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Metalinguistic Views of Quantum Mechanics and
Its Formalizability

LARS LOFGREN
Department of Information Theory
University of Lund, Box 118, S—221 00 Lund, Sweden
e-mail: Lars.Lofgren@it.lth.se

Abstract. Much like the way we distinguish between formalism
and experimentalism, we distinguish between ascertainment by
proof and ascertainment by measurement. We argue that quan-
tum mechanics, which characteristically encompasses both kinds
of ascertainment, is too complex to be fully captured by formal-
ism alone, and needs relativization to language in its comple-
mentaristic conception. In particular, we argue that there is a
partial tie between the two ascertainments. Although, at higher
levels, inferences or proofs may well be accepted as less construc-
tive than direct measurements, they are tied at a basic level of
constructivity. An inference is here of the same constructive na-
ture as that of a direct measurement. The levelled approach is
helpful, e.g., for understanding Bohr’s wave-particle complemen-
tarity and its recent challenge by the double-prism experiment
(as well as, e.g., for understanding a thesis of a programmable
experimentability within “quantum computation”).
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1 Metalinguistic Views

When we talk of a language, we need in general a meta-language. The
reason is that no language can be completely introspective (cf the linguistic
complementarity to be outlined below; cf also [5, 7]).

Also for quantum mechanics, we need in general a metalanguage for un-
derstanding quantum mechanical measurability — which is a linguistic phe-
nomenon [6].

In general, questions of formalizability, like questions of completeness,
require meta- object- distinctions. Related are metamathematical type dis-
tinctions, or levels of inference (in provability or realizability).

Let us remind of the metamathematical concept of a formal theory in a
formal language. A formal theory has axioms and rules of inference which
are decidable as such, meaning that there is an algorithm which decides
of strings of symbols whether they form an axiom or constitute an inference
according to a rule of inference. Any sentence which makes sense with respect
to the intended interpretations in the language, must be formalizable as a
well-formed formula (abbreviated wff), where well-formedness is decidable.
This does not mean that the truth, or provability, of a wif need be decidable,
only that the property of being well-formed, i.e., of being interpretable in the
language, is decidable. In a many-sorted language, where the sorts refer to
types, the sort (type) of a wif is decidable. The sorts (types) to be considered
here, refer to kinds of ascertainment.

In quantum mechanics there are two kinds of ascertainment at play.
Namely, to ascertain by quantum mechanical measurement, and to ascer-
tain by proof in the quantum mechanical theory. By a basic measurement
sentence we refer to a sentence which can be directly ascertained by a quan-
tum mechanical measurement (with no further higher level inferences needed
for the ascertainment).

Completeness Question: Can the basic measurement sen-
tences be formalized as wif’s in some quantum measurement lan-
guage?

The question may be regarded a formal correlate to the question of what
a quantum physical quantity is, or how to demarcate such quantities from
other.

The completeness question immediately leads to the necessity of “level-
ling” quantum theory into types of inference.



For suppose that T is a sound quantum theory (everything provable in
T is true). If A is a verified basic measurement statement, and 7' contains
the inference (theorem) A = B, i.e. :

l_T (A = B),

then, although B of course must be true, it does not in general follow that
B is also a basic measurement sentence. What are the inferences (theorems)
of T which preserve measurability?

Here the quantum mechanical concept of measurability is confronted
against (metamathematical concepts of) T-inferribility (involving types of
constructivity of the T-inferences). Linguistic realism [6], rather than phys-
ical realism, comes into focus.

That such a confrontation is “real”, and not just an “academic hair-
splitter”, is seen from a recent challenge against the Bohr “wave-particle
complementarity” by Ghose, Home, and Agarwal [1]| in terms of their in-
teresting double-prism experiment. As we are about to see, the challenge
presupposes that no distinction is made between measurability and inferri-
bility. A rather simple separation between measurability and inferribility,
in terms of degrees of constructivity, will yield a constructivist understand-
ing of the wave-particle complementarity, whereby it is not affected by the
experiment.

By way of further examples, our understanding of the two processes of
ascertainment within linguistic realism is helpful for a critical understanding
of an hypothesis of a programmable experimentability which is suggested
by Deutsch in connection with his proposals for “quantum computation” (cf
8).

In our exposition we are using the concept of langauge in a quite general
sense, summarised as follows.

The Complementaristic Conception of Language: In its
complementaristic understanding, the phenomenon of language
is a whole of description and interpretation processes, yet a whole
which has no such parts expressible within itself. This constitutes
a paradigm for complementarity, the linguistic complementarity.
Any other known form of complementarity, from proposals from
Bergson to Bohr, have been found [5] reducible to the linguis-
tic complementarity, and the reductions themselves do provide
an understanding of the complementarities. There are various
related ways of looking at the linguistic complementarity:



(i) asdescriptional incompleteness: in no language, its interpre-
tation process can be completely described in the language
itself;

(ii) asa tension between describability and interpretability with-
in a language;

(iii) as degrees of partiality of self-reference (introspection) with-
in a language: complete self-reference within a language is
impossible;

(iv) as a principle of “nondetachability of language".

