
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Adaptive Resource Management for Uncertain Execution Platforms

Lindberg, Mikael

2010

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Lindberg, M. (2010). Adaptive Resource Management for Uncertain Execution Platforms. [Licentiate Thesis,
Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology, Lund
University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/4d4d80ec-b633-460a-a1ff-3c67ad4c6908

Adaptive Resource
Management for Uncertain

Execution Platforms

Mikael Lindberg

Department of Automatic Control

Lund University

Lund, September 2010

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT--3249--SE

c© 2010 by Mikael Lindberg. All rights reserved.
Printed in Sweden,
Lund University, Lund 2010

Abstract

Embedded systems are becoming increasingly complex. At the same
time, the components that make up the system grow more uncertain
in their properties. For example, current developments in CPU design
focuses on optimizing for average performance rather than better worst
case performance. This, combined with presence of 3rd party software
components with unknown properties, makes resource management
using prior knowledge less and less feasible.
This thesis presents results on how to model software components

so that resource allocation decisions can be made on-line. Both the
single and multiple resource case is considered as well as extending
the models to include resource constraints based on hardware dynam-
ics. Techniques for estimating component parameters on-line are pre-
sented.
Also presented is an algorithm for computing an optimal allocation

based on a set of convex utility functions. The algorithm is designed to
be computationally efficient and to use simple mathematical expres-
sions that are suitable for fixed point arithmetics. An implementation
of the algorithm and results from experiments is presented, showing
that an adaptive strategy using both estimation and optimization can
outperform a static approach in cases where uncertainty is high.

3

4

Acknowledgements

I would like to thank the Department of Control for giving me the
opportunity to pursue a PhD degree. In particular, I want to thank
my supervisor, Karl-Erik Årzén, for supporting me in my work and
believing in my ideas. I would also like to thank Johan Eker and Anton
Cervin for their discussions and encouragements.
I would also like to thank the following people:
Anders Robertsson, as he was instrumental in tricking me into

accepting this position.
Eva Westin, for her genuine concern and help.
Karl-Johan Åström, for sharing his experience and enthusiasm for

research.
Toivo Henningsson, for his insights and friendship.
Vanessa Romero Segovia, for being a good colleague and a forgiving

roommate.
Leif Andersson, for his LATEX-expertise and coffee time discussions.
Linus Pizunski and Marcus Skans at Axis, for supporting my re-

search with equipment.
My beloved wife, Mirjam, for being there for me when work weighed

heavily on my shoulders, and for supporting my decision to return to
school.
My children, Mattis and Rebecka, for giving me ample opportunities

to study systems under overload conditions.
This research has partially been funded by the VINNOVA/Ericsson

project "Feedback Based Resource Management and Code Generation
for Real-time System" , the EU ICT project CHAT (ICT-224428), the
EU NoE ArtistDesign, the Linneaus Center LCCC, and the ELLIIT
strategic research center.

Mikael

5

6

Contents

1. Introduction . 9
1.1 Background and motivation 9
1.2 Outline . 10
1.3 Contributions . 11

2. Problem formulation . 12
2.1 Example 1 — Portable media player 12
2.2 Example 2 — Mobile robotics 15
2.3 Overall goals . 17

3. Related Research . 18
3.1 Important concepts . 19
3.2 Reservation Based Scheduling 20
3.3 Feedback allocation control 33
3.4 Direct scheduler control schemes 36
3.5 Allocation . 37
3.6 Modeling of Cyber-physical systems 39
3.7 Convex Optimization 39
3.8 Estimation . 39

4. Implementation and Frameworks 40
4.1 OCERA . 40
4.2 AQuoSA . 41
4.3 FRESCOR . 42
4.4 Xen . 42
4.5 Xenomai . 43
4.6 Class-based Kernel Resource Management (CKRM) 44

7

Contents

4.7 Generic Process Containers 44
4.8 Resource Kernels and Linux/RK 44
4.9 ACTORS . 46

5. Modeling and Estimation 48
5.1 Portable media player continued 48
5.2 Allocation and utility 50
5.3 Components with rate-based utility 52
5.4 Multi-resource dependencies 57
5.5 CPU thermal dynamics 57
5.6 Parameter estimation 58
5.7 Extension into mixed domain models 62

6. Allocation . 64
6.1 Allocation under resource constraints 64
6.2 Incremental optimization 66
6.3 Experimental results 71

7. Resource control . 76
7.1 Allocation vs feedback 76
7.2 State related performance metrics 77
7.3 Hardware resources 79
7.4 Case study — Encoding Pipeline 80
7.5 Simulation results . 84

8. Implementation and examples 93
8.1 Motivation . 93
8.2 Resource management architecture 93
8.3 Measuring time and resource consumption 96
8.4 Example runs . 98

9. Conclusions . 103
9.1 Summary . 103
9.2 Future work . 105

A. Listings . 107
A.1 MIPC . 107

B. Bibliography . 109

8

1

Introduction

1.1 Background and motivation

The central theme of this thesis is resource management for embedded
systems. While embedded systems performance is typically evaluated
through static worst case analysis methods, recent trends in hardware
and software development have rendered these methods more and more
difficult to apply. Increasing uncertainty in system properties, time
varying resource demands and supply, and focus on unit cost make
conservative methods unattractive for use in many situations.
The strength of real-time scheduling theory lies in the guarantees

for system performance that it can provide. Conversely, the weakness
comes from the reliance on prior information and the combinatorial
nature of the problem formulation.
The approach taken in this thesis is to explore estimation- and

feedback-based methods, thereby reducing the need for exact prior
knowledge. By doing so, we consciously sacrifice the absolute guar-
antees provided by hard real-time theory. This is justified by the in-
herent robustness to transient performance loss in many systems, in
particular media processing and non-critical control applications.
The methods presented draw upon several theoretical disciplines to

provide a framework for resource management, including

• control theory

• system identification

9

Chapter 1. Introduction

• convex optimization

• reservation based scheduling

The target systems are embedded or cyber-physical systems which are
such that resource constraints and uncertainty would make worst case
methods infeasible.

1.2 Outline

This thesis is organized into chapters as follows. In Chapter 2, the
formal definition of the problem is given. Chapter 3 then discusses
relevant and related research. Some enabling technology is then pre-
sented in Chapter 4. Chapter 5 introduces modeling and estimation
techniques suitable for cyber-physical systems with uncertain param-
eters. Chapter 6 presents an algorithm to solve the feedforward allo-
cation problem and discusses its performance and qualities. Chapter
7 presents techniques for feedback disturbance rejection and regula-
tion of structures with mixed physical and computational components.
Experimental results are presented in Chapter 8 and Chapter 9 then
concludes with discussion and remarks.

The thesis is based on the following publications:

Mikael Lindberg. A survey of reservation-based scheduling. Techni-
cal Report ISRN LUTFD2/TFRT--7618--SE, Department of Automatic
Control, Lund University, Sweden, 2007.

Mikael Lindberg. Constrained online resource control using convex pro-
gramming based allocation. In Proceedings of the 4th International
Workshop on Feedback Control Implementation and Design in Com-

puting Systems and Networks (FeBID 2009), San Francisco, CA, USA,
2009.

Mikael Lindberg. Convex programming-based resource management
for uncertain execution platforms. In Proceedings of the Workshop on
Adaptive Resource Management (WARM 2010), Stockholm, Sweden,
2010.

10

1.3 Contributions

Mikael Lindberg. A convex optimization-based approach to control of
uncertain execution platforms. In Proceedings of 49th IEEE Conference
on Decision and Control (CDC 2010), Atlanta, GA, USA, 2010.

Mikael Lindberg and K.E. Årzén. Feedback control of cyber-physical
systems with multi resource dependencies and model uncertainties. In
Proceedings of the 31st IEEE Real-Time Systems Symposium (RTSS

2010), San Diego, CA, USA, 2010.

1.3 Contributions

This thesis contains the following contributions

• a model for resource allocation for rate-based software compo-
nents is proposed,

• an algorithm for solving convex allocation problems suitable for
media platforms has been developed,

• a control scheme for software components with multi resource
dependencies is proposed.

11

2

Problem formulation

This chapter introduces the problems treated in this thesis. The do-
main of portable multimedia devices serves as a basis for deriving
the formal definition. An example from the control domain is added
to provide additional motivation, in order to show that the resource
management problem is not unique to multimedia applications.
Special attention is given to the point of view of platform providers,

who would like to increase system robustness without posing overly
prohibitive requirements on applications. In this context, a platform is
a hardware and software design that supplies base functionality and
resources. Complete products are then constructed by adding compo-
nents built with a development kit which is distributed together with
the platform. The Google Android platform is a recent example [7].

2.1 Example 1 — Portable media player

The first motivating example comes from the domain of portable me-
dia players, e.g. smart phones, mp3-players and portable video games.
These devices often include additional functionality, though media pro-
cessing tends to be the most resource demanding. The exact needs are
hard to predict as the behavior of most algorithms in this domain are
highly data dependent.
Figure 2.1 exemplifies the CPU utilization for decoding two versions

of the same video stream with perfect playback. Note how the resource
demands are significantly larger for the high resolution stream and

12

2.1 Example 1 — Portable media player

0 5 10 15 20 25 30 35 40
time (s)

8

9

10

11

12

13

14

15

16

C
P
U

 U
ti

liz
a
ti

o
n
 i
n
 p

e
rc

e
n
t

Utilization for 320 x 180 movie

0 5 10 15 20 25 30 35 40
time (s)

35

40

45

50

55

60

C
P
U

 U
ti

liz
a
ti

o
n
 i
n
 p

e
rc

e
n
t

Utilization for 1280 x 720 movie

Figure 2.1 Resource requirements for decoding two versions of a H.264 movie
on an Intel Core 2 Duo based MacBook. The left plot represents a movie encoded
in SDTV-resolution while the right represents one encoded in HDTV resolution
(720p). The experiment was run three times with varying results, as illustrated
by the the three curves in each plot. The utilization measure represents the per-
centage of time the decoding process had exclusive access to the CPU measured
with a sliding 1 second time window.

how the levels change over time. There is also a visible trend, with
a slight increase in resource demand around 15 seconds and a dip at
around 28 seconds. This is evident for both streams and is caused by
the encoding standard, which uses different levels of compression de-
pending on the level of motion in the source video. The experiment
was run three times for each stream with different results each time,
this despite the fact that decoding a specific movie stream is a deter-
ministic sequence of operations. The reason for this is that modern
hardware relies heavily on prediction and heuristics to minimize ef-
fects of memory latency and pipeline bubbles. Should these strategies
fail, the system takes a performance hit. As the system doing the de-
coding in the example is executing a large number of background tasks
in addition to the decoder, system state will vary from run to run.
The problem stated in traditional real-time terms would be to check

the schedulability of a set of periodic tasks τ0, ...,τN with the corre-
sponding periods T0, ...,TN and worst case execution times C0, ...,CN .
Assume for simplicity that each task has a relative deadline equal to its
period. If the scheduling policy used is Earliest Deadline First (EDF)

13

Chapter 2. Problem formulation

and the system is a single core machine, the task set is schedulable if

N
∑

i=0

Ci

Ti
≤ Ub (2.1)

where Ub is the utilization bound. Ub depends on parameters such as
the cost of context switches and is normally close to 1. For a media
player task, the period would be equal to the frame rate at which the
movie is encoded, which is easily accessible from the stream meta data.
If the test passes, deadlines will be met and the system performs

as intended. If the test fails, the system is overloaded and tasks will
miss their deadlines. Traditionally, a system should not admit tasks
that will cause overload, but given the uncertainties mentioned above,
it is not clear if enough information would be available to make such
decisions. Specifically,

• the set of active tasks will change over time as the user enables
different functions,

• the resource requirements of a task can vary greatly depending
on input and

• the properties of 3rd party software might not be available during
system design.

A system designer could choose to restrict the use cases supported by
the device in order to counteract some of these points, but this could
render the product unattractive to consumers. It is also probable that
a user would rather have access to a function running with degraded
performance than being denied this functionality completely. There-
fore, the all-or-nothing property of hard real-time formulations are not
suitable to this problem domain.
This thesis chooses to focus on the following aspects of the problem:

• Uncertainty in hardware and software. The reliance on
prior information in traditional real-time systems is increasingly
a bottle neck in designing feature rich embedded systems. Rather,
the approach taken here will be to try to model the resource con-
sumption of a system and estimate model parameters online.

14

2.2 Example 2 — Mobile robotics

This has the effect of reducing the work needed by both hard-
ware designers and software developers, thereby reducing time
to market for both product and 3rd party add-ons.

• Allocation under overload conditions. Portable devices will
want to use as low power components (CPUs, batteries, radio
transmitters etc) as possible. A cost efficient system will therefore
often run near or in overload conditions in order to save power
and unit cost.

This thesis will strive to provide resource management strategies
that effectively manage systems under both nominal and overload
conditions.

• Non-restrictive assumptions on software components. One
way to simplify the work of the system designer would be to shift
some of the burden to the 3rd party developers, e.g. requiring
them to supply worst case execution time estimates and other
detailed resource demand information. As such figures requires
technical expertise with the target platform, this could impede
the supply of attractive 3rd party software.

