scattered electric field ( iE  and sE ) may be described by their

components in the directions parallel and perpendicular to the scattering plane defined by

the direction vectors ki and ks of the incident and the scattered photons. This is illustrated

in Figure 2.6. The relationship between iE  and sE  is for far-field observations readily

quantified by
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Where the complex amplitude functions 1S … 4S  constitute the amplitude scattering

matrix, and θ  is the scattering angle, and aα  is the azimuth angle. The exponential term

in Eq. (2.25) accounts for spherical wave form of the scattered light, hence this term is

constant6 for observations at constant radial distance13 r.
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Figure 2.6. Illustration of the definition of the
scattering plane and the parallel and perpen-
dicular electric field components ( ||E and ⊥E ).

For the sake of brevity and clarity, only scattering from homogeneous spheres will be

discussed in the following, In this case, S3 and S4 equal zero and S1 and S2 are invariant

to aα . By replacing the electric field E  with the irradiance E , Eq. (2.25) can be reduced

to
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For unpolarized incident light it can be shown that

is E
rk

S
E

22
11= (2.27)

Where S11 is identical to the first element in the so-called Mueller matrix and in this case

defined by

))(()(((
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2
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11 θθ SSS += (2.28)
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2.3.3 The anisotropy factor

The scattering phase function )(θp  may be calculated from S11 by

θθπθθ
π

dSc
c

S
p )sin(2,

)(
)(

0
11

11 ∫== (2.29)

Such that )(cosθp  is normalized according to

∫
−

=
1

1

1)(cos)(cos θθ dp (2.30)

The anisotropy factor g  is defined as the mean value of the cosine of the scattering

angle1.

∫
−

==
1

1

)(coscos)(cos)cos( θθθθ dpg (2.31)

Thus g varies in the range [-1, 1] and is a measure of the amount of forward scattering,

e.g. g = 0 denotes isotropic scattering. The phase function of the scattering elements in a

medium may be determined by goniometric measurements of single scattering events (e.g.

see Figure 4.7(b)). However, in biomedical optics and other fields the actual phase

function may often be approximated well by the Henyey-Greenstein (H-G) scattering

phase function14

2
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−+
−= (2.32)

Where, g, together with θ , directly specifies the scattering phase function.

2.3.4 The reduced scattering coefficient

In some types of scattering measurements, various combinations of µs and g yield

identical observable results. This effect is encountered, for instance in diffuse reflectance

measurements (following many scattering events as illustrated in Figure 2.7), when the so-

called similarity principle15,16 applies17

2,21,1 )1()1( ss gg µµ −=− (2.33)
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Figure 2.7. The effect of the
similarity principle in diffuse
reflectance measurements

In such cases it is convenient to characterize the medium by the reduced scattering

coefficient µ's, which combines µs and g into a single parameter.

ss g µµ )1(' −= (2.34)

2.3.5 Mie theory

The scattering properties of homogeneous spheres can also be calculated rigorously by

applying Mie theory6,13,18. According to Mie theory the scattering properties of non-

absorbing homogeneous can be calculated from the relative refractive index m (see also

Eq. (2.21)), and the size parameter x.
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Where a is the radius of the sphere, while ns and nm are the real part of the refractive

indices of the sphere and the surrounding medium, respectively. Although, Mie theory

applies for all x, cases with λ<<a  are termed Rayleigh scattering, while cases with

λ≈a are termed Mie scattering. Rayleigh scattering is characterized by nearly isotropic

scattering ( 0≈g ) and that µs is proportional to 4−λ . The underlying formalism of Mie

theory is complex and comprehensive. So only the headlines will be given here. The

central parameters of the Mie formulas concerning scattering from non-absorbing

homogeneous spheres are the Mie scattering coefficients an and bn defined by.
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Where the Riccati-Bessel functions nψ  and nξ  are defined as

)( )(),( )( )1( ηηηξηηη nnnn hjø == (2.37)

Here nj  and )1(
nh  are spherical Bessel and Hankel functions, respectively. The scattering

cross-section Cs of the sphere can now be calculated from
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While the scattering matrix components S1 and S2 are calculated from
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And 1
nP  is the associated Legendre function. Now, by inserting Eq. (2.39) into Eqs. (2.28)

and (2.29) the scattering phase function )(cosθp  and in turn the anisotropy factor g  of

the homogeneous spheres can be calculated6,13.

Figure 2.8. Comparison of

scattering phase functions for

a homogeneous sphere based

on Mie theory and the H-G

approximation, respectively.

The data of the sphere are a=

1µm, sn = 1.35, and mn  =

1.4. This yields Cs = 0.48 and

g = 0.98.
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Figure 2.8 shows the scattering phase function for a sphere calculated using Mie theory

algorithms19 and the corresponding H-G approximation. It appears from Figure 2.8, that

there is good over-all correlation between the Mie - and H-G scattering phase function.

There are, however, discrepancies, especially for small angles θ , so the H-G

approximation should not be applied uncritically.

2.3.6 Biological spectra

The scattering properties of biological media reflect the ultrastructure of the media. This

structure is very complex and includes elements such as cell organelles, nuclei, cell

membranes and the cells themselves. Extra-cellular components, such as collagen fibers,

and lipid droplets also play an important role in tissue scattering20-22.

Figure 2.9. Reduced scattering spectra of breast23 and forearm tissue24

determined from diffuse reflectance measurements, and a 1% Intralipid

spectrum determined from integrating sphere measurements (Paper II).

None of the mentioned biological scattering structures resembles homogeneous spheres.

However, it can be advantageous to apply sphere equivalents to the various biological

structures, and thus use Mie theory or H-G approximations for qualitative estimations of

the structures, e.g. by relating the size of the structures to the amount of forward scattering

etc. Most biological tissue is strongly forward scattering (0.7 < g  0.99), with g = 0.9 as a
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representative value for skin tissue. In general, the µs of biological media varies

considerably, yet 1cm 100 −≈sµ applies, as a rule of thumb, for a wide range of media.

Consequently, 1cm 10' −≈sµ also applies as typical value for skin tissue2,25. Many

reported studies on tissue scattering properties are based on in vitro measurements, but

since the scattering components of tissue are structural elements of in vivo tissue, it is

difficult to obtain reliable results from such measurements. Hence, accurate methods for

noninvasive scattering measurements are desirable. Figure 2.9 shows examples of µ's
spectra of breast23 and skin tissue24 as well as intralipid26. The latter substance is widely

used for tissue simulating scattering phantoms27,28. All three spectra exhibit a

characteristic decrease in µ's for increasing λ .



Chapter 3 

Light propagation models

While the main topic of the previous chapter was the basic interaction of light with the

chromophores and single scattering elements, this chapter proceeds with light propagation

modeling in multiple scattering bulk media. As stated in the introduction in Chapter 1,

such models are imperative for extracting the optical properties from real measurements

on biological media. In the previous chapter, the dual nature of light, i.e. the wave versus

the photon approach, was discussed in relation to the basic absorption and scattering

properties of biological media. Light propagation in a multiple scattering medium is also

fundamentally governed by Maxwell's equations. Although, the electromagnetic theory

approach is attractive since it preserves the wave properties of the light as illustrated in

Figure 3.1(a), the complexity of the mathematical formalism is overwhelming. Instead

models based on photon transport are frequently used in biomedical optics. These are

expressed as differential or integro-differential equations; e.g. the transport equation1,

which is derived from simple phenomenological considerations on the basis of the

radiative transport theory29-31.

(a) (b) (c)

Figure 3.1. Schematics of light propagation in multiple scattering media

described, respectively, as (a) interfering waves by electromagnetic theory, (b)

as energy flux by diffusion theory, and (c) as photon trajectories by Monte

Carlo simulations.
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The transport equation has no exact closed analytical solutions relevant for any practical

applications. However, the diffusion approximation29 (diffusion theory) 32,33provides

useful solutions, although certain restrictions apply. In diffusion theory, the photon

migration is modeled as a gradient-driven diffusion of energy, which is illustrated in

Figure 3.1(b). Monte Carlo (MC) simulations34 are also widely used in biomedical. While

diffusion theory models light propagation as a diffuse photon flux, MC simulations, which

is a purely numerical and stochastic approach, models light as discrete photons bouncing

around in the scattering medium as illustrated by Figure 3.1(c)

Both diffusion theory and MC simulations are capable of handling light propagation in

both two and three dimensions. Still, purely one-dimensional models also play an

important role in biomedical optics, especially for in vitro spectroscopy measurements on

turbid media. One-dimensional numerical models, such as the adding-doubling

method17,35,36 presented in Section 3.4, typically lead to mathematical simplifications

compared to two- and three-dimensional models. This leads to faster calculations, which

in turn promotes determination of optical properties based on iterative forward

calculations, as exemplified by the inverse adding-doubling method37,38 applied in Paper

II.

During the following discussions and the work presented in the accompanying papers,

some general simplifications regarding the applied models are assumed. First, it is

assumed that the scattering and absorbing elements of a medium are sufficiently

separated, so that the optical properties of one element is unaffected by the scattered fields

and the physical presence of other elements. Second, it is also assumed that all scattering

elements may be described by one scattering phase function only. Although, it in principle

is possible to include several such functions in MC simulations and thus model different

scattering patterns, all MC simulations discussed here assume a single scattering phase

function. Third, all media below are assumed be homogeneous. Again, MC simulations,

and to some extent diffusion theory also, allow non-homogeneous media, but this is not

applied in the following either (except for simulating glass/plastic cuvette walls). Hardly

any of the above assumptions is strictly valid for biological media in general. However,

the work presented in Papers III and IV as well as several other studies39,40 demonstrate

that at least MC simulations correlate well with measured results, although not all

conditions are rigorously fulfilled.
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3.1 Transport theory

Transport theory has been applied in several fields of physics29-31 and has proven to be

advantageous for modeling light propagation in turbid media as well. In short, the

fundamental difference between transport theory and electromagnetic theory is that, while

electromagnetic theory describes light propagation by superposition of electromagnetic

fields, transport theory basically relies on superposition of energy fluxes. Thus, wave

phenomena (e.g. polarization, phase, and interference) are normally not considered in

transport theory. In the discussion on electromagnetic theory in Chapter 2 it was

demonstrated how the Poynting vector S expressed the energy transport of

electromagnetic waves and it was stated that the rate of energy (radiant power P)

transferred through a surface with the area A could be determined from

∫ ⋅=
A

dAP nS (3.1)

Where n is the normal vector of the surface. The transport theory equivalent of S is the

flux vector F. Here the power P transferred through a surface with the area A is defined as

∫ ⋅=
A

dAP nF (3.2)

It is beyond the scope here to discuss the underlying theoretical connection between

electromagnetic theory and transport theory. So the above analogy just serves to illustrate

the fact that S and F express the same quantity i.e. the direction and rate of energy transfer

per unit area perpendicular to the direction.

3.1.1 Radiometric terms

In Eq. (3.2) the flux F was introduced, in order to describe the incident power P on a

surface with the area A and the normal vector n, which is illustrated graphically in Figure

3.2(a). The power per unit area of the surface in Figure 3.2(a) is denoted the irradiance E

(see also Eq. (2.13)) and is defined as

)(),(),( rnrFr ⋅= ttE (3.3)

Where r is the position vector and t is the time. As noted previously, ),( tE r  should not be

confused with the intensity I(r,s,t), which is defined as the power per solid angle in

direction s at time t at position r.
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(a) (b) (c)

Figure 3.2. Illustration of incident power P on an area A, described

by three key quantities of transport theory: (a) the flux F, (b) the

radiance L, and (c) the fluence rate φ   

In transport theory, light is often modeled in terms of the radiance ),,( tL sr , which

expresses power per solid angle and area in direction s at position r at time t. As a

mnemonic rule, L may be considered to be a hybrid of E and I. The net flux F  expressed

in terms of radiance is given by.

∫=
π4

),,(),( dstLt ssrrF (3.4)

Where ds denotes an infinitesimal solid angle. The power incident on the right-hand side

of surface A in Figure 3.2(b) can now be calculated by

∫ ∫ ⋅=
A

dAdstLtP
π2

))(,,()( nssr (3.5)

Light in a highly scattering medium, such as human tissue, is almost completely diffuse,

which means that the incident light on a small volume element a given position comes

from arbitrary directions. In this case, it is convenient to introduce the fluence rate φ
defined by     

∫=
π

φ
4

),,(),( dstLt srr (3.6)
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This means that φ  expresses the total power incident on a small sphere at position r and

time t divided by the cross-sectional area A of the sphere, as illustrated in Figure 3.2(c).

The practical importance of φ  finds expression in

dttW a∫= ),()()( rrr φµ (3.7)

Where, W is the deposited energy density at position r in the medium.

3.1.2 The transport equation

The governing equation of transport theory is the transport equation, which is equivalent

to the Boltzmann equation widely used to describe particle transport, e.g. neutrons31. In

this particular case the particles are photons. During the following the photon flux will,

however, be described in terms of the radiance L. By using Eq. (2.18), the relationship

between photon distribution function N(r,s,t), which is the volume density of the photons

at time t traveling within the solid angle ds in direction s at position r, is given by

λ

2

),(),(
ch

NL srsr = (3.8)

Where h is Planck's constant, while c and λ  is the speed and the wavelength of the light

in the medium, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 3.3. Schematics of the component terms of the transport equation. That is,

(a) the energy of the photons in volume V, (b) losses through the boundaries, (c)

losses due to absorption, (d) losses due to scattering, (e) gain from light scattered

into the direction in question, and (f) gain due to sources within volume V.
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Consider the photons traveling at speed c in direction s within the small cylinder with

volume V  in Figure 3.3(a). The total energy Qa of the photons per solid angle s at time t

is given by

dVtL
cds

tdQ

V

a ),,(
1),(

0

sr
s ∫= (3.9)

In Figure 3.3(b) the decrease in intensity bI∆  due to losses through the surfaces S of the

cylinder is

∫∫ ⋅∇=⋅=∆
VS

b dVLdStLtI snssrs ),,(),( (3.10)

Where, Gauss' theorem was employed to convert the surface integral to a volume integral.

The intensity decrease cI∆  Figure 3.3(c) due to absorption is given by

dVtLtI
V

ac ∫=∆ ),,(),( srs µ (3.11)

Likewise, the intensity decrease dI∆  due to photons being scattered away from the

direction of s  in Figure 3.3(d) is given by

∫=∆
V

sd dVtLtI ),,(),( srs µ (3.12)

In Figure 3.3(e), the intensity increase eI∆  gained through photons scattered from other

directions 's  into s  is expressed as

∫ ∫=∆
V

se dVdsptLtI
π

µ
4

')',(),',(),( sssrs (3.13)

Where )',( ssp  is identical to the scattering phase function )(cosθp . Finally, the intensity

increase fI∆  due to light sources q within the cylinder Figure 3.3(f) is

∫=∆
V

f dVtqtI ),,(),( srs (3.14)

Now, the rule of energy conservation applied on Eqs. (3.9)-(3.14) leads to
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Dropping the volume integrals in Eq. (3.15) finally yields the time-dependent transport

equation.
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As pointed out previously, there are no closed form analytic solutions to the transport

equation for relevant three-dimensional problems and therefore approximation methods

must be employed, for example MC simulations (probabilistic method), diffusion theory

(expansion method), or adding-doubling (discretization method).

3.2 Monte Carlo simulations

Monte Carlo (MC) simulations34,41 is the perhaps most intuitive of commonly employed

approaches to light transport modeling in multiple scattering media. The basic idea of MC

simulations is to consecutively launch a huge number of virtual photons into a scattering

and absorbing medium, and record either the energy deposition in the medium as

illustrated by Figure 3.4, or the energy flux re-emitted from the medium, as demonstrated

in Paper I-V.

Figure 3.4. Illustration of Monte Carlo simulated photon

distribution in a simplified multi-layered tissue model.
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3.2.1 Step sizes and scattering angles

During MC simulations, each single photon performs a random walk in the scattering

medium determined by iterative decisions on (a) how far to move before any interaction

with the medium should take place and (b) in which direction to proceed after the

interaction. This random walk of numerous photons in a medium leads to the

characteristic jagged photon trajectories shown in Figure 3.5(a).

The decisions governing the photon propagation are based on random sampling of a set of

probability distributions derived from the macroscopic optical properties (µa, µs, and g ) of

the medium in question. In order to sample these probability distributions a random

variable η that varies between [0,1] is introduced. The relationship between η  and the

probability density functions p(x) which characterizes the optical properties of the

medium is given by

∫=
x

a

dxxp )(η (3.17)

In this way, η  is the "dice" of the MC simulations that is rolled every time a photon has to

be moved, and x represents the photon step size z∆  or the deflection angles θ  and aα , as

shown below.

In the previous chapter it was stated that µa and µs could be defined such that, when a

photon travels an infinitesimal distance dz, the probability for absorption or scattering is

given by dzaµ  and dzsµ , respectively. Thus, the probability for any interaction

(absorption and/or scattering) is given by dzsa )( µµ + . From this, it can be shown that the

probability density function of the step size z∆  is defined as.

))(exp()( zp sasas ∆+−+= µµµµ (3.18)

The step size, which is the free path length of the photon between to interactions, as

shown in Figure 3.5(b), may now be sampled randomly by inserting Eq. (3.18) in to Eq.

(3.17).

sa

z
µµ
η
+

−=∆ )ln(
(3.19)
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During the photon-matter interaction some of the photon energy is absorbed. This

accomplished by decrementing the weight w (the energy) of the photon according to.

www ∆= 12 (3.20)

Where, w1 and w2, as illustrated in Figure 3.5(b), represent the photon energy before and

after interaction, respectively, and where the deposited energy w∆  is given by

sa

s

sa

aw
µµ

µ

µµ

µ

+
=

+
−=∆ 1 (3.21)

Note that the right-hand term of Eq. (3.21) also is known as the albedo of the medium. By

applying the absorption scheme in Eqs. (3.20) and (3.21), it is assumed that absorption

and scattering takes place during a single event. This is evidently not true, but the above

approach implies substantial computational advantages compared to applying separate

step sizes for absorption and scattering. Moreover, the net simulation results of the two

approaches are identical.

(a) (b)

Figure 3.5. Schematic of Monte Carlo simulations showing (a) random walks of

multiple photons, and (b) the basic stochastic parameters governing the photon

migration, i.e. step size z∆ , scattering angle θ , and azimuth angle aα .

After an absorption-scattering event, a new direction of the decremented photon has to be

selected, that is, the scattering angle θ  and the azimuth angle aα  depicted in Figure

3.5(b) have to be calculated. The determination of θ  is based on the scattering phase

function of the scattering elements in the medium. As mentioned in Section 0, the

Henyey-Greenstein (H-G) function is a widely used approximation to the actual scattering
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phase functions of biological media. In this case, the probability density function of θ  is

identical to the H-G function (see Eq. (2.32)) and is thus given by
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The scattering angle θ  may thus be sampled as
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The H-G approximation implies symmetric scattering around the direction of propagation,

i.e. aα is evenly distributed within [ π2,0 ]. Consequently, aα  are sampled as

ηπα 2=a (3.24)

After this cycle of calculations the photon is moved and a new set of z∆ , θ , and aα  is

calculated. This continues repeatedly until the photon either leaves the medium, or it is

terminated due to a w value below a predefined threshold. If the refractive index of the

medium nm differs from the index of the surroundings or if nm varies across boundaries in

the medium, specular reflections occur, as indicated in Figure 3.5(a). In such cases,

refraction calculations according to the Fresnel boundary conditions have to be employed

in addition to the above calculations (Eqs. (2.19) and (2.20)).

3.2.2 Advantages and drawbacks

MC simulations are stochastic by nature and provide numerical solutions only. Still, the

method is highly flexible and truly three-dimensional42. Consequently, practically any

geometry can be simulated as exemplified in Figure 3.4. Moreover, provided that a

sufficient number of photons are launched, MC simulations have proven to be very

accurate as well39,40. Although the photons in most applications are treated as neutral non-

interacting particles carrying energy only, it is, however, possible to include wave

phenomena such as phase and polarization in MC simulations also43,44. Besides the

numerical results, the major drawback of MC simulations is the computation time/power

needed to obtain precise results. However, as novel accelerated MC algorithms evolve45,

and computers are getting faster, this inconvenience gradually becomes less restrictive.
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3.3 Diffusion Theory

The diffusion approximation29,32,33 has been widely used in biomedical optics and has led

to a considerable insight into light propagation in tissue. However, as discussed in Section

3.3.3 below there are also several drawbacks related to the use of the diffusion

approximation.

3.3.1 Spherical harmonics expansion

The basic idea of diffusion theory is to expand the functions L , p  and q of the transport

equation (Eq. (3.16)) into spherical harmonics32, e.g.
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Truncation of Eq. (3.25) at 1≤l  yields the so-called P1 approximation.
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The four unknowns 00ψ and m1ψ  may now be found by inserting Eq. (3.26) into the

transport equation (Eq. (3.16). Alternatively, it is also possible to take advantage of the

fact that 00Y  is a scalar, while mY1  are components of a vector, and thus express the

radiance as

srBrsr ⋅+= ),(),(),,( ttAtL (3.27)

Eq. (3.27) suggests that L is composed of a isotropic part A  and an an-isotropic part

sB ⋅ , as illustrated geometrically in Figure 3.6. Now, inserting Eq. (3.27) into Eq. (3.4)

yields

( )∫ =⋅+=
π

π

4

),(
3

4
),(),(),( tdsttAt rBssrBsrrF . (3.28)

Here, it appears that 0≠F , i.e. there is a net transport of energy in the direction of B  as

long as 0≠B .
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Figure 3.6. Graphical illustration of the diffusion theory approximation

of the radiance L as a superposition of a major isotropic part A and a

minute anisotropic part sB ⋅ .

Using Eq. (3.6) the fluence rate φ  is calculated as
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π
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By inserting Eqs. (3.28) and  (3.29) into Eq. (3.27), the radiance can now be expressed as

( )srFrsr ⋅+= ),(3),(
4

1
),,( tttL φ

π
(3.30)

As mentioned, the source term q in Eq. (3.16) may also be expanded into spherical

harmonics

( )srqrsr ⋅+= ),(3),(
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1
),,( 10 ttqtq

π
(3.31)

However, for the sake of clarity, only isotropic point sources are considered in the

following, so the q1 term in Eq. (3.31) is assumed to be equal to zero. Thus, inserting Eqs.

(3.30) and (3.31) into Eq. (3.16) and rearranging yields
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Where F  and φ  still are functions of r  and t , while µa and µs are functions of r  only.

By applying Eqs. (2.30) and  (2.31) on the scattering phase function p, Eq. (3.32) reduces

to

( ) ( ) ( ) 0'33
1

q
tc saa +⋅++∇⋅−+∇⋅−=⋅+
∂
∂

sFsssF µµφµφ (3.33)

Integration of Eq. (3.33) over all s  yields

0
1

q
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∂
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(3.34)

Likewise, multiplying Eq. (3.33) with s  and subsequent integration over all s  leads to
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(3.35)

Here, the steady-state version of Eq. (3.35) is recognized as Fick's law from the diffusion

theory.

φ∇−= DF (3.36)

Where the diffusion coefficient D is defined as

( )sa

D
'3

1

µµ +
= (3.37)

By inserting the instantaneous flux F  from Eq. (3.36) into Eq. (3.34) the time-resolved

diffusion equation finally emerges
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(3.38)

Now, consider an ultra-short pulse from an isotropic point source within an infinite and

homogeneous medium.

)0,0(),(0 δ=tq r (3.39)

Where δ is Dirac's delta function. The solution to Eq. (3.38) using the source defined by

Eq. (3.39) yields the following Green's function (impulse response).
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Where, Qs is the energy of the pulse from the point source and r is the radial distance from

the source. This relatively simple expression may be used to derive solutions for more

complex geometric configurations with greater practical relevance. The steady-state

equivalent of Eq. (3.40) is
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Here, Ps is the power of the continuous wave point source

3.3.2 Time-independent diffuse reflectance

In general, the work presented in Papers I-V concerns either diffuse reflectance

measurements of bulk media or in vitro diffuse spectroscopy on relatively thin samples.

Due to the restrictions discussed in Section 3.3.3 below, diffusion theory is not suited to

model the thin-sample geometry. However, the theory may be used to estimate the

reflectance from a collimated beam incident on a semi-infinite medium, provided that the

source-detector configuration and the optical properties conform to the restrictions in Eq.

(3.44). Several attempts have been made to include Fresnel boundary conditions, etc. into

diffusion theory. One of the more successful approaches46 is based on so-called dipole

sources and extrapolated boundaries as illustrated in Figure 3.7.

Figure 3.7. Schematic of diffusion theory
model of the diffuse reflectance R(r) as a
function of radial distance r. The model is
based the extrapolated boundary and virtual
dipole source approach.
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Thus, it can be shown (using Eq. (3.41)) that the spatially-resolved diffuse reflectance

from the geometry shown in Figure 3.7 can be expressed as
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Here, b is dependent on the actual Fresnel reflection coefficient, e.g. 2≈b  for a typical

tissue-air boundary.

3.3.3 Accuracy and limitations

Diffusion theory is an important workhorse in the field of biomedical optics. It has been

shown, however, that it is inaccurate in several instances, particularly for applications that

involve structures near the surface of the medium, small source-detector distances47, or

geometrical configuration with sharp discontinuities of the scattering properties.

Furthermore, it is laborious to model even moderately complex geometries using diffusion

theory. In any case, two basic conditions have to be fulfilled in order to obtain valid

results from diffusion theory33. First, scattering must prevail absorption; secondly,

sufficient source-detector distances have to be insured.

as µµ >>'    ,       
s

dsr
'

3~2

µ
>− (3.44)

These restrictions are a consequence of the basic assumption of the P1 approximation (see

Eq. (3.27)), that the radiance in a scattering medium is composed of a major isotropic part

and a minute anisotropic part.
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3.4 The Adding-Doubling Method

As mentioned previously, one-dimensional light propagation models are important in vitro

spectroscopy on turbid samples. Although MC simulations may also be used for this,

application of a dedicated one-dimensional method normally provides much faster

calculations. Besides providing fast calculations, the adding-doubling (A-D) method35,38

described here, permits anisotropic scattering and arbitrary sample thicknesses, and

handles refractive index mismatch also.

3.4.1 Reflection and transmission functions

The basic idea of the A-D method is that once the angle-dependent reflection R and

transmission T for a thin slab are known, then R and T for a slab of arbitrary thickness

maybe found by repeatedly doubling the thickness of the original thin slab. If this original

slab is sufficiently thin then single scattering approximations can be used to determine R

and T.

Figure 3.8. Angularly resolved incident and
reflected radiance for a thin slab.

Consider the slab geometry in Figure 3.8, the resulting irradiance E  from conical incident

light at angle θ  is given by

∫=
2

0

sin2cos)(

π

θθπθθ ininininin dLE (3.45)

Which may also be expressed as

∫=
1

0

)(2 inininin dLE νννπ (3.46)

Where, θν cos=in .
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Thus, for constant diffuse incident radiance inL = 1, the irradiance is

∫ ==
1

0

2 πννπ inindiff dE (3.47)

The reflection function ),( outinR νν  of the slab is defined as the reflected radiance outL  in

direction outν  as a function of the irradiance E of light incident from direction inν
normalized to diffI .

π
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R = (3.48)

From this definition of R and by applying Eq. (3.46), the reflected radiance )( outoutL ν  for

an azimuth-independent incident radiance Lin is given by

∫=
1

0

)(2),()( ininininoutinoutout dLRL νννννν (3.49)

Analogous expressions for the transmission function T and the transmitted radiance can be

derived in a similar manner.

3.4.2 Matrix approximation and quadrature integration

One of the assumptions, that the A-D method builds on, is that the reflectance and

transmittance properties of a thin slab may be approximated well by matrix operations on

inL , outL , R  and T  at a discrete set of angles 1ν , 2ν … nν , i.e.
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Where 1ν  = 1 and lν  = 0. However an unlimited number of angles l  is not practical, and

since the adding-doubling method implies integration of numerous functions it is

convenient to choose a limited set of angles '21 ,..., lννν  based on integration by

quadrature.
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The principle of e.g. Gauss quadrature48 is that the integral of a function )(νf  may be

approximated by:
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fwdf ννν (3.51)

Where the angles iν  and the weight coefficients iw  are determined simultaneously by

solving the equation system
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3.4.3 Adding the layers

Once a proper set of discrete angles have been determined using quadrature, the reflected

radiance may be approximated by the matrix expression

inout LRL = (3.53)

Note, that the multiplication of the reflection function R , the scaling factor 1/ n , and the

2ν factor in Eq. (3.50) all have been compiled into R  in Eq. (3.53). Figure 3.1 illustrates

the A-D notation of the reflected and transmitted radiance of a thin slab.

Figure 3.9. Schematic of reflected and transmitted
radiances L of a thin slab at boundary 0 and 1,
respectively.

Now, the matrix equations describing the reflection and transmittance properties of the

slab can be written as

↓↑↑

↑↓↓

+=

+=

0011100

1100011

LRLTL

LRLTL
(3.54)



55

Analogous expressions apply to a second layer with boundaries 1 and 2. Consequently,

Juxtaposition of layer01 and layer12 yields
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Where the transmission and reflectance operators are defined by
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And I  denotes the identity matrix
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In this way, once R  and T  of the thin slab in Figure 3.9 has been determined using an

appropriate method. Then the reflectance and the transmittance of a sample with arbitrary

thickness may be determined by repeatedly using Eq. (3.54)-(3.56).