2 Are there Well-Formed Formulas which Comprehend Sets,
Programs, or Measurements;
a Comparative Understanding

In several familiar languages we meet the question whether it is possible
to comprehend the essence of certain wholistic concepts in terms of decid-
able syntactic criteria of well-formedness on its describing formulas. We will
make a comparative review of such questions in set theory language, in pro-
gramming language, and in quantum mechanical measurement language. In
the latter case, the question is whether decidable syntactic criteria on the
well-formed formulas for the basic measurement sentences can be given, such
that their interpretations will coincide with the idea of quantum mechanical
measurements.

Decisive for all three cases is the linguistic complementarity [5, 7]. We
find that for a full comprehension, an ultimate linguistic relativization is
unavoidable, which indicates shortcomings of pure syntactic crieria of well-
formedness.

In Set Languages, with the usual set-notation, S = {z : Pz}, we may
look at the predicate Px as a description of the set S, or of the set S as
an interpretation of Px, in a set language L. If L is too rich, allowing well-
formed formulas like ¢ z, we know from the Russell paradox that not
all well-formed formulas can be interpreted as sets (do not have extensions
which are sets). The question is whether we can give syntactic criteria on
well-formedness for the formulas of L such that the language becomes a
proper set language. That is, where every well-formed formula (set-formula)
can be interpreted as a set, and where every conceivable set can be described.



We meet such attempts at well-formedness in various proposals for com-
prehension axioms.

Aziom of Typed Comprehension (used in Russell’s theory of types; cf
[10]). All variables are here typed, such that, if € y, and z is of type
n (an integer), then y is of type n + 1. A well-formed predicate must
here respect this type condition. Thus, none of the predicates = € ,
its negation z ¢ z,or z € y & y € z, is well-formed. Any well-formed
predicate Pz is comprehensible as a set S = {z: Pz}; if = is of type
n, then S is of type n + 1.

Axiom of Stratified Comprehension (used by Quine [14]). Any predi-
cate Pz, which is well-formed in a stratified sense, is comprehensible
as a set S = {z: Px}. Here the variables are not really typed, but
the requirement of stratification on Pz means, essentially, that in any
subformula x € y of Px, it is possible to assign integers to the variables
such that the integer for y is 1 greater than the integer for z. For an
individual, however, and only for individuals, we have = {z} (which
is impossible in the theory of types).

Aziom of Relative Comprehension. For any predicate Px which is
well-formed in a set language without any type or stratification condi-
tions, and with any already established set y, there exists a set S that
contains just those elements x of y for which Pz holds true, namely
S={z: Px & z€ey}.

If y is not a set, neither is in general S.

The first two axioms try to secure set interpretability by restricting the
predicates, as objects for interpretation, by syntactic criteria of well-form-
edness. Both are successful in the sense that consistent set theories are
obtained. But are they complete? Do the set theories describe all sets
(all objects which are naturally conceivable as sets)? Newer constructs,
by Scott [15] and others, demonstrate sets with self-membership (forbidden
in Russell’s typed set theory) much wider than that allowed by Quine’s
stratified comprehension.

The axiom of relative comprehension, on the other hand, refers not only
to a pure descriptive well-formed part, Pz (which is the only part in the
first two axioms), but also to a semantic part, namely an already realized
set y. That is of course a failure with respect to the goal of a descriptive
set theory. But it is a way out of the descriptive incompleteness, with a
taste of complementarity (cf the “nondetachability of language”, or the need



for both descriptions and interpretations, or the necessity to relativize the
general notion of set to language). For further comments, we refer to [5].

Next, consider a Programming Language L, where descriptions are
programs for a “universal” Turing machine and interpretations are the corre-
sponding computational behaviours (computation of partial recursive func-
tions). Only well-formed programs (formulas) are accepted by the Turing
machine to make it run.

We know from the linguistic complementarity that there can be no de-
scription (program) in L which completely describes its interpretations.

Let us try to make the interpretations more precise by moving from the
partial recursive functions to the total recursive functions. These, unlike
the partial recursive functions, are understandable according to a classical
function concept, which makes the objects clearly interpretable. Then we
cannot any longer describe within the language, in terms of syntactic well-
formedness conditions on the programs, which programs will be interpretable
(as total recursive functions).

This illustration of the tension aspect of the linguistic complementarity
for a programming language shows a limitation of the possibility of imposing
syntactic criteria on well-formedness of programs in order to describe all and
only the well understood (total) recursive functions.