The application framework should put clear but lenient require-
ments on developers in order to make the platform simple and
attractive to develop for.

2.2 Example 2 — Mobile robotics

Mobile robotics is another field where resource management is key to
performance. Not only are computational resources scarce, there are
usually many subsystems besides the computer that have to compete
for power. The drive to increase autonomy, include more and more
functions while simultaneously pricing them competitively is making
the resource constraints more and more pronounced.
As the constraints grow increasingly severe, it becomes interesting

to see if a holistic view on resource management can improve opera-
tional range or enable units to be built with cheaper components. By
combining hardware and software models, a hybrid system description
that is popularly referred to as a cyber-physical system (CPS) emerges.

15

Chapter 2. Problem formulation

Sensors

Trajectory
Planning

Servo
Control

Higher Level
Supervisory
Functions

Servos

On board
Computer

cpu
time

readings

targets refs

controls

Figure 2.2 A schematic over a simple mobile robot system. The square blocks
represent hardware functions that require power, the round-corner shapes are
software functions that require cpu-time to run. The complex dependency sit-
uation makes it non-trivial to determine how to prioritize in a situation with
insufficient resources to run the system at nominal performance.

The objective here is to study the interactions between hardware and
software and through this learn how global system performance is af-
fected by the dynamics of both.
Cyber-physical systems, particularly in the mobile robot case, share

many properties with the media device class discussed previously. In
particular, this includes a tolerance for degraded performance in sub-
systems. This makes it an interesting domain for studying resource
allocation trade-offs.
Consider the schematic presented in Figure 2.2. The functions in

a robot can be realized in hardware or software, making the resulting
dependency graph include connections both from hardware to software

16

2.3 Overall goals

and vice versa. In order to handle a situation where some resource is
scarce, a model that can express the total performance dynamics of
the system would be useful. It is the aim of this thesis to present some
initial thoughts on how this can be accomplished.

2.3 Overall goals

This section summarizes the problems derived from the examples. The
objective of this work is to investigate how resource management can
be done in situations where uncertainty in both demand and supply
makes static methods infeasible. An effort is made to consider sys-
tems where components have dependencies, as this topic is less stud-
ied. While initially the work was focused on CPU resources inside a
computer, the robot example makes it evident that if the availabil-
ity of the CPU resource depends on the dynamics of other resources,
a model encompassing both domains is desired. It is an explicit goal
that the methods presented are realistically implementable on power
constrained systems and as such cannot be too resource consuming in
themselves.

17

3

Related Research

This chapter introduces the prior research that this thesis is based
on. First a few central concepts are introduced. Then follows a histori-
cal survey of reservation based scheduling (RBS), one of the enabling
technologies for this work. The theory is derived from both its real-time
scheduling roots and its queueing theory counterpart.
Using the RBS formulation, a resource management policy can be

posed as the solution to an optimization problem. Such methods are
introduced in the section on optimal resource management, which has
its roots in operations management. It is worth noting that these tech-
niques are mostly feed-forward in style, i.e. the allocations are calcu-
lated based on models rather than on-line measurements. Some im-
portant works in the alternative branch, feedback and adaptation, are
then discussed.
As this thesis will largely be about on-line strategies, finding ways

to solve optimization problems reliably and efficiently is a central part.
The domain of convex optimization lends itself to this type of formula-
tions and some examples of this is introduced in Section 3.7.
Finally a brief survey of event based control of continuous systems

is found in Section 3.8, as this topic is important to understanding the
interaction between computers and physical phenomena.
This chapter is based on the technical report [50].

18

3.1 Important concepts

3.1 Important concepts

This section introduces important concepts that will be used in the
presentation of relevant research.

Temporal Isolation

A highly desirable property of the RBS approach is that a task that
has reserved a specific amount of a resource should have access to this
regardless of what other tasks are running on the system. This is called
temporal isolation and makes very good sense for the continuous media
type of applications we have used as example so far. Video playback
should continue unaffected if other applications are started (or if the
OS spawns tasks in the background).

Components and composition

In order to handle the complexity of large systems, the ability to gather
parts into component structures that are closed under composition is
vital. Threads with priorities, the building blocks of traditional oper-
ating systems, do not compose [48]. By using hierarchical RBS tech-
niques, it is possible to enforce temporal isolation and thereby create
groups of threads with essentially the same outside properties as the
atomic thread. This enables component wise testing and verification,
but also removes the need to explicitly know the structure of 3rd party
software.

Timing sensitive applications

In real-time situations, the timely completion of tasks is important.
Normally, if a task has a real-time deadline, it is assumed to function
nominally if the deadline is met and fail if the deadline is missed.
In soft real-time problems, deadlines are allowed to be missed occa-

sionally and for applications in this domain it is interesting to discuss
how the performance is affected by this. Applications where the per-
formance depends on how well the deadlines are met are called timing
sensitive applications.

Graceful QoS degradation

While it is possible to create an admission policy where tasks that
would make the scheduler unable to sustain reservations would be de-

19

Chapter 3. Related Research

nied, this might not be desirable from a user perspective. For consumer
applications, it can be preferable to have a slight (and predictable)
degradation in QoS as opposed to being denied starting applications al-
together. This becomes even more evident in embedded systems where
resources are scarce. Consider a mobile phone user engaged in a video
conference call when a SMS message comes in. Most would be content
to have some slight degradation in video quality while still being able
to accept the SMS message. If the playback application in question is
designed to be aware of its resource allocation, it can be assigned lower
QoS in an as graceful way as possible.

3.2 Reservation Based Scheduling

This form of scheduling is used together with a class of real-time ap-
plications whose quality of output depends on sufficient access to a
resource over time. Such applications are difficult to handle in terms
of traditional hard real-time theory. The typical situation involves some
type of continuous media task (playback or encoding), and it was in
fact the need for support for media software that ignited interest in
the field. This was in the early ’90s when computers started to make
their way into mainstream media production and consumption. While
this remains the favored use case also today, other forms of computing
can also benefit from RBS. This includes classes of systems that have
traditionally been considered hard real-time. Before discussing the dif-
ferent algorithms for RBS, the problem background will be presented
in more detail.

Origins

The case for Reservation Based Scheduling (RBS) was perhaps most
famously made by Mercer et al in [60]. The paper discusses processor
reserves as a way to describe computational requirements for continu-
ous media type applications and some challenges when this is imple-
mented on a microkernel [78] architecture.
The basis of the analysis is periodic tasks, characterized by execu-

tion time C and period T . Mercer observes that C is likely difficult
to compute and suggests that the programmer supplies an initial esti-
mate and that the scheduler then measures and adjusts the estimate

20

3.2 Reservation Based Scheduling

(a feedback scheduling technique). The paper also introduces the con-
cept of task CPU percentage requirement ρ = C/T and the expected
execution time of a task running at rate ρ as D = C/ρ. It is worth
noting that these definitions are very close to what present day theory
refer to as bandwidth and virtual finish time respectively.
Although [60] is frequently cited, many of the aspects of resource

reservations and continuous media had already been discussed in ear-
lier works.
Herrtwich presents a number of insights around the problem in

the paper [41] from 1991. Like in [60], the use of conventional schedul-
ing schemes is deemed as inefficient and perhaps not serving the user
needs. Herrtwich also brings up the importance of preventing ill be-
haved applications from disturbing others (temporal isolation) and that
the user might prefer graceful degradation of QoS to being prevented
from starting new applications when the system is overloaded.
Herrtwich paper quotes heavily from the even earlier work [6] from

1989, which details how media type applications can be served by a
resource reservation scheme based on preemptive deadline scheduling.
The concept of resources is here extended to include not only CPU but
also disk, networking and more. [6] presents more theory but lacks
some of the softer insights in Herrtwich’s work.

Taking a queue from telecommunication

In what seems like unrelated work, the telecommunications society was
around this time researching queuing algorithms which, it would turn
out, share properties with process scheduling problems. [27] discusses
the sharing of a link gateway between clients using the Weighted
Fair Queueing algorithm (WFQ) citing "protection from ill-behaved
sources", essentially temporal isolation, as one of its main advantages.
The central idea of the algorithm is to schedule the jobs in the order

they would have been completed by a weighted round-robin (WRR)
scheduler. The job finishing times, though not named as such in this
paper, are in subsequent works called virtual finish times. In other
words, the scheduler decisions are based on how the task set would
behave if each task was running on a private platform with a fraction
of the actual system speed.
In this manner, the fairness property of the WRR scheduler and the

finishing order of the jobs are preserved while the context switching

21

Chapter 3. Related Research

overhead is reduced. Apart from being one of the earliest examples of
temporal isolation, it introduces the notion of basing the scheduling
decisions on virtual time metrics. A similar scheme was presented in
a thesis from 1989 by Zhang [85].

Virtual time

The WFQ scheme and how virtual time can be used is discussed in
papers in the decade following [27]. One of the more comprehensive
is [68], which further investigates how a generalized processor shar-
ing scheme (GPS) can be approximated using virtual time techniques.
Though initially a queue theoretical result, [68] is commonly cited in
real-time scheduling papers as well. For example, the virtual time con-
cept is used in the current Linux scheduler, which is described in detail
in Section 3.2

Hierarchical Scheduling Structures

One desirable property in consumer grade systems is to be able to
mix real-time applications with regular applications. Often this leads
to a construction with a hierarchy of schedulers, typically with some
hard-real time scheduler on top and soft real-time and regular best-
effort schedulers underneath. In [83] Pawan Goyal et al suggests using
a tree structure where each node is either a scheduler node or a leaf
node. Parents schedule their children until leaf level, where the regular
tasks sit, is reached. An example is provided in Figure 3.1. The paper
also describes a variant of WFQ called Start-time Fair Queuing (SFQ)
that provides better guarantee of fairness if the amount of available
processing power fluctuates over time.
The hierarchical approach to scheduling is also proposed by other

groups. The RTAI/Xenomai extensions to Linux runs a RT-scheduler
as root and the Linux operating system as a thread. The structure is
similar to the one proposed in [83]. The Bandwidth Server class of RBS
algorithms, detailed in Section 3.2, also use a hierarchy of schedulers,
typically with an Earliest Deadline First (EDF) scheduler [14] on top.
Hard real-time tasks are scheduled directly by the EDF algorithm,
while soft real-time tasks have dedicated "servers" that dynamically set
their deadlines to achieve CPU reservations. Regular applications can
be scheduled by a separate server. Lipari et al presented a hierarchical
Constant Bandwidth Server construct called the H-CBS in [56] in 2001.

22

3.2 Reservation Based Scheduling

root

(SFQ)

Hard RT

(EDF)

Soft RT

(SFQ)
Best

Effort

User 1 User 2

Figure 3.1 Hierarchical structure with schedulers. Note that SFQ is used on
more than one level.

The choice of top level schedulers becomes more critical in the
case of insufficient resources. Fixed priority servers favor high priority
tasks while EDF schedulers will spread out the effects [20] [15].

Bandwidth Servers

The concept of bandwidth servers was derived from Dynamic Priority
Servers (DPS) by Buttazzo [14]. DPS is a method to accommodate ape-
riodic or sporadic tasks in fixed priority systems, essentially through
a hierarchy of schedulers. The Priority Server is a periodic task with
a specified execution time. Arriving aperiodic tasks are placed in a
queue and executed by the Priority Server when it is scheduled to run.
In the original formulation, unused capacity is just lost.
Buttazzo brought the concept of a server presiding over a prede-

termined amount of CPU capacity to the dynamic scheduling algo-
rithms. The Dynamic Priority Exchange Server (DPE) and the Total

23

Chapter 3. Related Research

Bandwidth Server (TBS) [75] were the first formulations using EDF
as a root level scheduler. The objective was still handling aperiodic
tasks and a lot of theory concerned handling of unused bandwidth. In
1998, Buttazzo and Abeni published [1], which introduces the Constant
Bandwidth Server (CBS). By then, the Continuous Media (CM) prob-
lem had already been addressed using the Bandwidth Server metaphor
by Kaneko et al in a paper from 1996 [45].

Constant Bandwidth Server

The CBS formulation is a popular construct for software reservations
and is explained further in this section.
Consider a set of tasks τ i where a task consists of a sequence of jobs

Ji, j with arrival time ri, j. Let Ci denote the the worst case execution
time (WCET) in the sequence and Ti the minimum arrival interval
between jobs. For any job, a deadline di, j = ri, j+Ti is assigned.
A CBS for the task τ i can then be defined as:

• A budget, cs, and a pair (Qs,Ts) where Qs is the maximum budget
and Ts is the period. The ratio Us = Qs/Ts is called the server
bandwidth. At each instant, a fixed deadline ds,k is assigned with
the server with ds,0 = 0.

• The deadline di, j of Ji, j is set to the current server deadline ds,k.
If the server deadline is recalculated, then so is the job deadline.

• When a job associated with the server executes, cs is decreased
by the same amount.

• When cs = 0 the budget is replenished to the value of Qs and
the deadline is recalculated as ds,k+1 = ds,k + Ts. This happens
immediately when the budget is depleted, the budget cannot be
said to be 0 for any finite duration.

