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ABSTRACT
Large-scale software development generates an ever-growing
amount of information. Multiple research groups have pro-
posed using approaches from the domain of information re-
trieval (IR) to recover traceability. Several enhancement
strategies have been initially explored using the laboratory
model of IR evaluation for performance assessment. We con-
ducted a pilot experiment using printed candidate lists from
the tools RETRO and ReqSimile to investigate how different
quality levels of tool output affect the tracing accuracy of en-
gineers. Statistical testing of equivalence, commonly used in
medicine, has been conducted to analyze the data. The low
number of subjects in this pilot experiment resulted neither
in statistically significant equivalence nor difference. While
our results are not conclusive, there are indications that it
is worthwhile to investigate further into the actual value of
improving tool support for semi-automatic traceability re-
covery. For example, our pilot experiment showed that the
effect size of using RETRO versus ReqSimile is of practical
significance regarding precision and F-measure. The inter-
pretation of the effect size regarding recall is less clear. The
experiment needs to be replicated with more subjects and
on varying tasks to draw firm conclusions.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications—
Traceability

General Terms
Documentation, Experimentation

Keywords
requirements traceability, information retrieval, controlled
experiment, equivalence testing
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1. INTRODUCTION
Development and maintenance of software often result in

information overload. Knowledge workers are in general
forced to spend more and more time to extract useful in-
formation. Maintaining traceability links between software
artifacts is one approach to structure the information space
of software development projects. Introducing information
taxonomies and manually maintaining links is, however, an
approach that does not scale very well. As a result, several
researchers have proposed to support traceability recovery
with tools based on IR methods, utilizing the fact that arti-
facts often have textual content in natural language.
Traceability recovery tools are generally evaluated by ver-

ifying how many suggested links above a certain similarity
threshold are correct compared to a hand-crafted set of cor-
rect links. The laboratory model of IR evaluation is applied
to calculate the measures recall and precision, sometimes
extended by a harmonic mean, the F-measure. Recall and
precision are commonly reported using graphs, like the one
shown in Figure 4. The “X” in Figure 4 marks the recall and
precision values of RETRO [13] and ReqSimile [16] for the
first ten links proposed by these tools. For“X”, the recall and
precision values of RETRO are 50% respectively 60% larger
than those of ReqSimile. RETRO is a well-known trace-
ability recovery tool. ReqSimile is a research tool developed
at Lund University for the purpose to support information
retrieval in the context of market-driven requirements engi-
neering. However, since the real question is to what extent
tools like RETRO and ReqSimile actually help engineers
in performing traceability recovery tasks, one may wonder
whether it is worthwhile to keep hunting for recall-precision
improvements of traceability recovery tools.
To tackle this questions, we conducted a controlled exper-

iment with 8 subjects to study how tool support affects the
tracing process performed by engineers. The purpose of our
experiment was to explore how the output from two trace-
ability recovery tools, RETRO and ReqSimile, impacted a
task requiring traceability information.
We analyzed our results using a test of equivalence, try-

ing to prove that one treatment is indistinguishable from
another. In equivalence testing, the null hypothesis is for-
mulated such that the statistical test is a proof of similar-
ity i.e., checking whether the tracing accuracies of engineers
using different tools differ by more than a tolerably small
amount Δ [20]. Our null hypothesis is the following:
Hypothesis: The engineers’ accuracy of traceability recov-
ery supported by RETRO differs by more than Δ compared
to that supported by ReqSimile.



The alternative hypothesis is that the difference between
the engineers’ accuracies is smaller than Δ, which implies
that the treatments can be considered equivalent. Accuracy
is expressed in terms of recall and precision.