Finally, a Quantum Mechanical Measurement Language provides
a situation which is similar to that of the two previous cases. With mea-
surement a kind of interpretation [4, 9], quantum theory in the form of
the Schrodinger equation together with the projection postulate forms a de-
scription (in a quantum theory, T, in a quantum mechanical measurement
language, L), attempting to describe (by the projection postulate) its inter-
pretation (cf [6]). By the linguistic complementarity we can hope for at most
a partial success.

In this comparative perspective, it is doubtful whether we can provide
decidable syntactic criteria of well-formedness for the basic measurement
sentences such that these will have interpretations that coincide with the

quantum mechanical concept of measurement.

As we are about to see next, a similar conclusion is obtained by starting
out directly from the quantum theoretical concept of observable.



3 Measurability and Inferribility,
a Tie in Terms of Levels of Constructivity

We are confronted with two modes of ascertainment, by physical measure-
ment, and by linguistic syntactic inference. In general, the two modes are
kept apart by Cartesian or Heisenberg cuts, arguable in terms of problems
of complete self-reference. Forms of partial self-reference are, however, le-
gitimate. Which may also be expressed in terms of realizable degrees of
self-reference in a language, degrees of introspection in a language, etc.

We will look into the possibility of performing, not another cut, but
a tie, let be loose, between physical measurability and linguistic syntactic
inferribility. Namely, in asking if they can have in common a lowest level of
constructivity (realizability) in a hierarchy of such levels.

In von Neumann’s formulation of quantum mechanics [11] the observables
correspond to self-adjoint operators acting on a Hilbert state space. If A is
a self-adjoint operator corresponding to some observable, then its spectral
values are interpreted as the possible values which one may obtain in a
measurement of this observable.

The characterization, or construction, of observables in terms of opera-
tors is obviously fundamental for the generation of basic measurement state-
ments. Primas [12], pp 62-3, in referring to pioneer quantum mechanics,
explaines further how to construct new observables from old.

If A is a self-adjoint operator, then there exists a unique spectral reso-
lution E on the spectrum € of A such that

A= /Qw E(dw).

. If A is a self-adjoint operator corresponding to some observable,
then its spectral values are interpreted as the possible values which
one may obtain in an ideal measurement of this observable.

... A real Borel function F' of an observable A represents a new observ-
able F(A) which can be measured by the very same apparatus used for
A by replacing the scale of of its meter by a new one in which every
number w is replaced by F(w). In terms of von Neumann’s spectral
theorem, this means that the spectral resolution of A

A= /Qw B(dw),
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imples the spectral resolution of F'(A)

F(A) = /Q F(w) B(dw).

We notice here a first trace of a merger between two ideas. On the one
hand, the idea of a mathematical construction of new physical (self-adjoint)
operators F'(A) from old A, whereby new measurement values F'(w) result
from old w.

This F-construction is, at least in von Neumann’s original formulation
[11], without any restriction on F to be realizable in some constructivist
perspective. von Neumann writes, page 248:

“If the operator R corresponds to the quantity R, then the operator
F(R) corresponds to the quantity F'(R) [F(X) an arbitrary real func-
tion].”

And, on the other hand, we have the idea of an instrument construction, of
how to construct a new measuring instrument from an old, where realizability
conditions are obviously present. In order for one experimenter to effectively
communicate to another how a meter scale is to be obtained, he must resort
only to constructivist proceses.

There are no ties between the two ideas in von Neumann’s quantum
theory with “F'(A) an arbitrary real function”. Most real functions are not

even computable.

We seem to have a real problem here. How is the quantum theory T, its
rules for well-formedness for the basic measurement sentences and its rules
of inference, to be formulated that we in T' can decide which inferences from
measurement statements are again measurement sentences.

First of all, we have to impose on quantum theory the condition that the
F’s be computable. Otherwise, we could think of quantum mechanics as an
effective phenomenon being able to answer noncomputable problems.

But such a computability restriction on the F’s is not enough. It would
allow for quantum theory arbitrary complex inferences, only that they are
recursive (computable) — which every rule of inference, for any formal theory,
is anyway.

In order to give to quantum theory an intended meaning of measure-

ment theory, if not of a full measurability theory, it is necessary to equip it



with levels, distinguishing fundamental measurement inferences from higher
level (less constructive) inferences which indeed do occur in quantum theory.
Examples of such higher level inferences are theorems about the noncom-
putability of the domain-problem for the quantum mechanical operators [2].
The theorem that tunnelling (in the double prism experiment; see the fol-
lowing section) is an “exclusive wave-phenomenon”, is also on a level higher
than that of a basic measurement statement (cf [7]). The “superselection
rules” may be taken to indicate a need to go above first level rules for basic
measurement statements. True, that in Primas’ algebraic theory (cf [12, 13]),
superselection rules are describable. But not in a complete sense since there
is reason to believe that they are not decidable.