• Should Ji, j+1 arrive before Ji, j is finished, it will be put in a FIFO
queue.

CBS-hd One possible drawback with the CBS algorithm when deal-
ing with things sensitive to deadline overrun is that although the
server is completely replenished when budget cs is exhausted, the
new deadline might be too far into the future. The CBShd algorithm

24

3.2 Reservation Based Scheduling

changes the replenishment rule to better handle this. If cri, j is the re-
maining computational need for Ji, j when the budget is exhausted, we
apply the following replenishment rule:

i f (cri, j ≥ Qs)

cs = Qs;

ds,k+1 = ds,k + Ts;

else

cs = c
r
i, j;

ds,k+1 = ds,k + c
r
i, j/Us

(3.1)

This means that if the overrun is less than the budget, the new deadline
will be calculated less pessimistically. This is investigated in [17].

The Control Server (CS) Cervin and Eker presented in [19] a mod-
ification to the CBS scheme that would make it easier to handle the
timing needs of a control application. Though control tasks are typically
implemented using hard real-time scheduling, the inherent robustness
in feedback control schemes can make hard real-time guarantees un-
necessarily expensive. The CS makes the following change to the CBS
setup:

• Each task τ i is associated with a set of segments Si,1, ...,Si,ni of
lengths li,1, li,2, ..., li,ni such that

∑ni
k=0 li,k = Ti

• τ i has a set of inputs Ii and outputs Oi

• Each set Si,k is associated with a code function fi,k, a subset of
the inputs Ii,k ∈ Ii and a subset of the outputs Oi,k ∈ Oi

• The server has a segment counter ms

The algorithm is also changed in the following way:

• The server is initiated with cs = ms = 0.

• When cs = 0 then

– ms := mod(ms,ni) + 1

– ds := ds + li,ms and

25

Chapter 3. Related Research

– ci = Usli,ms

The result of this change is that the server budget cs is spread out over
a number of smaller segments, reducing the uncertainty as to when
an input will be read, an output be set or a code function executed. A
trade-of will have to be done between jitter and latency. A technique
for splitting calculations is shown by which the latency can be reduced.
The paper also demonstrates how by forming a cost function including
both jitter and latency, an optimum may be calculated.

Rate Based Execution (RBE)

Rate Based Execution was originally proposed by Jeffay and Goddard
in [44]. It is presented as a generalization of the sporadic task model
by Baruah and Mok [11] and is essentially another scheme for setting
the deadlines for the jobs Ji, j released by a task τ i, aiming in this case
to limit the number of jobs the task can schedule during some interval.
If the WCET of the jobs is known, it is also possible to compute a worst
case bound for how much CPU the task will use within a specified time
interval. This is slightly different from the CBS algorithm which limits
the bandwidth directly.
The paper also provides feasibility conditions for non pre-emptive

scheduling and for pre-emptive scheduling but with shared resources.

Proportional Share Scheduling (PS)

Perhaps the oldest time-sharing algorithms for any type of resource is
the Round-Robin scheme. By adding weights to the participants in the
ring so that they each round get to spend a time proportional to that
weight with the resource, you get Weighted-Round-Robin (WRR). Such
a division of a resource between participants is called Proportional
Share resource management and constitutes a large class of scheduling
algorithms. As mentioned before, WFQ is one way to achieve PS, but
the class of algorithms derived from FQ is distinctive enough to have
been given its own section.
There are several reasons as to why WRR is not as useful for RBS

purposes as it might initially seem. While it might work for a general
purpose CPU bound application (which is always ready to run and
which never blocks), periodic tasks where computation time fluctuates

26

3.2 Reservation Based Scheduling

will not be served well by the WRR scheme. There are a few reasons
for this:

• WRR does not handle overruns, it will preempt a task when its
allocated time slice is spent. This means that you need to use
WCET to determine the size of the reservation, which in turn
will lead to a lot of waste.

• WRR does not have any scheme for slack reclaiming. Slack can
be consumed by non-RT applications, but other participants in
the RR scheme will not benefit.

• For tasks that block, the WRR scheme can result in unwanted
levels of latency. The typical I/O-bound task will be blocking most
of the time. When it wakes up, it will have to wait for its turn
in the RR scheme and perhaps not have time to finish its work.
It then has to wait another round before it may complete. These
types of tasks are generally very latency sensitive, something
which is difficult to handle in plain WRR.

• WRR does not handle sporadic real-time tasks without dynam-
ically recalculating the weights (in which case it is a different
algorithm).

There are many alterations to WRR to remedy these problems. The
FQ family of algorithms explore one path but there are other well
known examples, such as Deficit Round Robin (DRR) [74] or Group-
Ratio Round Robin (GR3) [18].

Fair Queueing

Fairness was originally introduced by Nagle in [63] using an informal
definition saying simply that a fair algorithm divides the resources
between peers equally. The paper also includes what is essentially a
prototype of the WFQ algorithm but with little formalism. [27] builds
on [63], providing formal definitions and analysis. An algorithm for
dividing a resource is defined as fair if

• no user receives more than its request,

• no other allocation scheme satisfying the first condition has a
higher minimum allocation and

27

Chapter 3. Related Research

• the second condition remains recursively true as we remove the
minimal user and reduce the total resource accordingly

For applications, the conditions can be expressed in another way. As-
sume the existence of a finite resource D and n users of that resource.
Each user "deserves" a fair share equal to D/n of this resource, but is
allowed to ask for less, in which case the difference can be allocated to
a user who would like more. Let di denote the share a user requests
and ai the share he is given. The maximally fair allocation is then
defined so that the share d f is computed subject to the following two
constraints:

n
∑

i=1

ai = D (3.2)

ai = min(di,d f) (3.3)

To quantify the fairness of an allocation {a1, a2, ...}we use a fairness
function

Fairness =
(
∑n
i=1 xi)

2

n
∑n
i=1 x

2
i

(3.4)

where xi = ai/A∗
i . The fairness will be between 0 and 1, where 1 rep-

resents a maximally fair allocation.
Using this metric, we can discuss how fair an algorithm is, how

quickly it achieves it and how sensitive it is to fluctuating conditions.
More notions of fairness does, however, exist. The formulation above
is limited to calculating the overall fairness, but is difficult to apply
to specified time intervals. For that, we need a more advanced formu-
lation. In [36], Golestani introduces a notion of fairness based on the
concept of normalized service. Let ri be the service share allocated to a
task τ i and Wi(t) the aggregate amount of service this task has received
in the interval [0, t). The normalized service is then wi(t) = 1

ri
Wi(t).

An algorithm is then considered fair in an interval [t1, t2] if

wi(t2) −wi(t1) = wj(t2) −wj(t1) (3.5)

or, in a more compact notation,

∆wi(t1, t2) − ∆wj(t1, t2) = 0 (3.6)

28

3.2 Reservation Based Scheduling

for any two tasks τ i and τ j that have enough work to execute during
the entire interval and fair if this is true for any interval.
Unless work is infinitely divisible and all tasks can be serviced si-

multaneously, all scheduling algorithms relying on resource multiplex-
ing will be unfair if t2 − t1 is chosen sufficiently small. The theoretical
case that allows t2 − t1 to go towards 0 is called fluid resource sharing
and is discussed in [68], that analyzes the Generalized Processor Shar-
ing algorithm (GPS). Note that GPS would be completely fair given
both definitions of fairness.

Variations of WFQ

While simple in concept, WFQ suffers from being computationally ex-
pensive and sensitivity to fluctuating resource availability. Several
alterations to the original algorithm have been proposed to reduce
these problems. For instance, the Start-time Fair Queueing approach
mentioned earlier was introduced in [83] as one way of increasing ro-
bustness to resource fluctuations, while the Self-clocked Fair Queuing
scheme [36] removes the need to explicitly calculate the ideal processor
sharing solution.

Borrowed Virtual Time scheduling (BVT) Duda et al makes an-
other change to the WFQ scheme in their article on the Borrowed-
Virtual Time algorithm [29]. When using FQ for scheduling computer
processes, interactivity becomes an issue and the BVT aims to handle
just that.
The scheme distinguishes between virtual time, effective virtual

time (EVT) and actual virtual time (AVT). The AVT Ai of a running
task is increased by its running time divided by the weight ri. It also
accounts for context switch costs by introducing a switching allowance
C and switches to task j when

A j ≤ Ai −
C

ri
(3.7)

The scheduler recalculates the AVT

Ai := max(Ai,SVT) (3.8)

29

Chapter 3. Related Research

when a task wakes up, where SVT (the Server Virtual Time) is the
AVT for any non-blocking task. This way, a daemon type task which
spends most of its time sleeping cannot monopolize the CPU once it
wakes up. Newly created tasks can be initiated in the same way.
Tasks which are interactive can be allowed to "warp" in time. They

have the additional parameters warp, Wi, Li and Ui, which here de-
notes if it is allowed to warp, the amount of time it can warp, the warp
time limit and un-warp time requirement respectively. Warping tem-
porarily reduces Ai, thereby making an warping task appear to have
waited to execute longer than it actually has.
A multi CPU extension is presented where all CPUs have their own

run-queues where all tasks are included. EVT for a task in a specific
CPU run queue is here calculated as

Ei :=

{

Ai + M warp = 0

Ai −Wi + M warp ,= 0
(3.9)

where M is a migration penalty added if τ i ran on another CPU last.
The BVT algorithm have much in common with the recently intro-

duced Linux scheduler, the completely fair scheduler (CFS).

The Completely Fair Scheduler The Completely Fair Scheduler
(CFS) is a Linux scheduler that was introduced by Ingo Molnar in the
2.6.23 release of the kernel. The scheduler is called "The Completely
Fair ", but the design document recognizes absolute fairness is im-
possible on actual hardware. The scheduling principle is simple, each
task is given a wait_runtime value which represents how much time
the task needs to run in order to catch up with its fair share of the
CPU. The scheduler then picks the task with the largest wait_runtime

value. On an imaginary completely fair system, wait_runtime would
always be 0. This is essentially the BVT approach.
The implementation of this is slightly less simple. Each CPU main-

tains a fair_clock which tracks how much time a task would have
fairly got had it been running that time. This is used to timestamp
the tasks and then to sort them, using a red-black binary tree, by the
key fair_clock - wait_runtime. As with BVT, penalties are given for
migrating to other CPUs. Weights are also used, but as is common in

30

3.2 Reservation Based Scheduling

POSIX systems they are called nice levels and have the reverse mean-
ing (a nice process would have a low weight). wait_runtime is also
constrained so that heavy sleepers will not lag too far behind.
In subsequent patches, the group scheduling framework was intro-

duced. In short, it is a hierarchical scheduling scheme where the run
queue can be made up of both individual tasks and groups of tasks.
The initial intent was to allow fair sharing of the CPU between users
rather than tasks. However, the introduction of control groups (see be-
low) made it possible to do arbitrary groupings, thereby making it a
simple but flexible tool for CPU reservations.
At the time the CFS was being merged into the kernel mainline,

there were several competing initiatives to bring reservations to the
Linux scheduler. The winning patch-set introduced control groups, a
general system for grouping tasks and annotating the groups with
parameters. These parameters could then be used by various kernel
subsystems without the need to change the POSIX task model. It is
important to note that control groups in themselves do not alter the
behavior of the system, they are just an organizational tool. It is up
to the respective subsystems to then interpret the parameters. Some
examples of control group aware subsystems are

• the CFS Group scheduler,

• the CPU affinity subsystem ("cpusets"),

• group freezer (suspends all tasks in the group) and

• resource accounting.

Adding new control group aware subsystems is at the time of writing
the preferred way to introduce new user controllable functionality in
the kernel, instead of adding new system calls.

Comparison between CBS and FQ

Having introduced both the bandwidth server and fair queuing ap-
proach to RBS, we can now compare the two methods and see how
they differ. Such a comparison is presented in [3], which is summa-
rized here.
First we take a look at the interface they provide for reserving

bandwidth. The CBS dedicates an absolute share while FQ uses rel-
ative shares. FQ can emulate CBS but with the need to dynamically

31

Chapter 3. Related Research

recalculate the weights when a new task is admitted. FQ algorithms
also typically provide bounds on delay, which can be seen as a bound
on what deadline requirements a new task can pose. Both schemes
have been extended with feedback to adjust weights or bandwidth to
achieve some QoS set-point. On the other hand, FQ can more easily be
used with mixed real-time and non-real-time tasks.
The run-time properties of the algorithms are also different. CBS

does not use quantified time which makes its performance more con-
sistent over varying hardware platforms. FQ is on the other hand sim-
pler to implement. FQ enforces fairness at all times while CBS only
guarantees bandwidth allocations between deadlines, making it less
conservative. The paper makes the case that FQ is not suitable for
media applications as it lacks the notion of task period or deadline,
but one can argue that the maximum lag property of an FQ algorithm
is a global deadline guarantee, shared by all tasks currently in the
system. It is, however, true that the maximum lag often depends on
the number of tasks in the system and the distribution of weights,
making the temporal isolation property of FQ weaker. The paper also
states that FQ would generate many context switches in order to en-
force fairness. While CBS will have context switches as a function of
the smallest period server, FQ uses a fixed scheduler time quanta for
all tasks. However, as seen with e.g. the BVT algorithm, scheduling
allowances can be worked in to reduce the number of context switches,
at the cost of worse moment-by-moment fairness.