Chapter 4 

Instrumentation and measurements

As pointed out in Chapter 1, the main subject of this thesis is optical characterization of

biological tissue and fluids, partly from non-invasive diffuse reflectance measurements,

and partly from goniometric and spatially resolved diffuse spectroscopy on thin slabs or

cuvettes. As discussed in Section 3.3.3 the use of diffusion theory for light propagation

modeling in turbid biological media is strongly limited by requirements to the range of

optical properties and the specific geometry of the setup. Most of the light transport

modeling presented here (Paper I-V) is therefore based on numerical Monte Carlo

simulations. Consequently, all data analysis is based on multivariate calibration and

prediction techniques as well. These analysis techniques are described in detail in Chapter

5, whereas this chapter provides a presentation of the design and development of the

applied instrumentation. Furthermore, practical aspects and problems encountered when

performing non-invasive reflectance measurements and diffuse in vitro spectroscopy are

also discussed. The wavelengths of the presented instrumentation are primarily within the

upper visible and the lower near-infrared range (500 < λ  < 1000 nm). Nevertheless, the

discussion and argumentation below, in principle, also applies to wavelengths in the

vicinity of this range, e.g. the biologically interesting middle and upper near-infrared

region (1.0 < λ  < 2.5 µm).

4.1 Skin tissue optical biopsy

Several studies have shown that important information on skin tissue constituents may be

extracted from diffuse reflectance measurements on the tissue. However, as a consequence

of the similarity principle15-17, normally only the absorption coefficient µa and the reduced

scattering coefficient µ's can be extracted from such measurements. While, µa may

provide information on important chromophores, such as, melanin, oxyhemoglobin, and

bilirubin49-55, µ's and may be used to characterize the size and concentration of various

scattering components in the tissue20,21,56-60. Moreover, tissue glucose concentrations may

also be correlated to the scattering properties of the tissue61,62.
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4.1.1 Structure and functions of skin tissue

The quantification of tissue chromophores and scattering elements, from diffuse

reflectance measurements, is impeded by the fact that human skin tissue is a not a regular

homogenous medium. As illustrated by the cross-section in Figure 4.1, skin tissue consists

basically of three main layers denoted epidermis, dermis and hypodermis.

Figure 4.1. Schematic cross-section of human skin tissue

The epidermis, which is 50-100 µm thick, may be further divided into three sub-layers:

the stratum corneum, the stratum spinosum, and the stratum germinatum (alias the basal

layer). The stratum corneum (the outer layer) is about 10-40 µm thick and made up of a

compact fibrous configuration of nonviable cells (keratinocytes), which form an effective

main barrier to the surroundings. The living keratinocytes are created by in the basal layer,

after which they slowly move outward and gradually transform into anuclear nonviable

cells. This migration from the basal layer to the stratum corneum takes approximately 14

days. Also located in the basal layer are the melanocytes that produce the pigment

melanin, which protects against UV radiation and also is responsible for the skin color.

The epidermis is bloodless; hence the nutrition for the cell production in the basal layer

diffuses outward from the blood vessels of the dermis.

The dermis, which typically has a thickness of 500 - 3000 µm, is highly vascularized.

Besides the rich blood supply, the dermis is made up of skin appendages such as hair

follicles and sweat glands, surrounded by fibrous supporting tissue and collagen.

Accordingly, the dermis is responsible for most of the skin's mechanical strength.

The subcutaneous tissue (hypodermis) beneath the dermis is mainly composed of lobules

of fat separated by collagen bundles and traversed by larger blood vessels, lymphatic
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vessels, and nerves. As opposed to the vascular system of the dermis, that serve nutritional

purposes only, the blood vessels of the subcutaneous capillary and venous plexus also

play an important role in the temperature regulation of the human body63,64
.

4.1.2 Diffuse reflectance techniques

Determination of optical properties from diffuse reflectance measurements may be

roughly divided into methods based on either time-resolved, frequency-domain, or

continuous wave (CW) techniques. Time resolved measurements65-67 provide information

on the path lengths traveled by the photons since the time-of-flight in a homogenous

medium is directly proportional to the path length. Hence, it is in principle possible to

apply Beer's law (Eq. (2.13)) on the recorded photons path lengths and calculate µa.

(a) (b) (c)

Figure 4.2. Schematics illustrating the recorded signals from (a)

time-resolved, (b) frequency-domain, and (c) spatially resolved

diffuse reflectance measurements.

The schematic in Figure 4.2(a) shows the reflected intensity R(r) as a function of the time

t at a given distance r. By means of time-dependent diffusion theory, it can be shown, that

the time delay of the peak value of R(t) can be related directly to µ's, and that µa can be

determined directly from the slope of the "tail" of the R(t) graph68,69. However,

determination of µa and µ's in the biological relevant range requires a time-resolution of

about 100 ps, thus relatively fast and expensive instrumentation is required.

Determination of µa and µ's using frequency-domain methods54,70,71 implies a modulated

light source and are based on phase ψ  and amplitude measurements of R(r) as depicted in

Figure 4.2(b). The data obtained from frequency-domain measurements are basically

analogous to the Fourier transform of the data from corresponding time-resolved

measurements, i.e. no additional information is gained from frequency-domain

measurements. Still, compared to time-resolved methods, frequency-domain methods may
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offer some advantages regarding acquisition time and subsequent data analysis72. On the

other hand, frequency-domain measurements typically require source-detector separations

in the cm range and hence relatively large sample volumes are required.

In the case of CW diffuse reflectance measurements39,46,73-79 (Figure 4.2(c)), the

information on µa and µ's is embedded in R(r) in a nontrivial way (see Eq.(3.42)). A

considerable part of the work on determination of optical properties from diffuse

reflectance measurements has been focused on either time-resolved or frequency-domain

techniques. However, as mentioned above, methods based on these techniques, also

require more bulky and expensive equipment, and/or larger sample volumes, which may

restrict their implementation in some biomedical applications. Recent work73,77 (Papers I,

III, and VII)  has shown that CW based methods may yield absolute determination of the

optical properties of tissue with accuracies comparable to time-resolved and frequency-

domain techniques. Moreover, CW techniques also imply relatively simple technology

and thus enable compact implementation. This make CW based methods well suited for

long-time monitoring of skin tissue optical properties, because a probe may be fixed to the

skin of a patient and still allow him to move around. Optical biopsies of body cavities or

organs are also favored by CW techniques since they allow small-size probes to be

implemented in endoscopic instrumentation.

4.1.3 Geometry considerations

The extraction of µa and µ's from CW R(r) measurements is a nontrivial problem, which

calls for advanced data analysis in order to determine the optimum positions and number

of detectors. There is, however, some regularity in the R(r) dependence of µa and µ's
(Paper III), as illustrated in Figure 4.3. The schematic in Figure 4.3(a) shows that

)0( ≈rR is practically invariant with respect to aµ  when s'µ  is kept constant, i.e. there is

a virtual "hinge" situated at the source. Likewise, Figure 4.3(b) shows that )( pivotrR  is

practically invariant with respect to s'µ  when aµ  is kept constant, i.e. there is a virtual

"pivot joint" situated at rpivot. The experiments in Paper III showed that rpivot ∼ 3 mm for a

biological relevant range of optical properties (0 < µa < 0.35 cm-1 and 6 < µ's < 16 cm-1).

The graph in Figure 4.3(a) suggests that s'µ  may be determined with good accuracy from

R(r) data at the hinge exclusively. In order to determine aµ  also, Figure 4.3(b) suggest

that )(rR  measurements at the pivot joint should be included as well, since )(rR  is

almost independent of s'µ  here. Although, other authors78,80 support this argumentation,

the experiments in Paper I showed that R(r) data at the hinge in conjunction with data well

beyond the pivot joint yielded better robustness and accuracy than )(rR data close to the

pivot joint. Consequently, source-detector distances well beyond the pivot joint (for

typical skin tissue optical properties) were included in the development and design of the

instrumentation presented in Paper III.
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(a) (b)

Figure 4.3. Spatially resolved diffuse reflectance R(r) as a

function of µa and µ's for (a) constant values of µ's, and (b) for

constant values of µa. The "hinge" and "pivot" marks indicate

R(r) invariance.

4.1.4 Contact probes and image reflectometry.

Instrumentation based on CW diffuse reflectance measurements may in general be divided

into probes in physical contact with the sample46,74,76,77,81,82 and non-contact methods39,83-85

(image reflectometry). The latter type of methods is advantageous in clinical applications

because of the non-contact and thus sterile properties, while the former type is superior for

compact and portable equipment for long term monitoring. Studies on both type of

instrumentation have been carried out in Paper III and Paper IV, respectively. Figure

4.4(a) shows the fiber optic probe system for contact measurements presented in Paper III,

and Figure 4.4(b) shows the Fourier transform interferometric imaging system (FTIIS)

used for the hyperspectral image reflectometry experiments presented in paper IV. In

addition to the sterile advantages of image reflectometry systems, the non-contact

operation does not induce any mechanical pressure on the tissue either. Thus the blood

perfusion of the tissue is not affected either, as opposed to contact measurements, where

this may cause serious interference, when contact measurements are carried out. Another

advantage of image reflectometry systems is that the diffuse reflectance from areas of

arbitrary size can be collected, simply by using a zoom lens to collect the light. Moreover,

complementary conventional images (with diffuse irradiation of the tissue surface) are

easy to record. As a result, the tissue samples may be further evaluated by simple visual

inspection and/or the optical homogeneity of the samples may be quantified by applying

image analysis techniques.
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(a) (b)

Figure 4.4. Pictures of (a) the fiber probe system and (b) the Fourier transform
interferometric imaging system (SpectraCube ® ASI) applied in Paper III and IV,
respectively.

Figure 4.5 shows a schematic of the fiber optic probe system presented in Paper III. The

fiber probe collects the diffuse reflectance in six concentric rings around the source in the

range 0.6 - 7.8 mm, in concordance with the discussion in Section 4.1.3. In comparison

with a simpler linear configuration; the ring configuration makes the system more robust

to any inhomogeneity in the sample. Moreover, it also increases the signal sensitivity at

the larger source-detector separations. The light source(s) consists of 4 multiplexed

replaceable diode lasers. Thus the wavelengths of the probe may be chosen arbitrarily

among available diode lasers. The reflectance is collected simultaneously at all 6 rings and

one cycle of successive measurements at the four wavelengths may be performed with a

rate of about 100 Hz. This speed is sufficient to record the dynamics of most natural

occurring physiological activity including pulse, breathing etc. Thus, in conjunction with

appropriate calibration and prediction techniques, the system is capable of real-time

determination of µa and µ's. The fiber probe system was intended as a versatile research

tool, and although it is relatively compact it is not designed as a portable tool for long-

term monitoring. However, by using LED light sources and integrated electronics, the

technology is readily implemented into portable probes dedicated for fixation on the skin

and hence suitable for long-term monitoring.
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Figure 4.5. Diagram of fiber optic system for CW R(r) measurements

applied in Paper III. (1) Probe head with source and detector optical fibers.

(2) Handheld box with photo diodes and amplifier electronics. (3) Stationary

box containing a digital signal processing board and diode lasers. (4)

External temperature controller. (5) Laptop PC to analyze, display, and

store the acquired R(r) data.

4.1.5  Practical aspects, problems and interferences.

When using the above-mentioned setups for practical measurements a number of

problems and interferences are encountered. Some are specific for either the FTIIS setup

or the probe system, and some apply in general. The problems and interferences common

to both types of setups are mainly associated with the local morphology and physiological

dynamics of the skin tissue. First of all, skin tissue is highly inhomogeneous, as pointed

out in Section 4.1.1. This makes light modeling complex, i.e. it is difficult to generate

proper calibration models and in turn to perform accurate predictions of µa and µ's .

Layered models can be applied, but it has been shown (Paper VI) that the generic form of

R(r) from a multi-layered geometry is similar to R(r) from a single-layer geometry, i.e. it

is difficult to distinguish the optical properties of the separate layers and also to determine

whether any variation in R(r) originate from changes in µa or changes in µ's. Furthermore,

structures such as hair, sweat glands, and blood vessels add to the inhomogeneity as well.

In short, any extracted values of µa and µ's from R(r) measurements on skin tissue are a

composite of the optical properties of each individual type of tissue in the sample volume.

Moreover, according to the discussion in Section 4.1.3, µ's is mainly determined from

short source-detector separations, while µa is determined from larger separations, i.e.

different tissue volumes are sampled in order to determine µa and µ's simultaneously. Both
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topical and subject-to-subject variations in the skin composition (e.g. melanin content and

layer thicknesses) further complicate accurate determination of aµ  and s'µ . Another

frequently occurring problem during measurements of optically weak signals (e.g.

scattering due to tissue glucose) is interference from blood perfusion variations. Such

variations may be simple pulsatory variations as well as more subtle variations associated

with thermoregulation or the psychic state (e.g. shock, blushing, etc).

In addition to the above, there are a number of problems specifically related to optical

biopsy on skin tissue using contact probes. First, the static mechanical pressure of the

probe may influence the tissue optical properties, e.g. by displacing blood in the sample

volume. Second, physical activities of the patient may cause movements of the probe

relative to the skin tissue (motion artifacts). Finally, the obstruction of the tissue-air

interface, in combination with sweating, may cause long-term changes in the tissue-probe

optical coupling. In fact, proper and reproducible tissue-probe coupling is of paramount

importance in order to obtain valid results. This is rendered difficult by the rugged and

highly scattering structure of the stratum corneum, therefore some sort of fluid or creme is

often applied in order to provide a better refractive index match between the probe and the

skin. This problem may also be confronted by stripping off the stratum corneum before

the probe is mounted. But, as mentioned in Section 4.1.1 above, the stratum corneum will

regenerate completely in about 14 days, leaving this approach suitable for relatively short-

term measurements only. Because of the coupling difficulties, it would be opportune to

employ relative instead of absolute reflectance measurements, that is, to consider the form

and shape of R(r) only. However, the investigations in Paper I showed that this lead to a

significant decrease in the prediction accuracy of µa and µ's. The problems due to coupling

and inhomogeneity may also be addressed either by individual calibration to each patient

or by considering relative changes in  µa and µ's only. Still, the basic background optical

properties may change considerably during long term monitoring.

There are also several practical problems and drawbacks specifically related to image

reflectometry systems as well. First, the measurements have to be corrected for the point-

spread function of the imaging system. Secondly, the equipment is not portable. Finally,

the acquisition rate is typically relatively low and a considerable amount of data is

produced leading to a low analysis rate as well.

4.2 In vitro diffuse spectroscopy

In the above discussion on diffuse reflectance measurements, only µa and µ's were

extracted, i.e. µ's could not be separated into µs and the anisotropy factor g. Consequently,

important information on the size and shape of the scattering elements in a sample could

not be extracted. As an alternative, all three optical properties (µa, µs, and g) may be



65

obtained from combined in vitro transmittance and reflection measurements on thin

samples (e.g. tissue slices or solutions in cuvettes). Such methods are not only interesting

for medical purposes, but also for applications in industry and environmental technology.

Nevertheless, most present available conventional methods are not able to extract µa, µs

and g simultaneously and hence focus on either the absorption- or the scattering

properties; i.e. the scattering effects are treated as interference during absorption

measurements or vice versa. Figure 4.6 shows some commonly applied setups for

absorption and scattering characterization.

(a) (b) (c)

Figure 4.6. Schematic setups for (a) absorption spectroscopy, and scattering

measurements based on (b) turbidimetry, and (c) nephelometry.

4.2.1 Absorption spectroscopy

Absorption spectroscopy is characterized by measuring the attenuation of light through a

cuvette with a well-defined optical path length. It is one of the most commonly used

optical techniques for analysis of biological solutions. The solutions are normally

quantified by using Beer's law (see Eq. (2.13)), i.e. a linear relationship between the

concentration and aµ  is assumed. However, many biological solutions contain scattering

components, which also contribute to the attenuation of the light through the samples. In

some cases the scattering contribution is either ignored, or more or less effective

correction schemes are employed86,87. In other cases, the scattering components are

removed before the absorption measurements. As an example, this is carried out as in

various types of clinical blood analysis, where the blood cells are hemolysed (i.e. the cell

walls are crushed either mechanically or chemically) and removed from the sample either

by means of sedimentation or centrifugation before the spectroscopic analysis is

performed.
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4.2.2 Turbidimetry and nephelometry

The concentration or size of scattering components in turbid solutions, may be determined

using turbidimetric and nephelometric methods. These methods are based on simplified

goniometric in vitro measurements of the light re-emitted from a scattering sample. As

illustrated by Figure 4.6(b) and (c), turbidimetry is characterized by measuring the

attenuation of a collimated beam passing through the sample, while nephelometry is

characterized by measuring the intensity of the scattered light, typically at a 90° relative to

the incident beam. At hospital laboratories, turbidimetric and nephelometric methods are

widely used for so-called optical immunoassays, i.e. procedures measuring the light

scattering effects due to formation of immune complexes from antigen-antibody reactions.

These measurements are used to quantify human proteins in biological fluids, such as

plasma, serum, cerebrospinal fluid, and urine, and thus serve as an important tool for

diagnosing diseases and monitoring the effect of treatment. Analogous to unwanted

scattering components during absorption spectroscopy, absorption effects may cause

serious interference during turbidimetry and nephelometry

4.2.3 Integrating sphere measurements

Diffuse transmittance (Td) and reflectance (Rd) measurements on thin samples using

integrating sphere (IS) setups (see Figure 4.7(a)) have been widely used as a research and

reference tool for in vitro quantification of µa and s'µ
88-92. By supplementing IS

measurements with collimated transmittance (Tc) measurements, µ's may be further

separated into µs and g.

(a) (b)

Figure 4.7. Pictures of (a) the integrating sphere setup. and (b) the goniometer
system applied in Paper II and V, respectively.

Several approaches have been applied to model the transmittance and reflectance

properties of thin samples, e.g. methods based on Kubelka-Munk theory93 and diffusion

theory94, which both provide analytic expression for Rd and Td. However, these methods
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are characterized by moderate accuracy and hence most contemporary techniques for

extraction of µa, µs, and g from IS and collimated transmittance measurements are based

on more accurate numerical methods such as the inverse adding-doubling (IAD) method38

or Monte Carlo based methods89,95. The IAD method is based on iterative calculations of

Rd and Td, which, however, may prove to be to slow for some applications involving

hyperspectral analysis. To this end, a new method, based on a pre-made Monte Carlo

database and multiple polynomial fitting, which is faster and more accurate than the IAD

method, is presented in Paper II.

4.2.4 Combined spatially resolved and goniometric measurements

As mentioned above, IS measurements are widely used as a reference method for in vitro

determination of µa, µs, and g. Implementation in practical in vitro diffuse spectroscopy

applications is, however, less prevalent, partially due to the inconvenience of the bulky

geometry. Moreover, the sample has to be moved from one port of the sphere to another to

accomplish both transmittance and reflectance measurements. Double-sphere setups may

be applied to avoid this, but then the measurement accuracy is decreased, due to optical

cross-talk between the two spheres. Furthermore, in order to separate µ's into µs and g

collimated transmittance measurements have to be carried out also. Besides being difficult

to perform, such measurements also imply moving the sample to a separate setup. The

conventional methods for in vitro optical characterization of turbid samples, i.e.

absorption spectroscopy, turbidimetry, and nephelometry, do not suffer from the

inconvenient sample handling of the IS method. Still, they are not capable of simultaneous

determination of µa, µs, and g. Accurate and handy methods for in vitro optical

characterization of turbid samples is not only interesting for purely medical applications,

but also has considerable potentials in areas such as environmental technology and

process control in the food industry (e.g. breweries and dairies). To this end, two methods

for simultaneous real-time determination of µa, µs, and g is presented in Paper V. The first

method is based on conventional goniometric measurements at multiple angles. The

experiments showed that µa, µs, and g may be determined with good accuracy from the

diffuse transmittance at three angles, i.e. 0°, 3°, and 60°, relative to the optical axis.

However, measurements at 60° may be inconvenient to implement, thus a second setup,

shown in Figure 4.8, was also developed and tested. This method is based on two spatially

resolved measurements of the transmittance )(rT  and the reflectance )(rR  in

combination with goniometric transmittance measurements at two relatively small angles

(α1 and α2). By applying a 1 mm thick cuvette, the data analysis in Paper V showed that

the optimum radial distances of the Td and Rd measurements were about 2.5 mm and that

optimum angles α1 and α2 were 0° and 3°, respectively, for typical biological optical

properties.
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Figure 4.8. Setup for simultaneous determination of µa, µs, and g

based on spatially resolved reflectance and transmittance

measurements in combination with goniometric transmittance

measurements.

As it appears, the output from the setup in Figure 4.8 generates four variables, while in

theory only three are needed to determine µa, µs, and g. Therefore, the dimension of

output data are reduced by principal component analysis (see Section 5.2.2), which in turn

makes the method more robust to measurement noise interferences. Moreover, as opposed

to the collimated transmittance measurements of the IS method, the α1 and α2

measurements rely on finite numerical apertures. This all together, enables compact

implementation and robust operation of the hybrid goniometric/spatially resolved setup.



Chapter 5 

Multivariate data analysis

As described earlier, the task of extracting the optical properties from either diffuse

reflectance measurements on a bulk medium or in vitro measurements on a thin sample

can be broken down to consecutively solving a direct and an inverse problem. The direct

problem, i.e. modeling the light propagation, was discussed in Chapter 3. In this chapter

the inverse problem is addressed by means of multivariate data analysis (MDA), which, in

general terms, deals with optimum extraction of information from a set of measured data

by application of relevant mathematical and statistical tools. This rather broad

characterization reflects the fact that the many techniques constituting MDA have evolved

from a number of rather diverse fields, e.g. economics, psychology, and chemistry. For

example, MDA is also frequently referred to as chemometrics due to the extensive use by

chemists. Hence, MDA lacks a distinctive definition. Naturally, there exists also a

considerable overlap to the more strictly defined methods and techniques in the field of

mathematical statistics. In the comprehensive framework of MDA, the inverse problem of

extracting the optical properties may be approached in numerous ways, e.g. by applying

neural networks39,96,97 or cluster analysis97,98. Both of these approaches can be very

effective, especially for describing non-linear relationships. However, they are also

somewhat of a "black box" mathematically speaking. In this chapter, the inverse problem

is addressed by means of more mathematically "transparent" multivariate calibration

techniques99-101, which give a better insight into the works of the inversion scheme. In the

following, there will be a general introduction to some of the traditional methods as well

as a presentation of the specific methods and techniques applied in Papers I-VI. Because

the principles of conventional spectroscopy is commonly known, this particular

application will be used to exemplify the principles of the discussed MDA techniques in

parallel with the various applications presented in the papers.
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5.1 Framework and basic principles

In short, calibration is to relate a set of implicit properties of a system to a set of explicit

properties, or, in other words, to relate some more or less concealed characteristics of the

system to a set of directly measurable parameters. These implicit and explicit properties

are quantified by a set of so-called dependent and independent variables, denoted y and x,

respectively. These are the appellations normally used in MDA, but for mnemonic reasons

y and x will be denoted the implicit and explicit variables, respectively, in this context.

Moreover, matrices will be denoted by bold capital letters (X), vectors by bold lower-case

letters (x), and the single elements of matrices or vectors by italics (x). Unless otherwise is

stated, vectors are assumed to be column vectors. Furthermore, in order to distinguish

between known and estimated values of the implicit variables, estimated values are

indicated by the "hat" symbol ( ŷ ).

The starting point for creating a calibration model is the data matrix X containing

recorded data from the system in question.
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Figure 5.1. Analogy between (a) data matrix and (b) recorded spectra in the

absorption spectroscopy case.

In the equation in Figure 5.1(b), each row corresponds to a measurement on one sample

and the columns are the measured variables collected from each sample. That is, X

consists of I samples with J explicit variables, which in the spectroscopy example

correspond to a series of I spectra measured at J wavelengths, as illustrated in Figure

5.1(b). Analogous to X, the inherent properties of the analyzed system, i.e. the implicit

variables may be arranged in a system matrix Y.
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In the absorption spectroscopy case, the M implicit variables of Y are identical to the

concentrations of M chromophores in the analyzed substance.

5.2 Preprocessing techniques

In some cases it may be convenient or even necessary to carry out data preprocessing, i.e.

to prepare the data in X in some way before any calibration is performed. In its simplest

form preprocessing can be a visual inspection of the data in order to exclude any outliers

(i.e. obviously flawed data), from X before the calibration. Since, missing data also can

corrupt the calibration, it may also be advantageous to fill in qualified guesses, e.g. the

mean value of the nearby data. However, such procedures should be carried out with

caution, and it should be stressed that missing unique information cannot be restored. If

the data appears to be is noisy, it may also be helpful to smooth out the data, e.g. by using

Fourier transform filtering or spline interpolation.

5.2.1 Linearization, centering, and scaling

If there is a non-linear relationship between the Y and the X variables, it can be necessary

to perform a linearization of X in order to obtain data with a simpler distribution and a

more stable variance. In absorption spectroscopy, there is an exponential relationship

between the implicit and explicit variables, i.e. the concentrations of the chromophores

and the measured transmittances. In this case, the X variables are linearized using Beer's

law (Eq. (2.13)), i.e. the calibration is not based on the raw transmittance measurements,

but on the absorbance )/(log10 inout PPA −= , i.e.

)(log10 XX −=l (5.2)

Figure 5.2(a) illustrates the effect of linearization, by taking the logarithm of the X data

depicted in Figure 5.1.
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  (a) (b) (c)

Figure 5.2. Various types of common preprocessing techniques applied on the

spectra in Figure 5.1; (a) linearization, (b) centering, and (c) autoscaling.

During a calibration it often advantageous to remove any baseline, i.e. any constant level

in the X data, so that the variations in the data are favored over the absolute levels. This

can be accomplished by differentiating the X data once or twice or, more commonly, by

centering the X matrix.

mc XXX −= (5.3)

Where

[ ]Jm xxx ...21uX = (5.4)

Here, 1x … Jx  are the sample means of the J variables in X and u is a column vector with

I elements all equal to one. Thus Xm becomes a (I,J)-dimensional matrix like X. Figure

5.2(b) shows the centered data of the absorption spectra in Figure 5.1. For instance,

centering would typically be employed to remove the approximately constant background

water absorption during absorption spectroscopy on aqueous solutions. Moreover,

centering is also a prerequisite of the very useful principal component analysis method

presented in Section 5.3.3 below. Finally, Xc is also used in the definition of the important

covariance matrix of X.

ccI
XXS '

1

1

−
= (5.5)

Where I still denotes the number of samples in X.
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The covariance matrix S provide important information on the spread and the covariance

of the variable values in X. For instance, the J diagonal elements in S are the sample

variances vars of X.

[ ] )(...)( 22
2

2
1 SX diagsssvar Js == (5.6)

Where s1…sJ are the standard deviations of the samples in X.

In some instances, it may also prove to be necessary to weight, i.e. scale the explicit

variables, especially if the explicit variables are measured in different units with large

numerical differences. Scaling is accomplished by multiplying each column of X by a

column specific scaling factor. The scaling factors may be determined in several ways,

e.g. by letting the variance of each variable in Xc be one. This widely used approach is

termed autoscaling.









=

J
cas sss

1
...

11

21

uXX (5.7)

Where, u again is column vector with I elements all equal to one. The effect of

autoscaling the spectra from Figure 5.1 is illustrated in Figure 5.2(c).

Finally, when any prediction is performed on the basis of preprocessed calibration data,

the measured prediction data should be prepared accordingly. For instance, if the

calibration model is based on a centered X matrix, the mean values of the calibration data

should be subtracted from the Xpred data from which Ŷ  is to be predicted, i.e..

calmpred ,XXX −= (5.8)

5.2.2 Principal component analysis

Principal component analysis (PCA) is a major workhorse in MDA86,102. In short, the PCA

procedure decomposes the original coordinate system of a centered data matrix Xc into a

new system defined by a set of orthogonal unit vectors (p1, p2, …pJ). These vectors are

chosen so that the direction of p1 is the direction where the samples of X has the largest

variance, while the direction of p2 is the direction with the second largest variance, etc.

The change of coordinate system results in a new set of so-called latent variables, also

denoted principal components (PC1, PC2, …etc). The scatter plots in Figure 5.3 illustrates

how a data swarm in a three-dimensional X system (i.e. J = 3) spanned by the vectors ex,

ey, and ez is transformed into the principal component system spanned by p1, p2, and p3.



74

   (a) (b) (c)

Figure 5.3. Scatter plots illustrating the PCA decomposition of coordinates

from the original Xc system in (a) into the principal components in (b) and

(c). Note that, due to the implicit centering in PCA,, the origins of the

coordinates systems in (b) and (c) in fact are situated at the center of the

data swarm.

The elements of the p vectors are denoted loadings, and the vectors themselves are called

loading vectors, since they express the coordinates of the new system in terms of the

coordinates of the original X space as illustrated in Figure 5.3. Analogous to the explicit

variables in the Xc data matrix, the principal components are arranged in a so-called score

matrix T defined by:

PXT c= (5.9)

Where,

[ ]JpppP ...21= (5.10)

Similarly, the original centered data matrix can be calculated from:

TP'X =c (5.11)

It can be shown that the loading vectors are the eigenvectors of the covariance matrix S of

X (see Eq. (5.5)) and hence they are characterized by:

jj SpS =λ (5.12)

The eigenvalues of S in Eq. (5.12), i.e. 1λ … Jλ , are measures of the variance of the PC's

directed along the corresponding loading vectors p1, p2, …pJ. Thus, the P matrix in
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Eqs. (5.9)−(5.11) is determined by sorting the loading vectors according to decreasing

eigenvalues. The full set of latent variables of the score matrix T (i.e. the principal

components) carry exact the same amount of information on the analyzed system as the

original explicit variables in X. So nothing is gained by just shifting from X coordinates to

principal components. However, as stated above, during PCA the principal components

are sorted according to the amount of sample variance in the variable values. Thus, it is

likely that, any redundant information in the X is isolated in the main principal

components, i.e. PC1 or PC2. Likewise, any random noise or interference in X is most

likely transferred to the inferior higher-numbered principal components. Owing to this,

PCA may be used for effective dimension reduction of data matrices with many variables,

by including only a few main principal components when generating calibration models.

[ ] JFFcF <= ,...21 pppXT (5.13)

Thus, PCA may in turn lead to simpler calibration models and more robust predictions.