2. RELATED WORK
The last decade, several researchers proposed semi-automatic

support to the task of traceability recovery. For example,
traceability recovery tools have been developed implement-
ing techniques based on algebraic or probabilistic models [1],
data mining [23] and machine learning [19]. Several research-
ers have expressed the tracing task as an IR problem. The
query in such a tool is typically the software artifact you
want to link to other artifacts. The answer to a query is
normally a ranked list of artifact suggestions, most often
sorted by the level of textual similarity. The ranked list is
analogous to the output of search engines used on the web.
Items in the list can be either relevant or irrelevant for the
given task.

In 2000, Antoniol et al. did pioneering work on traceabil-
ity recovery when they used the standard vector space model
(VSM) and probabilistic models to suggest links between
source code and documentation in natural language [1]. Mar-
cus and Maletic introduced Latent Semantic Indexing (LSI),
another vector space approach, to recover traceability in
2003. Their work showed that LSI can achieve good re-
sults without the need for stemming, which is fundamental
in VSM and the probabilistic models [15]. The same year
Spanoudakis et al. used a machine learning approach to es-
tablish traceability links. By generating traceability rules
from a set of artifacts given by the user, links were derived
in the document set. Zhang et al. proposed automatic on-
tology population for traceability recovery [23]. They devel-
oped a text mining system to semantically analyze software
documents. Concepts discovered by the system were used to
populate a documentation ontology, which was then aligned
with a source code ontology to establish traceability links.

Common to those papers is that they have a technical
focus and present no or limited evaluations using software
engineers solving real tasks. The majority of the published
evaluations of traceability tools do not go beyond reporting
recall-precision graphs or other measures calculated with-
out human involvement. Exceptions include studies com-
paring subjects working with tool support to manual con-
trol groups. Huffman Hayes et al. developed a traceabil-
ity recovery tool named RETRO and evaluated it using 30
student subjects [13]. The students were divided into two
groups, one working with RETRO and the other working
manually. Students working with the tool finished a require-
ments tracing task faster and with a higher recall than the
manual group, the precision however was lower. De Lucia et
al. conducted a controlled experiment with 32 students on
the usefulness of supported traceability recovery [9]. They
found that subjects using their tool completed a task related
to tracing various software artifacts faster and more accu-
rately than subjects working manually, i.e. without any sup-
port from a dedicated traceability recovery tool. In another
study, De Lucia et. al observed 150 students in 17 software
development projects and concluded that letting them use
IR-based tool support is helpful when maintenance of trace-
ability information is a process requirement [10]. An experi-
ment similar to ours was conducted by Cuddeback et. al, us-
ing students and student artifacts [8]. They had 26 subjects

vet candidate requirements traceability matrices (RTMs) of
varying accuracy. They concluded that subjects receiving
the most inaccurate RTMs drastically improved them and
that subjects in general balanced recall and precision.
Several researchers proposed ways to obtain better tool

output, either by enhancing existing tools implementing stan-
dard IR techniques, or by exploring new or combined ap-
proaches. Using a thesaurus to deal with synonymy is one
proposed enhancement strategy explored by different research-
ers [18, 12]. Zou et al. investigated term based improve-
ment strategies such as including a part-of-speech tagger to
extract key phrases and using a project glossary to weight
certain terms higher [24]. Recently, Cleland-Huang et al. [6]
and Asuncion et al. [2] used a machine learning approach,
Latent Direchlet Allocation, to trace requirements. Further-
more, Chen has done preliminary work on combining IR-
methods and text mining in a traceability recovery tool and
reported improved results [5].
Even though enhancements lead to better tool outputs in

certain cases, their general applicability and the benefit they
generate for engineers performing a specific task remain un-
certain. Oliveto et al. studied the impact of using four dif-
ferent methods for traceability recovery. In their empirical
study, VSM, LSI and the Jensen-Shannon method resulted
in almost equivalent results wrt. tracing accuracy [17]. LDA
however, while not resulting in better accuracy, was able to
capture different features than the others. As far as we
know, no studies except Cuddeback et. al [8], have been
published comparing how different quality levels of tool out-
put impact of an engineer in a specific traceability task.
If more empirical studies with humans were available, one
could conduct a meta-analysis to investigate this matter.
Since this is not the case, our approach is instead to com-
pare in an experimental setting the effect of using support
tools with differently accurate outputs on traceability tasks
performed by humans.