Latency-Rate Servers

In [77], a generalization of different FQ algorithms are proposed. The
class of schedulers called Latency Rate servers (LR-servers) are de-
fined as any scheduling algorithm which guarantees that an average
rate of service offered to a busy task, over every interval starting at
time Θ from the beginning of the busy period, is at least equal to its
reserved rate. Θ is called the latency of the server. A large set of the
FQ algorithms fit into this class, including WRR, WFQ and SCFQ.
Even non-fair algorithms can qualify (one such example presented in
the paper is the Virtual Clock algorithm).
[77] goes on to derive a number of results for this rather general

class of schedulers, including delay guarantees and fairness bounds.
One interesting result is that a net of LR-servers can be analyzed using

32

3.3 Feedback allocation control

one equivalent single LR-server. This can be useful when considering
a hierarchy of schedulers.

Alpha-Delta abstraction

Similar to the LR-server formulation is the Alpha-Delta abstraction
proposed in [62]. Bounds for minimum service α and delay ∆, corre-
sponding to rate and latency in the LR-server formulation respectively,
is here derived from a real-time scheduling point of view.

3.3 Feedback allocation control

Adaptive Reservations

One problem when doing RB scheduling is that the execution time for
a periodic task may vary over time. As it is undesirable to base our
calculations on the worst case, it is likely some deadlines will be missed.
While the CBS scheme can handle transient overruns, non transient
changes will lead to eventually infinite deadlines (instability). One
way to remedy this would be to dynamically set the budget for a server
based on prior overrun statistics in a feedback control manner, though
commonly referred to as adaptivity in computer science publications.
In [2], Abeni and Buttazzo introduce a metric called the scheduling

error. If we have a periodic task τ i with period Ti, then the scheduling
error ǫs is defined as

ǫs = ds − (ri, j + Ti), (3.10)

i.e., the difference between the server deadline and the soft deadline
of the task. Feedback using the server budget Qs as the control signal
would then be used to drive ǫs towards 0.
A few design techniques for such a controller are discussed in [58].

For the purpose of making the analysis simpler, a restriction is imposed
so that even if there is extra unused bandwidth available, a task τ i
scheduled by a CBS will only receive the bandwidth Qs, a so called
hard reservation. Assume that τ i is a periodic task being served with
a CBS. This gives ri, j+1 = ri, j + Ti, where Ti is the task period. Each
job is associated with a soft deadline di, j = ri, j+Ti, that is di, j = ri, j+1.
It makes sense to choose the server period Ts to be some multiple of

33

Chapter 3. Related Research

Ti. Let fi, j be the actual finish time for Ji, j and vi, j be the finish time
had τ i been running alone on a CPU with the fraction bi = Qs/Ts of
the actual CPU speed, i.e. the virtual finish time. The article uses a
modified definition of the scheduling error compared to 3.10

ǫi, j = (fi, j−1 − di, j−1)/Ti (3.11)

which is the scheduling error experienced for Ji, j−1. Note that since
hard reservations is being used, having both ǫ j > 0 and ǫ j < 0 are
undesirable since the task would either be missing deadlines or wasting
bandwidth. The relation

vi, j − δ ≤ fi, j ≤ vi, j + δ (3.12)

where δ = (1− bi)Ts, tells us that we can make the CBS approximate
the General Processor Sharing (GPS) algorithm by letting Ts go to-
wards 0. Even with normal choices of Ts it is reasonable to use 3.11
and 3.12 to approximate the scheduling error with

ei, j = (vi, j−1 − di, j−1)/Ti (3.13)

A difference equation for the evolution of the scheduler error is
then presented in [4]. The paper also proposes a predictor based con-
trol structure and three examples of control design using invariant
based design, stochastic dead bead design and optimal cost design re-
spectively.

Slack Reclaiming

When scheduling soft real-time or non real-time tasks together with
hard real-time tasks or other soft real-time tasks using RBS, inevitably
there will be some unused bandwidth. The WCET values used for
the hard real-time tasks will often be overestimations and soft real-
time tasks can also underuse resources. Ideally, this "extra" bandwidth
should be used to improve performance for other soft real-time tasks or
non real-time tasks. As dynamic slack can only be detected at run-time
it must also be allocated at run-time. The traditional way of handling
slack was to schedule all real-time tasks first and then allow the slack
consuming tasks to run on whatever remains.

34

3.3 Feedback allocation control

The CBS algorithm itself has a manner of slack reclaiming in that
if the current job Ji, j terminates before cs is spent, Ji, j+1 can begin to
execute immediately. However, if the task has not finished before the
remaining cs has been spent, it will be given a new deadline based on
the server period Ts, meaning that it can be forced to execute over an
even longer period of time, effectively increasing computational latency.
Numerous methods have been proposed to solve this and other slack

reclaiming problems. The inventors of the CBS algorithm has pub-
lished several, including CASH [16], GRUB [55] and IRIS [59]. Lin and
Brandt proposes a number of them in [49], the BACKSLASH algo-
rithm being the most advanced. BACKSLASH uses the following four
principles to determine who will get what from whom:

• Allocate slack as early as possible and with the priority of the
donating task. This means that the scheduler should not wait
until the completion of all real-time tasks before it allocates slack.
By executing the slack at the same priority as the donator, there
is no risk that it would disturb the execution of tasks that would
not have been disturbed by that same donator.

• Allocate slack to the task with the highest original priority (ear-
liest original deadline). Basically this means give the slack to the
task in most dire need. See the principle below for a rationale for
using the original priority/deadline.

• Allow tasks to borrow against their own future resource reser-
vations (with the priority of the job from which resources are
borrowed) to complete their current job. This is the standard
deadline postponing from the CBS algorithm.

• Retroactively allocate slack to tasks that have borrowed from
their current budget to complete a previous job.

Real-Rate Scheduling

One of the first examples of rate-based scheduling was proposed in [35].
The novel approach is to use some task output to measure the rate of
progress and thereby eliminate the need for the software designer to
assign deadlines or CPU share directly. Experiments presented in the
paper are performed using a slightly modified Linux 2.0 series kernel
augmented with an RMS based RBS scheme. A task with no known

35

Chapter 3. Related Research

period or CPU share requirements but a measurable progress is in [35]
called a real-rate task.
The example studied is a video pipeline with a producer and a

consumer that exchange data via a queue. Queue fill level is the metric
used for progress. The scheduler samples the queue and decides if
either of the two is falling behind or getting too far ahead. They use a
half filled queue as the set-point and then design a PID controller to
decide the CPU share needed. The period is decided using an heuristic
based on the size of the share, lower share meaning longer period.

3.4 Direct scheduler control schemes

Both the CBS and FQ algorithms have been modified to dynamically
set server quota and weights respectively to achieve adaptive RBS, but
other schemes exist. One way is to provide reservations by directly
controlling scheduler parameters without using an RBS layer.

Controlling Linux in a Nice Way

In [65] a PI-controller is used to dynamically adjust the nice value of
a process in the Linux OS in order to achieve some predetermined
bandwidth. At the time, Linux 2.6 was still using Ingo Molnar’s O(1)-
scheduler, which is examined in detail in [65]. The scheduler has some
features that makes analysis tricky.

• It uses interactivity heuristics to determine which tasks are in-
teractive (I/O-bound) or not. Based on this, a task can receive a
priority bonus or penalty in the interval [−5, 5].

• Nice values are inverted compared to priority levels

• Nice values are non-linearly mapped onto time slice sizes

• Tasks tagged as interactive are handled differently when they
have used up their time slice.

A model for how to calculate the CPU share Fi for task τ i from the
nice value ni is proposed as

Fi =
ti(ni)

∑

∀ j t j(n j)
(3.14)

36

3.5 Allocation

where ti(ni) is the time slice for τ i given its nice value. If we have tasks
τ1,τ2,τ3,τ4 with corresponding nice values (n1,n2,n3,n4) = (0, 0, 0,−1),
they would get the time slices (t1, t2, t3, t4) = (100, 100, 100, 420) ms.
From that we get that

F4 =
420

100+ 100+ 100+ 420
(58% (3.15)

Experiments using a standard Linux desktop shows that this gives
a correct value within ±1%. A controller is then implemented as a
kernel module which samples the statistics of a task and then sets a
new nice value by means of PI control. The reference value for a task
is given through a /proc interface. The approach works well and is
also extended to handle sleeping tasks. The transient behavior when
controlling several tasks simultaneously is, however, not investigated
much. Studying the results when controlling two tasks reveals some
interference when one of the tasks changes its share. A possibly way to
improve performance here would be to handle this as a multivariable
control problem.

3.5 Allocation

With the establishment of a variety of RBS techniques, the next impor-
tant question to discuss is how to calculate the reservations. Given a
set of timing sensitive applications, individual application performance
can be sacrificed to obtain better global performance. The theory of
splitting a resource between consumers is often called resource allo-
cation, though considering its mathematical properties, constrained
control would be just as accurate.
Within the field of operations research, using optimization to solve

logistics and resource allocation problems is common practice. Some
of the iconic problems have been formulated here, including the knap-
sack and bin packing problems. Solving knapsack- and bin packing
problems exactly is of NP-complete complexity [46] [23], making them
unattractive for on-line use in limited computational capacity settings.

37

Chapter 3. Related Research

Constrained control theory

A popular tool for managing constrained dynamics in control is the
Model Predictive Control (MPC) formulation. The default setup is pos-
tulating a convex cost function of the state trajectories, using an LTI-
model as trajectory constraints [57]. Though mathematically feasible
to use for allocation problems, few algorithms exist for limited preci-
sion computers. [34] presents an example where explicit MPC, which
uses off-line pre-computed solutions, have been applied to embedded re-
source management. The approach is resource efficient and applicable
on time scales appropriate to real-time systems, but the requirement
of knowing the problem structure beforehand limits its uses for open
systems.

Q-RAM

In 1997, R. Rajkumar presented his Quality-of-Service-based resource
allocation model, Q-RAM [69]. In essence, this states the allocation as a
single objective constrained optimization problem. The model as it was
introduced allowed for multiple tasks using multiple resources. Tasks
are given utility functions based on the allocated resources, but no
technique for how to model a specific task is presented. Neither is the
problem of solving constrained optimization problems online discussed.
In a later paper [71], Rajkumar suggests one way of overcoming the
NP-hard problem of general multi-resource allocation, but neither this
paper discusses the algorithmic properties of the problem in detail.

ACTORS-model

In [73] the authors present another model, using a set of discrete re-
source consumptions and quality output levels. The resulting optimiza-
tion problem is solved through mixed integer linear programming and
allows for multi CPU resource models. The domain mentioned as the
target in the paper is data-flow applications, but there is nothing ex-
plicitly in the model that ties it to this.
One drawback of this approach is the need to supply the resource

levels. This is non-trivial and increases the complexity of developing
applications. The approach taken in this paper requires only one de-
fined level and utilizes a continuous quality measure, thereby making
the optimization easier to solve.

38

3.6 Modeling of Cyber-physical systems

3.6 Modeling of Cyber-physical systems

As we try to close the gap between hardware and software, the tra-
ditional models grow more and more cumbersome. While event based
models are suitable for describing the state of a software system, their
full semantics are difficult to couple with continuous dynamics without
ending up with something difficult to analyze. This has been pointed
out by e.g. [47].
One recent effort of modeling the interaction of physical dynamics

and software resource allocation is presented in [33].

3.7 Convex Optimization

As more and more methods involve solving optimization problems on-
line, the real-time performance of such solvers is an emerging field of
research. In Model Predictive Control (MPC), the use of Explicit MPC
techniques have brought the solution time for control sized problems
down to milliseconds [84]. For more general problems, promising code
generation techniques have been developed by Stephen Boyd [37].
The main drawback of both these approaches is that they assume

that the problem structure is fixed, which is usually not the case for a
multi-purpose software system.

3.8 Estimation

Uncertainty and time varying dynamics can be handled through on-
line estimation techniques, as is common in feedback and adaptive
control. For a system with varying time scales, both over time and
between components, traditional periodic sampling will not fit well.
Recently, event based control and estimation has gained attention.

Such theory is attractive because it can be more efficient than periodic
sampling and also better account for situations where information is
delivered in an event based fashion. This thesis has been inspired by
such works as [40] and [72].

39

4

Implementation and

Frameworks

This chapter presents the current state of RBS implementations and
resource management frameworks with focus on the Linux platform.
The chapter is based on [50].

4.1 OCERA

OCERA [64] stands for Open Components for Embedded Real-time Ap-
plications, and was a European project, based on Open Source, which
provided an integrated execution environment for embedded real-time
applications. From a RBS point of view, OCERA offers a number of
interesting components. The OCERA code is based on the RTLinux
extension. The patches are applicable to Linux kernels up to version
2.4.18.