The data analysis presented in Paper III and V provide examples of such dimension

reduction using PCA. Furthermore, PCA is also an integral part of the PCR calibration

models described in Section 5.3.3 below. Analogous to the other preprocessing techniques

discussed above, in any predictions involving PCA, the X data used for the predictions

based has to be prepared accordingly before the prediction is carried out, i.e.

PXXT )( ,calmpred −= (5.14)

5.3 Linear calibration models

As stated in Section 5.1 the basic task of calibration and multivariate modeling is to

mathematically describe the relationship between the explicit variables of the data matrix

X and the implicit variables of the system matrix Y. The MDA literature provides a

variety of methods and techniques for accomplishing this. Many of these are based on

variations of one of the four methods introduced in the following. These four methods are

denoted; classical least squares (CLS), multiple linear regression (MLR), principal

component regression (PCR), and partial least squares (PLS), respectively. All four

methods basically assume linear relationships between the explicit and the implicit

variables, and furthermore rely on least square regression techniques. However, they are

often (with more or less success) applied on non-linear systems as well. But, in most such

cases it will be more appropriate to apply an actual non-linear model as discussed in

Section 5.4 below.
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5.3.1 Classical least squares

The simplest and most intuitive of the four basic calibration models is the classical least

squares (CLS) method, which is also referred to as total calibration, because all

components of the analyzed medium is determined simultaneously. The mathematical

formulation of the CLS model is:

xEYKX += (5.15)

As stated above, and as indicated by the name of the method, the calibration coefficient

matrix K is determined by least squares regression during which the residual part Ex

representing random noise, non-linearities, etc in X is minimized. The CLS model

assumes that the contributions from every component of the analyzed system including

interferences are known during the calibration. In absorption spectroscopy this implies

that the concentrations of all occurring chromophores in the samples have to be included

as implicit variables in the system matrix Y during calibration, which in some cases is

most inconvenient or even impossible. Prediction of iŷ  from a measured sample xi using

CLS is described by:

ii KxKKy 1)'(ˆ −= (5.16)

With reference to the spectroscopy example shown in Figure 5.1(b), xi is thus a row vector

containing the absorption spectrum from the unknown sample i, and iŷ  is a row vector

with the predicted values of the concentrations of the chromophores in the sample.

5.3.2 Multiple linear regression

 In the multiple linear regression (MLR) model103 the problem is turned upside-down as

compared to the CLS, i.e. the model is described by:

yEXBY += (5.17)

This means that a single implicit variable y, can be estimated as a weighted sum of a set of

measured explicit variables by using:

mimiy bx=,ˆ (5.18)

Naturally, the full set of variables Ŷ  of a series of samples may also be determined by

replacing the row vector xi and the column vector bm with the matrices X and B in Eq.

(5.18). During MLR, the y-residuals Ey are minimized, as opposed to the x-residuals Ex
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using the CLS model. Consequently, it is not necessary to quantify all interfering

components during calibration, which is the main advantage of MLR compared to CLS.

However, in order to obtain valid results using the MLR model, it is important that any

interfering agents present in the prediction samples also are included during calibration.

The major drawback of the MLR model is that the number of explicit variables is not

allowed to exceed the number of samples during calibration, i.e. J < I must apply for X.

5.3.3 Principal component regression

The principal component regression (PCR) model seeks to combine the advantages of the

CLS model and the MLR model by applying PCA prior to prediction, and thus circumvent

the drawback of the MLR model regarding the limited number of variables. This is

accomplished by using the equations in Section 5.2.2 above to reduce the J explicit

variables in X to F principal components in T. In analogy with the MLR model in Eq.

(5.17), the PCR model is thus described by

yETBY += (5.19)

Again parallel to the MLR model, y may be estimated using

mimiy bt=,ˆ (5.20)

Where ti and bm are row- and column vectors, respectively. In this way, the MLR model's

advantage of not having to quantify any interferences, and the CLS model's capacity for

handling numerous variables is thus both incorporated into the PCR model.

5.3.4 Partial least square regression

The loading vectors, i.e. p1, p2… in PCA and thus PCR are determined on the basis of the

variations in X only. Still, if a major part of the variations in X are not correlated to

variations in Y, but caused by random noise, then any structured information on the

system may be smeared out into some of the inferior principal components and thus be

practically lost. In such cases, it is favorable to apply the partial least squares regression

(PLS) model104, because, it not only seeks to describe the major variations in X, but also

attempts to isolate the part of the variations which is relevant for the description of Y.

Analogous to the PCA method, this is realized by shifting to a new coordinate system

defined using a set of unit loading vectors w. However, in the PLS approach, the

directions of w are not determined on the basis of the variance of X, but on the basis of the

covariance between X and Y, i.e.
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YX

YX
W

'

'= (5.21)

Where

[ ]JwwwW ...21= (5.22)

The component loading vectors of W may also be determined separately by substituting Y

with y in Eq. (5.21), which sometimes provides a better model. The latter approach is

termed PLS1, and the former PLS2. The score matrix T in the PLS2 approach is defined

as

WXT c= (5.23)

Hence, the PLS model is characterized by

yETBY += (5.24)

And the implicit variables may be estimated using

mimiy bt=,ˆ (5.25)

Like in Eq. (5.20) all miy ,ˆ  may be determined simultaneously by substituting ti and bm

with T and B in Eq. (5.25). However, it should be noted that ti in Eq. (5.25) is not equal to

ti in Eq. (5.20).

5.4 Non-linear calibration and prediction

The previous section considered linear calibration models and used traditional absorption

spectroscopy and thus predictions of µa as a general example. This section will proceed

with a presentation of non-linear multivariate methods suitable for predicting, either µa

and µ's, or all three basic optical properties (i.e. µa, µs, and g) from various combinations

of diffuse reflectance and transmittance measurements. Paper II deals with calibration and

predictions of µa and µ's using integrating sphere measurements, i.e. measurements of the

total diffuse reflectance R and transmittance T from thin slabs or cuvettes. By applying the

terminology lined out previously, the rows of X are defined as:

[ ]iii TR=x (5.26)
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Repeated recordings of R and T in the given (µa, µ's) range thus yield the full data matrix

X illustrated graphically in Figure 5.4(a). In Paper III, µa and µ's are extracted from

spatially resolved diffuse reflectance measurements. Here, the main part of the analysis

was carried out using the reflectance data from the first and sixth detector of the fiber

probe described in Paper III. Thus, the rows of X are defined as:

[ ]iii dd ,6,1=x (5.27)

Where, the full data matrix is illustrated by the surface plots in Figure 5.4. The system

matrix Y corresponding to the X matrices depicted in and Figure 5.4(a) and (b) are in both

cases given by

[ ]isiai ,, 'µµ=y (5.28)

The X - Y relationships depicted in Figure 5.4(a) and (b) are clearly non-linear. Hence, in

order to carry out proper calibration and prediction either effective linearization of the X

data, or nonlinear models must be employed, e.g. multiple polynomial regression as

demonstrated in Paper II and III.

(a)

(b)

Figure 5.4. Surface plots as a function of µa and µ's for (a) integrating sphere

measurements of the total diffuse reflectance R and the total diffuse transmittance T,

(Paper II) and for (b) spatially resolved diffuse reflectance measurements at detector

d1 and d6 of the fiber probe system (Paper III).



80

5.4.1 Multiple polynomial regression

The non-linear regression approach applied in Paper II, III, and V is based on fitting two

functions (g1 and g2) of µa and µ's to X, e.g. the data illustrated in Figure 5.4(a) and (b),

respectively.





















=





















=

)',()',(

......

)',()',(

)',()',(

......

,,2,,1

2,2,22,2,1

1,1,21,1,1

2,1,

2,21,2

2,11,1

IsIaIsIa

sasa

sasa

II gg

gg

gg

xx

xx

xx

µµµµ

µµµµ
µµµµ

X (5.29)

Where, the functions g1 and g2 are double-polynomials defined as
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Accordingly, akl and bkl are the fitting, i.e. the calibration coefficients determined by least

square regression in Eq. (5.29), and n is the order of the resulting double-polynomials.

The equation system in Eq. (5.29) may also be expressed in short form by the matrix

equation:

BYX pol= (5.31)

Where, Ypol consists of i rows each with (n+1)2 elements, which are identical to the

products l
s

k
a 'µµ  in Eq. (5.30), while B consists of two column vectors, where the elements

are akl and bkl, respectively.

The procedure lined out in Eqs. (5.29) and (5.30) is based on two y variables ( 2=M ).

However, the procedure may in principle be expanded to any number of y variables, and

hence it is denoted multiple polynomial regression (MPR). For instance, MPR with

3=M  was applied in Paper V to create models using triple-polynomials of the form
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5.4.2 Newton-Raphson method

By applying the MPR method to create non-linear calibration models, it is not possible to

carry out subsequent predictions by simple matrix manipulations; instead some sort of

numerical root-locating method must be applied in order to estimate ŷ from x. There are

numerous algorithms for this, each with specific advantages regarding accuracy, speed,

and robustness. The Newton-Raphson (N-R) method is perhaps the most widely used, and

it turned out to be the best choice for the analyses described in Paper II, III, and V as well.

The first step in N-R method is to define the functions )ˆ( iyf  from the fitting functions

)ˆ( iyg , e.g. as defined by Eq. (5.30), and the prediction samples xi from which the iŷ

variables are to be estimated.
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The next step is to perform converging iterative estimation of the ŷ  variables using

.....3,2,1
'ˆ'ˆ

)ˆ(

,1,

,
=







+=

=−

+

k
kkiki

kki

hyy

Jhyf
(5.34)

Where, h contains correction terms of i'ŷ , and J is the Jacobi matrix
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Naturally, the N-R method can also be used in conjunction with non-polynomial

functions, if such provide better calibration models. However, the N-R method always

requires that the number of x variables equals the number y variables, i.e. J = M with

reference to Figure 5.1(a) and Eq. (5.1). This may be a considerable drawback in

applications involving numerous x variables. Still, as it was demonstrated in parts of the

analyses in Paper III and V, PCA may be utilized to reduce J explicit variables to M

principal components during calibration, and thus subsequently allow the N-R algorithm

to be employed for prediction.



82

5.5 Model validation and optimization

Once a calibration model has been created it is important to characterize the performance

of the model as regards prediction errors, robustness, etc. For instance, accuracy and

robustness often behave in a diametrical manner; i.e. detailed models may be too sensitive

to noise in the prediction measurements and thus produce false or non-converging results.

A too detailed model will also track all the noise variations in addition to the structured X-

Y variations during calibration and lead to incorrect models. Therefore, it is imperative to

perform prediction tests yielding quantitative measures of the model performance in order

to evaluate and optimize the model for a specific application. In order to get reliable

results, any final prediction test should in principle always be carried out using

independent sets of calibration and prediction samples. However, for economical reasons

or during preliminary analysis of the model it may be convenient to apply the so-called

leave-one-out cross validation test, which implies calibration and prediction tests using the

same set of samples. However, during a cross validation test, the particular sample used

for prediction is excluded from the calibration set, i.e. in case of I samples, cross

validation yields I predictions using I different calibration models each based on 1−I

samples.

5.5.1 Errors, accuracy and precision

The root mean square error eRMS is a widely used measure of errors in MDA and statistics.

It has the same units as y and embodies errors of the calibration model, measurement

errors, interferences, etc.

∑ −= 2)ˆ(
1

iiRMS yy
I

e (5.36)

The mean relative error eMR is also frequently used

∑ −
=

i

ii
MR y

yy

I
e

ˆ1
(5.37)

However, one should be careful in the interpretation of eMR, especially because yi values

close to zero yield much higher relative errors, than yi values far from zero, despite equal

absolute errors. Therefore it often more favorable to apply the mean, relative to the range,

error eMRR.
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When evaluating the performance of calibration models and prediction algorithms it is

advantageous to clearly distinguish between accuracy and precision. These two concepts

are illustrated graphically in Figure 5.5.

Figure 5.5.
The concepts of accuracy and precision. The
"++++" symbol represents the true value, while the
" " symbols are predicted values.  

The inaccuracy of a set of predictions is defined as systematic deviation of the estimated

values from the true value, and is expressed mathematically by the bias of the estimated

values

∑ −= ii yy
I

ybias ˆ
1

)ˆ( (5.39)

On the other hand, the imprecision (also called uncertainty) of the predictions refer to the

spread of the estimated values around the mean of the estimations. This is expressed

mathematically by the population variance of the predictions.

2)ˆˆ(
1

)ˆ( ∑ −= yy
I

yvar ip (5.40)

Note, that the population variance in Eq. (5.40) is not equal to the sample variance defined

in Eq. (5.6), i.e.

sp var
I

I
var

1−= (5.41)
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Using Eq. (5.36), (5.39), and (5.40) the root mean square error can be rewritten as

2)ˆ()ˆ()ˆ( ybiasyvarye pRMS += (5.42)

Thus, while )ˆ(yeRMS  is an over-all measure of the calibration and prediction performance

of a specific model and a given set of samples, then, as exemplified in Paper II, the bias

and the variance may be utilized to evaluate a specific calibration model and prediction

algorithm separately. That is, a relatively high )ˆ(ybias  value often implies a flawed

calibration model, e.g. a poor fit, while a relatively high )ˆ(yvar  indicates a precarious

prediction algorithm and/or a high noise level in the prediction samples.

5.5.2 Over - and underfitting

So-called overfitting or underfitting is a common pitfall when performing calibration and

prediction analyses. In all practical applications, the calibration samples contain a certain

amount of noise with no relevant information regarding the analyzed system. However,

the least squares regression algorithms normally used for calibration do not distinguish

between variations due to the structured X-Y relationships and random variations due to

noise. Thus, if the calibration is too detailed, i.e. the data are overfitted; it will result in a

winding calibration model, as illustrated by Figure 5.6(c). Consequently, such a model

represents the calibration data exactly, but is a poor approximation to the true X-Y

relations represented by the dashed line in Figure 5.6(c). Furthermore, the winding form

of an overfitted model may put greater demands on the prediction algorithm and cause it

to fail occasionally. Note that the same arguments apply to spline interpolation techniques,

which is practically equivalent to overfitting (Paper II).

 (a)  (b)  (c)

Figure 5.6. Schematics illustrating (a) underfitted, (b) optimum, and (c) overfitted

calibration models. The dashed line represent the true values, the dots are the

measured values used for calibration, and the continuous line shows the resulting

fit.
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On the other hand, a too simplified calibration, e.g. using a linear model on non-linear

data, will produce an underfitted model as illustrated in Figure 5.6(a). Such a model will

also yield incorrect predictions. Still, predictions on underfitted models are often more

robust than on corresponding overfitted models. Figure 5.6(b) shows an optimum model,

which seeks to track the structured information in the data and at the same time ignore any

random oscillations due to noise.

The analyses presented in Paper III complements the above discussion on over - and

underfitting by concluding that calibration models based on third order polynomials (i.e. n

= 3 in Eq. (5.29)) were superior to both first and second as well as higher order

polynomials.
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Summary of papers

Paper I describes a method for determining the reduced scattering and absorption

coefficients of turbid biological media from the spatially resolved diffuse reflectance. A

Sugeno Fuzzy Inference System in conjunction with data pre-processing techniques is

employed to perform multivariate calibration and prediction on reflectance data generated

by Monte Carlo simulations. The pre-processing consists of, either Principal Component

Analysis, or a new extended curve-fitting procedure originating from diffusion theory.

With reference to practical applications it is also discussed how the prediction accuracy is

affected by (a) using relative instead of absolute reflectance data, (b) by imposing

measurement noise on the reflectance data, and (c) by changing the number and position

of detectors.

Paper II presents a new method for extracting optical properties from integrating sphere

measurements on thin biological samples. The method is based on multivariate calibration

techniques involving Monte Carlo simulations, multiple polynomial regression, and a

Newton-Raphson algorithm for solving nonlinear equation systems. Similar tests using

data from integrating sphere measurements on dye/latex micro-sphere phantoms lead to

mean errors less than 1.7 % between predicted and theoretically calculated values.

Comparisons showed that the new method was more robust and typically 5- 10 times as

fast and accurate as two other analogous methods, i.e. the Inverse Adding-Doubling

method and the Monte Carlo Spline Interpolation method.

Paper III describes a compact, fast, and versatile fiber optical probe system for real-time

determination of tissue optical properties from spatially resolved continuous wave diffuse

reflectance measurements. The system collects one set of reflectance data from six source-

detector distances at four arbitrary wavelengths with a maximum overall sampling rate of

100 Hz. The four wavelengths of the current configuration are 660, 785, 805 and 974 nm,

respectively. Multivariate calibration techniques based on 2-D polynomial fitting are

employed to extract and display the absorption and reduced scattering coefficients in real-

time mode. Results from preliminary in vivo skin tissue measurements are also presented

and discussed.

Paper IV reports on how absorption and reduced scattering spectra of turbid media was

quantified using a non-contact imaging approach based on a Fourier transform

interferometric imaging system (FTIIS). The system was used to collect hyperspectral

images of the steady-state diffuse reflectance from a set of homogenous, semi-infinite
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turbid phantoms within the spectral region of 550-850 nm. Monte Carlo simulations were

fit to the recorded hyperspectral images in order to quantify the absorption and scattering

spectra. A simple and effective calibration approach was introduced to account for the

instrument response. Using reflectance data both close to and far from the source (0.5-6.5

mm), The absorption and reduced scattering coefficients could be predicted with an error

of 7% and 3%, respectively.

Paper V presents a novel and accurate method for real-time determination of the

absorption coefficient, the scattering coefficient, and the anisotropy factor of thin turbid

samples. The three optical properties are determined using multivariate calibration on on

Monte Carlo simulated recordings of the angularly resolved transmittance and the

spatially resolved diffuse reflectance and transmittance. The applied calibration and

prediction techniques are based on multiple polynomial regression in combination with a

Newton-Raphson algorithm. Numerical test showed mean prediction errors of

approximately 0.5 % for all three optical properties within ranges typical for biological

media. Finally, a setup for practical implementation of the presented method is suggested.

Paper VI considers two different skin structure models. The first structure consists of

epidermis, dermis/blood, and subcutaneous tissue. The second structure consists of

epidermis/dermis, adipose tissue and muscle tissue. A new solution based on diffusion

theory of the CW local diffuse reflectance from a three-layered skin tissue structure is

presented. Comparisons with Monte Carlo simulations were carried out favorably. It is

shown that the functional form of the radial dependence of the diffuse reflectance from

multilayer and single layer models are identical. The sensitivity of the local diffuse

reflectance as a function of the optical properties of separate layers is also discussed. As

well as the influence on the local diffuse reflectance with changes in the optical properties

corresponding to normal changes in tissue glucose concentration and blood volume.

Paper VII presents a comparative study of the performance of two systems used for

determining the absorption and reduced scattering coefficients at 785 nm; one spatially

resolved and one time-resolved. The spatially resolved system recorded the diffuse

reflectance from a diode laser by means of a fiber-bundle probe in contact with the

sample. The time-resolved system utilized ultra-short laser pulses and a single-photon

counting detection scheme. Additional measurements were made with an integrating

sphere set-up.

The authors contribution to the papers

- All experimental work, data analysis, and writing of Papers II, III, and V.

- All experimental work and writing of Paper I, as well as parts of the data analysis.

- Parts of the experimental work and data analysis of Papers IV, VI, and VII.
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Determination of tissue optical properties from
diffuse reflectance profiles by multivariate calibration

Jan S. Dam, Peter E. Andersen, Torben Dalgaard, and Paul Erik Fabricius

We describe a method for determining the reduced scattering and absorption coefficients of turbid
biological media from the spatially resolved diffuse reflectance. A Sugeno Fuzzy Inference System in
conjunction with data preprocessing techniques is employed to perform multivariate calibration and
prediction on reflectance data generated by Monte Carlo simulations. The preprocessing consists of
either a principal component analysis or a new, extended curve-fitting procedure originating from
diffusion theory. Prediction tests on reflectance data with absorption coefficients between 0.04 and 0.06
mm�1 and reduced scattering coefficients between 0.45 and 0.99 mm�1 show the root-mean-square error
of this method to be 0.25% for both coefficients. With reference to practical applications, we also describe
how the prediction accuracy is affected by using relative instead of absolute reflectance data, by imposing
measurement noise on the reflectance data, and by changing the number and the position of detectors.
© 1998 Optical Society of America
OCIS codes: 170.0170, 160.4760, 170.7050, 200.4260, 120.4570.

1. Introduction

Light propagation in homogeneous turbid media is
determined by the geometry and the four optical
properties1 of the medium, i.e., the absorption coeffi-
cient �a, the scattering coefficient �s, the mean cosine
of the single scattering phase function g, and the
refractive index n. By measuring the optical prop-
erties of a composite, but homogeneous, turbid me-
dium at various wavelengths, the concentrations of
the separate components may be calculated, provided
that these components have well-characterized ab-
sorption and scattering spectra. It has previously
been shown2–8 that �a and the reduced scattering
coefficient �s� � �s�1 � g� may be extracted from the
spatially resolved steady-state diffuse reflectance
Rd�r� from a homogeneous single-layer medium.
Note that, because of the similarity relations,9 it is
usually difficult to separate the compound parameter
�s� into �s and g by Rd�r� analysis. It has also been
shown that �s� and �a may be determined with good

accuracy by using time-resolved10,11 and frequency-
domain12 reflectance techniques. Yet the steady-
state Rd�r� technique is advantageous in many
practical applications, because the technology is rel-
atively simple, and thus it offers the possibility of
designing low-cost, portable equipment. Although
most human tissues are heterogeneous, it is evident
that Rd�r� measurements, owing to their simple tech-
nology and noninvasive character, have a consider-
able potential in the field of medical diagnostics.
Figure 1 shows a schematic setup for typical Rd�r�
measurements. For brevity, Rd�r� is also denoted a
reflectance profile.
Before dealing with the inverse problem of extract-

ing �s� and �a from Rd�r�, we must solve the forward
problem of modeling light propagation, e.g., Rd�r�,
from �s, �a, and g. Two commonly used models for
this are �a� diffusion theory13 and �b� Monte Carlo
simulations.14 Diffusion theory provides analytical
solutions to Rd�r� expressed as definite integrals or
infinite series. However, diffusion theory is valid
only when two general criteria are fulfilled15:

a� � �s����s� � �a� � 1

MFP� � 1���s� � �a� �� r, t. (1)

Here a� is the reduced albedo,MFP� is the reduced
mean-free-path, r is the source–detector distance,
and t is the thickness of the medium. Monte Carlo
simulation of light propagation provides only numer-
ical estimates of Rd�r�. Furthermore the calcula-
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tions are subject to statistical uncertainties and are
usually bulky compared with similar diffusion theory
calculations. On the other hand, traditional Monte
Carlo simulations suffer from no severe restrictions
regarding either the optical properties or the geome-
try of the media.
The nonlinear inverse problem of extracting �s�

and �a from reflectance profiles simulated either by
diffusion theory or byMonte Carlo simulations can be
solved by performing multivariate calibration on sets
of reflectance profiles. This may be done in several
ways e.g., by the use of neural networks,6,7 ordinary
partial least-squares methods,16 or a Sugeno Fuzzy
Inference System �SFIS�.17 In this paper we dem-
onstrate how biologically relevant values of �s� and
�a may be extracted from simulated reflectance pro-
files by use of a SFIS for calibration and prediction.
We use this particular method because preliminary
tests showed significantly better prediction accuracy
compared with ordinary partial least-squaremethods
and because it is more mathematically transparent
than neural networks. Tomodel the reflectance pro-
files, we use Monte Carlo simulations rather than
diffusion theory, partly because the Monte Carlo
method has shown good agreement with experimen-
tal results for a wide range of optical properties7,18
and partly because we want to avoid the general lim-
itations of the diffusion theory �Eq. �1�	. In conjunc-
tion with the SFIS analysis, we also investigate data
preprocessing as a means of improving the prediction
accuracy, either in the form of principal component
analysis16 �PCA� or in the form of curve fitting to an
expression originating from diffusion theory. This
expression �Eq. �4�	 is an extended version of an ex-
pression introduced by Groenhuis et al.2 With ref-
erence to practical applications and probe
implementation, we also discuss �a� prediction accu-
racy with relative versus absolute-reflectance pro-
files, �b� the influence of measurement noise, and �c�
the optimum number and position of detectors.

2. Methods

Cheong et al.19 provided a list of human tissue optical
properties measured with a variety of in vitro tech-

niques. Both the variation between different tissues
and the variation between similar tissues measured
with different techniques were extreme. Another
matter of dispute is whether such in vitro properties
translate well to the in vivo properties. Neverthe-
less we considered the ranges in inequality �2� to be
representative for many living human tissues in the
visible region and called them the main space:

0.01 mm�1 � �a � 0.10 mm�1,

2.50 mm�1 � �s � 20.0 mm�1,

0.80 � g� 0.99,

�0.025 mm�1 � �s� � 4.00 mm�1�. (2)

To investigate the performance of the SFIS analysis
method on a significantly smaller space, we defined
another set of ranges, placed at the center of the
comprehensive main space, and called them the sub-
space:

0.04 mm�1 � �a � 0.06 mm�1,

9.00 mm�1 � �s � 11.0 mm�1,

0.91 � g� 0.95,

�0.45 mm�1 � �s� � 0.99 mm�1�. (3)

According to Bolin et al.20 1.38 � n � 1.41 for a
number of mammalian tissues; hence we considered
n � 1.4 to be a valid approximation for the media
treated in this paper.
Using the Monte Carlo code provided by Wang and

Jacques,21 we generated two sets of reflectance pro-
files, covering �s, �a, and g of the main space and the
subspace. To make sure that all of the main space
and the subspace range was covered and equally rep-
resented, we based each set of profiles on the 125
combinations of a 5 
 5 
 5 matrix with fixed step-
wise increments of �s, �a, and g. The refractive in-
dex was set to n � 1.4, and the thickness of the
medium was t � 40 mm. The light source was a flat
collimated beam with the diameter d � 1.0 mm, and
the diffuse reflectance was sampled in the distance
range 0.60mm� r� 12mm in steps of �r� 0.25 mm
�i.e., 46 detection spots�. In each simulation 106

photon packets were traced. Selecting every second
profile, we split the main space and the subspace
profile sets into a calibration and a prediction subset.
The Monte Carlo code we used employs the

Henyey–Greenstein �HG� approximation to the
single-scattering phase function. Although the HG
approximation is commonly accepted as valid for a
wide range of human tissues, small deviations be-
tween the HG approximation and the actual phase
function�s� of real tissue do occur. Despite identical
g values of the HG approximation and the real phase
function, these deviations may result in different re-
flectance profiles.22 This also affects any analysis of
real Rd�r� measurements based on models with the
HG approximation.
To perform the calibration and the prediction anal-

ysis we used a first-order SFIS.17 The basic idea of

Fig. 1. Schematic setup for Rd�r� measurements. The incident
light Ic is a continuous-wave collimated beam with diameter d.
The radial source–detection distance is denoted r, and t is the
thickness of the medium.
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SFIS analysis is to split a physical or a mathematical
system with nonlinear input–output relations into a
number of subsystems �i.e., clusters� with relations
linear enough to perform a piecewise linear calibra-
tion of the total system. In this paper, the actual
system is the medium and the incident light Ic de-
picted in Fig. 1; the input is the optical properties �s�
and �a; and the output is various forms of Rd�r�.
During calibration with the SFIS, the Rd�r� data of
the calibration set were divided into a number of
clusters distributed to cover the whole Rd�r� space.
Then a rule �i.e., a linear combination� of the ��s�, �a�
� Rd�r� relations of each cluster was generated with
weighted linear regression. This weighting favors
Rd�r� data close to the cluster center and thereby
attenuates the influence of any outliers. During
prediction, the task was to assess the likely optical
properties on the basis of a novel reflectance profile
from the prediction data set. This was done by as-
signing the novel Rd�r� data a membership to each
cluster in the Rd�r� space. The strength of each
membership was calculated from the Euclidian dis-
tance between the cluster center and theRd�r� data in
question. The optical properties were then calcu-
lated by the application of the rules according to each
cluster membership. In this way, the prediction of
the optical properties was not based on the rule of one
cluster only, but was partially dependent on the rules
of all clusters, hence the fuzzy part of the SFIS term.
To extract the optimal features from the reflectance
profiles before they were introduced to the SFIS, we
also employed two preprocessing methods alter-
nately. The first method was an ordinary PCA.16
During a PCA, one can compress the Rd�r� data set to
its most dominant factors by generating a new data
set of orthogonal principal components sorted accord-
ing to decreasing eigenvalues. These eigenvalues
indicate the amount of variability each principal com-
ponent has removed from the original Rd�r� data set.
When PCA was employed, we found that approxi-

mately three to six main principal components were
sufficient to describe the original Rd�r� data set prop-
erly. During analysis including PCA, these main
principal components were introduced directly into
the SFIS. In the second preprocessing method, we
employed curve fitting to reduce the reflectance pro-
files to a set of fitting parameters. The fitting ex-
pression we used was

Rd�r� �
z0
rz1

exp��z2r�, (4)

which is a general expression for diffuse reflectance,
originating from diffusion theory. As opposed to
others2–4 who have used fixed values of z1 �0.5, 1, and
2� and limited r ranges when fitting reflectance pro-
files to Eq. �4�, we let z0, z1, and z2 all be free fitting
parameters and used full-range reflectance profiles
�0.6 mm � r � 12 mm�. When the fitting method
was employed in the analysis, the three z parameters
were introduced directly into the SFIS.
All the reported prediction errors below are ex-

pressed as ordinary rms errors. In each case, the
best calibration model was found by iterative analy-
ses with various combinations of model settings, such
as the number of clusters and principal components.
Note that the subscripts attached to the PCA rms
errors indicate the numbers of principal components
used.