3. EXPERIMENTAL SETUP
This section describes the definition, design and setting of

the experiment, following the general guidelines by Wohlin
et al. [22]. An overview of our experimental setup is shown
in Figure 1.

3.1 Experiment Definition and Context
The goal of the experiment was to study the tool-supported

traceability recovery process of engineers, for the purpose of
evaluating the impact of traceability recovery tools’ accu-
racies, with respect to the engineers’ accuracy of traceabil-
ity recovery, from the perspective of a researcher evaluating
whether quality variations between IR tool outputs signifi-
cantly affect the tracing accuracy of engineers.

3.2 Subjects and Experimental Setting
The experiment was executed at Lund University, Sweden.

Eight subjects involved in software engineering research par-
ticipated in the study. Six subjects were doctoral students,
two subjects were senior researchers. Most subjects had in-
dustrial experience of software development.
The experiment was conducted in a classroom setting, the

subjects worked individually. Each subject was randomly
seated and supplied with a laptop with two electronic doc-
uments containing the artifacts that were to be traced in
PDF format. Each subject also received a printed list per



Figure 1: Overview of the experimental setup

artifact to trace, containing candidate links as described
in section 3.5. Four subjects received lists with candidate
links generated by RETRO, the other four received candi-
date lists generated by ReqSimile. The lists were distributed
randomly. The subjects received a pen, a two-page instruc-
tion, an answer sheet and a debriefing questionnaire. The
subjects were supposed to navigate the PDF documents as
they preferred, using the candidate link lists as support. All
individual requirements were clickable as bookmarks, and
keyword searching using the Find tool of their PDF viewer
was encouraged.

3.3 Task and Description of the Dataset
It was decided to reuse a publicly available dataset and a

task similar to previous tracing experiments to enable com-
parison to old results. The task, in which traceability re-
covery was required, was to estimate impact of a change re-
quest on the CM-1 dataset. For twelve given requirements,
the subjects were asked to identify related requirements on
a lower abstraction level. The task was given a realistic sce-
nario involving time pressure, by having the subjects assume
they should present their results in a meeting 45 minutes
later. Before the actual experiment started, the subjects
were given a warm-up exercise to become familiar with the
document structure and the candidate link lists.

The CM-1 data is a publicly available1 set of requirements
with complete traceability information. The data originates
from a project in the NASA Metrics Data Program and has
been used in several traceability experiments before [13, 14,
24]. The dataset specifies parts of a data processing unit and
consists of 235 high-level requirements and 220 correspond-
ing low-level requirements specifying detailed design. Many-
to-many relations exist between abstraction levels. The link
density of CM-1 and the representative subset used in the ex-
periment are presented in Figure 2. This figure depicts his-
tograms with the X-axis representing the number of low-level
requirements related to one high-level requirement. Due to
the rather unintuitive nature of the dataset, having many
unlinked system requirements, the subjects received a hint
saying that “Changes to system requirements normally im-
pact zero, one or two design items. Could be more, but more
than five would really be exceptional”.
Descriptive statistics of CM-1, including two commonly

reported text complexity measures, are presented in Table 1.
Farbey proposed calculating Gunning Fog Index as a com-
plexity metric for requirement specifications written in En-

1www.coest.org

Figure 2: Histograms showing the link densities of
CM-1 (left) and the subset used as the experimental
sample (right).

Number of traceability links: 361
Characteristic High-level Reqs. Low-level Reqs.
Items 235 220
Words 5 343 17 448
Words/Items 22.7 79.3
Avg. word length 5.2 5.1
Unique words 1 056 2 314
Gunning Fog Index 7.5 10.9
Flesch Reading Ease 67.3 59.6

Table 1: Statistics of the CM-1 data, calculated us-
ing the Text Content Analyzer on UsingEnglish.com.

glish [11]. The second complexity metric reported is the
Flesch Reading Ease, previously reported by Wilson et al.
for requirement specifications from NASA [21].