Scheduler Patch

OCERA modifies the Linux kernel so that it provides "hooks" for mod-
ules implementing generic scheduling policies. The patch used for this
is called the Generic Scheduler Patch (GSP). Our particular interest
would be to use it to implement a resource reservation scheduling mod-
ule.

40

4.2 AQuoSA

Integration Patch

The Preemptive Kernel Patch is made to work with RTLinux using
OCERA’s Integration Patch. The Preemptive Kernel work was done by
Robert Love with the aim of improving latency by making system calls
possible to preempt.

Resource Reservations Scheduling module

A dynamically loadable kernel module that provides a resource reser-
vation scheduler for soft real-time tasks in user space is distributed
with the OCERA components. It uses a CBS-based algorithm, modified
to handle some practical issues. It includes optional slack reclamation
functionality using the GRUB algorithm. The module provides a new
scheduling policy, SCHED_CBS.

Quality of Service Manager

OCERA also provides a QoS management services module. This is
more or less a controller who changes the bandwidths according to
the scheduling error. The approach is more or less that presented in
Section 3.3.

Other work

OCERA includes a large body of work which is not directly related to
RBS. This includes Application-defined Scheduling (ADS), enhanced
memory allocation algorithms, and a wide range of improvements to
the RTLinux kernel.

4.2 AQuoSA

AQuoSA [8] stands for Adaptive Quality of Service Architecture and
is another initiative to bring QoS to the Linux kernel. It builds on
the work provided by OCERA and is partially sponsored by the Eu-
ropean FRESCOR project. Structure-wise AQuoSA retains the compo-
nents used by OCERA.
The AQuoSA versions of the components are at the time of writing

still being actively developed, with the latest release updating them for
Linux kernels up to 2.6.30.

41

Chapter 4. Implementation and Frameworks

4.3 FRESCOR

FRESCOR [38] (Framework for Real-time Embedded Systems based
on COntRacts) focuses on hard-realtime and contract based resource
management. The project background is much like the basis for this
project, dealing with the problem of WCET estimation, mixed require-
ments and maximizing resource utilization.
The idea is to automate much of the real-time analysis by exposing

an API in the form of service contracts. Once the user has specified
the requirements, the platform negotiates all current contracts to see
if there is a valid solution.
A contract is a set of attributes describing the resource needs of

the application as well as certain application properties. Some central
concepts here are

• resource type (e.g. process, network or memory),

• minimum budget (WCET/T),

• maximum period and

• deadline.

These parameters are then used in for automated response time anal-
ysis to determine if the resource requirements can be met.

Spare capacity distribution

In order to address the goal of maximum resource utilization, FRES-
COR suggests a form of slack reclamation here called Spare capacity
distribution (SCD). As the admission policy works under worst case
assumptions, it is likely the system will have spare capacity in most
situations.

4.4 Xen

Virtualisation technologies makes it possible to partition a physical
computer into several logical instances, each one running a separate
operating system that thinks it is running alone on the hardware.
The layer beneath the OS layer is sometimes called the hypervisor

42

4.5 Xenomai

layer as it uses a special mode enabled in modern CPUs called the
hypervisor mode. Xen is an open source hypervisor created in 2003 at
the University of Cambridge in a project headed by Ian Pratt [81].

Architecture

A Xen system has multiple layers, the lowest and most privileged of
which is Xen itself. Xen can host multiple guest operating systems,
each of which is executed within a virtual instance of the physical
machine, a domain. Domains are scheduled by Xen and each guest OS
manages its own applications. This makes up a hierachy of schedulers
with the Xen scheduler on top.
Xen supports several top level schedulers, including EDF and BVT.

Xen 2 also supported the Atropos scheduler, but this has been removed
in Xen 3.

4.5 Xenomai

Xenomai [82] is a real-time development framework cooperating with
the Linux kernel, in order to provide a pervasive, interface-agnostic,
hard real-time support to user-space applications, seamlessly integrated
into the GNU/Linux environment. It is an alternative to RTLinux
and RTAI and is a possible platform for developing RBS schemes. It
was launched in 2001 and in 2003 merged with the RTAI project. The
projects split again in 2005, going after separate goals.
It achieves superior real-time performance compared to standard

Linux while still allowing regular applications. The real-time kernel is
a small, efficient run-time which executes the Linux kernel as a low
priority task. Real-time tasks will then be run by the RT kernel, next
to the Linux kernel. The Xenomai kernel also provides an API with
extensive support for real-time primitives that the Linux kernel lack,
including support for periodic task models. Xenomai uses a hypervisor
simliar to the Xen hypervisor, but focuses on real-time performance.
For example, it allows real-time tasks to receive interrupts even if a
Linux process has requested interrupts to be turned off.

43

Chapter 4. Implementation and Frameworks

4.6 Class-based Kernel Resource Management (CKRM)

The CKRM project aims to create a framework for providing differenti-
ated services to resources such as CPU, memory and I/O. This means
that not only can a process reserve a certain CPU bandwidth, ity can
also reserve I/O bandwidth, memory access etc. The class concept is
used to group together tasks with similar goals and similar importance
and in that way govern their right to resources. Each class is associ-
ated with a set of controllers responsible for managing access to the
resources. The project changed named to Resource Groups lately, but
have been somewhat coldly received on the Linux kernel mailing list
(LKML), mainly motivated with it being a very large patchset. This
is something which may be fixed with the Generic Process Container
patchset.

4.7 Generic Process Containers

Generic Process Containers is a patchset which has seen a positive
reaction on the LKML, aiming to do similar things as CKRM, but
by extending cpusets, a construct already in the Linux kernel. The
patchset extracts the process grouping code from cpusets into a generic
container system, and makes the cpusets code a client of the container
system. The intention is that the various resource management and
virtualization efforts can also become container clients, with the result
that

• the user space APIs are (somewhat) normalized

• the additional kernel footprint of any of the competing resource
management systems is substantially reduced, since it does not
need to provide process grouping/containment, hence improving
their chances of getting into the kernel

4.8 Resource Kernels and Linux/RK

A more formal approach to what CKRM tries to accomplish has been
suggested by Rajkumar et al in their work on Resource Kernels [70].

44

4.8 Resource Kernels and Linux/RK

The authors try to solve a number of problems associated with multi-
resource reservations, including the computational complexity of such
a system, which has been shown to be an NP-complete problem.

Design Requirements The ambition of the project becomes evident
from studying the goals set down for the design of the kernel. In short,
they are as follows

• Timeliness of resource usage. An application which has made
a reservation must be given access to it promptly when needed.
An application must also be able to up and downgrade its resource
usage (for adaptation and graceful degeneration purposes).

• Efficient resource utilization. By this, we mean that the OS
must be able to satisfy the timeliness requirements while making
as few restrictions as possible. E.g. by only allowing one process
at a time, regardless of how small reservations it wants to make.

• Enforcement and protection. The enforcement of resources
should be such that abuse by one application does not hurt other
applications.

• Access to multiple resources. Access to multiple resources by
the same process must be possible.

• Portability and automation. Applications should ideally be
able to specify their resource requirements regardless of hard-
ware (e.g. the CPU clock frequency). In addition, resource de-
mands should be automatically tunable.

• Upward compatibility with fielded operating systems. The
resource kernel should provide support for regular OS services
such as regular scheduling algorithms, real-time structures with
priority inheritance etc.

Reservation Model

The Resource Kernel uses the parameters C, T , D, S and L with the
meanings of a computation time C every T time-units within a deadline
D from the start time S over an allocation life-time L. The semantics
allow for several types of reservations:

45

Chapter 4. Implementation and Frameworks

• Hard reservations. A hard reservation will not be replenished on
depletion, even if possible.

• Firm reservations. Such a reservation will be replenished if all
other reservations are depleted.

• Soft reservation. Will be replenished if possible, even if other non-
depleted reservations exist.

Portable RK

A portable implementation of the Resource Kernel concepts is pre-
sented in [66] and shown how to work on the Linux kernel. It is con-
sidered portable since it does not require any changes to the OS code
itself if given access to

• a fixed-priority scheduler

• an interface to change the priority of running tasks

• an interface for suspending and resuming jobs

• an interface for acquiring events within execution objects, needed
for accounting reserves

The first three are available in most modern OSes, while the last re-
quired hooks to be inserted in e.g. the Linux kernel. The article states
that investigations for how to use the native debugging interface could
be exploited for these purposes and remove the need for modifying the
OS. Arguably, the solution is not entirely portable yet.

4.9 ACTORS

ACTORS (Adaptivity and Control of Resources in Embedded Systems)
[5] is a European Union funded research project with the goal to ad-
dress design of resource-constrained software-intensive embedded sys-
tems. The strategies employed include

• data flow-based programming and code generation,

• virtualization and

• feedback resource management.

46

4.9 ACTORS

SCHED_EDF / SCHED_DEADLINE

A significant deliverable from the ACTORS project is an EDF-scheduler
implementation for Linux kernels 2.6.30 and later. It is specifically de-
signed for resource virtualization and introduces hard CBS type RBS
as the top tier scheduler. Notably, it has support for multicore plat-
forms.

47

5

Modeling and Estimation

This chapter discusses what is a suitable base for allocating resources,
ways to model the resource consumption and the resulting utility of
a software component, and techniques for estimating these quantities
and model parameters online. It also presents a model for how resource
availability is limited by CPU thermal dynamics. The chapter is based
on the publications [51], [52], [53] and [54].

5.1 Portable media player continued

Returning to the example in Chapter 2, Section 2.1, a typical use case
would involve core phone services, such as audio- and video telephony,
the network stack and some 3rd party applications, such as GPS-based
navigation software. These applications share a CPU through the OS
scheduler, as per Figure 5.1. The system would also be running a num-
ber of largely dormant system services that will account for a compar-
atively small part of the total resource needs.
The arrival of Linux-based smart phones has enabled the use of

RBS techniques to manage performance, rather than by fixed priority
scheduling that was previously the norm. Managing the CPU resource
so that software performance is satisfactory can therefore be seen as
an allocation problem.
One complication is that the primary resource, the CPU, is limited

in performance by power and heat constraints. Running software on the
CPU produces heat and since most cell phone casings do not support

48

5.1 Portable media player continued

Application
CPU

OS
Scheduler

3rd Party
Software

GSM
Stack

Video
Encoder

Audio
Encoder

Figure 5.1 A typical use case for a smart phone with support for 3rd party
software. The application CPU is commonly a low power chip with limited pre-
cision running a fully featured OS such as the Linux-based Android platform.

active cooling, the CPU temperature must be regulated by limiting
usage.
Given the unknown properties of 3rd party components, the num-

ber of combinations of enabled software and the varying operational
conditions, e.g. ambient temperature, allocation decisions will have to
be made based on information collected at runtime.
This chapter will therefore introduce

• a resource consumption and performance model intended for the
class of software components expected to be dominant in terms
of resource demands,

• a model describing how available CPU resources depend on chip
temperature and

• techniques for estimating model parameters online.

49

Chapter 5. Modeling and Estimation

5.2 Allocation and utility

When allocating a limited resource, it is necessary to consider the util-
ity, sometimes called return of investment (ROI) or reward, gained.
The field of operations research (OR) is primarily about making such
decisions, typically employing constrained optimization.
Assuming that the applications of interest are timing sensitive

rather than hard real-time, one approach would be to model the util-
ity of an allocation as a function of the resulting task performance. If
hard realtime requirements are assumed, the notion of individual task
performance must be dropped; as a task either performs nominally
or fails. Deciding what tasks to admit and which to reject based on
their nominal performance is essentially the knapsack problem, which
unsuitability for use in these contexts has already been discussed in
Section 3.5.

Deadline miss ratio

Using the number of task deadlines missed per time interval, deadline
miss ratio (DMR), as a measure of utility has been suggested by several
previous works, e.g. [39]. This has been primarily used for feedback
resource management purposes but given a model of task execution
times, a prediction of the DMR is feasible to use. The drawback of such
a scheme is that it does not explicitly take into account that tasks can
adapt to resource availability. This is commonly practiced in modern
software, with examples in media processing [43], computer games [28]
and control [9]. An adaptive task could therefore theoretically have the
same utility regardless of resource allocation.