3. Results and Discussion

By letting z0, z1, and z2 from Eq. �4� all be free fitting
parameters, and by covering the full r range �0.60
mm � r � 12 mm�, we found that Eq. �4� is an
excellent fit to all the reflectance profiles from the
main space. This is illustrated in Fig. 2. In Fig.
3A, a plane section of optical properties from the
main space and the subspace is mapped to the corre-
sponding fitting parameters z0, z1, and z2. The
twisted appearance of the main space grid clearly
illustrates the nonlinear relations between the opti-
cal properties and the reflectance profiles character-
ized by the fitting parameters. Because of the
smaller range, the nonlinearity of the subspace is less
pronounced compared with the main space. Look-
ing at Fig. 3B, it is evident that all three fitting pa-
rameters �including z1� are affected by the changes in
the optical properties.
In Table 1 we list the prediction errors obtained by

SFIS analysis of absolute reflectance profiles from
the main space and the subspace. Here the rms
errors of the main space are larger than the errors of
the subspace. This is attributed partly to the more
linearlike relations of the subspace mentioned above
and partly to the fact that the increments of the 5 

5 
 5 subspace matrix of optical properties are much
smaller than the increments of the 5 
 5 
 5 main
space matrix and thus provides a more fine-meshed
covering of the ��s�, �a� � Rd�r� relations. Another
way of expressing this is that the subspace has a
higher profile density than the main space. Either
preprocessing method leads to a substantial decrease
in the rms errors of Table 1. The PCA method re-

Fig. 2. Monte Carlo-simulated reflectance profiles �symbols� and
corresponding fits �solid curves�, representing four corners of the
main space.
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sults in the least overall rms errors: 0.24% for �s�
and 0.25% for �a.
One way of obtaining main space rms errors com-

parable with those of the subspace would be to sim-
ply increase the profile density. However, a single
calibration model covering all the main space with
a profile density similar to the subspace density
would be very bulky and would lead to slow predic-
tion calculations. Another way of improving the
prediction accuracy of the main space, without in-

troducing extensive calculations, would be to apply
the following two-step prediction procedure:

�1� The unknown Rd�r� is presented to the low-
profile-density main space SFIS, and fair estimates of
�s� and �a are returned.

�2� A proper high-profile-density subspace, in-
cluding the estimates from step 1, is selected from
a set of subspaces covering the total range of the
main space, and then another �more accurate�
prediction is performed by the subspace SFIS in
question.

Such a procedure would require a subspace optical
property overlapping that is comparable with the pre-
diction errors of the main space. Adjusting the in-
dividual subspace sizes according to the nonlinearity
of the specific main-space region may further opti-
mize the procedure.

A. Relative Profiles

In real applications, it may be difficult to perform
absolute reflectance measurements, e.g., because of
unknown conditions regarding the coupling of light
at the medium boundary. To circumvent such
problems, we have also performed calibration on
relative reflectance profiles. Preliminary investi-
gations showed that normalization at the first de-
tection spot �r � 0.625 mm� gave rise to the least
rms errors; hence Table 2 gives the rms errors of the
reflectance profiles normalized at r � 0.625 mm.
During normalization, any information about �s�
and �a related to the absolute levels of the reflec-
tance profiles is reduced, and only information
directly related to the shape of the profiles is main-
tained. The minimum rms errors of �s� and �a in
Table 2 are increased, approximately 5 and 10
times, respectively, compared with the minimum
rms errors of the absolute profiles in Table 1. Here
it appears that the rms errors of the fitting method
are less than those of the PCA method. This indi-
cates a superior shape-recognition property of the
fitting method, which may be attributed to the fact
that z0 is the only fitting parameter affected by
normalization. Although, in general, normaliza-
tion leads to increased rms errors �1.29% for �s� and
2.44% for �a�, such relative analysis may be suffi-
cient in some situations, e.g., in purely qualitative
assessments.

Fig. 3. �a, �s �mm�1�, and gmapped to the fitting parameters z0,
z1, and z2 of the reflectance profiles. A, Plane section of subspace
�small bold grid� embedded in plane section of main space �g �
0.95�. B, Enlarged plane section of subspace �g � 0.91�.

Table 1. Prediction rms Errors of Absolute Reflectance Profiles from
the Main Space and the Subspace

SFIS Input

Main Space
rms Error �%�

Subspace
rms Error �%�

�s� �a �s� �a

Raw 38 420 0.85 2.08
PCA 4.15 133 0.244 0.253
Fit 5.3 9.0 0.21 0.78

Table 2. Prediction rms Errors of Relative Reflectance Profiles from
the Main Space and the Subspace

SFIS Input

Main Space
rms Error �%�

Subspace
rms Error �%�

�s� �a �s� �a

Raw 1200 510 4.18 7.28
PCA 836 244 2.063 4.073
Fit 16 24 1.29 2.44
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B. Measurement Noise

Reflectance profiles obtained by real measurements
are always subject to a certain amount of measure-
ment noise. This noise, introduced by the detector–
amplifier system, is inversely proportional to the
square root of the light intensity at the detector.
Figure 4A shows how the rms errors are influenced
when such intensity-dependent noise is superim-
posed on full-range reflectance profiles from the sub-
space. The intrinsic noise of the Monte Carlo
simulations, which is caused by statistical uncertain-
ties, has been estimated to be approximately 1% rms.
All the rms errors of �s� and �a seem to be approxi-
mately proportional to the additional noise. How-
ever, by comparing the slopes of the curves in Fig. 4A,
the rms errors of �a appear to be slightly more sen-
sitive to measurement noise than the errors of �s�.
Note that the SFIS calibration models used in Fig. 4
have not been optimized separately and therefore
should be used for qualitative noise-sensitivity as-
sessments only.
Besides the conspicuous effect on the rms errors,

Fig. 5 shows that imposing noise on the profiles also
causes a more subtle change in the calibration mean
weights. These weights have been derived from the
transition loadings generated by the PCA and from
the rules and the membership distributions gener-
ated by the SFIS during calibration. The absolute
values of the calibration mean weights indicate how
important the reflectance information from each in-
dividual detection spot is in the overall process of
predicting the values of �s� and �a. In the case of
almost noiseless profiles �1% rms�, it appears that the
major part of the information about �s� is confined to
the close-distance range r � 3.0 mm, while the infor-
mation about �a is confined to the distance ranges r�
4.0 mm and r � 7.0 mm. When additional noise
�16% rms� is inflicted on the profiles, the general
distribution pattern of mean weights for �s� is unal-
tered, while the mean weights of �a indicate that the
bulk part of relevant information has moved to the
center range 3.0 mm � r � 9.0 mm.
In Fig. 5B it appears that a considerable part of the

Fig. 4. Prediction errors as a function of noise superimposed on
the reflectance profiles from the subspace. The noise rms values
are an average of the intensity-dependent noise at each detector of
each profile. A, 46 detection spots; B, six detection spots.

Fig. 5. Noise-dependent distributions of calibration mean
weights assigned to each detection spot by the SFIS and the PCA
�with three principal components� during calibration on the reflec-
tance profiles from the subspace. The mean weights indicate the
amount of information about, A, �s� and, B, �a collected from each
detection spot.
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information about �a in the low-noise case is confined
to the far-distance detection spots. Because of the
low Rd�r� intensities at these far distances, the infor-
mation embedded here is easily corrupted by the
intensity-dependent additional noise. This may ex-
plain why the PCA–SFIS in Fig. 5B shifts the �a
mean weight density toward center distances when
the additional noise increases. It is important to be
aware of this shift when �s� and�a are extracted from
noisy, real Rd�r� measurements. Because, if calibra-
tion is performed on practically noiseless simulated
profiles, prediction performed on noisy measured pro-
files may be corrupted. To achieve maximum pre-
diction accuracy in such cases, it may turn out to be
advantageous to superimpose equivalent noise on the
simulated calibration profiles.

C. Number and Position of Detectors

Table 3 gives the prediction errors when only close- or
far-distance detection spots are used. Note that the
terms close and far depend on the ranges of the optical
properties in question. The results show, as indicated
by the weight distributions in Fig. 5A, that �s� may be
determined by close-distance measurements solely
without significant loss of prediction accuracy. How-
ever, determining �a from close- or far-distance mea-
surements exclusively increases the rms errors.
Reviewing the results from the subspace investiga-

tions in Tables 1 and 3, it is obvious that full-range
reflectance profiles �0.6 mm � r � 12 mm� yield min-
imum rms errors. Note that, in practical applica-
tions, it may present difficulties to realize aminimum
detector–source distance of r � 0.625 mm when a
1-mm light source and a 0.25-mm detector are used.
It is usually inconvenient to use as many detection

spots �22–46� as in the cases above. Table 4 gives
the prediction errors employing only 6 or 12 equally

separated detection spots from full-range reflectance
profiles from the subspace. When the number of
detectors is reduced from 46 to 6, or to 12, the rms
errors of the raw profiles from the subspace show a
remarkable decrease. At the same time, the rms
errors of the preprocessed profiles are slightly in-
creased. This means that the effect of employing
preprocessing is negligible here. Figure 4B shows
the rms errors of six-spot reflectance profiles as a
function of superimposed noise. The slopes of the
curves indicate that six-spot profiles, in general, are
more sensitive to noise than the 46-spot profiles of
Fig. 4A, and that preprocessing does not have any
significant effect in this case either.
The poor effect of preprocessing in the six-spot

case, compared with the 46-spot case, is due to the
detailed information provided by the 46 inputs with-
out preprocessing, which causes the SFIS to optimize
for calibration accuracy at the expense of prediction
accuracy. When the number of inputs is reduced, as
in the six-spot case, the SFIS calibration model is less
strict. This leads to a better prediction accuracy of
the raw six-spot profiles, which again leads to com-
parable prediction rms errors of the raw and the pre-
processed six-spot profiles. To this end, we stress
that the rms errors of calibration, whenever possible,
should be made comparable with the errors of pre-
diction and that the number of input sets should be
much larger than the number of inputs in each single
set when calibration–prediction systems are tuned.

4. Conclusions

In this paper we have demonstrated how �s� and �a
within typical biological ranges may be extracted
from diffuse reflectance profiles by use of multivari-
ate calibration methods. With these methods we
were able to determine �s� and �awithminimum rms
errors of approximately 0.25%. Simultaneous deter-
mination of �s� and �a with maximum accuracy re-
quires a large number of detection spots �e.g., 46�,
PCA preprocessing, and full-range reflectance pro-
files �0.6 mm � r � 12 mm�. However, �s� alone
could be determined by close range profiles solely,
without loss of accuracy.
Reducing the number of detection spots from 46 to

6 and skipping the preprocessing led to only a dou-
bling of the minimum rms error of �a, while the rms
error of �s� remained unaltered. However, this also
led to increased prediction error measurement-noise
sensitivity.
Compared with absolute reflectance profiles, cali-

bration and prediction on relative profiles using pre-
processing led to a fivefold increase of the �s� rms
error and a tenfold increase of the �a rms error. In
this case, the fitting method was superior to the PCA
method.
The statements above are all based on a monolayer

geometry. In reality, most human tissues may be
considered multilayered rather than monolayered.
Model experiments23 have shown that Rd�r� from
multilayered models exhibits the same generic form
�Eq. �4�	 as Rd�r� from a monolayer model. This

Table 4. Prediction rms Errors of Reflectance Profiles from the
Subspace with a Reduced Number of Detection Spots

SFIS Input

6 Detection Spots
rms Error �%�

12 Detection Spots
rms Error �%�

�s� �a �s� �a

Raw 0.26 0.58 0.35 0.74
PCA 0.266 0.504 0.386 0.433
Fit 0.35 1.28 0.35 1.25

Table 3. Prediction rms Errors of Close- and Far-Distance Reflectance
Profiles from the Subspacea

SFIS
Input

Close Range
0.6 mm � r � 6 mm

rms Error �%�

Far Range
3 mm � r � 12 mm

rms Error �%�

�s� �a �s� �a

Raw 0.36 1.89 2.05 2.67
PCA 0.283 0.903 1.183 0.523
Fit 0.31 0.86 0.75 2.32

a�22 and 36 detectors�.
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means that the actual geometry of a medium, i.e.,
number and thickness of layers, cannot be deter-
mined on the basis of Rd�r� alone. However, by in-
corporating a priori knowledge of the layer structure
and some of the optical properties of the individual
layers, the methods in this paper might still be used
to assess selected combinations of �s� and �a in a
multilayer tissue structure.
Through the investigations presented here, we

have contributed a set of practical guidelines for
determining optical properties from reflectance pro-
file measurements. We have subsequently used
these guidelines to build a system for measuring
optical properties in the biological range. This sys-
tem is currently being tested on phantoms and in-
cludes a compact optical front end, simultaneous
measurements at four arbitrary wavelengths, auto-
matic data acquisition, and flexible real-time data
analysis.

References
1. A. J. Welch, M. J. C. van Gemert, W. M. Star, and B. C. Wilson,

“Overview of tissue optics,” in Optical-Thermal Response of
Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gemert,
eds. �Plenum, New York, 1995�, Chap. 2.

2. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch,
“Scattering and absorption of turbid materials determined
from reflection measurements. 2: Measuring method and
calibration,” Appl. Opt. 22, 2463–2467 �1983�.

3. J. M. Schmitt, G. X. Zhou, E. C. Walker, and R. T. Wall,
“Multilayer model of photon diffusion in skin,” J. Opt. Soc. Am.
A 7, 2141–2153 �1990�.

4. B. C. Wilson and S. L. Jacques, “Optical reflectance and trans-
mission of tissues: principles and applications,” IEEE J.
Quantum Electron. 26, 2186–2199 �1990�.

5. T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion
theory model of spatially resolved, steady-state diffuse reflec-
tance for the noninvasive determination of tissue optical prop-
erties in vivo,” Med. Phys. 19, 879–888 �1992�.

6. T. J. Farrell, B. C. Wilson, and M. S. Patterson, “The use of
neural network to determine tissue optical properties from
spatially resolved diffuse reflectance measurements,” Phys.
Med. Biol. 37, 2281–2286 �1992�.

7. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and
B. C. Wilson, “Spatially resolved absolute diffuse reflectance
measurements for noninvasive determination of the optical
scattering and absorption coefficients of biological tissue,”
Appl. Opt. 35, 2304–2314 �1996�.

8. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J.
Bigio, “Predictions and measurements of scattering and ab-
sorption over broad wavelength ranges in tissue phantoms,”
Appl. Opt. 36, 949–957 �1997�.

9. H. C. van de Hulst,Multiple Light Scattering �Academic, New
York, 1980�, Vols. 1 and 2.

10. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valen-
tini, “Experimental test of theoretical models for time-resolved
reflectance,” Med. Phys. 23, 1625–1633 �1996�.

11. S. J. Madsen, B. C. Wilson, M. S. Patterson, T. D. Park, S. L.
Jacques, and Y. Hefetz, “Experimental tests of a simple diffu-
sion model for the estimation of scattering and absorption
coefficients of turbid media from time-resolved diffuse reflec-
tance measurements,” Appl. Opt. 31, 3509–3517 �1992�.

12. S. Fantini, M. A. Francheschini-Fantini, J. S. Maier, and S. A.
Walker, “Frequency-domain multichannel optical detector for
noninvasive tissue spectroscopy and oximetry,” Opt. Eng. 34,
32–42 �1995�.

13. A. Ishimaru, Wave Propagation and Scattering in Random
Media �Academic, New York, 1978�, Vols. 1 and 2.

14. S. L. Jacques and L. Wang, “Monte Carlo modeling of light
transport in tissue,” in Optical-Thermal Response of Laser-
Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds.
�Plenum, New York, 1995�, Chap. 4.

15. W. M. Star, “Diffusion theory of light transport,” in Optical-
Thermal Response of Laser-Irradiated Tissue, A. J. Welch and
M. J. C. van Gemert, eds. �Plenum, New York, 1995�, Chap. 6.

16. H. Martens and T. Næs,Multivariate Calibration �Wiley, New
York, 1994�.

17. T. Tagaki and M. Sugeno, “Fuzzy identifications of systems
and its applications to modelling and control,” IEEE Trans.
Syst. Man Cybern. 15, 116–132 �1985�.

18. S. T. Flock, B. C. Wilson, and M. S. Patterson, “Monte Carlo
modeling of light propagation in highly scattering tissues. II.
Comparison with measurements in phantoms,” IEEE Trans.
Biomed. Eng. 36, 1169–1173 �1989�.

19. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the
optical properties of biological tissue,” IEEE J. Quantum Elec-
tron. 26, 2166–2185 �1990�.

20. P. Bolin, L. E. Preuss, R. C. Taylor, and R. J. Ference, “Re-
fractive index of some mammalian tissues using a fiber optic
cladding method,” Appl. Opt. 28, 2297–2303 �1989�.

21. L. Wang and S. L. Jacques, Monte Carlo Modeling of Light
Transport in Multi-Layered Tissues in Standard C �University
of Texas, M. D. Anderson Cancer Center, Houston, Tex., 1992�.

22. J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, “In-
fluence of the scattering phase function on light transport
measurements in turbid media performed with small source–
detector separations,” Opt. Lett. 21, 546–548 �1996�.

23. P. E. Andersen, J. S. Dam, P. M. Pedersen, and P. Bjerring,
“Local diffuse reflectance from a multilayered skin tissue mod-
el,” in Optical Tomography and Spectroscopy of Tissue: The-
ory, Instrumentation, Model, and Human Studies II, B.
Chance and R. R. Alfano, eds., Proc. SPIE 2979, 515–526
�1997�.

778 APPLIED OPTICS � Vol. 37, No. 4 � 1 February 1998



Paper II



Multiple polynomial regression method for
determination of biomedical optical properties
from integrating sphere measurements

Jan S. Dam, Torben Dalgaard, Paul Erik Fabricius, and Stefan Andersson-Engels

We present a new, to our knowledge, method for extracting optical properties from integrating sphere
measurements on thin biological samples. The method is based on multivariate calibration techniques
involving Monte Carlo simulations, multiple polynomial regression, and a Newton–Raphson algorithm
for solving nonlinear equation systems. Prediction tests with simulated data showed that the mean
relative prediction error of the absorption and the reduced scattering coefficients within typical biological
ranges were less than 0.3%. Similar tests with data from integrating sphere measurements on 20
dye–polystyrene microsphere phantoms led to mean errors less than 1.7% between predicted and theo-
retically calculated values. Comparisons showed that our method was more robust and typically 5–10
times as fast and accurate as two other established methods, i.e., the inverse adding–doubling method
and the Monte Carlo spline interpolation method. © 2000 Optical Society of America
OCIS codes: 120.3150, 120.5820, 170.7050, 170.1470, 160.4760.

1. Introduction

In the field of biomedical optics, determination of the
optical properties of various biological materials is
essential, not only for diagnostic purposes, e.g., whole
blood analysis,1–4 but also in therapeutic applica-
tions, e.g., in the development of tissue light propa-
gation models for various types of laser therapy.5,6
The optical properties,7 i.e., the absorption coefficient
�a, the scattering coefficient �s, and the anisotropy
parameter g, are often determined by measurement
of the total diffuse reflectanceR and the diffuse trans-
mittance T of a thin sample in an integrating sphere
setup. However, it is only possible to determine �a
and the reduced scattering coefficient ��s � �1 � g��s
from pure R and T measurements. To separate ��s
into �s and g, one often includes measurements of the
collimated transmittance Tc as well. Because accu-
rate Tc measurements are difficult to perform, the

similarity principle8–10 is often applied in conjunction
with integrating sphere measurements; i.e., only �a
and ��s are determined. R andTmeasurementsmay
be carried out with either a single- or a double-sphere
setup. In the latter, R and T can be determined
simultaneously without moving the sample; however,
the obtainable accuracy is decreased compared with a
single-sphere setup, owing to optical cross talk be-
tween the two spheres.11
Several methods have been applied to solve the

problem of extracting �a and ��s from R and T mea-
surements, e.g., methods based on Kubelka–Munk
theory12 and diffusion theory.13 Although both
these methods provide analytical expressions for
R��a, ��s� and T��a, ��s�, the inverse problem of deter-
mining �a�R, T� and ��s�R, T� has no analytical solu-
tions. Furthermore, the analytical solutions of
R��a, ��s� and T��a, ��s� are not accurate; thus most
contemporary approaches are based on numerical
methods, which provide more accurate calculations of
R��a, ��s� and T��a, ��s�, e.g., the inverse adding–
doubling �IAD� method14 or methods involving Monte
Carlo simulations.2–15 For all the above methods it
is common that �a�R, T� and ��s�R, T� have to be
determined by iterative numerical calculations.
This may prove to be to slow in some cases, e.g.,
applications involving real-time multiwavelength
analysis. In this paper we present a method, which
is both fast and accurate and thus suitable for such
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applications. The method is based on Monte Carlo
simulations,16 polynomial regression, and a Newton–
Raphson algorithm17 for solving nonlinear equation
systems. For brevity we denote the method MPR
�multiple polynomial regression�.
In the following sections we first explain the steps

of the MPRmethod in detail. Next, we present and
discuss simulated and measured test results. Fi-
nally, we compare the performance of the MPR
method with that of the IAD method and another
Monte Carlo-based method, the so-called Monte
Carlo spline interpolation �MCSI� method.5

2. Methods

The purpose of the MPR method is to extract �a and
��s from integrating sphere measurements of R and T
on thin turbid biological samples. This involves sev-
eral numerical and experimental methods, which we
describe in the present section.

A. General Principles

In mathematical terms the first step of the MPR
method is to perform two bijective mappings of a
relevant subset of the ��a, ��s	 space onto their images
in the R and the T spaces, respectively. Such map-
pingsmay of course be obtained from a series ofR and
T measurements on phantoms are performed with
known �a and ��s values. However, it is faster to
apply a proper light-propagation model, e.g., Monte
Carlo simulations.
The next step is to create a calibration model, i.e.,

to find a mathematical description of the R��a, ��s�
and T��a, ��s� mappings. A regular and a smooth
appearance of simulated R and T images, i.e., Rsim
and Tsim, indicated that these may be fitted well by
relatively simple mathematical functions. Thus we
tested and used double polynomials with the generic
form

P��a, ��s, m� � �a0 � a1�a � a2�a
2 � · · · � am�a

m�

� �b0 � b1��s � b2��s
2 � · · · � bm��s

m�,
(1)

where �a0, a1, a2, . . . and b0, b1, b3, . . . � are fitting
coefficients determined by least-squares regression
and m is the order of the double polynomial. The
resulting polynomial fits to Rsim and Tsim were de-
fined as

Rfit � PR��a, ��s, m�,

Tfit � PT��a, ��s, m�. (2)

The final step of the MPR method is to solve the
inverse problem of extracting �a and ��s from real
integrating sphere measurements, i.e., Rmeas and
Tmeas. For this we used a Newton–Raphson algo-
rithm. First, we defined

F��a, ��s� �Rfit �Rmeas,

G��a, ��s� � Tfit � Tmeas. (3)

Then we performed converging iterative calculations
of �a and ��s, using the algorithm in Eq. �4�:

��F��a,k, ��s,k�
G��a,k, ��s,k�

� � �

F

�a


F

��s


G

�a


G

��s

��ha,khs,k�
��a,k�1

��s,k�1
� � ��a,k

��s,k
� � �ha,khs,k�

	 ,
k� 0, 1, 2, 3, . . . , (4)

where ha and hs are correction terms of �a and ��s.
The calculations were continued until ha and hs sat-
isfied predefined accuracy requirements. Finally,
�a,k and ��s,k were read.

B. Simulations and Numerical Analysis

We used the Monte Carlo code provided by Wang et
al.16 to generate calibration and simulated prediction
data sets. To provide a detailed calibration model,
we first generated two 20 
 50 matrices of Rsim and
Tsim, where Tsim includes both the collimated and the
diffuse transmittance, whereas Rsim represents dif-
fuse reflectance only. The values of �a and ��s in
these matrices were incremented in steps of 0.1 and
1 cm�1, respectively, within the typical biological
ranges18,19:

0.1 cm�1 � �a � 5 cm�1,

1 cm�1 � ��s � 20 cm�1,

g� 0.9,

n� 1.4, (5)

where n is the refractive index. Note that both g and
n were kept fixed in the simulations. The sample
geometry of the simulations was a semi-infinite slab
with thickness dsample � 0.5 mm. The slab was
placed between semi-infinite glass slides with thick-
ness dslide � 1 mm and refractive index nslide � 1.52.
The slab was irradiated by a collimated beam with
the diameter rbeam � 1 mm. In each simulation, 1 

106 photons were traced. This extensive Rsim and
Tsim data set was used in the evaluation of the MPR
technique to extract �a and ��s from Monte Carlo
simulated prediction data.
To perform prediction tests on data from integrat-

ing sphere measurements on phantom models as
well, we generated a second calibration model. Re-
ferring to the results from the prediction tests on
simulated data, the number of simulations used in
this calibration model were reduced to include only
117 �9 
 13� Rsim and Tsim simulations. The geom-
etry of these simulations were adapted to the single
integrating sphere setup geometry in Fig. 1, and the
optical properties of the simulations were chosen to
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cover the phantom optical property range sufficient-
ly:

0 cm�1 � �a � 3 cm�1,

4.4 cm�1 � ��s � 21.8 cm�1,

g� 0.92,

n� 1.33. (6)

Except for the Monte Carlo simulations, all numeri-
cal analysis and algorithms in this paper were car-
ried out with Matlab 5.2. Thus all matrix
manipulation, least-squares fitting, etc., is based on
standard Matlab routines.

C. Experimental Setup and Measurements

To carry out MPR tests on experimental data, we
measured Rmeas and Tmeas of 20 liquid phantoms,
each with a distinct set of �a and ��s, using the inte-
grating sphere setup shown in Fig. 1. The phantoms
consisted of green food dye and 1.9-�m polystyrene
spheres suspended in water. During the measure-
ments the phantoms were contained in cuvettes, con-
sisting of two glass slides separated by a black plastic
spacer.
As illustrated in Fig. 1, some of the transmitted

and reflected diffuse light is lost in real integrating
sphere measurements, owing to the limited diameter
of sample port. During the prediction analysis we
therefore corrected Rsim and Tsim to take these trans-
versal losses into account before the polynomial fits
Rfit and Tfit were calculated. We did this by ignoring
values of Rsim and Tsim for radial distances r � 0.5
rsample. Furthermore, we also had to carry out cor-
rections due to losses through the ports and the re-
flective coating of the integrating sphere. The
measured intensity at the detector Pout in an inte-
grating sphere setup is the result of multiple reflec-
tions in the sphere originating from the first

interaction of the incident light with the sample.
This relation is given by

Pout � P0�drw �
n�0

�

��wrw � �s rs � �drd�
n

� P0

�drw
1 � �wrw � �s rs � �drd

, (7)

where r denotes diffuse reflectance coefficients and �
denotes normalized areas relative to the total sphere
area. The subscriptsw, s, and d denote wall, sample,
and detector, respectively. The initial reflected or
transmitted intensity at the sample is P0 � rsPin or
P0 � tsPin, respectively, where Pin is the intensity of
the incident laser beam and rs and ts are diffuse reflec-
tance and transmittance coefficients of the sample, re-
spectively. Note that the specular reflectance Rspec
leaves the sphere through the entrance port and that
the collimated transmittance Tc �� Ttotal; thus both
are ignored in this particular setup. To avoid direct
exposure of the detector from P0, it was pulled back
from the detector port; thus only diffuse reflectance
from a portion of the opposite sphere wall was de-
tected. The normalized area of this portion is denoted
�d in Eq. �7�. Using a well-defined reflectance stan-
dard as a reference in conjunction with Eq. �7�, we
extracted rs and ts from the phantom measurements
and used these as input to theMPRmethod during the
prediction analysis, i.e., Rmeas � rs and Tmeas � ts.

3. Results and Discussion

A. Calibration Model

Figure 2 depicts the two simulated Rsim and Tsim data
sets of the calibration model that we used in the MPR
evaluations on simulated prediction data. As we
stated above, the overall appearance of the Rsim and
the Tsim plots is smooth and regular and thus well
suited for polynomial fitting. Figure 3 shows the re-
sulting fitting errors when two fifth-order double poly-
nomials are used to fit theRsim andTsim plots in Fig. 2.
The speckled appearance of the absolute error plots in
Figs. 3�a� and 3�b� indicates that any systematic fitting
errors due to the fitting algorithm are less significant
than errors introduced by the random intrinsic noise of
the Monte Carlo simulations. The relative errors of
Rfit in Fig. 3�c� are significantly higher for low ��s val-
ues. This is because the low absolute levels of Rfit in
this region �see Fig. 2� are more easily afflicted by the
Monte Carlo noise and that the applied least-squares
regression algorithm optimizes the fit on the basis of
the absolute—and not the relative—errors. Various
preprocessing of Rsim and Tsim before fitting might
reduce the latter error source.
To test the performance of the Newton–Raphson

algorithm separately, we also did predictions tests,
using the original calibration data sets as input to the
Newton–Raphson method, i.e., Rmeas � Rfit and
Tmeas � Tfit. The results showed that the mean rel-
ative calculation error of both �a and ��s was approx-
imately 1 
 10�6. Furthermore, the Newton–

Fig. 1. Setup for Rmeas and Tmeas phantom measurements. The
sphere is an 8-in. ��20.3 cm� IS 080 SF from Labsphere, and the
parameters are rbeam � 1 mm, dsample � 2.2 mm, dslide � 1 mm,
rsample � 23 mm, rdetector � 12.5 mm, and � � 633 nm. Note,
duringRmeas measurements, the sample is placed at the port to the
right-hand side.
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Raphson algorithm converged in all cases; thus the
specific contribution of the algorithm to the total pre-
diction errors of the MPR method is negligible.

B. Numerical Prediction Tests

We tested the overall prediction performance of the
MPR method, using a simulated prediction set of a

100 Rmeas and Tmeas data based on random �a and ��s
values within the ranges defined in relation �5�. Fig-
ure 4 shows the actual random distribution of �a and
��s in the prediction set. All results discussed in the
present subsection are based on this prediction set
and the large 20 
 50 calibration set described in
Subsection 2.B. Furthermore, all reported errors
are relative prediction errors:

Err � 100% 
�pred � �ref

�ref

 , (8)

where �pred is the predicted value and �ref the true
value of either �a or ��s. The prediction errors of �a
or ��s are denoted Erra and Errs, respectively.