3.4 Decription of the Tools
RETRO, developed by Huffman Hayes et al., is a tool that

supports software development by tracing textual software
engineering artifacts [13]. The tool generates RTMs using
standard information retrieval techniques. The evolution of
RETRO accelerated when NASA analysts working on inde-
pendent verification and validation projects showed interest
in the tool. The version of the software we used implements
VSM with features having term frequency-inverse document
frequency weights. Similarities are calculated as the cosine
of the angle between feature vectors [3]. Stemming is done as
a preprocessing step by default. For stop word removal, an
external file must be provided, a feature we did not use. We
used the RETRO version V.BETA, Release Date February
23, 2006.
ReqSimile, developed by Natt och Dag et al., is a tool with

the primary purpose to provide semi-automatic support to
requirements management activities that rely on finding se-
mantically similar artifacts [16]. Examples of such activi-
ties are traceability recovery and duplicate detection. The
tool was intended to support the dynamic nature of market-
driven requirements engineering. ReqSimile also implements
VSM and cosine similarities. An important difference to
RETRO is the feature weighting; terms are weighted as
1+ log2(freq) and no inverse document frequencies are con-
sidered. Preprocessing steps in the tool include stop word
removal and stemming. We used version 1.2 of ReqSimile.

3.5 Experimental Variables
In the context of the proposed experiment, the indepen-

dent variable was the quality of the tool output given to the



Figure 3: Example of top part of a candidate link
list.

subjects. For each item to trace, i.e. for each high-level re-
quirement, entire candidate link lists generated by the tools
using default settings were used. No filtering was applied in
the tools. The output varied between 47 and 170 items, i.e.
each item representing a low-level requirement. An exam-
ple of part of such a list is presented in Figure 3, showing
high-level requirement SRS5.14.1.6 and the top part of a list
of candidate low-level requirements and their cosine similar-
ities. The two tools RETRO [13] and ReqSimile [16] are
further described in Section 3.4. RETRO has outperformed
ReqSimile wrt. accuracy of tool output in a previous exper-
iment on the CM-1 dataset [4].

The lists were printed with identical formatting to ensure
the same presentation. Thus, the independent variable was
given two treatments, printed lists of candidate links ranked
by RETRO (Treatment RETRO), and printed lists of candi-
date links ranked by ReqSimile (Treatment ReqSimile). The
recall-precision graphs for the two tools on the experiment
sample are presented in Figure 4, extended by the accuracy
of the tracing results, i.e. the answer sets returned by sub-
jects as described in Section 4.

The dependent variable, the outcome observed in the study,
was the accuracy of the tracing result. Accuracy was mea-
sured in terms of recall, precision and F-measure. Recall
measures the percentage of correct links traced by a sub-
ject, while precision measures the percentage of traced links
that were actually correct. The F-measure is the harmonic
mean of recall and precision. The time spent on the task
was limited to 45 minutes, creating realistic time pressure.
We also recorded the number of requirements traced by the
subjects.

3.6 Experiment Design and Procedure
A completely randomized design was chosen. The exper-

iment was conducted during one single session. The design
was balanced, i.e. both treatments, RETRO and ReqSim-
ile, were assigned to the same number of subjects. The two
treatment were given to the subjects at random. Each sub-
ject received the same tasks and had not studied the system
previously. When the 45 minutes had passed, the subjects
were asked to answer a debriefing questionnaire.

3.7 Statistical Analysis
The null hypothesis was formulated as existence of a differ-

ence in the outcomes bigger than Δ. Δ defines the interval
of equivalence, i.e., the interval where variation is considered
to have no practical value. For this pilot study, we decided
to set Δ to 0.05 for both recall, precision and F-measure.