Rate-based utility

For media applications, the quality of the output is strongly connected
to the processing rate. This holds true for all parts of the media pro-
cessing chain, from encoding to decoding. It is therefore natural to
consider how resource allocation decisions impact the processing rate
of the system and thereby indirectly the quality of the service. It is
possible to view media stream processing as a special case of data flow
or stream processing. In these programming models, data is often con-
tained in packets or tokens which are then processed by a network of
computational elements. The rate at which data tokens are processed

50

5.2 Allocation and utility

is a very tangible metric for the application performance. Data flow
formulations exist for a large group of software relevant to embed-
ded situations, ranging from automatic control to 3D-graphics. This
supports making rate an important basis for resource allocation in
heterogenous systems.
Compared with DMR, rate-based utility sets an absolute value to

the resulting performance, though it cannot account for more subtle
effects of adaptive tasks. As an example, a video decoder could decide
to drop frames as a mechanism for rate adaptation. Deciding which
frames to drop is important for playback quality, as discussed in [22].
For now, it will be assumed that if a task has such properties, it is able
to make such decisions by itself. Explicitly including such information
in the system global model is in this work considered infeasible for a
general purpose allocation framework.
Rate is also an application centric metric which makes it easy to use

from a developer’s point of view. In many cases the desired execution
rate is explicitly decided at design time, as with encoding frame rate
for video, simplifying its use even further.
Given its central position in this work, the term rate deserves a clear

definition. Rate signifies the number of occurrences of a pre-specified
event during a counting time-period.
The pertinent choice of event and counting period is strongly situ-

ational. Consider for instance the difference between digital audio and
video. The ear is much more sensitive to audio jitter than the eye is to
frame jitter [76]. The audio stream is also sampled at a significantly
higher rate than the typical video stream (16 kHz vs 25 Hz). While
loosing one or several movie frames during a second might not even be
noticeable for the viewer, loosing the same percentage of audio samples
will make the audio sound very distorted. When considering a system
with mixed time scales, selecting a suitable time period for allocation
can be troublesome. This will be discussed further in Chapters 6 and
7.

Timing-based utility

Another alternative is to use the exact time that a task completes a
job as a metric, as opposed to whether it always complete ahead of a
deadline. This measure contains more information than the DMR and
can be especially useful when co-ordinating dependent components. An

51

Chapter 5. Modeling and Estimation

example of this is synchronization between audio and video data in a
capture device, which is examined in more detail in Chapter 8.

5.3 Components with rate-based utility

This thesis will discuss mostly applications where utility is based on
execution rates and cycle timing. The following section discusses how
to model single- and multi-resource dependent components. From a
resource consumption point of view, there will be no difference made
between a single- or a multi-threaded process, or even something made
up from a family of processes. The building blocks will be called com-
ponents, where a component is an entity that

• consumes resources and outputs results opaquely,

• is responsible for distributing allocated resources to subcompo-
nents,

• has a behavior determined by a dynamic mapping from a set of
inputs ui to a set of outputs yi and

• where all significant dependencies affecting performance is mod-
eled through this mapping.

There are two main reasons for this:

• Composability. In order to simplify building large systems in-
cluding 3rd party components, a building block semantic where
the set of parts is closed under composition is useful. This thesis
will disregard the functional aspects of the component architec-
ture, considering it a mostly solved problem, and focus on the
resource-driven temporal qualities.

• Extending into non software components. It is the aim of
this work to model systems built from a mix of software and
hardware. Therefore, raising the level of abstraction is necessary
to hide properties unique to software or hardware parts.

52

5.3 Components with rate-based utility

ui(t)

vi(t)

α (t)
∫

xi(t) ni(t)

Figure 5.2 A cyclic computation software component. ui(t) is the CPU re-
source share assigned, vi(t) is the disturbance on the assigned share caused by
the environment, α i(t) is the execution speed of the CPU, xi(t) is the accumu-
lated execution, the last block is a staircase function mapping xi(t) onto ni(t),
which signifies the number of completed cycles.

The cyclic component model

The most basic case is a component that depends on a single resource.
In a computational setting, this corresponds to the standard problem
of a set of independent, CPU-bound tasks. In this work the notions of
periods and deadlines are dropped and replaced by the notion of cycles.
Furthermore, as the entities of interest can be made up from nested
sets of tasks, the term component will be used.
Figure 5.2 shows the logical setup for the cyclic component model,

used as the template further on. Generally speaking, the component
accumulates the incoming resource, in this case executed CPU instruc-
tions, until some quantity has been achieved. At this point it outputs
the result and commences a new cycle. The details of the model are as
follows:

• ui(t) is the CPU resource share assigned to component i and is a
dimensionless number.

• vi(t) is a zero-mean disturbance of this share caused by the sched-
uler as experienced by component i. The two major sources for
this disturbance is the error in the approximation that the CPU
is really fluidly divisible and certain system events that inter-
rupt normal execution, such as hardware interrupts or virtual
memory handling.

• α (t) denotes the speed at which the processor executes instruc-
tions and has the unit of completed instructions per time unit.

53

Chapter 5. Modeling and Estimation

• xi(t) is the accumulated number of executed instructions for com-
ponent i.

• ni(t) signifies the number of cycles completed by component i at
time t and is calculated as

ni(x) = max k, s.t.
k

∑

j=1

Ci(j) ≤ xi(t) (5.1)

for some sequence < Ci(k) > that describes the amount of execu-
tion it takes component i to complete computation cycle k.

A cyclic component will block if and only if it is starved of CPU-time.
The cycle execution time for cycle k is considered to be a weakly sta-
tionary stochastic process Ci(k) and h denote a time interval such that
E{Ci(k)} < h. It is assumed that C(k) has a strictly positive lower
bound.
From this it follows that if a component is started at t and executes

until t+ h, the expected number of completed cycles becomes

E{
h

Ci
} (

h

E{Ci}
(5.2)

Assuming the share ui(t) is constant over h, equation (5.2) can then
be used to approximate the dynamics of ni(t) as

ni(t+ h) − ni(t) (
1

E{Ci}
hui(t) = hkiui(t) (5.3)

or in words, ni evolves approximately like a discrete time integrator
with the unknown gain ki and is driven by the input ui(t). (ni(t) −
ni(t− h))/h is denoted yi(t) and is referred to as the execution rate of
Ci. Figure 5.3 shows an example of ni(t) and the corresponding yi(t)
for one of the components used in the simulations. In the figure h = 1.
As a result, yi(t) will lag behind by as much.

Rate-error utility

While the rate yi(t) itself can be used as a utility metric, often an
algorithm or component is designed with a specific rate in mind. Even

54

5.3 Components with rate-based utility

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0

5

10

15

20

25

30

35

40

n
(t

)

n(t)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0

5

10

15

20

y
(t

)

y(t)

Figure 5.3 ni(t) and yi(t) for one of the components in Chapter 7. Note that
these are not sampled curves. Despite their jaggedness, both signals are defined
for all t. Rate estimation is here done by a one second time window, i.e. h = 1.
Note that this will make yi(t) lag behind by as much.

if there are resources enough to increase execution rate beyond that,
performance would not increase or in some cases even degrade. For this
purpose, the component model is augmented by another parameter,
the rate set-point ri, denoting the optimal rate for this component. It is
common that software components will limit their execution rate once
ri(t) is achieved and the linear mapping between ui(t) and yi(t) in (5.3)
must be altered to reflect this, resulting in

yi(t) =

kiui(t− h) 0 ≤ ui(t− h) ≤
ri

ki
,

ri ui(t− h) >
ri

ki

(5.4)

55

Chapter 5. Modeling and Estimation

0.0 0.2 0.4 0.6 0.8 1.0
u

0

5

10

15

20

25

30

35

40
y
 (

fp
s)

Mean fps for righ-res movie

Piecewise linear approx
Datapoints

0.0 0.2 0.4 0.6 0.8 1.0
u

0

5

10

15

20

25

30

35

40

y
 (

fp
s)

Mean fps for low-res movie

Piecewise linear approx
Datapoints

Figure 5.4 Experimental results of controlling CPU-share for the MPlayer
decoder using Linux 2.6.27 and Control Groups. The diagrams show how the
frame rate per second (fps) depends on the amount of CPU share allocated to
the decoder. The rate increases linearly with share until the movie can be played
back at encoded rate.

Figure 5.4 shows two cases which were produced using MPEG-4 video
streams and the free MPlayer software. The videos are encoded at a
fixed rate, in this case 30 frames per second (fps). When allocating a
lower share of the CPU than required for full rate playback, MPlayer
starts to skip frames, thereby adapting to the reduced playback rate.

Cycle completion timing

The other aspect of the cyclic component model is the event dynamics,
i.e. exactly when the job cycles complete. In the cyclic component model,
the completion time for cycle k is denoted ti(k) and modeled as

ti(k+ 1) = ti(k) +
Ci(k)

ui(t(k))
(5.5)

if ui(t(k)) is assumed to be constant over the interval [ti(k), ti(k+ 1)),
making it similar to the virtual finish time introduced in [27].
While this could be used for traditional deadline driven scheduling

(e.g. keeping ti(k+ 1) < ti(k) + Di)) it is also possible to control other

56

5.4 Multi-resource dependencies

and sometimes more interesting metrics, such as the synchronization
between two non-uniform sequences.

5.4 Multi-resource dependencies

It is desirable to model components that require multiple resources to
execute. This thesis proposes to do this by extending the component
blocking rule so that a component will block if and only if it is starved
of one or more resources. It is assumed that a component has the
capability of accumulating incoming flows, e.g. in FIFO queues for data
or execution time deficit accounting in the scheduler for CPU-time. It
follows that the component execution rate is limited by the rate at
which resources are made available to it. Formally, if τ i is dependent
on the flows u0, ...,uN

yi = min(ki,0u0, ..., ki,NuN) (5.6)

would describe its execution rate. From (5.6) it follows that an alloca-
tion strategy should try to keep the incoming flows equal to minimize
over-provisioning and reduce the risk of buffer overflow. Furthermore,
it points towards two important objectives for maximizing performance
of these systems

1. calculating a steady state flow that maximizes the relevant per-
formance metric

2. control transient effects that cause blocking

How point 2 is connected to the cycle completion dynamics is further
discussed in Chapter 7.

5.5 CPU thermal dynamics

In order to take the thermal dynamics of the CPU into account when
deciding on how much load the system can sustain, this thesis proposes
a model for the thermal dynamics based on [32]. By limiting the load,
or utilization, the temperature can be controlled even if the CPU is

57

Chapter 5. Modeling and Estimation

only passively cooled. The model of the dynamics from CPU power P
to CPU temperature T is on the form

Ṫ = a(Ta − T) + bP+ d (5.7)

where a and b are constants depending on the thermal resistance and
heat capacity of the processor and Ta the ambient temperature. d is
a disturbance term which will be assumed have slow dynamics, such
as heat generated by direct sunlight or by being placed on a heated
surface. For off-the-shelfs CPUs, a and b are in the order of 10−4 and
10−3 respectively (see e.g. [33]), making the dynamics relatively slow.
It is therefore assumed that it is possible to filter out measurement
noise, which is therefore omitted from the model.
The relationship between CPU load U and P is then modeled as

P = Pidle + U (Pmax − Pidle) (5.8)

Sampling the combination of 5.7 and 5.8 can then be done under zero-
order-hold assumptions.
A step response experiment was carried out on a Pioneer mobile

robot [61] with an internal Intel Pentium III-based computer [80] in or-
der to validate the model structure, giving the results shown in Figure
5.5. The on-chip temperature sensor has a sample period of 2 seconds.

5.6 Parameter estimation

A key assumption in this work is that the model parameters are not
available beforehand and therefore have to be estimated online. This
section discusses the aspects of this and some possible techniques. First
the problem of estimating the execution rate from the sequence of ob-
servable cycle completion events is discussed. An estimator for the k-
parameters based on the rate estimate is then suggested.
The central problem with computational components is that infor-

mation comes in form of events instead of continuous signals. For ex-
ample, there is only new information about the execution rate when
a calculation cycle completes or when an expected event is missing.

58

5.6 Parameter estimation

0 500 1000 1500 2000
time (s)

0

10

20

30

40

50

60

70

80
T
e
m

p
e
ra

tu
re

 (
d
e
g
 C

)
Temperature step response for a Pentium 3 CPU

0 500 1000 1500 2000
time (s)

0

20

40

60

80

100

Lo
a
d
 (

p
e
rc

e
n
ta

g
e
 o

f
m

a
x
)

Figure 5.5 Results from a step response experiment performed on a Pioneer
mobile robot. The experiments supports a simple first order model for the dy-
namics between load and chip temperature.

There are two main alternatives to estimate the execution rate from
this, sliding time window event counting and event based filtering. It
is assumed that

(a) while the variable CPU-speed α (t) cannot be directly measured,
it is possible to measure xi(t) and thereby

∫ t1

t0

α (t)dt

(b) The completion of a cycle is observable through an event, defined
as the tuple (ti(k), xi(ti(k))), where ti(k) is the time when com-
ponent i completed cycle k.

The following properties are considered important for the resulting
algorithm

59

Chapter 5. Modeling and Estimation

• Time complexity

• Space requirements

• Sensitivity to noise

• How fast it can detect a change in rate

Sliding window event counting

Using the definition of rate (events/time period) it is natural to con-
sider an approach where the number of events occurring over a prede-
termined time period is mechanically counted. Given a suitable window
length, the method is straightforward in implementation, but needs an
unknown amount of memory to keep the events, also the time complex-
ity is proportional to the rate, i.e. unknown beforehand.