1. Order of Polynomials
Table 1 gives the prediction errors using Rfit and Tfit
fitting polynomials of orders 3, 4, and 5, respectively.
The iterations of the Newton–Raphson algorithm
were stopped when both ha and hs � 1 
 10�6 �see
Eq. �4�	. This criterion was typically satisfied after
5–15 iterations, leading to almost identical calcula-
tion times in all three cases. It is evident that the
prediction accuracy of the fifth-order polynomials are
superior to the third- and fourth-order polynomials.
Sixth-order polynomials were also tested but caused
rank deficient problems in the regression algorithm
and were therefore rejected.

2. Large-Error Analysis
The cases in which the prediction errors of �a and�or
��s, i.e., Erra and�or Errs were larger than 0.5% with
the fifth-order fits from Table 1 are depicted in Fig. 4.
It appears that the Errs values are largest when R is
low, whereas the largest Erra values occur mainly
when R is low and T is high �see discussion in sub-
section 3.A�. To analyze the Monte Carlo noise con-
tribution versus the fitting-error contribution to the
total prediction error, we generated 10 identical but
independent Rsim and Tsim sets for each of the 14
marked large-error cases in Fig. 4. The results from
this analysis are shown in Fig. 5. In cases 1–6 both
Erra and Errs � 0.5% �i.e., the triangles in Fig. 4�,
whereas in cases 7–14 only Errs� 0.5% �i.e., the open
circles in Fig. 4�. In each of the 14 cases in Fig. 5 the
left-hand bar indicates the maximum deviation from
the true value, the middle bar is a measure of the
prediction precision error, and the right-hand bar is a
measure of the prediction accuracy error. By com-
paring the middle and the right-hand bars, we can
conclude that the errors in cases 1–6 are mainly due
to MPR fitting errors in the calibration set, whereas
the errors in cases 7–14 are not due to limitations of
the MPR method in general but rather to the Monte
Carlo noise in the prediction set. Thus only one of
the latter eight cases were off by more than 0.5%,
when we, in each case, calculated the mean of the ten
independent predictions, i.e., the right-hand columns
of Fig. 5.

Fig. 2. Total diffuse reflectance R �a� and transmittance T �b� as
a function of the absorption coefficient �a and the reduced scatter-
ing coefficient ��s for a thin slab geometry. The R and T data for
the plots were generated with Monte Carlo simulations.
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3. Calculation Speed versus Accuracy
The applied Newton–Raphson algorithm was imple-
mented in Matlab and run on a 166-MHz Pentium
personal computer. As shown in Table 1, one single
prediction of �a and ��s was calculated in �60 ms. If
the algorithms were implemented and compiled in,

e.g., the C programming language, the calculations
would run even faster. In contrast, it took days to
generate the Monte Carlo data for the 20 
 50 calibra-
tion model we used. However, the total Monte Carlo
calculation time may be reduced by means of either
tracing less photons in each simulation or using less
simulations to generate the calibration model. The
calculation timemight also be reduced with theMonte
Carlo techniques suggested by Pifferi et al.20 Table 2
shows the resulting prediction errors of four equivalent
fifth-order calibration models based on four Rsim and
Tsim sets with two different numbers of simulations
and two different numbers of photons per simulation.
The results showed no significant increase in themean
prediction errorswhen either the number of photons or
the number of simulations was reduced. Only when
both the number of photons and the number of simu-
lations were reduced simultaneously did a significant
increase in the prediction errors occur. Conse-
quently, the total calculation time of the calibration set
may be reduced at least 10 times without any signifi-
cant increase in the average prediction errors.

4. Similarity Principle
When no collimated transmittance data Tc are avail-
able during integrating sphere measurements, the
similarity principle is often assumed. However, this
assumption is strictly valid only for large sample ge-
ometries and for g� 0.9.8–10 We tested the validity of
the similarity principle, using our calibration model
�g� 0.9� on a series of simulatedRmeas and Tmeas with
constant ��s but varying g. For constant ��s� 10 cm�1

Fig. 3. ��a� and �b�	 Absolute and ��c� and �d�	 fitting errors of Rfit and Tfit.

Fig. 4. Solid curves, contour plots of constant Rsim and Tsim val-
ues as a function of �a and ��s. The curves with positive slopes are
Rsim plots, and the curves with negative slopes areTsim plots. The
markers depict the random distribution of �a and ��s values in the
simulated prediction set. The gray dots indicate cases with pre-
diction errors less than 0.5%. The open circles are cases in which
Errs exceeds 0.5%, and the triangles are cases in which both Erra
and Errs exceed 0.5%.
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we found that the prediction values of ��s deviated ap-
proximately �2.5% at g � 0.8 and �2.5% at g � 0.99,
respectively. To determine g in conjunction with R
and T measurements, it is necessary to perform Tc
measurements also. Because of the practical difficul-
ties involved in Tc measurements, the resulting mea-
surement errors are often more severe than the errors
arising from calibration models with a fixed g. How-
ever, the MPR method can be readily extended to in-
clude determination of �s and g as well by generation
of calibration models for various g values and applica-
tion of a simple algorithm for choosing the appropriate
model during each prediction.

5. Comparisons with other Methods
We also compared the MPR method with the MCSI
method5 and the IAD method.14 Both the latter

methods are capable of extracting the full set of op-
tical properties, i.e., �a, �s, and g. To do this, they
are designed to be fed with collimated transmittance
data Tc in addition to the R and T data. In the case
of the IAD method it is possible, though, to assume a
g value and then useR and T data only. We chose to
feed both the MCSI and the IADmethod with Tc data
calculated with the Beer–Lambert law and the
Fresnel law. Table 3 shows the prediction errors,
the prediction calculation time, and the number of
outliers of theMPR,MCSI, and IADmethods, respec-
tively. The outliers—which we defined as predic-
tions with errors greater than 10%—were excluded
from the mean prediction error calculations. All
three methods were tested on the same computer.
It appears that the MPR method is significantly

faster and more accurate than both the IAD and the
MCSI methods. As stated in Subsection 2.B, we ap-
plied a finite light source in these experiments. In
fact, the IAD method implies uniform illumination;
i.e., it is capable of handling one-dimensional light
propagation only. This may to some degree account
for the lower accuracy. Furthermore, we used only
four quadrature points in the IAD calculations.
Thus the accuracy of the IAD method may be im-
proved by use of more quadrature points at the ex-
pense of the calculation speed.
Although the MCSI and the MPR methods are both

based on databases of Monte Carlo simulations, the
MPR method yields significantly better accuracy and
robustness than the MCSI method. This may be at-
tributed to the fact that the MPR method is less sen-
sitive to the Monte Carlo noise embedded in the
databases. The MCSI method is based on spline in-
terpolation of a selection of a few juxtaposed R or T
points from the Monte Carlo database. Thus the
MCSI fit will pass exactly through all of the selected
data points and track any local variation, including
intrinsic Monte Carlo noise. Owing to the local vari-
ability �i.e., noise� in the Monte Carlo data �see Fig. 3�,
the interpolated fit may even oscillate widely to pass

Fig. 5. Analysis of prediction errors greater than 0.5%. The up-
per graph �a� shows Erra, and the lower �b� shows the correspond-
ing Errs. In each single case the three bars indicate the following:
left, maximum deviation of ten identical simulations from the true
value; middle, average deviation from the mean of the ten simu-
lations; right, deviation of themean of the ten simulations from the
true value.

Table 1. Prediction Errors, Number of Iterations, and Prediction Calculation Times for Polynomial Fits of Orders 3, 4, and 5

Orders

Erra �%� Errs �%�
Iterations
Mean

Calc. Time �ms�
MeanMean Max. Mean Max.

Third order 1.0 7.8 0.8 6.2 11 54
Fourth order 0.4 3.1 0.4 3.5 11 56
Fifth order 0.2 1.4 0.3 1.1 11 60

Table 2. Prediction Errors with Fifth-Order Polynomial Fits and a Reduced Number of Photon Packets and�or Simulations for the Calibration Model

1 
 105 Photons�Simulation 1 
 106 Photons�Simulation

Erra �%� Errs �%� Erra �%� Errs �%�

Mean Max. Mean Max. Mean Max. Mean Max.

100 Simulations 0.3 1.2 0.5 2.1 0.2 2.0 0.3 1.6
1000 Simulations 0.2 1.5 0.3 1.4 0.2 1.4 0.3 1.1

1 March 2000 � Vol. 39, No. 7 � APPLIED OPTICS 1207



through all data points and thereby produce unrealis-
tic intermediate values. In contrast, the MPR
method is based on two immediate fits including all R
and T data points of the Monte Carlo database. In
this case the fits are optimized with least-squares re-
gression; thus any local variability in theR and T data
will be smoothened out, which in turn will reduce the
interference from the random Monte Carlo noise.

C. Phantom Measurements

To further validate the method, we also tested it on
Rmeas and Tmeas data from phantom measurements.
In these experiments we used the small 9 
 13 cali-
bration set described in Subsection 2.C. Assuming
that the scattering due to the dye in the phantoms
was negligible, we determined the actual �a of the 20
phantoms from collimated transmittance measure-
ments of pure dye solutions, using the Beer–Lambert
law. Also assuming that the absorption in the poly-
styrene spheres in the phantoms was negligible, we
calculated the actual ��s of the phantoms, using Mie
theory.21
Figure 6 shows correlation plots of the actual opti-

cal properties versus optical properties determined
from integrating sphere measurements with the
MPR method. In this case a few prediction outliers
occurred when we used a fifth-order model, whereas
a fourth-order model caused no such problems. This
is probably because the higher-order models, al-
though they are more accurate in general, may be
more sensitive to the inevitable noise in measured
prediction data and thus be less robust than lower-
order models. As a compromise between accuracy
and robustness we therefore used fourth-order mod-
els for the predictions presented in Fig. 6. The
means of Erra and Errs were 1.1% and 1.7%, respec-
tively. In contrast to the errors reported in Subsec-
tion 3.B �see Eq. 8�, these errors are relative to the
dynamic ranges of �a and ��s in the phantoms:

Err � 100% 
 �pred � �ref

�ref,max � �ref,min

 . (9)

We used the definition in Eq. �9� in this case, because
�a includes zero values, leading to division by zero if
Eq. �8� is used instead. Although the prediction er-
rors of the measurements are relatively small, they
are slightly higher than the errors obtained from sim-
ilar simulated tests on this model �mean Erra� 0.7%
and mean Errs � 0.2%�. This is mainly due to un-
certainties, partly in the determination of the exact
sphere compensation parameters and partly in the

stated values of the applied optical properties of mi-
crospheres, glass, water, etc. Furthermore, the
Monte Carlo simulations employ the Henyey–
Greenstein phase function to calculate the scattering
properties of the calibration data. However, the

Fig. 6. Correlation plots of theoretical calculations of�a �a� and��s
�b� versus �a and ��s values predicted by the MPR method from
phantom measurements.

Table 3. Prediction Errors, Prediction Calculation Times, and Number
of Outliers

Methods
Erra �%�
Mean

Errs �%�
Mean

Calc. Time �ms�
Mean

Outliers
�%�

MPR 0.2 0.3 60 0
MCSI 1.3 2.0 1350 9
IAD 1.6 2.5 350 9
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Henyey–Greenstein phase function is an approxima-
tion to the more correct and complex phase function
obtained from Mie theory calculations. Conse-
quently, this may also account for some of the minor
discrepancies between the predicted and the true val-
ues of �a and ��s in Fig. 6.

4. Conclusions

The above results show that the MPR method is accu-
rate, fast, and robust. The minor increase in the pre-
diction errors for low-reflectance levelsmay be reduced
by preprocessing of the calibration data before the fit-
ting is performed. However, if this particular region
is of main interest, it would be better to apply a larger
sample thickness to increase the reflectance signal
level and thereby reduce the effect of the interference
from Monte Carlo noise and measurement noise.
It appears that the similarity principle is not

strictly valid in the above experiments. Conse-
quently, g variations lead to increased but systematic
��s prediction errors of theMPRmethod. However, if
necessary, the MPR method could readily be ex-
tended to include direct determination of �s and g as
well, and thus circumvent any similarity problems.
The calculations of the data for the calibration

model suffer from the same advantages and draw-
backs as all other Monte Carlo-based methods. The
main advantages are the flexibility in sample geom-
etry and the potentially high accuracy. The major
drawback is the calculation time needed to obtain
this high accuracy. However, the results showed
that the MPR method maintained a high level of
accuracy when the number of simulations or traced
photons in the calibration data set was significantly
reduced, i.e., 10 times. In our case this meant that
the calculation time of the calibration data could be
reduced from days to hours.
The predicted values of �a and ��s with the MPR

method on data from real integrating sphere mea-
surements showed good correlation with theoretically
calculated values. These experiments also showed
that, when MPR predictions involve real measure-
ment data, it is essential to include proper compen-
sation for the various radiation losses in the setup.
Furthermore, it may be necessary to decrease the
order of the polynomial fits to obtain robust results on
measured �i.e., noisy� data compared with similar
experiments on simulated data.
In conclusion, it is evident that, once the calibra-

tion model has been implemented, the prediction
speed, the accuracy, and the robustness of the MPR
method is sufficient for a wide range of real-time
spectroscopic analysis applications with integrating
sphere measurements.

The authors acknowledge the financial support
from the Danish Academy of Technical Sciences.
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Fiber optic probe for non-invasive real-time
determination of tissue optical properties at multiple
wavelengths

Jan S. Dam1,2, Carsten B. Pedersen1, Torben Dalgaard1, Paul Erik Fabricius1, Prakasa Aruna2,3, and
Stefan Andersson-Engels2.

We present a compact, fast, and versatile fiber optical probe system for real-time determination of tissue
optical properties from spatially resolved continuous wave diffuse reflectance measurements. The system
collects one set of reflectance data from six source-detector distances at four arbitrary wavelengths with a
maximum overall sampling rate of 100 Hz. Multivariate calibration techniques based on 2-D polynomial
fitting are employed to extract and display the absorption and reduced scattering coefficients in real-time
mode. The four wavelengths of the current configuration are 660, 785, 805 and 974 nm, respectively. Cross-
validation tests on a 6x7 calibration matrix of Intralipid/dye phantoms shoved that the mean prediction error
at e.g. 785 nm was 2.8 % for the absorption coefficient and 1.3 % for the reduced scattering coefficient. The
errors are relative to the range of the optical properties of the phantoms at 785 nm, which were 0 - 0.3 /cm for
the absorption coefficient and 6 - 16 /cm for the reduced scattering coefficient. Finally, we also present and
discuss results from preliminary skin tissue measurements.
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1. Introduction

The optical properties of human tissue1, i.e. the
absorption coefficient aµ , the scattering coefficient

sµ , and the anisotropy factor g  may provide
important information on the composition and the
physiological dynamics of the tissue. While aµ  may
provide information on tissue chromophores2-4, sµ  and
g  may be used to characterize the form, size, and
concentration of various scattering components in the
tissue5−8.

Owing to the obvious advantages of non- and minimal-
invasive measurements, determination of tissue optical
properties based on diffuse reflectance measurements
has a significant potential in the fields of biomedical
diagnostics and monitoring. Diffuse reflectance
measurements may be roughly divided into time-
resolved9,10 (TR), frequency-domain11,12 (FD), and
spatially resolved continuous wave13−21 (CW) methods.
Traditionally, TR and FD based methods have been

considered to be more accurate for absolute
determination of optical properties than CW based
methods. However, TR and FD methods also require
more bulky and expensive equipment, and a larger
sample volume, which may restrict some biomedical
applications, e.g. implementation in portable
monitoring equipment or in endoscopes and catheters.
Recent work19 has shown that CW based methods may
yield absolute determination of the optical properties
of tissue with accuracies similar to the TR and FD
methods, which makes CW based methods a better
choice for many practical applications.

CW diffuse reflectance methods may be further dived
into methods based on probes in contact with the tissue
and non-contact methods, i.e. image reflectometry.
The latter method is advantageous in clinical
applications because of the non-contact and thus sterile
properties. The advantage of CW probes is that they
can be made small and portable. Therefore, they are
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well suited for (a) optical biopsies of body cavities or
organs because a probe may be implemented in
existing endoscopic equipment or (b) for long-time
monitoring of tissue optical properties, because the
probe may be fixed to the skin and still allow the
patient to move around. However, there are a number
of drawbacks related to skin tissue monitoring using a
contact probe system. Firstly, the static mechanical
pressure of the probe may influence the tissue optical
properties, e.g. by displacing blood in the sample
volume. Secondly, physical activities of the patient
may lead to motion artifacts, i.e. movements of the
probe relative to the skin tissue. Finally, the
obstruction of the tissue and sweating may cause long-
term changes in the tissue optical properties and the
probe/skin optical interface. All such inferences have
to be isolated in order to extract the relevant
information from diffuse reflectance measurements.

Accurate closed form mathematical analytical
expressions for spatially resolved diffuse CW
reflectance )(rR  as a function of the optical properties
is strongly limited by requirements to the range of the
optical properties and the specific geometry of the
setup22. Therefore, methods based on more accurate
numerical light propagation models, e.g. Monte Carlo
simulations23, are often used in conjunction with
various forms of multivariate analysis19,24 to solve the
inverse problem of extracting the optical properties
from )(rR  measurements. However, as a consequence
of the similarity principle25,26, normally only aµ  and
the reduced scattering coefficient ss g µµ )1(' −=  are
extracted from )(rR  measurements.

In this paper, we present a fiber optic probe system for
in vivo real-time determination of tissue optical
properties based on )(rR  measurements at four
arbitrary wavelengths. The probe system collects the
diffuse reflectance at six distances, extracts the
corresponding aµ  and s'µ  and displays the results
immediately on a laptop PC. The prediction of aµ  and

s'µ  is based on multiple polynomial regression27 and
calibration on a set of Intralipid/dye phantoms with
well-known optical properties within a range typical
for biological tissue28 in the visible and near-infrared
region. In the following sections we first give a
description of the probe specifications and the
principles of the calibration and prediction algorithms.
Next, we present and discuss the results obtained from
phantom measurements and simulated numerical tests
with respect to prediction errors, robustness etc.
Finally, we present the results of preliminary
prediction tests obtained from a series of clinical
measurements on normal skin tissue.

2. Methods and Materials

A. Fiber Probe System

Figure 1 shows the basics of the fiber probe system we
have used for the measurements described in the
following.

Figure 1 Diagram of the fiber optic system for )(rR
measurements applied in this paper. (1) Probe head with source
and detector optical fibers mounted in a rotational symmetric
configuration. (2) Handheld box with silicon photo diodes and
amplifier electronics. (3) Stationary box containing a DSP board
and the light sources in the form of diode lasers. (4) External
temperature controller to maintain a constant temperature of the
diode lasers. (5) Laptop PC to analyze, display, and store the
acquired )(rR data.

The system consists of a probe head with a 200 µm
source fiber in the center surrounded by five equally
spaced concentric rings of 250 µm detector fibers. We
chose this ring geometry instead of e.g. a simpler
linear geometric configuration, partly to be able to
collect more light at the farther distances, and partly to
minimize any problems arising from tissue
inhomogeneities during clinical measurements. The
fibers of each single ring detector are bundled and
terminated on separate silicon photo diodes. In
addition, three photo diodes and a temperature sensor
are mounted directly near the perimeter of the probe
head. Thus, )(rR  can be collected at six distances, i.e.

=r  0.6, 1.2, 1.8, 2.4, 3.0, and 7.8 mm, respectively.
These distances were chosen on the basis of previous
studies19. The gain of each reflectance detector has
been calibrated in an integrating sphere setup to obtain
equal outputs at constant input light intensities.
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 The source fiber is coupled into four separate fibers
each connected to four replaceable low-power diode
lasers. The diode lasers are mounted on a heat sink
with a constant temperature maintained by an external
controller. Furthermore, a separate reference detector
monitors the output of the source fiber at the probe
head. The diode lasers may be selected arbitrarily in
order to suit different applications. In this paper we
have used diode lasers with the wavelengths 660, 785,
805, and 974 nm, which are well suited for
applications involving hemodynamic monitoring. The
data acquisition and storage is controlled by a laptop
PC connected to a digital signal processing (DSP)
board. In each )(rR  measurement the detector
hardware collects data simultaneously in eight parallel
channels from the probe head, i.e. from the six detector
rings, from the reference detector at the source fiber,
and from the temperature sensor. One cycle of four
successive measurements (i.e. one at each wavelength)
including dark measurements may be performed in
about 10 ms, thus the maximum sampling rate of the
system is about 100 Hz. To minimize any interference
from background light or drift of the light source, the
dark measurements are subtracted from the measured
reflectance data after which they are normalized
relative to the source reference. The DSP board
accomplishes this prior to when the data are analyzed,
displayed and stored by the PC.

B. Calibration and Prediction Algorithms

In theory, aµ  and s'µ  may be determined using )(rR
data from only two of the six detector distances of the
fiber probe. Building on our previous work19,27, we
thus applied multiple polynomial regression (MPR) to
create a calibration model and subsequently extract aµ
and s'µ  from )(rR  measurements at =1r  0.6 mm and
at =2r  7.8 mm. For the sake of clarity we give a
summary of the MPR method here. We first measure

)(rR  at 1r  and at 2r  for a set of calibration samples
with well-defined optical properties and denote them

calR ,1  and calR ,2 . Then, we find a double-polynomial
fit to calR ,1  and calR ,2 :
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Where, the a , b , c , and d ’s are fitting coefficients
determined by least-squares regression. fitR ,1  and fitR ,2

thus constitute the calibration model. The next step is
to solve the inverse problem of determining aµ  and

s'µ  from )(rR  measurements on a set of prediction
samples, i.e. measR ,1  and measR ,2 . First we define
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Then, we use a Newton-Raphson algorithm to perform
converging iterative calculations of aµ  and s'µ :
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Where, ah  and sh  are correction terms of aµ  and s'µ .
The calculations continue until ah  and sh  have
dropped below predefined maximum values.

Since in this study we want to extract two optical
properties only, i.e. aµ  and s'µ , the MPR method
implies exactly two input variables as well, i.e. )( 1rR
and )( 2rR . However, due to tissue inhomogeneity
and/or noisy measurement conditions it might be
advantageous to include more source-detector
distances during measurements and then subsequently
apply some sort of dimension reduction method before
the data are fed to the MPR method. In order to test
such a procedure, we also applied principal component
analysis (PCA) on the data from all six source-detector
distances of the probe system and then used the
resulting two main principal components 1P  and 2P  as
input to the MPR method instead of )( 1rR  and )( 2rR .

All the prediction algorithms we have applied in this
paper were implemented in Matlab and run on a 166
MHz PC. With this configuration, the prediction of a
single set of aµ  and s'µ  could be performed in about
60 ms.
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C. Phantoms

Due to the unknown numerical apertures of the fiber
probe light source and detectors, we chose to calibrate
the system directly on a set of phantoms instead of
using a mathematical light propagation model. The
phantoms consisted of well-defined aqueous solutions
of Intralipid and black ink in cylindrical glass
containers with a diameter of 10 cm and a height of 4
cm. We determined the scattering and absorption
spectra of the Intralipid and the black ink from
integrating sphere27 and traditional transmission
spectroscopy measurements. On the basis of these
spectra, we mixed a 6x7 matrix of phantoms with aµ
and s'µ  ranges typical for skin tissue (see Table 1).
The applied range of Intralipid concentrations were
0.6, 0.8, …1.6 %, and the range of the ink
concentrations were 0.0, 0.2, …1.2 %. It should be
noted, that the absorption of pure ink is much higher
than that of typical biological substances, thus the ink
concentrations in the following refers to a premixed
basic ink/water solution with a biological relevant
absorption level.

Table 1 Optical property ranges of 6x7 matrix of Intralipid/Ink
phantoms determined from integrating sphere measurements.

Optical property range (cm-1)

λ  (nm) aµ s'µ

660 0 - 0.36 7.3 - 19.5

785 0 - 0.32 6.1 - 16.3

805 0 - 0.31 6.0 - 16.0

974 0.45 - 0.68 4.8 - 12.7

To perform the prediction experiments, we calibrated
the probe system directly to the concentrations of the
Intralipid and the ink in the phantoms, assuming that
the absorption of pure Intralipid29,30 and the scattering
of the ink both were negligible. At 660, 785, and 805
nm, we assumed that the background absorption was
negligible as well. However, water exhibits substantial
absorption31 at 974 nm ( watera,µ = 0.45 cm-1). This was
incorporated in the concentration-to-absorption
tabulation by assuming a constant water absorption
contribution at this particular wavelength (e.g.

45.0%0 =⇒= ainkc µ cm-1).

3. Results

Once the 6x7 matrix of phantoms had been mixed, we
determined the actual optical properties of a subset of
the phantom matrix using integrating sphere
measurements. Figure 2(a) shows the mean absorption
spectra of the 6 phantoms with 1% ink concentrations
but varying Intralipid concentrations, and Figure 2(b)

shows the mean scattering spectra of the 7 phantoms
with 1 % Intralipid concentrations but varying ink
concentrations. We used the results from Figure 2(a) to
relate the concentrations of Intralipid and ink to the
optical properties of the phantoms. The resulting
optical property ranges of the 6x7 matrix phantoms are
listed in Table 1.

Figure 2  Optical property spectra of the applied Intralipid/ink
phantoms. Panel (a) shows the mean of aµ  as a function of the
wavelength λ  for the six phantoms with 1 % ink concentration,
but varying Intralipid concentrations. Likewise, panel (b) shows
the mean of s'µ  as a function of the wavelength for the seven
phantoms with 1 % Intralipid concentration, but varying ink
concentrations. The error bars of the spectra in panel (a) and (b)
show the standard deviations of aµ  and s'µ , respectively. The
circles indicate the values at the four wavelengths of the probe.
The two spectra were measured and calculated using an
integrating sphere setup in conjunction with the MPR method.

Figure 3(a) and Figure 3(b) shows the measured
intensity )(rR at 785 nm as a function of aµ  and s'µ
at =r  0.6 mm and =r  7.8 mm, respectively.
Corresponding plots at the three remaining
wavelengths of the probe, i.e. 660, 805, and 974 nm,
showed similar characteristics, i.e. they were also
smooth and monotonic, which suggests that they may
be fitted well by Eq. (1) using relatively low-order
polynomials. Preliminary experiments showed that
using Eq. (1) with m  =  3 provided the best overall
calibration model, concerning accuracy and
robustness.
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Figure 3  Surface plots of )(rR at =1r  0.6 mm and =2r  7.8 mm as a function of aµ  and s'µ . Panel (a) and (b)
show the )(rR  plots of the 6x7 Intralipid phantoms at 785 nm, and panel (c) and (d) show the corresponding )(rR
plots based on Monte Carlo Simulations. Note that the arbitrary intensity units of measured )(rR  plots have been
scaled in order to compare them with the simulated plots.

The prediction accuracy of the MPR method was
tested using leave-one-out cross validation. This means
that we successively performed predictions using the
data from one phantom for prediction and the data
from the remaining 41 phantoms of the 6x7 matrix for
calibration. In order to insure that all )(rR variations
were covered by the calibration models, we only
carried out predictions on the 4x5 interior subset of the
6x7 matrix. Table 2 presents the results from these
cross validation prediction tests.

Table 2. Leave-one-out cross validation prediction tests based on

phantom measurements. The errors are relative to the ranges of aµ
and s'µ  of the phantoms. The bracketed values at =λ  660 nm, have

been corrected for an outlier detected by visual inspection of the

measured )(rR  data.

Prediction Errors (%)

aµ s'µ

λ  (nm) Mean Max. Mean Max

660 3.3 (2.5) 18 (6.7) 1.7 (1.7) 3.7 (4.0)

785 2.8 8.3 1.3 3.4

805 2.6 9.0 1.5 4.2

974 3.7 9.7 1.6 3.8

To check our experimental results, and to examine the
robustness, noise sensitivity, etc. of the applied

calibration model and prediction algorithms we also
performed a series of numerical tests based on Monte
Carlo simulations with a geometric configuration
analogous to fiber probe set-up described in Sect. 2.A.
However, unlike the measurements, the simulations
were based on a collimated incident beam, a semi-
infinite medium, and 1/2π  acceptance angle for
collection of the diffuse reflectance. The tests were
carried out as follows: (I) First, we generated a basic
6x7 calibration matrix with optical properties
corresponding to the 6x7 phantom matrix at =λ 785
nm and then performed prediction tests similar to the
phantom cross validation tests described above. Figure
4 shows a selected set of )(rR  profiles from these
simulations (see also Figure 3(c) and Figure 3(d)). (II)
Next, to test the algorithms with independent
calibration and prediction data, we generated a series
of 20 )(rR  data sets with random aµ  and s'µ
distributions and then performed predictions on this
randomized set using a calibration model based on the
full 6x7 basic matrix. (III) The basic 6x7 matrix were
generated using 1⋅106 photons. In order to examine the
impact of random measurement noise on the prediction
performance, we generated a second 6x7 matrix with
less noise by using 1⋅107 photons and performed
identical cross validation tests on this set. (IV) We also
wanted to investigate the effect of using a calibration
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model with a higher aµ  and s'µ  resolution, thus we
also carried out cross validation tests on a 11x13
calibration matrix with the same aµ  and s'µ  range and
number of photons as the basic 6x7 matrix. (V)
Finally, we tested the effect of using PCA for
dimension reduction as described in Sect. 2.B. The
resulting mean and maximum prediction errors from
the numerical tests (I–V) described above are
summarized in Figure 5.