This means that finishing the task with 0.05 better or worse
recall and precision does not have a practical value.
The two one-sided test (TOST) is the most basic form of

equivalence testing used to compare two treatments. Con-
fidence intervals for the difference between two treatments
must be defined. In a TOST analysis, a (1 - 2α)100% con-
fidence interval is constructed [20]. We selected α = 0.05,
thus we reject the null hypotheses that the outcomes of the
treatments differ by at least Δ, if the 90% confidence in-
terval for the difference is completely confined within the
endpoints -Δ and +Δ. The 90% confidence intervals are
calculated as follows:

point estimate outcomeRETRO −
point estimate outcomeReqSimile ±

2.353
√

std dev2RETRO + std dev2ReqSimile

4. RESULTS AND DATA ANALYSIS
The experiment had no dropouts and as a result we col-

lected 8 valid answer sheets and debriefing questionnaires.
The answer sets were compared to the gold standard avail-
able for the datasets and the corresponding values for re-
call (Rc), precision (Pr) and F-measure (F) were calculated.
The descriptive statistics for Rc, Pr, F, and the number of
requirements traced are presented in Table 2. We also cal-
culated the effect sizes using Cohen’s d (cf. last column
in Table 2). Results from the questionnaire are shown in
Table 3.
Most subjects experienced the task as challenging and

did not have enough time to finish. The list of common
acronyms provided to assist the subjects, as was done in a
previous case study using the CM-1 dataset [13], was not
considered enough to appropriately understand the domain.
Generally, the subjects considered the printed candidate link
lists as supportive and would prefer having tool support if
performing a similar task in the future.
Table 4 characterizes the tool outputs of RETRO and Re-

qSimile as well as the tracing results provided by the subjects
participating in the experiment. The upper part of the table
shows the data for the treatment with RETRO, the lower
part that for the treatment with ReqSimile. Each row in the
table provides the following data: the ID of the high-level re-
quirement (Req. ID), the number of low-level requirements
suggested by the tool (#Links), the cosine similarities of the
first and last link in the list of suggested low-level require-
ments (Sim. 1st link, Sim. last link), and for each subject
(A to H) the number of reported links and the associated
recall and precision (Sub. A: # / Rc / Pr). Bold values
represent fully accurate answers. A hyphen indicates that
a subject did not provide any data on that high-level re-
quirement. IDs of high-level requirements printed in italics
have no associated low-level requirements links, thus a cor-
rect answer would have been to report 0 links. For those
requirements we define rc and pr equal to 1 if a subject ac-
tually reported 0 links, otherwise rc and pr equal 0. When
subjects reported 0 links for high-level requirements that ac-
tually have low-level requirements, we define rc and pr equal
to 0.
The number of high-level requirements the subjects had

time to investigate during the experiment varied between
three and twelve. On average, RETRO subjects investi-
gated eight items and ReqSimile subjects investigated 8.75.



Figure 4: Recall-Precision graph for RETRO and ReqSimile for requirements tracing (our sample). The
’X’-symbols mark candidate link lists of length 10. Overall accuracy of answer sets returned by subjects is
presented as circles, the diameter represents the relative number of links in the answer set. For a picture
where also tool output is presented with relative sizes, see Figure 5.

All subjects apparently proceeded in the order the require-
ments were presented to them. Since subjects A and E inves-
tigated only three and four high-level requirements respec-
tively, they clearly focused on quality rather than coverage.
However, the precision of their tracing results does not re-
flect this focus. The mean recall for subjects supported by
RETRO was higher than for subjects supported by ReqSim-
ile, and also the mean precision. The standard deviations
were however high, as expected when using few subjects.
Not surprisingly, subjects reporting more links in their an-
swer set reached higher recall values.