Event based filtering

An alternative approach is to view the estimation of yi as a prediction
problem, where the objective is to at any given time estimate the time
between the last and the yet not arrived event. If ∆(k) = t(k)− t(k−1),
using the assumed stationarity stochastic properties of n, a predictor
can be written on the discrete time shift operator form

∆̂(k+ 1) =
B(q−1)

A(q−1)
∆(k) (5.9)

ŷi(k) =
1

∆(k+ 1)
(5.10)

The selection of the polynomials B and A makes it possible to filter
out specific noise components of the sequence and as long as the fil-
ter has unit stationary gain (B(1)/A(1) = 1) the proper mean will be
obtained. There is one caveat however when dealing with a decreasing
rate. If the prediction states that an event should occur but there is
none, the estimate must be updated to reflect this. This can be done
through noting that if t time has passed since the last event occurred
and t > ∆̂(n+ 1), then the highest possible current rate would be sus-
tained if an event would arrive at the time t+ǫ. A way to check for this
is to tentatively update the prediction as if an event had occurred at

60

5.6 Parameter estimation

the time t and check if the estimated rate would be lower. If ∆e(k) de-
notes the extended sequence {...,∆(k−1),∆(k), (t− t(k))}, the resulting
estimator for y(t) would then be

∆̂(k+ 1) =
B(q−1)

A(q−1)
∆(k)

∆̂e(k+ 1) =
B(q−1)

A(q−1)
∆e(k)

ŷi(t) =
1

max(∆̂(k+ 1), ∆̂e(k+ 1))

(5.11)

Advantages with this approach is that the filter is fixed in time and
space complexity. There is also the added degree of freedom in selecting
the filter polynomials, but the downside is that badly chosen polynomi-
als can yield a noisy estimate. By choosing deg(A) = 1 and deg(B) > 1,
the filter gets a finite impulse response (FIR) structure. As has finite
memory, just like the time window filter, it is also called an event
window filter. If instead deg(B) = 1 and deg(A) = 1, the structure is
called autoregressive (AR) or infinite impulse response filter (IIR).

k-parameter estimation

Given an estimate of the current execution rate ŷi(t), falling back on
equation (5.4) results in the following estimate:

k̂i(t) =
ŷi(t)

ui(t− hi)
(5.12)

Unfortunately, this estimate does not take the disturbance wi into ac-
count. As it is possible to measure xi(t) directly, a better estimator
would be

k̂i(t) =
ŷi(t)

xi(t1) − xi(t0)
, (5.13)

if t and t0 and t1 are such that the events used to form ŷi(t) occur in
the interval (t0, t1).

61

Chapter 5. Modeling and Estimation

5.7 Extension into mixed domain models

One important objective of this work is to model a system where there is
noticeable interaction between the software components and the hard-
ware components. The approach taken is to see it as a system which
performance is governed by the flow of resources. The concept of re-
source is here extended to mean a quantity, bounded and non-negative,
that through a system component is converted into another resource.
The system performance is then expressed in terms of this transfor-
mation.
A resource flow is the exchange of a resource between two compo-

nents of the system. In a CPS, a flow can be physical (e.g. heat or
power) or virtual (computations or data). In this work physical flows
are considered to be L2 functions while virtual flows are either L2 or a
sequence of Dirac-spikes, with finite density. Formally, letU denote the
set of generalized functions on R such that if u(t) ∈U and, t1, t2 ∈ R

then
∫ t2

t1

u(t)dt (5.14)

exists and has the sign of t2−t1. The rationale behind resource flows as
Dirac-spikes is the event-like manner in which many important virtual
resources are generated. As an example, let nCPU (t) denote the number
of completed instructions in a CPU and ntask(t) the number of times
a sporadic task running on that CPU has executed. Obviously, ntask(t)
depends on nCPU (t). In order to analyze the performance of the task,
e.g. to check if it completes cycle n before a certain time, it is necessary
to study how ntask(t) and nCPU (t) evolve over time but due to their stair
case nature, if t0 denotes some specific time,

lim
h→0

ntask(t0) − ntask(t0 − h)

h
(5.15)

is either 0 or undefined. Therefore the dynamics of a system involving
virtual flows must be expressed in discrete time, here called a discrete
flow dynamic.
Forming such a model for physical systems can be done through

sampling. Note however that while the sampled system description says
nothing about the system behavior between sample points, signals like

62

5.7 Extension into mixed domain models

Physical
Systems

Software
Systems

Continuous

Dynamics

Discrete

Flow

Dynamics

Event

Dynamics

Figure 5.6 A diagram showing how the domains of physical and software
systems have their own unique dynamics, but share the discrete flow dynamics.

nCPU (t) and ntask(t) are defined for all t. Because of this, it is possible
to talk about exactly when the changes in n occur.
To summarize, the dynamics of a physical system is often mod-

eled through differential equations. These can be discretized or sam-
pled to give a discrete time model. Software system are usually mod-
eled through event-based dynamics, but these can be re-formulated
as discrete flow dynamics, comparable with the discretized continuous
model. This gives a common model domain with which to express the
entire system dynamics. Figure 5.6 show how the two domains and the
dynamic descriptions relate. How such a combined model can be used
for resource management is explored further in Chapter 7.

63

6

Allocation

Chapter 5 presented the performance of the system expressed in two
primary metrics, execution rate and event timestamps, both dependent
on allocated resources. This chapter introduces allocation through con-
vex optimization as a way to maximize system performance in the
execution-rate sense. A specialized allocation algorithm targeted at
embedded real-time systems is presented together with a discussion
about its convergence properties and real-time behavior. This chapter
is based on the papers [52] and [53].

6.1 Allocation under resource constraints

The purpose of resource management is to maximize system perfor-
mance, a non-trivial task when there is not enough resources to run
all components at nominal execution rates. In the terminology intro-
duced in Chapter 5, it is to be expected that we cannot keep rate error
of all components at zero, but have to compromise. To evaluate such
a compromise, a global performance metric is needed. For the set of
independent components, a natural choice would be an aggregate of
the individual utility functions. The selection of such an aggregate is
an important design parameter, which can be used to achieve a com-
promise suitable to the central system use cases. For example, it can
make sense to prioritize system services over 3rd party components or
minimizing the worst case rate error.
In this thesis, it will be assumed that the system performance ob-

64

6.1 Allocation under resource constraints

jective is on the form

J(u) =

N
∑

i=1

Ji(ui) (6.1)

where Ji is the contribution from component i. In the presence of a re-
source constraint,

∑

ui ≤ U , and under the assumption that resources
are positive quantities, the allocation problem can be posed as an op-
timization

min J(u) =
N
∑

i=1

Ji(ui)

N
∑

i=1

ui ≤ U

ui ≥ 0,∀i

(6.2)

Convex allocation problems

In order to find efficient and reliable ways to solve the allocation prob-
lem online, i.e. without human supervision, (6.2) needs to be restricted.
By limiting the component contributions Ji to differentiable convex
functions, the resulting form will qualify as a convex optimization prob-
lem [13]. As such it has several attractive properties:

• it will always be a feasible problem,

• it will have a unique solution,

• powerful theory exist for designing solvers for and

• it allows for general forms of system utility functions.

Recall the definition of the steady state rate error

ei(ui) = ri − yi = ri − kiui (6.3)

Since Equation (6.3) constitutes an affine mapping, any Ji taken as a
the composition of a convex function and ei(ui) will also be convex [13,
p. 79]. Conceptually, this means that we can now think of the problem
in terms of distributing the rate error rather than the resources.
When designing the objective function, some attention should be

given to its sensitivity to parameter changes. Since parameters will

65

Chapter 6. Allocation

be estimated online under noisy circumstances, adopting an LP-style
objective can lead to sudden jumps in the solution. See [57, p. 151] for
a discussion on the merits of LP and QP objectives.

Disabling components

For some components performance is only tolerable when yi is close to
ri. For this purpose a lower rate bound y′i can be introduced, which rep-
resents the lowest relevant execution rate. It would then be desirable to
allocate resources so that all components (if possible) are within their
respective regions of tolerable performance. If this is not possible, low
priority components must be disabled until

N
∑

i=1

y′i
ki
≤ U . (6.4)

Solver design

Though parameters in this system might not change often, events such
as the reconfiguration of an application, the arrival or deactivation of
a new component or the change in CPU resource availability in re-
sponse to risk of overheating might require that we quickly redistribute
resources. Therefore, an algorithm suitable to solving (6.2) online is
needed. More specifically, it is desirable that it

1. takes minimal system resources,

2. accounts for changing parameters as quickly as possible,

3. produces results in deterministic time and memory,

4. can improve upon a previous allocation even if aborted before
optimum was computed, and

5. is suitable for implementation in fixed point arithmetics.

6.2 Incremental optimization

This section proposes an algorithm which can solve (6.2) efficiently and
with desirable time and memory characteristics. The central idea of

66

6.2 Incremental optimization

0 1 2 3 4 5
Component id

�3500

�3000

�2500

�2000

�1500

�1000

�500

0

P
(u

)

The water filling problem structure

Figure 6.1 The structure of the water filling problem. The geometry of the
"tubes" is defined by the cost function and the optimal solution is found as the
water surface if the tubes are filled to a common level.

the algorithm is to see the solution as a sequence of resource transfers
between two components, in effect solving the problem as a series of
one-dimensional problems. The benefit of this approach is that each
step is computationally inexpensive, predictable in execution time and
has numerical properties well suited for fixed point implementations.
The problem structure is very similar to the traditional power dis-

tribution problem seen in the communications literature, see e.g. [13],
as illustrated in Figure 6.1. Essentially, the components are repre-
sented by a set of connected "tubes", with dimensions so that if the tube
is filled with a quantity of water ui, the resulting surface level will cor-
respond to the value of the marginal utility function Pi(ui) = �Ji/�ui.
For the example in the figure, Ji(ui) = (ri − kiui)2,∀i. In this case the
tubes will be −2kiri high and 1/2k2i wide.

67

Chapter 6. Allocation

Algorithms used to solve this type of problem are often based on the
water filling principle, i.e. the solution is calculated as if water in an
amount equal to the allocatable resource had been poured into the con-
nected tube set and allowed to settle. The resulting water surface will
then define the optimal allocation. The method presented in [13] starts
with empty tubes and then fills them until the resource is depleted.
Mathematically this is done by solving a series of linear equations.
Two drawbacks of this scheme when applied to the embedded system
resource problem is that

• the solver starts from scratch, thereby loosing information about
the previous solution, and that

• the linear equation method only works for a specific case of utility
functions.

The algorithm presented below also relies on the water filling principle,
but works by equalizing water level between two components at a time.
This accounts for heterogenous sets of utility functions and is also
easier to implement on limited precision systems as the expressions to
be evaluated are simpler.
Assume that two components C i,C j are picked from the set during

the k:th step of the algorithm. Let Jk be the cost at the beginning of
the step and Jki, j denote the contribution by C i,C j to J

k. Consider now
what happens if an amount of resource δ is transferred fromC i toC j so
that their combined contribution to Jk+1 is minimized, i.e. by solving

min
δ
Jk+1i, j =Ji(u

k
i + δ) + J j(u

k
j − δ)

s.t.− uki ≤ δ ≤ ukj

(6.5)

This ensures that
Jk+1 ≤ Jk (6.6)

In other words, by in each step solving a subproblem, performance
will improve incrementally. Solving this minimization subproblem for
general convex functions Ji(ui) can be done by modifications to uncon-
strained methods such as Newton-Rhapson or even bisection.
One notable choice of Ji(ui) is wiei(tu)2 in which case the alloca-

tion problem becomes a special case of quadratic programing (QP).

68

6.2 Incremental optimization

The quadratic form is attractive for several reasons, including that the
subproblem can be solved in two simple steps and being less sensitive
to small parameter changes than e.g. linear programming (LP). Let

Ji(ui) = wi(ri − kiui)
2

J j(ui) = wj(r j − kju j)
2

δ = argmin Ji, j(δ) = Ji(ui + δ) + J j(u j − δ)

s.t.− ui ≤ δ ≤ u j

(6.7)

As Ji, j is a convex function, if it has an unconstrained minimum that
violates the constraints on δ , the constrained minimum is found by
picking δ on the constraint. The solution to (6.7) is then calculated as

δ nc =
wikiri −wik

2
i ui +wjk

2
ju j −wjkjr j

wik
2
i +wjk

2
j

δ = sat(δ nc,−ui,u j)

(6.8)

Selecting the pair C i,C j for each step is the other part of the algo-
rithm. The proposed strategy is derived from the Karush-Kuhn-Tucker
(KKT) conditions (see e.g. [13]). Posing (6.2) on standard form, the La-
grangian becomes

L(u,λ ,ν) =
N
∑

i=1

Ji(ui) +
N
∑

i=1

−λ iui −ν(U −
N
∑

i=1

ui) (6.9)

The KKT-conditions state that ∇L(u,λ ,ν) = 0 in an optimal point. By
studying the expression

�L(ui,λ ,ν)
�ui

=
�Ji(ui)

�ui
− λ i +ν = 0 (6.10)

it can be seen that in an optimal point, either ui = 0 or −�Ji(ui)/�ui =
ν . Recall that Pi(ui) = �Ji(ui)/�ui. If ui = 0 and therefore λ i > 0, then
Pi(ui) must be less than ν . In other words, a point where Pi(ui) >
Pj(u j) and u j > 0 does not minimize (6.5).