In order to validate the optical property range of the
applied calibration model we performed a series of
probe measurements on the inner forearm of 5 healthy
individuals. Figure 6 shows how the mean )(rR of all
5 individuals (circles) at each probe distance is situated
relative to the )(rR  ranges of the calibration model
(vertical bars). Figure 6 also shows the predicted
optical properties at all four wavelengths calculated
from the mean )(rR  data using Eq. (1) - (3). It can be
seen that the measured skin tissue at =λ 660 nm and

=r  7.8 mm is outside the calibration model range, and
therefore, it is not possible to predict aµ  and s'µ
correctly in this case.

4. Discussion

A. Geometry Considerations

In Figure 4(a) and (b) s'µ  is kept constant at values of
6 cm-1 and 16 cm-1, respectively. In these two cases, it
appears that changes in aµ  have a negligible effect on

)(rR  at distances close to the source. In Figure 4(c)
and (d), aµ  is kept constant at values of 0 cm-1 and 0.3
cm-1, respectively. Here, it is notable that there is very
little variation in )(rR  at ≈r  0.35 cm in Figure 4(c)
and at ≈r  0.3 in Figure 4(d). With a figure of speech,
we say that there is a “pivot point” in the )(rR graphs
at ≈r  0.3 cm, when aµ  is kept constant. The
simulations in Figure 4(a) and Figure 4(b) indicates
that s'µ  may be determined with good accuracy from
close distance measurements only. To determine aµ  as
well, Figure 4(c) and (d) suggest that

)(rR measurements close to the pivot point should be
included, since there is little variation in )(rR  as a
function of s'µ  at this point.

Figure 4   Monte Carlo simulated )(rR  data for various combinations of aµ  and s'µ  within ranges typical for skin tissue at
785 nm. In (a) and (b), s'µ  is kept constant at 6 cm-1 and 16 cm-1, respectively while aµ  is varied within the range 0 – 0.3 cm-

1. In (c) and (d), aµ  is kept constant at 0 cm-1 and 0.3 cm-1, respectively while s'µ  is varied within the range 6 – 16 cm-1.
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Although, other authors32,33 support this
argumentation, we have based our experiments in this
paper on close range distances in conjunctions with
distances well beyond the pivot point. We did this,
because our previous studies19 showed that this
geometrical configuration provided a better accuracy
than a configuration with close range distances in
conjunction with distances near the pivot point.

B. Phantom Measurements

The prediction tests using Intralipid/ink phantoms
show a good accuracy (see Table 2). The mean
prediction error at all four wavelengths is roughly 3 %
for aµ , and 1.5% for s'µ , while the maximum
prediction errors for aµ  and s'µ  is about 11 % and 4
%, respectively. The prediction algorithm converged in
all cases; however, the maximum error of aµ  at =λ
660 nm is remarkably high (18 %). A visual inspection
of the raw )(rR data at 660 nm revealed an outlier at

=r  7.8 mm in one of the phantom measurements.
This outlier could be due to an air bubble or a piece of
dirt at one of the three 7.8 mm detectors in this

particular measurement. When we removed the outlier
from the calibration and prediction analysis at =λ  660
nm, we obtained the improved results shown in
brackets in Table 2.

In general, the prediction errors of aµ  are about twice
as high as the errors of s'µ . This may partly be
attributed to the fact that aµ  is mainly determined on
the basis of the )(rR data at =r  7.8 mm, while s'µ  is
almost solely determined from )(rR data at =r  0.6
mm, where the signal level is about 1000 times the
level at =r  7.8 mm. The aµ  predictions are therefore
more sensitive to any background noise interference
during the measurements.

With reference to the comments on the pivot point in
Sect. 4.A we also performed a series of prediction
tests, where we replaced the )(rR  probe data at =2r
7.8 mm with probe data at the pivot point =pivotr  3.0
mm. This had no significant effect on the s'µ
prediction errors, but both the mean and the maximum

aµ  prediction errors increased roughly 30 % compared
to results reported in Table 2.

Figure 5  Various numerical tests on Monte Carlo simulated )(rR  data. Panels (a) and (b) show the mean prediction
errors of aµ  and s'µ , respectively. Panels (c) and (d) show the corresponding maximum prediction errors. From below:
(I) Cross validation on a basic 6x7 calibration matrix corresponding to phantom measurements at 785 nm. (II)
Predictions on data with random aµ  and s'µ  distribution. (III) Cross validation on 6x7 matrix generated using 1⋅107

photons. (IV) Cross validation on a high resolution 11x13 calibration matrix. (V) Cross validation on the basic 6x7
calibration matrix using principal component analysis.
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C. Numerical Tests

The general shape of the measured and the simulated
)',( saR µµ  plots in Figure 3 are very similar at

corresponding detector distances. However, the
simulated plots do show slightly higher )',( saR µµ
levels for low aµ  and s'µ  values at =r  7.8 mm. This
difference is severe enough to prevent the direct use of
a calibration model based on Monte Carlo simulations
for prediction analyses of )(rR  data collected with the
fiber probe. The difference between the simulated and
the measured )(rR  data in Figure 3(b) and (d) may be
attributed to the different numerical apertures of the
sources and the detectors in the two cases, e.g. the
Monte Carlo simulations employ a collimated source
beam, while the probe source beam is divergent.

The aµ  prediction errors of the simulated data shown
in Figure 5(a) and (c) are comparable with the errors of
the measured data Table 2, while the s'µ  prediction
errors of the simulated data (Figure 5(b) and (d)) are
lower than the errors of the measured data. In both
cases the aµ  prediction errors are significantly higher
than the s'µ  errors, probably owing to the noise
sensitivity at =r  7.8 mm as discussed above. Figure 5
also shows a drop in the prediction errors when using a
randomized prediction data set. This may be due to the
fact that the quality of the calibration model fit during

leave-one-out cross validation is reduced in the
vicinity of the aµ  and s'µ  to be predicted.
Consequently, the fiber probe system may perform
better during real measurements on samples with
unknown optical properties, than the results in Table 2
indicates.

From Figure 5 it also appears that a reduction in
measurement noise (i.e. more photons) or using
calibration model with a higher aµ  and s'µ  resolution
in both cases lead to a significant drop in maximum
prediction errors, while the effect on the mean
prediction errors is moderate. Finally, it can be seen
from Figure 5 that the use of PCA before calibration
and prediction has a positive effect on the aµ
prediction errors, while the s'µ  prediction errors are
slightly increased. In summary, the prediction
accuracy obtained from calibration and prediction on
phantoms are comparable with the accuracy obtained
from calibration and prediction on Monte Carlo
simulated data. The numerical tests suggest that the
prediction accuracy may be improved slightly by using
more samples when creating the calibration model.
However, the improvements may hardly justify the
additional efforts of creating more calibration
phantoms.

Figure 6   Mean optical properties at all four wavelengths determined from )(rR  measurements on the
forearm of five healthy individuals. The vertical bars indicate the valid range of the applied calibration
model at various distances and wavelengths, and the circles indicate the mean measured )(rR  of the five
individuals. At each of the four wavelengths, the stated values of aµ  and s'µ  were determined on the
basis of the mean )(rR  values at =1r  0.6 mm and =2r  7.8 mm.
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D. Clinical Measurements

From Figure 6 it appears that the range of calibration
model covers the span of the measured tissue )(rR
data in most cases, except at =λ  660 nm. At this
wavelength, the mean of the measured )(rR at =2r
7.8 mm is above the range of the calibration model.
This suggests that either aµ  or s'µ  (or both) of the
skin tissue are lower than the minimum values of the
calibration model. In the case of aµ  this is not
possible, since the model range at =λ  660 nm is 0 –
0.36 cm-1. The minimum value of s'µ  of the model at
this wavelength is 7.3 cm-1, and it is not likely that the
measured s'µ  should be beneath this limit either. At
the three remaining wavelengths the measured )(rR  at

=1r  0.6 mm and =2r  7.8 mm are within the limits of
the calibration mode, and the extracted aµ  or s'µ
show a reasonable correlation with other studies20,34.
However, at 974 nm, it appears that the measured

)(rR data, at some of the intermediate distances (i.e. at
r  = 2.4 and 3.0 mm) are not within the ranges of the
calibration model, i.e. the shape of the tissue )(rR
profiles are different from the shape of phantom
profiles. There may be several reasons for this. Firstly,
in contrast to the phantoms, the volume of the skin
tissue sampled by the probe is not homogeneous but
basically consists of distinct layers, i.e. the stratum
corneum, the vivid epidermis, the epidermis, etc. Each
of these layers has specific optical properties, and
therefore the predicted values of aµ  or s'µ  in Figure 6
are a compound of the optical properties of each
separate layer. Secondly, the ratio of the refractive
indexes between the probe and the sample
( sampleprobe nn / ) is different in the two cases, i.e. ≈tissuen
1.4035 and ≈phantomn  1.33. Finally, the probe tissue
interface may not have been optimal, which in turn
may lead to light piping effects between the probe and
the stratum corneum. Such effects may cause an
increase of the farther )(rR  values relative to the
values close to the light source, which also might
explain the “out of range” problems encountered at

=λ  660 nm. To summarize, it is essential to ensure a
proper optical contact and apply a uniform and
reproducible mechanical pressure in order to obtain
valid predictions from contact probe measurements.

E. Acquisition and Analysis Speed

As we stated in Sect. 2.A the maximum acquisition
rate of the fiber probe system for all four wavelengths
is about 100 Hz, which is sufficient for analyzing the
optical property dynamics of most physiological
systems. The current software implementation of the
prediction algorithms leads to an analysis time for one

set of aµ  or s'µ  of about 50 ms, i.e. an analysis rate of
5 Hz when all four wavelengths are included. To
match the analysis rate to the acquisition rate of the
probe system, the speed of the prediction algorithms
may be increased substantially by applying a more
contemporary PC and/or by compiling the algorithms
in e.g. the C programming language.

5. Conclusions

We have demonstrated a versatile, fast and accurate
probe system for real-time non-invasive determination
of tissue optical properties from continuos wave
spatially resolved diffuse reflectance measurements.
The current calibration of the system was intended to
match a typical range of absorption and reduced
scattering coefficients of skin tissue, and preliminary
clinical trials on a set of healthy individuals showed a
good consistency except at =λ  660 nm. At this
wavelength, the measured tissue data was outside the
range of the calibration model in some occasions. This
problem may be solved by extending the range of the
calibration model, but the problem may also originate
in the fact that the system was calibrated on
homogeneous one-layer phantoms, while skin tissue is
a inhomogeneous multi-layer structure. Furthermore,
the clinical trials clearly demonstrated that is
imperative to ensure proper and reproducible refractive
index matching and mechanical contact properties to
obtain valid results. All things considered, the system
and the method we have presented here provide a
sound basis for future development of compact and
dedicated systems for non- or minimal-invasive
medical diagnostics and monitoring. Still, further work
is required to explore the applicability for specific
biomedical implementations.

The authors acknowledge the financial support from
the Danish Academy of Technical Sciences
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Quantifying the absorption and reduced scattering
coefficients of tissue-like turbid media over a
broad spectral range using non-contact Fourier-
transform hyperspectral imaging.

Tuan H. Pham1,2, Frederic Bevilacqua2, Thorsten Spott3, Jan S. Dam1,4, Bruce J. Tromberg2, and
Stefan Andersson-Engels1

Absorption (µa) and reduced scattering (µs’) spectra of turbid media were quantified using a non-contact
imaging approach based on a Fourier transform interferometric imaging system (FTIIS). FTIIS was used to
collect hyperspectral images of the steady-state diffuse reflectance from turbid media. Spatially-resolved
reflectance data from Monte Carlo simulations were fit to the recorded hyperspectral images in order to
quantify µa and µs’ spectra in the region of 550-850 nm. A simple and effective calibration approach was
introduced to account for the instrument response. Using reflectance data that were close to and far from the
source (0.5-6.5 mm), µa and µs’ of homogenous, semi-infinite turbid phantoms with optical property ranges
comparable to tissues were determined with an accuracy of ±7% and ±3%, respectively. Prediction accuracy
for µa and µs’ degraded to ±12% and ±4%, respectively, when only reflectance data close to the source (0.5-
2.5 mm) were used. Results indicate that reflectance data close to and far from the source are necessary to
optimally quantify µa and µs’. The spectral properties of µa and µs’ values were used to determine the
concentrations of absorbers and scatterers, respectively. Absorber and scatterer concentrations of two-
chromophore turbid media were determined with a percent accuracy of ±5% and ±3%, respectively.

1. Introduction

The absorption and reduced scattering parameters (µa

and µs', respectively) of turbid media, such as tissue,
can be used to characterize its composition and
structure. For instance, µa and µs' of tissue can provide
information on a variety of physiological processes.
Wavelength-dependent absorption is used to quantify
the concentration of biologically important
chromophores, such as hemoglobin, myoglobin, water,
fat, and near-infrared absorbing drugs1-5. Wavelength-
dependent scattering properties offer insight into the
composition, density, and organization of tissue
structures, such as cells, sub-cellular organelles, and
connective tissue/extracellular matrix6-10. Since
changes in these components generally accompany
pathologic transformations and physiologic processes,
techniques for non-invasively quantifying µa and µs' in
vivo have generated intense interest.
1Department of Physics, Lund Institute of Technology,
P.O. Box 118, SE-22100, Lund, Sweden
2Beckman Laser Institute and Medical Clinic,Laser Microbeam
and Medical Program (LAMMP),1002 Health Sciences Road
East, Irvine, Ca 92612
3Department of Physical Electronics, Norwegian University of
Science and Technology (NTNU), N-7034 Trondheim, Norway
4Bang & Olufsen Medicom a/s, DK-7600, Struer, Denmark

One approach for characterizing µa and µs' of turbid
media is to use spatially-resolved, steady-state diffuse
reflectance. Two strategies for spatially resolved
reflectance measurements of turbid, semi-infinite
media have been demonstrated: contact probe
detection using fiber-optic arrays11-15 and image
reflectometry16-19. Systems based on contact probe
detection often have the capacity to measure the
reflectance for a continuous range of wavelengths but
require that the detection fibers touch the tissue.
Imaging reflectometry has the advantage that
measurements can be performed remotely. Non-
contact detection can be particularly useful in clinical
settings where fiberoptic probes may contribute to a
number of problems, including contaminating sterile
fields, altering regional tissue perfusion (via probe-
induced pressure) and increasing measurement
uncertainty due to irreproducible fiber/tissue coupling.

When a light source is launched onto tissue, diffuse
reflectance signals close to and far from the injection
point do not have equal sensitivity to bulk media
optical properties. The reflectance profile close to the
source, i.e. approximately less than 1 transport length

1−+= )'( satrl µµ , depends strongly on the phase
function, anisotropy factor, scattering property20,21, and
source volumetric distribution; but exhibits weak
dependence on absorption15,21,22. Far from the source
(> 5 ltr), diffuse reflectance profiles depend
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significantly on absorption, but less so on the phase
function and source volumetric distribution22,23. In
addition, photons that are diffusely reflected close to
the source mainly probe superficial regions of the
medium, while photons reflected distal to the source
have diffused into deeper regions24,25. Accordingly,
parameters such as scattering and anisotropy of
superficial regions may be optimally characterized
using diffuse reflectance information close to the
source.  Diffuse reflectance profiles far from the
source may be optimal for quantifying the absorption
and scattering properties of deeper regions. Thus,
source-detector separation, i.e. the distance between
the source and the location of light re-emission, is an
important parameter to consider in analyzing diffuse
reflectance images26.

Imaging reflectometry systems often have limited
spectral range, typically consisting of only a few
discrete wavelengths16,17,27. For many tissue
applications, broad spectral dynamic range is
desirable. This is due to the fact that detailed
absorption and scattering spectra can be used to
determine the physiologic and structural properties of
tissues and are diagnostically valuable in
characterizing pathology28-30. Calibration procedures
are generally difficult and complex, since the
instrument response depends not only on the spatial
and wavelength performance of the CCD, but also on
the point spread function of the imaging system.
Consequently, techniques that extend the wavelength
dynamic range and facilitate rapid, accurate calibration
are of considerable interest for spectroscopy and
imaging of turbid media.

In this study, we investigate the feasibility of using
diffusely reflected hyperspectral images to quantify µa

and µs' over a continuous and broad spectral range. A
Fourier transform interferometric imaging system
(FTIIS) is used to collect hyperspectral diffuse
reflectance images from tissue-like phantoms
containing Intralipid (a light scattering fat emulsion)
and absorbing dyes. We fit Monte Carlo simulations to
measured image data in order to characterize the
wavelength-dependent optical properties of the
phantoms. Wavelength-dependent µa, and µs' are used
to quantify, respectively, dye and fat emulsion
concentrations. Additionally, we examine how the
range of source-detector separations used in the image
analysis affects the determination of µa and µs'.

2. Material and Methods.

A. Fourier Transform Interferometric Imaging
System (FTIIS):

Figure 1 schematically illustrates the main components
of the hyperspectral imaging device. White light from
a broadband halogen source is coupled onto a 0.16
NA, 200 µm diameter optical fiber. Light exiting the
fiber is re-focused to form a 250-µm diameter point
source that is launched onto tissue-like phantoms at an
incidence angle of 25 degrees relative to the surface
normal. At this angle, specularly reflected light is not
collected by the imaging optics and the diffuse
reflectance distribution is minimally affected17.
Hyperspectral images are collected using a Fourier-
transform interferometric imaging system (FTIIS),
(SpectraCube® imaging system, Applied Spectral
Imaging, Migdal HaEmek 10511, Isreal).

Figure 1. Experimental setup of the Fourier transform
interferometric imaging system used to collect hyperspectral
images of the diffuse reflectance from turbid media.  The
principle components of the system are the halogen white light
source, collection optics, Sagnac interferometer, and a cooled 12-
bit CCD camera (CCD). Interference patterns of the object are
collected for a sequential series of optical path differences (OPD)
by incrementally rotating the beamsplitter (BS). Interferogram is
generated at each pixel, which corresponds to a particular region
of the object. Inverse Fourier transform of the interferograms
yields the hyperspectral images. Data acquisition and processing
were performed using a PC. A full description of the setup is
provided in the text. Abbreviations: optical fiber (OF), aperture
(A), camera zoom lens (CZL), neutral density filter (NDF), lens
to focus the white light source (L1), lens to image the recombined
beams onto the CCD (L2), mirror (M), and optical pathlength
(OPL).
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FTIIS employs a cyclic (Sagnac) interferometer31 to
construct hyperspectral images. The principle
components of FTIIS are the collection optics, a
Sagnac interferometer, and a 12-bit CCD camera
(Model TE-CCD-512-EFT/UV, Princeton Instruments,
Inc., Trenton, NJ, USA). The collection optics consist
of a commercial camera zoom lens (a 50-mm focal
length, f1.2 to f16) and a neutral density filter (NDF).
The achromatic zoom lens allows for adjustable image
magnification and acceptance angle. NDFs were
placed in front of the camera lens to prevent saturation
of the CCD pixels that image the regions near the
source, where the intensity is maximal.

Light entering the collection optics is split into two
beams and directed along different optical paths
(OPL1 and OPL2). The two beams are then
recombined at the CCD. The optical path difference
(OPD) between the beams, which is a function of the
beamsplitter's angular position, generates interference
patterns of the object on the CCD. To obtain
hyperspectral images, interference patterns are
collected for sequences of OPDs, generated by step-
wise rotation of the beam splitter. In this manner an
interferogram is constructed for each pixel in the
image. Fourier analysis of the interferograms is used to
produce wavelength spectra. The selected magnitude,
range, and spacing of the OPDs determine spectral
range and resolution. Images can occupy up to
512x512 pixels (for a given wavelength), and
depending on the selected magnification, objects with
sizes on the order of 1-50 mm can be imaged. In this
study, we set the FTIIS parameters such that
hyperspectral images for wavelengths ranging from
550-850 nm were generated. Twenty-four wavelengths
were obtained with images unevenly spaced within the
wavelength range. On average, the spacing was 8 nm
for shorter wavelengths and 17 nm for longer
wavelengths. Image size was 170 x 170 pixels,
corresponding to a physical (object) dimension of 25 x
25 mm. At these settings, hyperspectal images were
acquired in 40 seconds.

B. Phantoms:

Fifteen turbid phantoms with unique and randomly
selected pairs of µa and µs' were made from absorbing
dyes (Nigrosin and Janus Green B, Sigma, St. Louis,
MO, USA) and fat emulsion scatterers (Intralipid 200
mg/ml (20%), Pharmacia & Upjohn Sverige AB,
Stockholm, Sweden). The range of optical properties
for the phantoms was comparable to tissues32, i.e. µa

and µs' values were 1x10-3 – 0.20 mm-1 and 0.30 –
2.50 mm-1, respectively. For each phantom, known

concentrations of aqueous dye solutions were
prepared, followed by the addition of Intralipid
scatterers. Conventional absorption spectrophotometry
was performed on a small sample (2-ml) collected
from the aqueous dye mixture, i.e. prior to adding
scatterer, in order to independently measure µa.
Expected phantom absorption values from 500 to 900
nm were calculated using these measured extinction
coefficients.  These calculated values were then used
as "gold standards" in the evaluation of FTIIS
accuracy.

Expected reduced scattering (µs') values were
calculated according to van Staveren et al.33, who used
Mie theory to relate the scattering coefficient and
anisotropy factor of Intralipid to the optical
wavelength. According to that work, the scattering
coefficient (µs) and the anisoptropy factor (g) of 10%
Intralipid can be expressed as a function of the optical
wavelength, λ:

4 216 .)( −= λλµ s (1)

λλ 58011 ..)( −=g (2)

where λ is given in micrometers and µs in mm-1.
Values obtained from Eq. 1 and 2 were shown to have
an accuracy of ±6%. The reduced scattering coefficient
for 10% Intralipid was calculated from µs and g using
the similarity relation, )1(' gss −= µµ , which is
satisfied when the source-detector separation, ρ, is
greater than approximately one transport length34. µs'
for Intralipid can be expressed as %' Cs σµ = , where

10/)1( gs −= µσ  and C% is the Intralipid
concentration in percent volume. This relationship has
been shown to be valid when Intralipid concentration
is less than 10% by volume33. Optical property values
obtained from fits of the hyperspectral data were
compared to expected coefficients in order to
determine the percent accuracy and spectral fidelity of
quantifying µa and µs'.

C. Monte Carlo simulations:

Monte Carlo simulations were performed to generate a
database of diffuse reflectance from a finite-diameter
(250-µm) source in homogenous, semi-infinite media.
We elected to use Monte Carlo simulation instead of
the diffusion approximation, because the numerical
approach readily accounts for the effects of boundary,
source distribution, and media geometry on the diffuse
reflectance. In addition, reflectance data from Monte
Carlo simulations are more accurate for highly
absorbing media as well as for positions close to the
source. The Henyey-Greenstein phase function was
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used in the simulations, since various investigators have
used this to successfully model the scattering phase
function of fat emulsions. The range of optical
properties used to generate the database encompassed
values typically found in tissues: µa and µs' were 1x10-3

– 0.30 mm-1 and 0.30-2.50 mm-1, respectively, with µa

equally spaced by 1x10-2 mm-1 and µs' by 0.20 mm-1.
The refractive index was set to that of water. Because
of cylindrical symmetry, Monte Carlo data for diffuse
reflectance and other parameters were organized using
cylindrical coordinates. For example, diffuse
reflectance data were arranged in concentric rings
surrounding the source. The radial bin thickness of the
concentric rings was 50 µm. The number of photons
was empirically set at ( ) 741 10xN sa

/
'µµ= so that

the noise characteristics of data simulated using
different optical properties would be comparable17.
Simulated data were normalized to ring area in order to
account for differences in ring size. The diffuse
reflectance was recorded as a function of the radial
distance from the source and stored as photon
probability per unit area.

An interpolation procedure was used to obtain
simulated reflectance data for optical properties that
were not the same as the simulated values, e.g. for
values lying in between the simulated µa, µs' pairs. In
particular, we used a three-dimensional spline
function35,36 to model the Monte Carlo reflectance
database as a function of µa, µs', and ρ. The spline
function was then used to interpolate radially resolved
reflectance data for arbitrary µa and µs' values within
the simulated range.

D. Data fitting:

Monte Carlo simulations were fit to the hyperspectral
images to determine µa and µs' values in the visible
and near-infrared regions. Prior to data fitting, a
calibration procedure was performed in order to
account for the instrument response (IR) of the
imaging system, i.e. instrument factors such as the
point spread function, spectral sensitivity of the CCD,
and uniformity of the CCD response. The calibration
procedure consisted of three main steps. First, we
collected an image of a marked ruler and counted the
number of pixels corresponding to a unit length on the
ruler. The ratio of length to pixel count is the factor
that relates the pixel count to the physical size of the
object. Second, hyperspectral images of the diffuse
reflectance were acquired from a reference phantom,
which was constructed from Intralipid and dyes, in
order to determine the IRs at the measured
wavelengths. Calibration images were obtained using

experimental settings, such as numerical aperture (NA)
and magnification factor, that were identical to those
used to construct hyperspectral images of the test
samples. Third, the IR of the system was calculated
using the calibration images and the known optical
properties of the reference phantom. For this purpose,
the calibration image at each wavelength was Fourier
transformed into the spatial frequency domain (SFD).
Likewise, the Monte Carlo simulated image (MCSI)
corresponding to the reference phantom optical
properties was transformed into the SFD. The overall
instrument response of FTIIS at each wavelength was
calculated from the spatial transforms of the
calibration and MCSI via the relation:

ℑ(IR) = ℑ(I)/ ℑ(MCSI) , (3)

where ℑ(I), ℑ(MCSI), and ℑ(IR) are the spatial
Fourier transforms of the calibration image, the Monte
Carlo simulated image, and instrument response,
respectively.

To perform data fitting, the MCSI corresponding to a
particular set of optical properties was effectively
convolved with the instrument response at the
evaluated wavelength, i.e. MCSI⊗IR where the
symbol “⊗” denotes a convolution. However, the
convolution was performed indirectly in the spatial
frequency domain. MCSI was first transformed into
the spatial-frequency domain, ℑ(MCSI).  The spatial-
frequency transform of MCSI was multiplied by ℑ(IR)
to account for the instrument response. The product,
ℑ(MCSI)ℑ(IR), was inversely Fourier transformed
into the spatial domain to yield MCSI⊗IR. The sample
image at each wavelength and MCSI⊗IR were binned
radially. That is, the images were divided into
concentric rings, and pixel values in each ring were
summed and normalized to the pixel count of the ring.
Radial binning of data conferred two advantages: 1)
pixel values from different quadrants were averaged
and thus noise was reduced, and 2) computational
demand of fitting was reduced since fitting was
performed on data of one dimension instead of two.  A
simplex minimization algorithm (Nelder-Meads) was
used to perform least-squares fitting of the radially
binned MCSI⊗IR to the corresponding binned sample
image. Fit of the hyperspectral data was performed
independently on one image at a time and proceeded
sequentially until all images of the spectrum were fit.
Different initial guess values of the fit parameters (µa

and µs') were used to avoid local minima, and the fit
parameters were selected from the trial with the lowest
least-squares residuals.
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In order to examine how the range of source-detector
separations affects the accuracy of quantifying µa and
µs', we fit MCSI to sample data for various ranges of
ρ. Three ranges of ρ were examined: 1) distances
covering the full-range (0.5-6.5 mm), 2) distances
close to the source (0.5-2.5 mm), and 3) distances far
from the source (4-6.5 mm).

E. Concentrations:

The µa spectra obtained from the fit were used to
determine the dye concentrations. µa values are related
to the dye concentrations as expressed by the matrix,
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where ε is the extinction coefficient (ml/mg mm-1) of
the dye, di, at wavelength λi, and C is the dye
concentration (mg/ml). In this study, the concentration
vector consisted of two elements, since only two dyes
were used to make the phantoms. Extinction
coefficients of Nigrosin and Janus Green over the
wavelength range were determined from absorption
spectrophotometer measurements. A least-squares
solution of Eq. 4 was determined for the concentration
vector, with the constraint that the concentration
values be positive37. Within a certain range, the
macroscopic µs' is proportional to the scatterer
concentration and can be expressed in matrix form
similar to Eq. 4.  The fit-derived µs' spectra were then
used to determine percent Intralipid in a manner
analogous to the dye concentration calculation.

All programs were written in the Matlab

environment, except for the Monte Carlo algorithm,
which was written in C, compiled and linked to, and
made executable within the Matlab environment.

3. Results

The hyperspectral images of 15 tissue-like phantoms
were examined to select an outer distance to be used in
the fit. An outer distance of 6.5 mm was selected to
guarantee that the image intensities used in data fitting
were higher than the CCD dark noise, and the signal-
to-noise ratio was on average greater than 2 at the
outer distances (~6.5 mm). Because of the broad range
of spectral data collected from the phantoms, it is not
practical to show the full-range of data for all the
phantoms. Accordingly, the data from the figures are
selected from different phantoms at various
wavelengths in order to highlight examples that are
representative of the complete data set. Panel (a) of
figure 2 schematically presents the organization of the
hyperspectral image data. In panel (b), the image
intensity is plotted as a function of spatial coordinates
(x, y) for a representative diffuse reflectance image.
The image was collected from a medium with µa =
0.028 mm-1 and µs' = 1.16 mm-1 at 630 nm. The
uncalibrated image contained contributions from both
the diffuse reflectance as well as the instrument
response. An example of the instrument response
obtained from calibration measurement is shown in
panel (a) of Figure 3 for 630 nm, labeled as IR. Figure
3 depicts the procedure for fitting MCSI to the sample
image. MCSI for a set of µa and µs' values were
interpolated from the Monte Carlo data base. MCSI
were convolved with the instrument response (IR) to
form MCSI⊗IR.

Figure 2. (a)   A schematic showing the data organization of hyperspectral images obtained from FTIIS measurements. Image
at each wavelength may contain up to 512x512 pixels at 12-bit dynamic range. Panel (b) show a typical image of the diffuse
reflectance collected on a phantom with µa = 0.0281 mm-1 and µs' = 1.163 mm-1 at 630 nm. Neutral density filters were placed
in front of the imaging optics to prevent CCD saturation near the source.