The debriefing questionnaire was also used to let subjects
briefly describe their tracing strategies. Most subjects ex-
pressed focus on the top of the candidate lists. One subject
reported the strategy of investigating the top 10 suggestions.
Two subjects reported comparing similarity values and in-
vestigating candidate links until the first “big drop”. Two
subjects investigated links on the candidate lists until sev-
eral in a row were clearly incorrect. Only one subject ex-
plicitly reported considering links after position 10. This
subject investigated the first ten links, then every second
until position 20, then every third until the 30th suggestion.
This proved to be a a time-consuming approach and the re-
sulting answer set was the smallest in the experiment. The
strategies explained by the subjects are in line with our ex-
pectation that presenting more than 10 candidate links per
requirement adds little value.

As Figure 4 shows, a näıve strategy of just picking the
first one or two candidate links returned by the tools would
in most cases result in better accuracy than the subjects
achieved. Also, there is a trend that subjects supported
by RETRO handed in more accurate answer sets. Pairwise

Figure 5: Circle diameters show relative number of
links in answer sets. Tool output is plotted for can-
didate link lists of length from 1 to 6.

comparison of subjects ordered according to accuracy, i.e. B
to E, A to F, C to G, D to H, indicates that the better accu-
racy of RETRO actually spills over to the subjects’ tracing
result.
Figure 5 shows relative sizes of answer sets returned by

both human subjects and the tools, presenting how the num-
ber of tool suggestions grows linearly. The majority of hu-
man answer sets contained between one or two links per
requirement, comparable to tools generating one or two can-
didate links.
The 90% confidence intervals of the differences between

RETRO and ReqSimile are presented in Figure 6. Since
none of the 90% confidence intervals of recall, precision, and
F-measure are covered by the interval of equivalence, there
is no statistically significant equivalence of the engineers’ ac-



TREATMENT Reqs. Traced (number)
Mean Median Std. Dev. Eff. Size

RETRO 8.00 8.50 2.74
ReqSimile 8.75 10.0 3.70 -0.230

Recall
Mean Median Std. Dev. Eff. Size

RETRO 0.237 0.237 0.109
ReqSimile 0.210 0.211 0.118 0.232

Precision
Mean Median Std. Dev. Eff. Size

RETRO 0.328 0.325 0.058
ReqSimile 0.247 0.225 0.077 1.20

F-Measure
Mean Median Std. Dev. Eff. Size

RETRO 0.267 0.265 0.092
ReqSimile 0.218 0.209 0.116 0.494

Table 2: Descriptive statistics of experimental re-
sults.

Figure 6: Differences in recall, precision and F-
measure between RETRO and ReqSimile. The hor-
izontal T-shaped bars depict confidence intervals.
The interval of equivalence is the grey-shaded area.

curacies of traceability recovery, when using our choice of Δ.
For completeness, we also did difference testing with the null
hypothesis: The engineers’ accuracy of traceability recovery
supported by RETRO is equal to that supported by Re-
qSimile. This null hypothesis could not be rejected neither
by a two-sided T-test nor a two-sided Wilcoxon rank-sum
test with α=0.05. Consequently, there were no statistically
significant differences on the engineers’ accuracies of trace-
ability recovery when supported by candidate link lists from
different tools.

Our tests of significance are accompanied by effect-size
statistics. Effect size is expressed as the difference between
the means of the two samples divided by the root mean
square of the variances of the two samples. On the basis of
the effect size indices proposed by Cohen, effects greater or
equal 0.5 are considered to be of medium size, while effect
sizes greater or equal than 0.8 are considered large [7]. The
effect sizes for precision and F-measure are high and medium
respectively. Most researchers would consider them as being
of practical significance. For recall, the effect size is too small
to say anything conclusive.