Quantum theory does indeed contain very complex infereces and, as we
will examplify in the next section, it may even be of physical interest not to
treat all its inferences on a par but to try to distinguish between them in
terms of levels of constructivity whith physical relevance as well as linguistic.

A development of levels which are both logical, like syntactic constraints
on well-formedness, and also physical, like quantum physical measurement
constraints, is not likely to appear in some absolute way. Such a solution
would seem to imply a physical theory of our linguistic cerebral processes
(beyond mere measurements). Rather, it points toward a necessary linguis-
tic relativization with language in its complementaristic conception. The
general philosophy of linguistic models (cf [6]) for quantum theory is a step
in this direction.

In particular cases, the simpler idea of a quantum theory with only two
levels (basic measurement statements, and inferences which are not basic
measurement statements) may be quite helpful even without some precise
demarcation of the levels. The challenge from the double-prism experiment
of the Bohr wave-particle complementarity, may be taken as an example.

4  Levels of Constructivity Enforced by the Double—Prism
Ezxperiment

Recently a “double—prism experiment” has been proposed by Ghose, Home,
and Agarwal [1]| as a challenge to the Bohr wave—particle complementarity.

In the experiment a “beam-splitter” in the form of a double-prism is used.



Since quanta are supposed to be indivisible, experiments to split them are
expected to exhibit revealing properties. The choice of a double-prism as
beam-splitter, instead of say a semitransparent mirror, is interesting in a
further sense. Namely, that it is then possible to infer a simultaneous wave
and particle nature of a single photon state of light under investigation. This
is in [1] argued to contradict the wave—particle complementarity.

As illustrated, the double-prism prepares for a reflection path and a tun-
nelling path. A source is used which emits a single photon state of light.
The prism gap is chosen such that if transmission along the tunnelling path
occurs, which is indicated by a click in a photon detector counter Dy in that
path, then the transmitted phenomenon must have wave-nature (not prevent-
ing a simultaneous particle nature). In the reflection path there is another
photon detector counter D,. Repeated runs indicate strict anticoincidence
(no coincidence) between the two counters, supporting the hypothesis that
the behaviour of the emitted entities is particle like. Obviously, the exper-
iment supports further hypotheses about a simultaneous wave and particle
nature of the emitted single photon states of light.
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A single experimental arrangement to display both classical wave and
particle-like propagation of single photon states of light.

After Ghose, Home, and Agarwal [1]

The inference of a wave-and-particle nature of the photons is suggested (cf
[1]) as a falsification of the Bohr wave-particle complementarity.

However, as we have argued in [7], the inference of a wave-and-particle
nature is on a level which is above that of strict measurability. The wave-
nature of the entity which is transmitted along the tunnnelling path is never
directly measured.

Therefore, the result of the experiment does not challenge Bohr’s wave-
particle complementarity in its constructivist understanding preventing a si-
multaneous direct measurement of wave-like and particle-like properties.

Our argument in [7] is based on the injection of linguistic information
levels for inferences in quantum measurement theory. These levels can also
be referred to complexity classes of realizing automata. Thereby the concept

11



of automaton will occur as the (loose) tie between physical measurability
and linguistic inferribility.

This is how we think of the double-prism experiment as highly inter-
esting. It raises the quest of a levelled approach to quantum mechanics as
a theory of measurement. Not with some arbitrary introduction of levels.
But with a hierarchy where, on a lowest level, physical constructivity in
terms of measurability will coincide with linguistic constructivity in terms
of metamathematical realizability.

5 Conclusions

Our central quest for wff’s for basic measurement sentences may be looked
at as a modern realization of Bohr’s plea for using natural language with
parts of classical physics for describing measuring instruments and experi-
mental findings — in the hope of reaching an unambiguous communication of
experimental results.

Our conclusions are that this seemingly simple quest for wif’s for basic
measurement sentences in fact is too complex to allow a positive solution
in terms of formalism. What is needed is a complementaristic resolution
taking also experimentalism into account or, equivalently, a shift from logics
to language in its complementaristic conception.

As a modern experimentalist version of the quest we want to mention
Deutsch’s hypothesis of a programmable experimentability (somtimes re-
ferred to as universal quantum “computation”; see [8]). Although an inter-
esting approach, there seem to be lacking an attachement to the quest for
wif’s for basic measurement sentences (recall the complementaristic nature
of the problem).

We have contrasted the aim for communicable experimental ascertain-
ment by measurability, against von Neumann’s early formulation of quantum
measurement theory — which turns to the formal side of the coin neglecting
the constructivist (experimentalist) side.

The exposed partial tie between measurability and inferribility in terms
of a common level of constructivity, may be looked at as a continuation
of a historical development of connections, in terms of various information
concepts, between certain physical and cognitive quantities [16], [3], [17].
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