1 December 2000 / Vol. 39, No.34 / APPLIED OPTICS           6

Figure 3(a) shows an example of the Monte Carlo
simulated image and MCSI⊗IR for µa and µs' values
of 0.028 mm-1 and 1.16 mm-1, respectively. As shown
in panel (b), the sample images and MCSI⊗IR were
radially binned, and the binned data were then fit for
the specified distances from the source. Figure 4 shows
typical fit results for intensity vs. ρ using three ranges
of ρ (a) 0.5 to 6.5 mm, (b) 0.5 to 2.5 mm, and (c) 4.0
to 6.5 mm. In the interest of showing representative
data at various wavelengths and optical property
values, the data for figure 4 are selected from a sample
with µa = 0.0708 mm-1 and µs' = 0.316 mm-1 at 745
nm.

Representative µa and µs' results derived from fitting
reflectance data over the full range of ρ are shown in

figure 5. Data are acquired from two different
phantoms with µa values that span from low to high
absorption. Results from the phantom with low µa

values are shown in panels (a) and (b). Specifically,
panel (a) plots the fit vs. expected µa values from 550
to 850 nm, while panel (b) plots the fit vs. expected
values for µs'. Similarly, fit vs. expected µa values for
the highly absorbing phantom are plotted in panel (c),
and fit vs. expected µs' values are plotted in panel (d).
Filled diamonds are fit values, dashed  curves are
expected values, and solid  curves are the constrained
least-squares solution of Eq.4 to the fit-derived data in
order to yield concentrations.

Figure 3. Panel (a) shows an example of the 1) Monte Carlo simulated image for µa and µs' values of 0.028
mm-1 and 1.16 mm-1, respectively, and 2) FTIIS instrument responses (IR) at 630 nm. IRs were calculated
from the hyperspectral images collected on a reference phantom and the corresponding MCSI generated
from its optical properties. To fit Monte Carlo simulations to the image of the diffuse reflectance, MCSI was
first convolved with IR at the appropriate wavelength to generate MCSI⊗IR. In panel (b), sample image of
the diffuse reflectance and MCSI⊗IR are radially binned, thereby taking advantage of radial symmetry to
reduce computational demands. Radially binned reflectance profiles were then fit using simplex
minimization algorithm.
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Fit µa and µs' values are in excellent agreement with
expected values for wavelengths in the range of 550-
850 nm. Percent error between the expected and fit
optical property was calculated at each wavelength for
all 15 samples. We pooled the percent error values
from all samples and calculated the root mean square

error, which we defined as the percent accuracy in
quantifying µa and µs'. Table 1 summarizes the percent
accuracy for quantifying µa and µs' using three sets of
fitting distances, i.e. column 1 for ρ from 0.5 to 6.5
mm, column 2 for 0.5 < ρ < 2.5 mm, and column 3 for
4.0 < ρ < 6.5 mm.

Table 1. Percent accuracy of quantifying µa and µs' for different range of fitting distances

distances close to and far from source

0.5 mm < ρ < 6.5 mm

(~0.25 ltr to ~16 ltr)

only distances close to source

0.5 mm < ρ < 2.5 mm

(~0.25 ltr to ~5 ltr)

only distances far from source

4.0 mm < ρ < 6.5 mm

(~8 ltr to ~16 ltr)

±µa (%) 7 12 29

±µs' (%) 3 4 23

The optimal result was obtained using ρ from 0.5 to
6.5 mm, with the percent accuracy for µa and µs' of
±7% and ±3%, respectively. When reflectance data
close to the source (0.5 < ρ < 2.5 mm) were fit, the
percent accuracy for µa degraded to ±12% while µs'
accuracy remained unchanged. The percent accuracies
for µa and µs' are significantly worse when the fitting
was performed only on the reflectance data distal to
the source (4.0 < ρ < 6.5 mm).

To examine how sensitive prediction accuracy is to
absorption (µa), results from the full-range fit were
further divided.  Specifically, µa and µs' data from all
phantoms at all wavelenghts were pooled and grouped
into four absorption ranges: 0-0.05 mm-1, 0.05-0.10
mm-1, 0.10-0.15 mm-1, and 0.15-0.20 mm-1. The
percent accuracies for µa and µs' within each range
were calculated and tabulated in Table 2. For the fixed
range of distances used, the percent accuracies for
media with low absorption were worse than the
accuracy values for media with high absorption.

Table 2. Percent accuracy of quantifying µa and µs' for media

with different range of absorptiona

µa range

0.001-0.05

(mm-1)

µa range

0.05-0.10

(mm-1)

µa range

0.10-0.15

(mm-1)

µa range

0.15-0.20

(mm-1)

±µa (%) 11 6 7 3

±µs' (%) 5 3 3 4

a Results are from the fit that used the full range of distances.
The majority of the data is within the µa ranges of 0.05-0.10
mm-1 and 0.10-0.15 mm-1.

Absorption, µa, and scattering, µs', values from the
full-range fit were used to calculate, respectively, the

phantom dye and Intralipid concentrations. Examples
of the constrained least-squares solution to Eq. 4 are
shown as solid curves in Figure 5. For the particular
sample shown in panels (a) and (b), the constrained
least-squares solution yielded Nigrosin, Janus Green,
and Intralipid concentrations of 0.0014 mg/ml, 0.0324
mg/ml, and 1.01%, respectively. These values deviated
from the expected concentrations by approximately
4% for Nigrosin, 6% for Janus Green, and 1% for
Intralipid. Measured vs. expected concentrations for
the 15 phantoms are plotted in figure 6: (a) Nigrosin,
(b) Janus Green, and (c) Intralipid. The measured
concentrations for Nigrosin and Janus Green agreed
with the expected values to within ±5%, while the
measured Intralipid concentrations agreed with the
expected values to within ±3%

4. Discussion and Conclusion

Quantitative, hyperspectral imaging of diffuse
reflectance from turbid media offers several key
advantages over contact fiber probe strategies. First,
the image contains a complete two-dimensional profile
of diffuse reflectance over a continuous and adjustable
range of distances from the source. This feature may
be important in the spectroscopy of biological tissues,
because the full image offers the possibility of
identifying inhomogeneous regions. Second, image
detection can be performed in non-contact or remote
mode, an important feature well suited for certain
clinical measurements. Third, conventional bright field
images of the medium can be collected in conjunction
with diffuse reflectance, making it possible to
simultaneously visualize superficial structure and
underlying composition. Finally, FTIIS has an
intrinsically broad spectral dynamic range (visible to
near-infrared), overcoming limitations of single or
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multi-source imaging devices. Consequently, FTIIS is
effective for both imaging and spectroscopy of turbid
media, such as tissues.

(a)

(b)

(c)

Figure 4.   Examples showing typical results from fitting
radially binned MCSI⊗IR to radially binned diffuse
reflectance data at 745 nm: (a) ρ from 0.5 to 6.5 mm, (b) ρ
from 0.5 to 2.5 mm, and (c) ρ from 4.0 to 6.5 mm. Diffuse
reflectance data are from a phantom with expected µa and
µs' of 0.0708 mm-1 and 0.316 mm-1, respectively, at 745
nm. Note that the binned reflectance and the Monte Carlo
simulated data contain significantly more noise at large ρ
as compare to the shorter distances.

In this study, we demonstrate that µa and µs' of
homogenous turbid media can be accurately
determined from FTIIS hyperspectral images of
diffuse reflectance. In the process, we show that the
calibration method used to account for the instrument
response is both simple and effective. When Monte
Carlo simulations are fit to hyperspectral images, µa

and µs' in the visible and near-infrared can be
determined with accuracies of ±7% and ±3 %,
respectively. These values are applicable to
homogenous, turbid media of semi-infinite geometry
with optical properties in the specified range (µa and
µs' = 1x10-3 – 0.30 mm-1 and 0.30-2.50 mm-1,
respectively). Moreover, for a fixed range of source-
detector separation, µa accuracy degrades when the
medium has low absorption. It remains to be
determined whether these accuracies can be obtained
for µa and µs' in the case of heterogenous tissues with
more complex geometries. Similarly, accuracy values
for fits that use small source-detector separations may
change when other phase functions are assumed.
However, since Monte Carlo solutions to the transport
equation were used to model diffuse reflectance, we
expect this technique can be easily extended to media
with other geometries, optical property ranges, layered
structures and phase functions.

An important goal of this work was to determine
chromophore concentration(s) despite the confounding
contribution of multiple light scatterering. µa and µs'
spectra were used to quantify, respectively, the
concentration of absorbers and scatterers in tissue
phantoms. Dye concentrations were determined with
an accuracy of ±5%, while the Intralipid percent
volume was determined with an accuracy of ±3%.

We also examined the effect of source-detector
separation on the accuracy of quantifying µa and µs'.
Our results suggest that µa and µs' accuracies are
optimal when the distances used in the fit encompass
spatial regions close to (≤ 0.5 ltr) and far (≥ 5 ltr) from
the source, provided of course, that the reflectance
signals remain larger than the noise. This result is
consistent with a number of previously-reported
observations15,22,23,26,38,39. The accuracy of determining
µa degraded slightly (±12%) when we fit only the
diffuse reflectance data close to the source, while µs'
accuracy was minimally affected (±4%). Interestingly,
results from reflectance data close to the source
support a previous finding that small source-detector
separations can yield accurate optical properties14.

However, careful consideration of the phase function
is essential when using small source-detector
separations (≈ 1 ltr). Indeed, in such a case, the diffuse
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reflectance is sensitive to the shape of the scattering
phase function20,22,40. As shown by Bevilacqua et al.20

for source-detector separations around one transport
mean-free-path, the important parameter of the phase
function to be considered is the ratio (1-g)/(1-g2)
where g2 is the second moment of the phase function
(the anisotropy factor, g, is the first moment of the
phase function). The scattering phase function of
Intralipid has been successfully modeled by various
phase functions matching the first and second moment
of the Henyey-Greenstein phase function41. Moreover,
the excellent accuracies obtained in this study support
the validity of the Henyey-Greenstein phase function
for such fat emulsions. Accuracy values for
determining µa and µs' quoted in this study may
worsen if an inaccurate phase function is used14,20,

particularly for fits that use only the short source-
detector separations.  Nevertheless, it must be noted
that using the same type of media for the calibration
and measurements may also significantly reduce errors
since, under these conditions, phase function
differences should not exist.

Far from the source, the effects of noise play a critical
role in the accurate quantification of µa and µs' for
several reasons. First, the decay of the reflectance
profile is approximately given by exp −ρ / ltr( ), making
it difficult to separate µa from µs' because of the single
decay constant. Second, the signal-to-noise ratio
decreases dramatically with ρ because the diffuse
reflectance intensity decays but the CCD noise remains
relatively constant.

(a) (b)

(c) (d)

Figure 5. Fit-derived (♦♦♦♦) and expected (dashed curves) µa and µs' values from one of the phantom are
plotted as a function of wavelengths. Solid curves represent constrained least-square solution to Eq. 4 that
was used to determine the concentrations from the spectra of fit values. Data for panel (a) and (b) are from a
representative phantom with low absorption values, while data for panel (c) and (d) are from a phantom with
high absorption values. Expected µa values were determined from the chromophore concentrations and
independently verified with absorption spectrophotometer. Expected µs' values were determined from the
phantom's Intralipid percent volume. Fit µa and µs' values for the measured wavelengths agree well with
expected values. Based on the results from 15 phantoms, the constrained least-squares solution to the fit µa

and µs' data yielded concentration values for the dyes and Intralipid that were, respectively, within 5% and
3% of the true concentrations.
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Finally, the signal-to-noise in the Monte Carlo
simulation decreases for larger distances, since fewer
photons are collected at distances far from the source.
Note that the latter two reasons are practical and not
fundamental limitations. The signal-to-noise ratio of
the diffuse reflectance data and the Monte Carlo
simulations can be improved, respectively, by using a
low noise, high dynamic range CCD and launching
more photons during the simulation step. In practical
terms, however, these factors contribute to poor
accuracy only when fits are performed on reflectance
data far from the source. Consequently, optimal fit
results are obtained when using reflectance data that
are close to as well as far from the source. This
conclusion is reasonable when we take into
consideration the instrumental limitations as well as
complications that arise from an incomplete
knowledge of the phase function for a particular
medium.

To reliably record data from distances close to and far
from the source, a high dynamic range CCD is
required. Since these systems are quite expensive, an
alternative approach could involve using a specially
designed neutral density filter (NDF) that has variable
attenuation along the radial direction, i.e. the optical
density is high near the center and decreases radially
away from the center.  This would compensate for the
rapid attenuation of the diffuse reflectance away from
the source, create a flatter image intensity decay
profile, and reduce the need for using a high dynamic
range CCD.

Presently, direct least-squares fitting of the Monte
Carlo simulations to the data is too computationally
intensive for rapid analysis of the hyperspectral
images. Data fitting of the hyperspectral images using
a simplex algorithm requires as much as half an hour
on a 400-MHz Pentium II PC. Note that the
computational demands are primarily due to the least-
squares fits, not the Monte Carlo simulations. In fact,
the interpolation algorithm used to generate the
simulated data from the Monte Carlo database is
computationally efficient and rapid. Alternative
approaches to direct fitting may significantly decrease
computational demands. One such empirical approach
could involve analyzing hyperspectral reflectance
images using chemometrics e.g. partial least squares
(PLS). In the future, we plan to examine the feasibility
of this strategy for directly calculating optical
properties and chromophore concentrations.  With
continued improvements in modulating CCD dynamic
range requirements and enhanced data analysis, we

expect FTIIS will find important applications in non-
contact tissue spectroscopy.

(a)

(b)

(c)

Figure 6. The least-squares method was used to fit the
absorption values in the range of 550-850 nm in order to
determine the chromophore concentrations of the
phantoms. Similarly, Intralipid percent volume was
determined from wavelength-dependent fit µs' values.
Measured (♦) and expected (solid curves) values for (a)
Nigrosin concentration, (b) Janus Green concentration, and
(c) Intralipid percent volume are plotted for the 15
phantoms. Measured concentrations agree well with
expected values. Differences between measured and
expected concentrations yield the percent accuracy values
of ±5%, ±5%, and ±3% for Nigrosin, Janus Green, and
Intralipid, respectively.
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Monte Carlo study on optical characterization of thin
turbid samples using angular and spatially- resolved
measurements.

Jan S. Dam1,2, Carsten B. Pedersen1, Torben Dalgaard1, Paul Erik Fabricius1,
and Stefan Andersson-Engels2.

We present a novel and accurate method for real-time determination of the absorption coefficient, the
scattering coefficient, and the anisotropy factor of thin turbid samples. The three optical properties are
determined using multivariate calibration on Monte Carlo simulated recordings of the angularly resolved
transmittance, the spatially resolved diffuse reflectance, and the spatially resolved diffuse transmittance. The
applied calibration and prediction techniques are based on multiple polynomial regression in combination
with a Newton-Raphson algorithm. Numerical test showed mean prediction errors of approximately 0.5 % for
all three optical properties within ranges typical for biological media. Finally, we suggest a set-up for
practical implementation of the presented method.

1. Introduction

The optical properties of a turbid medium1, i.e. the
absorption coefficient aµ , the scattering coefficient

sµ , and the anisotropy factor g  may provide
important information on the composition and the
dynamics of the medium. While aµ  provide
information on various chromophores2,3, sµ  and g
may be used to characterize the form, size, and
concentration of various scattering components in the
medium4,5. Therefore, determination of the optical
properties of turbid media is a useful and important in
numerous fields of science, industry, health care,
environmental technology, etc. Some examples are (a)
tissue characterization in cancer diagnostics and
therapy6, (b) medical diagnostics using biological
fluids7, (c) process control in breweries and dairies8,
and (d) environmental monitoring. Still, most of the
existing methods for optical analysis of turbid media
are not able to extract aµ , sµ , and g  simultaneously.
Many methods focus on either the absorption- or the
scattering properties; i.e. the scattering effects are
treated as interference during absorption measurements
or vice versa.

1 Bang & Olufsen Medicom a/s, DK-7600, Struer, Denmark.

2 Dept. of Physics, Lund Institute of Technology, P.O. Box 118,

SE-22100, Lund, Sweden.

Other methods rely on removal of the scattering
components prior to absorption measurements, e.g.
some types of clinical blood analysis, where the blood
cells are hemolysed, i.e. the cell walls are crushed, and
subsequently removed from the sample either by
means of sedimentation or centrifugation.
Integrating sphere (IS) measurements9-11 are widely
used as and reference method for determination aµ ,

sµ , and g . Here, the optical properties are extracted
from measurements of the total diffuse reflectance totR
and the total diffuse transmittance totT  of either a thin
turbid slab or a turbid solution in a thin cuvette. IS
measurements may be carried out using a single- or a
double sphere set-up. In the latter, totR  and totT  can be
recorded simultaneously without moving the sample,
but due to optical cross-talk between the two spheres,
the accuracy is often decreased compared to a single-
sphere setup. However, it is only possible to determine

aµ  and the reduced scattering coefficient

ss g µµ )1(' −=  from pure totR  and totT  measurements.
In order to separate 'sµ  into sµ  and g  it is necessary
to perform additional measurements of the collimated
transmittance cT  in a separate set-up, i.e. the sample
has to be moved once again. Moreover, it is
complicated to perform accurate cT  measurements in
practice, thus IS based methods are applied for
research purposes mainly.
In summary, the existing methods for determination of
optical properties from thin turbid samples either
imply (a) more or less accurate interference
compensation techniques, (b) bulky equipment, (c)
inconvenient sample handling, or (d) complicated
measuring techniques. Hence, there is an obvious need
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for more compact, handy, and accurate techniques for
this type of measurements.
In the following of this paper we present a novel
method for real-time simultaneous determination of

aµ , sµ , and g  from thin turbid samples using
multivariate calibration. We first describe the
geometrical configuration of the set-up and the
principles of the applied calibration and prediction
techniques, which are based on multiple polynomial
regression (MPR)11 in conjunction with a Newton-
Raphson algorithm12. Then, we show, using Monte
Carlo (MC) simulated data13, how the optical
properties may be determined from four (or less)
recordings of a) the angularly resolved transmittance,
b) the spatially resolved diffuse transmittance, and c)
the spatially resolved diffuse reflectance of the sample.
Finally, we suggest a set-up for practical
implementation of the presented method.

2. Methods

As stated above, the purpose of the work described in
this paper is to extract aµ , sµ , and g  from MC
simulated recordings of various combinations of
angularly and spatially resolved reflected and
transmitted intensities from a thin turbid sample using
multivariate calibration. The basic geometrical
configuration of the set-up we used for the simulations
in our analyses is shown in Figure 1.

Figure 1. Geometric configuration of setup for measuring aµ ,

sµ , and g . Where, R  and T  is spatially resolved diffuse
reflectance and transmittance, respectively with radial distance r .
The angularly resolved transmittance is denoted α , where θ  is
the deflection angle and φ  is the acceptance angle. Finally, sd  is
the sample thickness, bd  is the diameter of the collimated source
beam, and wd  is the thickness of the cuvette walls.

The set-up imitates a cuvette with sample thickness sd
= 1 mm, wall thickness wd  = 1 mm, and beam
diameter bd  = 1 mm. The refractive indices of the
sample sn , the wall wn , and the surrounding media mn
were 1.33, 1.49, and 1.00, respectively.

During each single MC simulation, we thus recorded:
(a) the spatially resolved diffuse reflectance R  as a
function of the radial distance Rr , (b) the spatially
resolved diffuse transmittance T  as a function of the
radial distance Tr , and (c) the angularly resolved total
transmittance α  as a function of the deflection angle
θ  and the acceptance angle φ .
As a first step to solve the inverse problem of
extracting aµ , sµ , and g  using multivariate
calibration, we generated a database of MC
simulations using the geometrical configuration in
Figure 1 and a set of optical properties within typical
biological ranges:
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The simulated reflectance and transmittance recordings
were tabulated and stored in a 21x19x11 calibration
matrix, i.e. a data base containing all combinations of
21 values of aµ , 19 values of sµ , and 11 values of g .
The single simulations of the calibration model was
generated using on 1⋅106 photons.
Next, we applied multiple polynomial regression
(MPR) in conjunction with a Newton-Raphson (N-R)
algorithm to calculate aµ , sµ , and g  from R , T , and
α  recordings of MC simulated prediction data with
random distributions of optical properties. Based on
preliminary investigations, we chose to use third-order
polynomials for our further analyses. Thus, the
principle of the applied three-dimensional MPR/N-R
method is as follows:
First, we select the relevant R , T , and/or α  data from
the simulated 21x19x11 calibration matrix and denote
them calX ,31− . Then, we find triple-polynomial fits to

calX ,31− :
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Where, fitX ,31−  are functions of aµ , sµ , and g , and
A , B  and C  are 4x3 matrices of fitting coefficients
determined by least-squares regression. Thus, fitX ,31−

constitute the calibration model. The next step is to
solve the inverse problem of determining aµ  and s'µ
from recordings of the simulated prediction data sets
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Then, we use the Newton-Raphson algorithm to
perform converging iterative calculations of aµ , sµ ,
and g :
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Where, ah , sh , and gh  are correction terms of aµ ,

sµ , and g , respectively. The calculations continue
until ah , sh , and gh  have dropped below predefined
maximum values.
Figure 2 shows the schematics of the four different R ,
T , and α  configurations we have analyzed in this
paper. In configuration (a) we used the transmittance at
three angles 31−α  to extract aµ , sµ , and g . In (b) we
extracted sµ  and g  from 1α  and 2α  only.
Configuration (c) was used to extract aµ  and s'µ  from
R  and T . Finally, in configuration (d) we used a
combination of configuration (b) and (c) to extract all
three optical properties aµ , sµ , and g .

Figure 2. Four different set-ups for predicting optical properties
using various combinations of spatially and/or angularly resolved
data. Each single set-up may be used for determination of
respectively (a): aµ , sµ , and g , (b): sµ  and g , (c): aµ  and

s'µ , and (d): aµ , sµ , and g . See Figure 1 for nomenclature.

In configuration (c) and (d) in Figure 2 we have to
variables only, i.e. ( 1α , 2α ) or ( R , T ). In these two
cases Eq.(2)-(4)  are reduced to two dimensions during
calibration and prediction, i.e. we use 1X  and 2X

only. In addition, sµ  are replaced by s'µ  during
analysis on configuration (c). In configuration (d) we
have four variables. Since the MPR/N-R method
implies exactly three variables in order to predict aµ ,

sµ , and g , we have to apply some sort of dimension
reduction. For this we use Principal Component
Analysis (PCA), that is, we perform PCA on the
21x19x11 calibration matrix and then use the resulting
three main principal components as input i.e. 31−X  to
the calibration and prediction algorithms.
All the prediction errors we have reported in the
following are mean errors relative to the total optical
property ranges of the applied prediction test data.

3. Results

In order to test the prediction performances of the four
configurations in Figure 2, we first generated a set of
prediction data with 20 random combinations of
optical properties within the ranges:

95.085.0

cm 10050

cm 20
1-

-1

<<
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<<

g
s

a

µ
µ

(5)

The prediction data were generated using 1⋅107

photons, and Table 1 shows the results from the
prediction tests using these data in conjunction with
the four configurations in Figure 2. In each case the
prediction errors were minimized by finding the
optimal combinations of angles α  and distances r ,
using error plots similar to Figure 3.

Table 1 Mean prediction errors from the analyses on the four set-ups

in Figure 2.

Mean Prediction Errors (%)

aµ sµ g s'µ
(a) 0.83 0.47 0.68 -

(b) - 0.95 3.9 -

(c) 0.84 - - 0.23

(d) 0.17 0.45 0.43 -

Table 2 shows the optimal angles and the distances
corresponding to errors listed in Table 1.

Table 2 Optimum angles and distances of the four set-ups in Figure 2.

Angles θ  (o) Distances r  (mm)

1α 2α 3α T R

(a) 0 3 60 - -

(b) 0 3 - - -

(c) - - - 0.7 2.0

(d) 0 5 - 2.0 2.5
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Figure 3 Prediction errors of (a) aµ , (b) sµ , and (c) g  as a
function of Tr  and Rr  using set-up (d) in Figure 2 in conjunction
with a prediction data set defined by Eq. (5). The angles 1α  and

2α  were 0o and 5o, respectively.

The sµ  range of the above prediction data only covers
a part of the range spanned by the calibration model
(see Eq. (1)).  In order to test the performance of the
prediction algorithms on a wider range of the
calibration model, we therefore generated two
additional test sets with aµ  and g  ranges similar to
Eq. (5), but with the following sµ  ranges: (10< sµ <
50cm-1) and (100< sµ <150cm-1), respectively. The
prediction errors for all three sµ  ranges are given in
Table 3.

Table 3 Prediction errors for various sµ -ranges using set-up (d) in

Figure 2.

Mean Prediction Errors (%)

aµ sµ g

10 < sµ  < 50 cm-1 1.7 0.10 0.28

50 < sµ  < 100 cm-1 0.17 0.45 0.43

100 < sµ  < 150 cm-1 8.6 36 14

Figure 4. Predicted values of (a): aµ , (b): sµ , and (c): g  as a
function of the true values, using set-up (d) in Figure 1 ( sd = 1.0
mm) in conjunction with downscaled prediction data ( sd = 0.5
mm). The corresponding prediction errors of aµ , sµ , and g  are
2.2, 0.40, and 0.59 %, respectively. The dashed lines in (b)
indicates the sµ  ranges of three sub-sets of calibration and
prediction data. The resulting aµ , sµ , and g  prediction errors
using these sub-ranges are 0.59, 0.58, and 0.26, respectively.

In some cases, the sample thickness sd = 1mm of the
applied calibration model may be too large for proper
prediction of large aµ  and sµ  values. Applying a
calibration model with a smaller sd  may of course
solve this problem. Another solution is to feed
downscaled prediction data14 to the original calibration
model and then subsequently multiply the predicted

aµ  and sµ  values by the scaling factor. Figure 4
shows the resulting correlation plots of true and
corrected predicted values of aµ , sµ , and g , when
using prediction data with sd = 0.5mm as input to the
original calibration model with sd = 1mm.
By splitting the prediction data in Figure 4 into three

sµ sub-ranges (indicated by the dashed lines in panel
(b)) and apply three corresponding calibration sub-
models as well, the mean of the aµ  and g  prediction
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errors dropped from 2.2 to 0.59% and from 0.59 to
0.26%, respectively. While, the sµ  prediction error
showed a slight increase, rising from 0.40 to 0.58%.
During the analysis of the data in Table 1 the
acceptance angles 

2αφ , 
3αφ = 1o, while 

1αφ = 0.25o. Such
a relatively small angle may be difficult to realize in
practice, thus Figure 5(a) shows the prediction errors
of aµ , sµ , and g  as a function of 

1αφ . Noise is
another problem encountered during real
measurements. To illustrate the effect of random noise
in the prediction data set, Figure 5(b) shows the
prediction errors of aµ , sµ , and g  as a function of the
applied number of photons m  for five, otherwise
similar prediction sets. The optical property ranges for
the prediction data in both Figure 5(a) and (b) are
given by Eq. (5).

Figure 5. Prediction errors of aµ , sµ , and g  as a function of (a)
the acceptance angle aθ  of 1α , and (b) number of photons used
to generate the prediction data. The optical property ranges of the
prediction data are in both cases defined by Eq. (5), and sd  = 1
mm.

4. Discussion

A. Optimum Set-up

The results in Table 1 show that it is possible to predict

aµ , sµ , and g  with errors less than 1% using the
purely angularly resolved configuration (a) in Figure 2.
However, the relatively large optimum angle of 3α
(

3αθ  = 60 o) in this configuration, may be inconvenient

to implement in real applications. Thus, in search of a
more feasible geometrical configuration, we tested
configuration (b) and (c) in Figure 2 as well.
Configuration (b) was chosen due to its similarity to
integrating sphere measurements, hence we chose to
perform prediction tests on aµ  in combination with

s'µ  instead of sµ . The results in Table 1 show that
both optical properties may be predicted with good
accuracies using this setup. Now, that we were able to
perform accurate determination of aµ  and s'µ , the
next step was to find a feasible geometrical
configuration for accurate determination of either sµ
or g . In principle, it would then be possible to
determine all three optical properties by combining the
two configurations. Based on our experience with
configuration (a), we chose to apply configuration (c)
for the sµ  and g  prediction tests. From Table 1 it
appears that at least sµ  may be predicted well using
this configuration, while the prediction accuracy of g
is moderate. Still, according to the above
considerations, we only required the prediction of sµ
or g  to be accurate, thus we combined configuration
(b) and (c) finally leading to the hybrid configuration
(d) in Figure 2.
Configuration (d) obviously has four out-put variables,
i.e. 1α , 2α , T  and R . Due to the fact, that the applied
MPR/N-R algorithms imply exactly three variables in
order to determine the three requested optical
properties, i.e. aµ , sµ , and g , we chose to apply PCA
to reduce the dimension of the variables from four to
three. In short, the PCA procedure extracts the relevant
information in a set of calibration variables and
generates a new set of variables, so-called principal
components, i.e. PC1, PC2, etc., which are sorted
according to their respective variances. In our case,
this means that almost all information on aµ , sµ , and
g  from 1α , 2α , T , and R  is embedded in PC1-3,
while most of the random noise from the MC
simulations are isolated in PC4, which is disregarded
during calibration and prediction. As a bonus, the use
of PCA decreases the noise-sensitivity of the applied
prediction methods; i.e. the robustness of the method is
increased.
Initially, we performed prediction tests on
configuration (d) using the optimal angles and
distances found during the analysis of configuration
(b) and (c) (see Table 2). This also yielded good
results, but the short optimal distance of T  ( tr  = 0.7
mm), may be difficult to implement if goniometric
measurements at 1α  and 2α  are to be performed
simultaneously. We therefore carried out the error
analysis depicted in Figure 3. The results showed that
the choice of Tr , and Rr  in configuration (d) was
uncritical as long as 1.5< ( Tr , Rr ) < 3.0mm, where the
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lower limit was determined by the prediction errors of

aµ  and the upper limit by the prediction errors of g . It
also appeared, that the prediction errors of sµ  was
practically independent of Tr , and Rr  in the range 0 <
( Tr , Rr ) < 4mm. The results depicted in Figure 3 is
based on 

1αθ  = 0o and 
2αθ  = 5o. We carried out similar

analyses for the range 1o < 
2αθ  < 10o as well. The

results showed that the prediction accuracies of all
three optical properties were practically invariant to
the value of 

2αθ  in this range. Due to these loose
restrictions on the geometrical configuration of 1α ,

2α , T , and R , configuration (d) in Figure 2 appears to
be relatively simple and straightforward to implement.
As a consequence, we based all our further analyses on
this configuration using the values of 

1αθ , 
2αθ , Tr , and

Rr  listed in Table 2.
Table 3 shows that the prediction performance of
configuration (d) is good in the lower- and the middle

sµ -ranges. However, the prediction error of aµ  in the
lower sµ -range is significantly larger than the other
errors. This may be due to fact that the calibration
model was optimized on the middle-range. Moreover,
the analyses on configuration (b) and (c) suggest that
the information on aµ , to a large extent, is embedded
in the spatially resolved recordings of R  and T . Thus,
if sµ  = 10 cm-1, this statistically speaking leads to one
single scattering event if sd  = 1 mm. Consequently,
only a very few photons will be recorded at Tr  = 2.0
mm and Rr  = 2.5 mm, leading to poor prediction of

aµ . In this case it may be advantageous to apply a
larger sd . The prediction accuracy of the upper sµ -
range in Table 3 is inadequate. Here, a large sample
thickness in conjunction with large sµ  values lead to
an almost complete diffuse transmittance, i.e. it is
difficult to extract any information on sµ  and g  from
the goniometric recordings of 1α  and 2α , which in
turn makes it difficult to determine aµ  as well. In this
case it may be advantageous to decrease sd .