5. THREATS TO VALIDITY
The entire experiment was done during one session, lower-

QUESTIONS
(1=Strongly agree, RETRO ReqSimile
5=Strongly disagree)
1. I had enough time to finish the 4.0 3.3
task.
2. The list of acronyms gave me
enough understanding of the domain
to complete the task. 4.3 3.8
3. The objectives of the task
were perfectly clear to me. 2.5 1.5
4. I experienced no major diff-
iculties in performing the task. 3.3 4.3
5. The tool output (proposed links)
really supported my task. 2.3 2.0
6. If I was performing a similar
task in the future, I would want
to use a software tool to assist. 2.3 1.8

Table 3: Results from the debriefing questionnaire.
All questions were answered using a five-level Likert
item. The means for each group are shown.

ing the risk of maturation. The total time for the experiment
was less than one hour to help subjects keep focused. As the
answers in the debriefing questionnaire suggests, it is likely
that different subjects had different approaches to the pro-
cess of artifact tracing, and the chosen approach might have
influenced the outcome more than the different treatments.
This is a threat to the internal validity that. The fully ran-
domized experiment design was one way to mitigate such
effects. Future replications should aim at providing more
explicit guidance to the subjects.
A possible threat to construct validity is that using printed

support when tracing software artifacts is not representing
how engineers would actually interact with the supporting
IR tools, but it straightens the internal validity.
The CM-1 dataset used in the experiment, has been used

in several previous tracing experiments and case studies.
The dataset is not comparable to a large-scale industrial
documentation space but is a representative subset. The
CM-1 dataset originates from a NASA project, and is prob-
ably the most referenced dataset for requirements tracing.
The subjects all do research in software engineering, most
have also worked as software developers in industry. Since
the dataset is complex, dealing with embedded development
in a safety critical domain, it was challenging for the subjects
to fully understand the information they received to perform
their task. In that regard, the subjects are comparable to
newly employed software engineers in industry. This limits
the generalizability of the experimental results, as software
engineers normally would be more knowledgeable.

6. DISCUSSION AND FUTURE WORK
The results of the pilot experiment are inconclusive. The

low number of subjects did not enable us to collect strong
empirical evidence. The equivalence test (TOST) did not re-
ject difference and the difference test (two-sided T-test) did
not reject similarity. Thus, in this experiment, neither the
evidence against equality nor difference was strong enough
to reject either null hypothesis.
Although not statistically significant, we could see a trend

that subjects supported with the better tool performed more



Treatment RETRO
Req. ID #Links Sim. Sim. Sub. A Sub. B Sub. C Sub. D

1st link last link # / Rc / Pr # / Rc / Pr # / Rc / Pr # / Rc / Pr
SRS5.1.3.5 134 0.551 0.019 1 / 1 / 1 1 / 1 / 1 3 / 1 / 0.33 1 / 1 / 1
SRS5.1.3.9 116 0.180 0.005 4 / 0.2 / 0.25 1 / 0 / 0 1 / 0 / 0 2 / 0 / 0
SRS5.12.1.11 156 0.151 0.004 2 / 0 / 0 2 / 0 / 0 2 / 0 / 0 1 / 0 / 0
SRS5.12.1.8 125 0.254 0.005 2 / 0.5 / 0.5 0 / 0 / 0 3 / 0.5 / 0.33 0 / 0 / 0
SRS5.14.1.6 101 0.280 0.006 - 1 / 0 / 0 1 / 0.25 / 1 3 / 0.25 / 0.33
SRS5.14.1.8 117 0.173 0.005 - 1 / 0 / 0 0 / 0 / 0 1 / 0 / 0
SRS5.18.4.3 47 0.136 0.009 - 2 / 1 / 0.5 3 / 1 / 0.3 2 / 1 / 0.5
SRS5.19.1.10 135 0.140 0.004 - - 1 / 0 / 0 1 / 0 / 0
SRS5.19.1.2.1 101 0.151 0.006 - - 0 / 0 / 0 2 / 1 / 0.5
SRS5.2.1.3 127 0.329 0.005 - - 3 / 0.67 / 0.67 4 / 0.67 / 0.5
SRS5.9.1.1 163 0.206 0.003 - - 2 / 0 / 0 -
SRS5.9.1.9 159 0.240 0.005 - - - -