B. Model Scaling

As discussed in Sect 4.A the sample thickness sd  = 1
mm may be too large for proper prediction of large
values of sµ . As mentioned in Sect. 3 above, this
problem may be solved by applying a calibration
model and prediction data with a smaller sd .
However, in some practical implementations, it may
too tedious to generate a new calibration model.
Therefore, we tried to feed downscaled prediction data,
i.e. sd  = 0.5 mm to the original calibration model ( sd
= 1 mm) and then subsequently correct the results by
multiplying the predicted aµ  and sµ  by 2. During
such a procedure, it is important to remember that Tr ,

Rr  and bd  of the prediction data have to be scaled as
well, in opposition to the α  data, which are invariant

to any scaling of sd . The results given in Figure 4
shows a good prediction accuracy for both aµ , sµ ,
and g , in spite of the sµ -range is substantially wider
than e.g. the individual tests reported in Table 3. Still,
the prediction error of aµ  = 2.2 % may be
unacceptable in some cases. However, as stated in
Sect. 3 this error may be substantially reduced by
splitting the calibration model used in Figure 4 into
three sub-models. As a trade off the prediction error of

sµ  is slightly increased, probably owing to the
reduced sµ  resolution of the three calibration sub-
models compared to the full-range model. In a real
application demanding high accuracy and wide optical
property ranges, a two-step prediction algorithm thus
could be introduced. This could carried out by first
making a rough estimate of aµ , sµ , and g , and then
subsequently zoom in on the relevant sub-model to
perform a second more accurate prediction of aµ . In
summary, the results in Figure 4 actually suggest that a
calibration model with sd  = 0.5 mm would be a better
choice as a general-purpose model for the optical
property ranges defined by Eq. (1), than the model
with sd  = 1 mm we started out with.

C. Acceptance Angle and Noise Considerations

During the analysis corresponding to the results in
Table 3 the acceptance angle 

1αφ  was 0.25o. Owing to
the fact that such a relatively small angle may be
difficult to implement in some applications, we carried
out a series of prediction tests with varying 

1αφ . The
results from these tests are shown in Figure 5(a). It
appears that the prediction error of aµ  is unaffected by
the changes in 

1αφ , and that the prediction errors of
both sµ  and g  increase more or less linearly as
function of 

1αφ . This is agrees well with the
discussions in Sect. 4.A which suggest that aµ  is
mainly determined from the R  and T  data, in
opposition to sµ  and g , which are mainly determined
from 1α  and 2α . The increase in the errors of sµ  and
g  is most likely due to the fact that, when 

1αφ
increases so does the probability that the photons
leaving the sample may have been scattered twice or
more and still be within the limits of the acceptance
cone spanned by 

1αφ . In other words, two (or more)
scattering events with 1,sµ  and 1g  may be interpreted
as one scattering event with 2,sµ  and 2g . However,
the results in Figure 5(a) also show that 

1αθ  may be
increased to at least 2o without any serious reduction of
the overall prediction accuracy. In the light of the
practical problems encountered during cT
measurements in connection with IS measurements
(see Sect. 1), this result is interesting, because it is
considerably simpler to perform 1α  measurements
with a finite acceptance angle ( ≈

1αφ  1o), than cT
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measurements with 
cTφ  = 0o. The above discussion

also suggests that predictions on data with higher g
values may cause problems. Thus, we tested our
method on a set of prediction data with aµ - and sµ -
ranges similar to Eq. 5, but with a g -range defined by:
0.9 < g < 0.98. The results showed prediction errors <
0.7 % for all three optical properties. This leads to the
conclusion, that our method may be extended to
include at least ≤g  0.98 without any problems.
As we mentioned in Sect. 3, noise is another practical
problem encountered during real measurements. The
decay of the prediction errors shown in Figure 5(b)
agrees well with the theoretical noiseP  ∝  m/1
relation between the random MC noise noiseP  and the
number of applied photons m . Furthermore, it appears
that all three errors have dropped below 1% already at
m  = 1⋅106. These results only stress the importance of
minimizing the noise sources during real
measurements.

5. Conclusions

We have developed a novel method for accurate real-
time determination of the optical properties aµ , sµ ,
and g  from spatially and/or angularly resolved
measurements on a thin turbid sample, i.e. a solid slab
or a cuvette. However, all analyses and conclusions we
have presented are based on Monte Carlo simulated
data and experimental verification therefore remains to
be carried out. This may of course introduce new
problems, e.g. it may prove be difficult to obtain a
prediction performance comparable to the simulated
cases, due to noise and/or discrepancies between the
applied MC model and real measurements. Still,
during our previous work using MC on other
geometrical configurations we have obtained
experimental prediction accuracies comparable to the
accuracies we obtained using simulated test data.
Moreover, should any problems arise due to the
applied MC simulations, e.g. the implicit Henyey-
Greenstein phase function15, it would be relatively
simple to apply the calibration and prediction
algorithms on data from a set of new or modified
simulations. In the last resort, it is of course also
possible to carry out calibration on a set of phantoms
with well-defined optical properties. Thus, we are
confident that it is feasible to implement the presented
method in compact and cost-effective practical
instrumentation maintaining prediction performances
sufficient for a variety of applications. Such
instrumentation is especially interesting due to its
obvious advantages compared to IS based methods, i.e.
no cT  measurements are required, the sample does not
have be moved during the measurements, and no bulky
spheres are needed. Figure 6 illustrates how the

implementation may be carried out in a simple way
merely using a beam-splitter, five detectors, and a lens.
Such a set-up is currently under construction, and our
future work will therefore be aimed at experimental
tests and verifications of the theoretical methods we
have presented here.

Figure 6. Practical realization of configuration (d) in Figure 2.
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Comparison of spatially and temporally resolved
diffuse reflectance measurement systems for
determination of biomedical optical properties
at 785 nm

Johannes Swartling, Claes af Klinteberg, Jan S. Dam, Thomas Johansson, Jonathan Roth,
Stefan Andersson-Engels

We have performed a comparative study of the performance of two systems used for determining the

absorption and reduced scattering coefficients at 785 nm; one spatially resolved and one time-resolved. The

spatially resolved system recorded the diffuse reflectance from a diode laser by means of a fiber-bundle

probe in contact with the sample. The time-resolved system utilized ultra-short laser pulses and a single-

photon counting detection scheme. Additional measurements were made with an integrating sphere set-up.

The results showed 1-60% variation in the evaluation of the reduced scattering between the systems for

Intralipid phantoms and 130-330% for in vivo measurements. For the absorption coefficient, the

corresponding variations were 9-60% and 55%.

1. Introduction

Measuring the optical properties of biological tissue
has grown into a mature procedure in the field of
biomedical optics. Knowing the light scattering and
absorption properties of tissue is the basis of a wide
range of both diagnostic and therapeutic applications.
Examples include laser-induced fluorescence to
diagnose malignant tissue,1,2 as well as laser-induced
thermotherapy3-5 and photodynamic therapy6,7 to treat
diseased tissue.
A number of different techniques have been developed
to measure the optical properties of tissue. Common
for most methods is a measurement of the diffuse
reflectance or transmittance from a sample of the
tissue, either in vitro or in vivo. The data is then related
to the optical properties by means of a suitable
inversion algorithm, based on either a theoretical light
propagation model, or calibration against standards
with known scattering and absorption properties.
When spatially resolved measurements are performed,
the sample is illuminated by a continuous wave light
source in a spot, and the diffuse reflectance is recorded
at different radial distances.8-14

Department of Physics, Lund Institute of Technology,
P.O. Box 118, SE-221 00 Lund

Time-resolved measurements, on the other hand,
utilize sub-nanosecond pulses from a laser. After
passing through a portion of the tissue, the time
dispersion of the pulse can be measured.15-22 Both
these methods are two-parameter techniques, i.e., the
extracted properties are the absorption coefficient µa

and the reduced scattering coefficient µ's.
Even though measurements of these two types are now
common in biomedical optics, no systematic
investigation to experimentally compare the
performance of various systems seems to have been
done. In this work, we have evaluated the performance
of one spatially resolved and one time-resolved system
on the same samples. In addition, we compared the
results with those from integrating-sphere
measurements, which are known to give very accurate
results for in vitro samples.7,23-25 When a measurement
of the collimated transmittance is added to the
integrating-sphere measurements, this technique
becomes a three-parameter method, and allows the
determination of µa, the scattering coefficient µs and
the scattering anisotropy factor g. The reduced
scattering coefficient µ's is defined as µ's = (1 - g) µs.
In order to evaluate the performance of the systems,
measurements were carried out in three steps. First,
tissue phantoms were prepared from diluted Intralipid
(for scattering) and a dye (for absorption). In the next
step, measurements on pork and chicken meat were
performed. As a final step, in vivo measurements on
the arms of the experimenters were made. The aim of
the study was to compare the results and investigate
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the limitations of the different systems, especially in
the case of inhomogeneous samples such as tissue.
In the following four sections, each of the three
systems will be briefly presented, with references to
publications where more thorough descriptions may be
found regarding the technical details and the data
evaluation methods.

2. Bang & Olufsen Fiber Probe System

A. Fiber Probe System

The fiber probe system, constructed by Bang &
Olufsen Medicom a/s, Denmark, has been extensively
described in Ref. 9. The system was designed with
real-time measurements of the skin surface in a clinical
environment in mind. It consists of a probe head with a
200 µm source fiber in the center surrounded by five
equally spaced concentric rings of 250 µm detector
fibers. The fibers of each single ring detector are
bundled and terminated on separate silicon
photodiodes. In addition, three photodiodes and a
temperature sensor are mounted directly near the
perimeter of the probe head. Thus, R(r) can be
collected at six distances, i.e., r = 0.6, 1.2, 1.8, 2.4, 3.0,
and 7.8 mm, respectively. The source fiber is coupled
into four separate fibers each connected to four
replaceable low-power diode lasers. Furthermore, a
separate reference detector monitors the output of the
source fiber at the probe head. The diode lasers may be
selected arbitrarily in order to suit different
applications. In this paper only the diode laser at the
wavelength 785 nm was used. The data acquisition and
storage is controlled by a laptop PC connected to a
digital signal processing (DSP) board. One cycle of
four successive measurements (i.e., one at each
wavelength) including dark measurements may be
performed in about 10 ms, thus the maximum
sampling rate of the system is about 100 Hz. To
minimize any interference from background light or
drift of the light source, the dark measurements are
subtracted from the measured reflectance data after
which they are normalized relative to the source
reference. The DSP board accomplishes this prior to
when the data are analyzed, displayed and stored on
the PC.

B. Calibration and Prediction Algorithms

In theory, µa and µ's may be determined using R(r)
data from only two of the six detector distances of the
fiber probe. A multiple polynomial regression (MPR)
was applied to create a calibration model and
subsequently extract µa and µ's from R(r)
measurements at r1 = 0.6 mm and at r2 = 7.8 mm. The
properties R(r) at r1 and at r2 were measured for a set
of calibration samples with well-defined optical

properties. These were then fitted to double
polynomials using least-squares regression. The next
step was to solve the inverse problem of determining
µa and µs' from R(r) measurements on a set of
prediction samples. This was done using a two-
dimensional Newton-Raphson algorithm. Due to the
unknown numerical apertures of the fiber probe light
source and detectors, the system was calibrated
directly on a set of phantoms instead of using a
mathematical light propagation model. The phantoms
consisted of well-defined aqueous solutions of
Intralipid and black ink. The scattering and absorption
spectra were determined from integrating-sphere and
traditional transmission spectroscopy measurements.
The range of optical properties used in the calibration
phantoms was for µa, 0 – 0.32 cm-1, and for µ's, 6.1 –
16.3 cm-1.

3. Time-resolved System

A. Set-up for Time-resolved Measurements

A passively mode-locked Ti:Sapphire laser (Mira 900,
Coherent, Santa Clara, CA) pumped by a frequency-
doubled Nd:YAG-laser (Millennia, Spectra Physics,
Mountain View, CA) was used as a light source. This
laser system provided 150-fs light pulses with a
wavelength of 785 nm at a repetition rate of 76 MHz.
The light was brought to the sample by a 600-µm-
diameter optical fiber. A similar fiber was used to
collect the diffusely reflected light at a distance of 1.4
cm and guide it to the detector, a microchannel plate
photomultiplier tube (R2566U-07, Hamamatsu
Photonics K.K., Japan). A time-correlated single-
photon counting technique26 was employed to record
the time-dispersion curves. The overall temporal
response function of the system was approximately 60
ps (full width half maximum).

B. Data Evaluation

The absorption and transport scattering coefficients
were assessed through fitting the solution of the
diffusion equation for a semi-infinite homogenous
medium with an extrapolated boundary27 to the
measured data. The diffusion coefficient, D, was
assumed to be independent of the absorption of the
medium, i.e., D = 1/3µ's.

28 The theoretical curve was
convoluted with the instrumental transfer function, as
measured with the source and detector fiber facing
each other. The resulting curve was fitted to the data
over a range, starting at 10% of the maximum intensity
on the rising edge and ending at 1% on the tail. The
best fit was reached with a Levenberg-Marquardt
algorithm29 by varying µa, µ's, and a free time-shift, t0,
in order to minimize the reduced χ2.
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4. Integrating Sphere System

A. Optical Set-up

The integrating sphere set-up was similar to the one
used in Ref. 7, except that an external cavity diode
laser (SDL Inc., San Jose, CA), operating at 785 nm,
was used as the light source. The sphere (Oriel Corp.,
Stratford, CT) allows detection of the total
transmittance T and the total reflectance R from a
sample placed at either the entrance or exit port. The
light was modulated with a mechanical chopper, then
guided to the sphere using a 600 µm-diameter fiber,
and collimated using a lens and a pair of apertures. A
photodiode connected to a lock-in amplifier (SR-830,
Stanford Research Systems, CA) was used for
detection. The collimated transmittance was measured
in a separate set-up, where a series of co-linear
apertures served to suppress the scattered light so that
only the non-scattered light was detected by the
photodiode. Attenuation filters were used to increase
the dynamic range of this measurement, which yielded
the transport attenuation coefficient µt = µa + µs from
Beer-Lambert’s law. The Intralipid suspensions were
poured into 1 mm thick cuvettes made from
microscope slides. The meat samples were cut into 1
mm thick slices and placed between microscope slides
with pieces of slides used as spacers, and then clamped
together.

B. Determination of Optical Properties

The optical properties were extracted from the
measured values R, T and µt using a multiple
polynomial regression method based on Monte Carlo
simulations,30 in principle similar to the method used
for the fiber probe system. A pre-computed database of
R and T spanning the expected range of optical
properties was fitted to a polynomial model. The
properties µa, µs and g were extracted from the model
using a Newton-Raphson algorithm. Unlike the
method described in Ref. 30, where a fixed value of g
was used, three-dimensional rather than two-
dimensional polynomials were used in the regression.
Due to the limited size of the ports of the integrating
sphere, there were light losses at the outer parts of the
sample. This effect was incorporated in the Monte
Carlo simulations, since otherwise the losses would
lead to an overestimation of the absorption
properties.31 In principle, it would be sufficient to
measure the port diameters and the diameter of the
light beam and use this data as input for the Monte
Carlo simulations. In practice, however, simulations
showed that an error in these parameters of only one
millimeter corresponded to a one percent error in the T
or R values, and it was practically difficult to measure

the beam diameter to such an accuracy. Very accurate
values of T and R are necessary to be able to extract µa

in low-absorbing samples, since the inverse model is
then ill-conditioned. For this reason, the measured
diameters were only used as a first approximation in
the Monte Carlo simulations. Measurements of T and
R on an Intralipid sample with known absorption
properties were then performed. The extracted values
of µs and g were used as input for the Monte Carlo
program, and the input entrance and exit diameters
were changed in steps of 0.1 mm until the simulated
values corresponded to the measured values. The
resulting values of the diameters were then used for the
entire database computation.

5. Test Samples

A. Intralipid Phantoms

Twenty-five phantoms were prepared from Intralipid
200 mg/ml (20%) (Pharmacia & Upjohn Sverige AB,
Stockholm, Sweden) and the dye Nigrosin (Sigma, St.
Louis, MO), at five different concentrations of each.
Expected reduced scattering coefficients were
calculated according to van Staveren et al.32 At 785
nm, this results in an anisotropy factor g = 0.645, and a
scattering coefficient µs = 0.286 ml-1 l cm-1, where (ml-

1 l)-1 should be read as milliliter Intralipid-10% per
liter total diluted suspension. These values are valid for
concentrations up to 100 ml Intralipid-10% per liter.32

The phantoms were prepared so that µ's would be 6.0,
8.5, 11.0, 13.5, and 16.0 cm-1, corresponding to 59 –
157 ml l-1. Three of the phantoms were thus outside of
the range of the valid numbers of the scattering
coefficient, so we did not necessarily expect to find
exactly the values of µ's quoted above in the
measurements. A stock solution of Nigrosin was
prepared and diluted to different concentrations in the
various phantoms. The absorbance of the stock
solution was measured in the collimated transmittance
arrangement at the integrating sphere set-up. The
absorption coefficients due to the dye in the phantoms
were 0.024, 0.048, 0.095, 0.19, and 0.38 cm-1. The
water absorption at 785 nm is 0.022 cm-1, which
should be added to these values when the dye is in an
aqueous solution.33 Provided that the absorption of the
lipid particles in the Intralipid is negligible, this is the
absorption we would expect from the measurements.
The Intralipid and Nigrosin were diluted to their
proper concentrations with phosphate buffered saline
(PBS) to prevent possible acidity of the dye to affect
the Intralipid. For each phantom, a total of 450 ml
solution was prepared.
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B. Tissue Samples

Bone-free pork chops and chicken breasts were
purchased at the local supermarket on the same day as
the measurements, and were kept wrapped in plastic in
room temperature for 1 – 2 hours. The pork meat was
cut in ~4-cm-thick slices and the measurements
commenced immediately on the freshly cut side. The
chicken breasts were arranged in a stack, and the
muscle membrane of the upper one was removed with
a sharp knife, leaving a flat surface exposed to perform
the measurement on.

When the measurements with the spatially and
temporally resolved systems were finished, pieces of
the meat were cut out for the integrating-sphere
measurements.

C. C. In Vivo Measurements

Measurements were also performed on the inside of
the forearm of two of the experimenters. The
procedure was otherwise identical to the measurements
of the in vitro samples. However, the intensity of the
Ti:Sapphire laser was reduced to 10 mW average
power after the source fiber, to assure a safe level.
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Figure 1. The values of µ's and µa of the Intralipid phantoms, as determined by the three different systems. The dashed lines show the
expected values of µa. The theoretical values of µ's are not shown, because they did not correspond well to the measurements. (a), (b)
show µ's and µa from the fiber probe system; (c), (d) the time-resolved system; (e), (f) the integrating sphere system.
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6. Results

A. Intralipid Phantoms

Figures 1(a) – (f) shows the values of µ's and µa

obtained from the different systems, together with the
expected values for µa.
The fiber probe system was not calibrated above
µa = 0.32 cm-1. Thus, no data are available for the five
samples with the highest concentration of the dye. The
absorption coefficients measured with this system
[Figure 1(b)] are about 40% higher than the predicted
values. The time-resolved system yielded absorption
coefficients very close to the expected values for the
low-absorption phantoms [Figure 1(d)], but there is an
apparent overestimation of µa in the phantoms with
low scattering and high absorption. This is not
surprising as the diffusion equation loses some validity
under those conditions. The values of µ's are generally
lower than predicted [Figure 1(c)], but comparable to
those obtained by the fiber probe system, although
there appear to be artifacts due to varying absorption.
The correspondence is worse for the phantoms with
low scattering and those with high absorption.
Furthermore, µ's seems to be overestimated in the
phantoms with the highest absorption. This is
consistent with the integrating-sphere measurements,
which is an indication that the Intralipid was in some
way affected by the addition of the Nigrosin, and thus
that it is a real effect rather than an inverse-model
artifact.
The integrating-sphere measurements yielded values of
µ's within 10% of those obtained by the fiber probe
system [Figure 1(e)], while the correspondence with
the time-resolved system was worse for the low-
scattering phantoms/high-absorption phantoms,
differences ranging from 5% up to 30% for the low-
scattering phantoms. Looking at the values of µs and g
(see Figure 2), from which µ's is calculated, it seems
evident that the scattering properties of the Intralipid
were strongly affected by the addition of the Nigrosin.
This is despite the fact that Nigrosin was chosen as the
absorber because it was thought to be a relatively inert
dye. This effect is of no serious concern, since the
purpose of the investigation was to compare the
different systems, and not to test them against
calibrated phantoms.
The values of µa correspond fairly well to the
predicted values [Figure 1(f)], but the errors are larger
than for the time-resolved measurements. The primary
reason for this is that extracting µa in samples with
very low absorption using the integrating sphere
technique is an ill-conditioned inverse problem.
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Figure 2. Integrating-sphere results for the Intralipid phantoms:
(a) the scattering coefficient, µs; (b) the scattering anisotropy
factor, g.

B. Tissue Samples

For the fiber probe system, unfortunately all tissue
samples were outside the calibration range. It had been
designed to be used primarily for clinical skin-contact
measurements, where the scattering coefficients are
higher than the muscle tissue used in this investigation.
The results obtained by the other two systems are
presented in Table 1.
Table 1. The optical properties of the pork and chicken samples from
the FTIIS, the time resolved and the integrating sphere systems.

Time-resolved Integrating Sphere

Sample

µ's
(cm-1)

µa

(cm-1)

µ's
(cm-1)

µs

(cm-1)

g µa

(cm-1)

Pork #1 1.8 0.07 2.4 62 0.96 0.39

Pork #2 2.4 0.07 4.7 81 0.94 0.22

Pork #3 1.6 0.04 3.0 69 0.96 0.14

Chicken 1.8 0.08 1.5 49 0.97 0.09



6

C. In Vivo Measurements

Although in vivo measurements of the skin surface
present an inhomogeneous sampling volume, while all
measurements were evaluated with the assumption of
homogeneity, the systems were tested on the forearms
of two of the experimenters. The results are presented
in Table 2.

Table 2. The optical properties obtained from in vivo measurements
on the inside of the forearm of two volunteers, from the fiber probe
system, the FTIIS and the time-resolved system.

Fiber Probe Time-resolved

Person

µ's
(cm-1)

µa

(cm-1)

µ's
(cm-1)

µa

(cm-1)

#1 10.6 0.31 2.5 0.20

#2 11.8 0.31 5.0 0.20

7. Discussion

Starting with the measurements on the Intralipid
phantoms, the predicted absorption coefficients, based
on the measurements of the stock solution of the dye,
were regarded as representing the most correct values.
For the reduced scattering coefficients, the predicted
values were mistrusted for several reasons. Firstly, it is
not clear whether the composition of the Intralipid
could be regarded to be identical to the one used by
van Staveren et al. in 1991.32 Possible causes for
different scattering characteristics are the use of 20%
Intralipid rather than 10%, changes in the production
conditions of the Intralipid, variations in the raw
materials used, etc. One has to keep in mind that
Intralipid is intended to be used for intravenous
nutrition and not light-propagation experiments.
Secondly, the integrating-sphere results showed that
the addition of the dye probably altered the
composition of the scattering lipid particles. Thirdly,
three of the concentrations were higher than the range
where the formula given by van Staveren et al. was
valid, and the other two were close to the limit. For
these reasons, the integrating-sphere results for µ's
were regarded as representing the most true values.
The integrating-sphere method has a proven record of
producing accurate values for the scattering
coefficient, verified by tests on polystyrene micro-
spheres in water suspensions, where the scattering can
be calculated exactly using Mie theory.30 The method
used to extract the optical properties, the MPR method
based on Monte Carlo simulations, was also regarded
to be state-of-the-art in terms of inverse algorithms for
integrating-sphere measurements. The apparent change
in scattering characteristics after addition of the dye
was unfortunate, but did not compromise the

investigation since the main objective was to compare
the systems on identical samples.
It is worthwhile noting that even though both µs and g
varied strongly with the dye concentration (see Figure
2), these variations almost cancelled out when
combined in µ's. It seems that µ's was largely
determined by the mass concentration of scatterers,
rather than the exact composition of the particle sizes.
The absorption coefficients extracted by the
integrating-sphere method had larger errors, but this
was expected since the evaluation of µa is ill-
conditioned when µa is low. Monte Carlo simulations
showed that the difference between no dye and the
lowest concentration of dye corresponds to less than
one percent difference in the measurement of R or T,
and thus the evaluation is susceptible to measurement
noise. The time-resolved method, on the other hand,
produced very accurate values of µa for the low-
absorption phantoms. The fiber probe system
overestimated the absorption by about 40%, for which
there may be two explanations. Either, there was a
systematic error in the calibration standards when the
system was calibrated. Or, the system needed re-
calibrating, possibly because of wear or a thin layer of
dirt accumulating on the probe head. The latter of
these explanations was regarded as the most plausible.
As for the scattering, the fiber probe system yielded
values of µ's within 10% of the integrating-sphere
results, usually in the 1-7% range. This is not
surprising, given that the calibration standards were
measured using an integrating-sphere system. The
scattering results from the time-resolved system
present a more complex case. The determination of µ's
was somewhat sensitive to assumptions made in the
fitting process. The best fit, in terms of the lowest
value of χ2, was achieved by allowing the starting
time, t0, of the time dispersion curve to be a fitting
parameter, together with µ's and µa. However, this
seems unphysical when the actual value of t0 is known
from the reference pulse in the measurement. The
values of µ's obtained this way also seems to be
underestimated by about 20-30% compared with the
integrating-sphere results. These results are a bit
surprising as Cubeddu et al. presented absolute errors
in both µa and µ's less than 10% under similar
conditions.34 Since it is known that the diffusion
approximation is less accurate for early times,
Cubeddu et al. used the 80% point of the rising flank
of the curve as the starting point of the fitting, and the
1% point of the trailing flank as the end point. Using
this approach on our data, however, resulted in larger
deviations in both µa and µ's.
In the case of the tissue samples, there is less
motivation for regarding the integrating-sphere results
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as the “golden standard.” Although the method is just
as accurate, the probing volume is smaller than for the
diffuse reflectance systems, which allows for small
inhomogeneities in the tissue that are averaged out in
the other systems to yield different values of the
optical properties. Also, there is a concern that the
somewhat brutal preparation of the samples may affect
the optical properties.
As has been pointed out, the sampling volume in the in
vivo measurements is inhomogeneous, because the
skin and the underlying tissues are a layered structure.
This would pose no problem in the comparison of the
systems if the probing volume were the same, since the
inhomogeneities would average out. This is not the
case, however, which is obvious when comparing the
measurement geometry of the time-resolved with the
spatially resolved system. The 1.4 cm fiber spacing for
the time-resolved system means that the detected light
will have traveled along a deeper path than the
detected light in the spatially resolved system. For that
system, the scattering properties are primarily
determined from the signal recorded by the innermost
detector, i.e., at r = 0.6 mm. The photons registered by
this detector have penetrated approximately 0.2-0.3
mm, and thus mainly carry information on the
uppermost layer of the skin. For the evaluation of the
absorption, on the other hand, the outermost detector,
i.e., at r = 7.8 mm, is of most importance. The light
collected at this distance have penetrated further down
in the tissue, approximately 2-4 mm. Since the skin
and the subcutaneous layer scatter more than the
muscle tissue, the spatially resolved systems
consequently yielded higher values of µ's than the
time-resolved (Table 2).
The in vivo measurements were included in this work
to illustrate the performance of the systems in a
realistic measurement situation. The discrepancies of
the results point to one important observation, that
quantitative measurements of the optical properties are
often impossible to perform using the assumption of
homogeneous tissue. Only when a homogeneous
material for certain can approximate the tissue, such
measurements are useful. In other cases, either relative
measurements, which may be system dependent, will
have to suffice, or one has to utilize more sophisticated
inverse models based on assumptions of
inhomogeneous tissue.

The authors wish to thank Dr. Antonio Pifferi
(Department of Physics, Politecnico di Milano, Milan,
Italy) for the software used for the evaluation data
recorded by the time-resolved system.
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