Treatment ReqSimile
Req. ID #Links Sim. Sim. Sub. E Sub. F Sub. G Sub. H

1st link last link # / Rc / Pr # / Rc / Pr # / Rc / Pr # / Rc / Pr
SRS5.1.3.5 145 0.568 0.004 3 / 1 / 0.33 4 / 1 / 0.25 2 / 1 / 0.5 1 / 1 / 1
SRS5.1.3.9 142 0.318 0.029 1 / 0 / 0 2 / 0 / 0 3 / 0 / 0 1 / 0 / 0
SRS5.12.1.11 166 0.315 0.029 1 / 0 / 0 1 / 0 / 0 2 / 0 / 0 0 / 1 / 1
SRS5.12.1.8 111 0.335 0.022 - 0 / 0 / 0 1 / 0 / 0 4 / 0.5 / 0.25
SRS5.14.1.6 134 0.397 0.021 - 4 / 0.25 / 0.25 3 / 0.25 / 0.33 2 / 0.25 / 0.5
SRS5.14.1.8 170 0.397 0.029 - 2 / 0 / 0 2 / 0 / 0 2 / 0 / 0
SRS5.18.4.3 143 0.259 0.021 - 3 / 1 / 0.33 1 / 1 / 1 1 / 0 / 0
SRS5.19.1.10 160 0.340 0.025 - 2 / 0 / 0 0 / 1 / 1 3 / 0 / 0
SRS5.19.1.2.1 146 0.433 0.021 - - 2 / 0 / 0 3 / 1 / 0.66
SRS5.2.1.3 151 0.619 0.018 - - 2 / 0.66 / 1 1 / 0.33 / 1
SRS5.9.1.1 167 0.341 0.019 - - 2 / 0 / 0 0 / 1 / 1
SRS5.9.1.9 157 0.527 0.018 - - 1 / 0 / 0 1 / 1 / 1

Table 4: Characterization of tool outputs and tracing results provided by the subjects participating in the
experiment.

accurately. Somewhat surprisingly, the precision of the sub-
jects was not higher than that of the results the tools pro-
duced. For our specific task, with a time pressure, just using
the tool output would generally be better than letting our
subjects solve the task, using the tool output as support.
One could argue that our subjects actually made the results
worse. One direction of future research could be to explore
under which circumstances this is the case.

Our experiment is in line with the finding of Cuddeback
et. al [8], stating that subjects seem to balance recall and
precision. We observed this trend in a very different exper-
imental setup. Foremost, our task was to trace a subset of
artifacts under time pressure using printed candidate link
lists as support, as opposed to vet a complete RTM with-
out time pressure using a tool. Other differences include:
types of subjects and artifacts, and a sparser golden stan-
dard RTM.

Is it meaningful to study a tracing task with subjects that
are not very knowledgeable in the domain? Embedded soft-
ware development in the space industry is not easy to simu-
late in a classroom setting. Yet there is a need to understand
the return on investment of improved accuracy of IR tools
in support of traceability recovery. Controlled experiments
can be one step forward. Our ambition is to replicate this pi-
lot experiment using a larger number of student subjects, to
explore whether any statistically significant results appear.

Recall and precision of traceability recovery tools are not
irrelevant measures, but the main focus of research should

be broader. For example, Figure 4 shows that the accuracy
of RETRO is clearly better than that that of ReqSimile.
However, the effect of using RETRO in a specific traceabil-
ity recovery task is not that clear, as our pilot experiment
suggests. Therefore, our future work aims at moving closer
to research about information access, especially to the sub-
domain of enterprise search, where more holistic approaches
are explored. For example, we think that assessing qual-
ity aspects such as findability in the software engineering
context would mature the traceability recovery research.
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