• If the algorithm tries to select C i,C j so that Pi(ui) > Pj(u j) and
u j > 0, solving (6.5) results in Jk+1 < Jk.

69

Chapter 6. Allocation

• If there is no such pair to select, then that point satisfies the
KKT-conditions of (6.2) and the allocation is optimal.

It follows that such a strategy will make the algorithm converge to the
optimum. The convergence speed will obviously depend on the specific
transfer sequence. As the intended domain is real-time allocations, an
efficient strategy is needed. It is desirable that each step reduces J(k)
as much as possible and from (6.5) it is evident that the size of the
gain depends on

• the difference in P(u) between the two components and

• the amount of resource available to redistribute.

The two criteria can be in conflict, particularly if there are large vari-
ations in ki. However, it is here assumed that if a component requires
much less resources then the others, it does not have to be part of
the optimization. Rather, such a component will be seen as part of the
background noise, as discussed in Section 5.3.
An intuitive strategy for picking the transfer pair is to sort the com-

ponents according to Pi(ui) and select the two furthest apart, skipping
those with highest Pi(ui) for which ui = 0. The intuition behind this
can be seen if Pi(ui) is interpreted as the water level, as the sought
common surface must lie between the extremes. The proposed imple-
mentation uses a red-black tree that makes finding the pair an O(1)
operation and inserting them back after the transfer an O(log n) op-
eration (see e.g. [25] for complexity analysis of red-black trees). As
the algorithm uses an iterative loop and the persistent data allocated
scales linearly with the problem, memory need for a system with a
known size can easily be calculated.
To illustrate the workings of the algorithm, consider a case with

three components C1,C2,C3, and Ji = ei(ui)2, i = 1, 2, 3. The compo-
nents have the properties

i ri ki ui

1 55 50 1

2 25 60 0

3 20 60 0

Figures 6.2 and 6.3 illustrates how the algorithm then operates during
the first iterations. Though this example uses the same form of cost

70

6.3 Experimental results

function for all components, it is worth noting that the algorithm allows
for any mix of convex cost functions. This could be useful for a system
designer when distinguishing between e.g. system services and 3rd
party add-ons are allocated resources.
In the initial state, C1 is best off, seen by the high P1 while P2 is

worst off. The first transfer then equalizes the potentials P1 and P2.
As can be seen in Figure 6.3, the system cost decreases rapidly in the
beginning. The performance resulting from a fair allocation, as defined
by [27], is provided for comparison. The fair allocation will in general
terms allocate an equal amount of resource to all components, which
will be unfavorable for components with relatively low k and high r,
such as C1.
Figure 6.4 exemplifies a scenario where the problem parameters

change over time, assuming allocation is recomputed every second. At
33 seconds, r2 changes to 40, exemplifying something that could be
caused e.g. by an internal mode switch or a user command. The al-
gorithm will here reduce the performance of C1 and C3 slightly. At 66
seconds, the total resource level drops by 25%, which could happen
for instance if the system was overheating and the CPU needed to be
throttled to reduce heat generation. In this case,C3 is shut down, which
may or may not be the intention of the system designer. Constrained
allocation in this manner is not starvation free and care must be taken
when choosing the component cost functions.

6.3 Experimental results

A series of experiments were run, using the algorithm to find an al-
locations for random component sets under overload conditions (i.e.
∑N
i=1 ri/ki ≥ U). The aim with the simulations were to show the com-

putational efficiency and get a feel for the convergence rate. The sim-
ulations were run on an 2.40 Ghz Intel Pentium(R) 4 based computer
with 512Mb memory which was running Linux 2.6.27. The compiler
used was gcc 4.3.2 using the -O3 compiler flag. The experiments use
the J = ppe(u)pp2 cost function.
Figure 6.5 shows the iteration time as function of the number of

components and in Figure 6.6 we see the termination time of the opti-
mization. The variance come primarily from sorting artifacts and cache

71

Chapter 6. Allocation

0 1 2
Component id

�5000

�4000

�3000

�2000

�1000

0

1000

P
(u

)

Iteration 0

0 1 2
Component id

�5000

�4000

�3000

�2000

�1000

0

1000

Iteration 1

0 1 2
Component id

�5000

�4000

�3000

�2000

�1000

0

1000

Iteration 2

0 1 2
Component id

�5000

�4000

�3000

�2000

�1000

0

1000

P
(u

)

Iteration 3

0 1 2
Component id

�5000

�4000

�3000

�2000

�1000

0

1000

Iteration 4

0 1 2
Component id

�5000

�4000

�3000

�2000

�1000

0

1000

Iteration 5

Figure 6.2 A sequence of allocation iterations, showing how the marginal
utility level is equalized by pairwise transfers.

0 2 4 6 8 10
iteration number

400

500

600

700

800

900

1000

J(
u
)

Cost function J(u) as solution is computed

J
optimum
fair allocation

Figure 6.3 A plot of how the cost function decreases in value for each iteration
in the case illustrated in Figure 6.2, with the performance resulting from a fair
allocation provided for comparison.

72

6.3 Experimental results

0 20 40 60 80
time (s)

0

20

40

60

80

100

120
sh

a
re

s
(p

e
rc

e
n
ta

g
e
 o

f
to

ta
l
C

P
U

)

r2 =40 U=0.75

Allocation in a scenario with changing parameters

C1 C2 C3

Figure 6.4 A scenario where the problem parameters change over time, as-
suming allocation is computed every second. At 33 seconds, r2 changes to 40
and at 66 seconds, the total available resource level drops by 25%.

dynamics. Component sets were generated randomly and ran 10 times
in succession. As a comparison number, a two variable QP problem
with the structure of (6.2) took 500 ms to solve with a general QP
solver written in C++ [21] on the same computer as used in the other
experiments. This is most likely due to the larger overhead for initial-
izing the algorithm, something that will make it resource expensive
to use for a problem where parameters and problem structure change
over time.
Studying Figure 6.5, iteration time appears to increase linearly with

the problem size. This seems counterintuitive as the red-black tree
is performs with lo�(n)-like complexity. However, as the number of
components grow large, it becomes increasingly likely that some of
them will be allocated zero resources. Finding a component with high
Pi(ui) will then involve a linear search, which would explain the trend

73

Chapter 6. Allocation

0 50 100 150 200 250 300

Nbr of components in problem

0

10

20

30

40

50

60

70

it
e
ra

ti
o
n
 t

im
e
 (

�

s)

Iteration time as a function of problem size

Figure 6.5 Measurements of iteration times. Optimization for each component
set was run 10 times. The variance comes from a combination of sorting artifacts
and cache dynamics.

0 50 100 150 200 250 300

Nbr of components in problem

0

5

10

15

20

te
rm

in
a
ti

o
n
 t

im
e
 (

m
s)

Termination time as a function of problem size

Figure 6.6 Measurements of optimization termination time. Optimization for
each component set was run 10 times. Variance is due to sorting artifacts and
cache dynamics.

74

6.3 Experimental results

in iteration time. As the component set grows larger, the variance in
iteration time grows. This is because the sorting operations when re-
inserting components into the red-black tree become more and more
expensive. It is also to be expected that keeping the data structures in
cache memory will be increasingly difficult for large problems.
The trend in termination time is more according to intuition. As

iteration time grows linearly and the number of iterations must grow
at least as fast as problem size, the algorithm is at best quadratic in
complexity.
With a solver that can determine an optimal allocation in millisec-

onds, periodic use of optimization in embedded system resource man-
agement is feasible.

75

7

Resource control

This chapter discusses the application of feedback control to a system
where component are dependent on each other. The theory presented
does not build on Chapter 6, but presents an alternative scenario,
where the performance metrics are tied to the system rather than the
individual component. The system model used is, however, based on
Chapter 5. The chapter is based on [54].

7.1 Allocation vs feedback

One of the key simplifications made in the allocation algorithm pro-
posed in Chapter 6 was to optimize the performance in a stationary
sense, as introducing state dynamics into the optimization would re-
quire a more comprehensive solver. As such, the allocation strategy
used in this thesis is largely a feedforward solution and therefore blind
to performance metrics explicitly connected to state information.
Given perfect information about execution times and resource avail-

ability, these metrics could be controlled through the allocation strat-
egy. However, as a central theme of this work is the presence of uncer-
tainty and disturbances, it must be assumed that this is not possible.
Specifically, it can be expected that transient phenomena will occur due
to disturbances and structural changes in the system, such as hard-
ware interrupts and the activation or reconfiguration of components.
Assuming that these occurrences cannot be predicted, they must be
addressed through feedback.

76

7.2 State related performance metrics

ag replacements

C1 C2
q(t)

Figure 7.1 Two components connected through a FIFO-queue. q(t) signifies
the number of elements in the queue.

7.2 State related performance metrics

The two aspects of performance that will be discussed here are

• integrator dynamics and

• state transition events.

Queues and integrators

Asynchronous communication between components in software sys-
tems is commonly done through FIFO-queues. This is practiced both in
consumer grade multimedia frameworks such as GStreamer [79] and
more academically oriented actor-based languages such as CAL [12]
[31]. A common problem that arises in such designs is the regulation
of queue sizes, as this affects both end-to-end computational latency
and storage requirements.
If a queue constitutes the connection from component C1 to C2, as

illustrated in Figure 7.1, and q(t) denotes the number of queue entries
at time t, its resource dependent dynamics could be described by

y1(t) = k1u1(t)

y2(t) = k2u2(t)

q(t+ h) = q(t) + h(y1(t) − y2(t))

(7.1)

From an allocation point of view, an imbalance between y1 and y2 re-
sults in either starvation of C2 or unbounded queue length. Therefore,
the feed forward strategy should strive for y1 = y2. Transient effects
can then be attenuated through feedback.

77

Chapter 7. Resource control

t1(k) t1(k+ 1) t1(k+ 2)

k

t2(k) t2(k+ 1) t2(k+ 2)

time

time

Figure 7.2 Synchronization between two event sequences is one possible ob-
jective that can be solved using feedback resource management. The synchro-
nization error, es(k) = t1(k)− t2(k), is difficult to address using the feedforward
strategy as this relies on collecting information over a number of events.

State transitions

State models are commonly used for software systems, defining the
behavior in terms of states and state transitions. A state transition is
caused by some internal or external dynamic and the passing from one
state to another represents an event that is significant to the software.
This could for instance be the completion of a computation, e.g. the
decoding of a video frame or the termination of an optimization. This
thesis will specifically consider changes in the number of completed
component cycles ni, which are signified by the cycle completion events.
Given a number of state transitions over the time period h, as con-

trolled through the allocation strategy, some applications will be sen-
sitive to exactly when these occur. Keeping them uniformly distributed
is a common goal, essentially the objective of classic scheduling tech-
niques. Another possible scenario is to synchronize the state transitions
between two components. This situation could arise when synchroniz-
ing sensors readings, such as audio and video capture, or as a strategy
to reduce the complexity of a larger control problem. The synchroniza-
tion problem could be seen as a generalization of the deadline problem,
as the latter would arise if one sequence is set deterministically.
Let t1 and t2 denote two event sequences, as illustrated in Figure

7.2, generated as cycle completion events by the components we want

78

7.3 Hardware resources

to synchronize. Using Equation 5.5 describing the cycle dynamics

t(k+ 1) = t(k) +
C(k)

u(t(k))
, (7.2)

the synchronization error es(k) is defined as

es(k) = t1(k) − t2(k) (7.3)

As with q(t), perfect allocation would result in no synchronization er-
ror, but given transient disturbances, a feedback approach could be
employed to drive it to 0.

7.3 Hardware resources

Availability of the CPU resource is limited by hardware performance.
Power and heat are two types of constraints in this setting. In this
thesis the problem of thermal management is considered.
Normally a CPU can only operate properly if the temperature is

kept below a certain level but if there no active cooling, as is the case
in many embedded platforms, this must be respected through control
of CPU power. The options to do this include voltage- and frequency
scaling and idling (e.g. executing the HLT instruction [42]), the last
of which will be used here. The main reason for this is that the speed
of the CPU directly affects the component model parameters and any
on-line estimates would then change due to control action. Controlling
the power through U and then imposing the limit

N
∑

i=1

ui ≤ U (7.4)

simplifies the estimation strategy. Control can be effectuated through
limiting the available CPU-time using an RBS framework. The re-
source level U is then determined by the thermal control algorithm,
which becomes a part of the resource controller.

79

Chapter 7. Resource control

Thermal control

Given that the temperature is modeled with first order dynamics with
slow disturbances, a PI-controller [10] is a simple and effective choice,
though anti-windup measures must be added to handle effects from
control signal saturation.
The pure PI-controller is defined as

u(t) = K (e(t) +
1
Ti

∫ t

0
e(τ)dτ) (7.5)

By discretization of the dynamics using a forward Euler approximation,
constraining the control signal U to the interval [0, 1] and adding an
anti-windup tracking term to the integral part, the resulting control
algorithm, described as pseudo-code, is

e := r - y_T;

V := K*e + I;

U := sat(V, 0, 1);

if (Ti > 0) then

I := I + K*h*e/Ti + K*h/Tr*(U - V);

else

I := 0;

endif

where h is the sampling interval.

7.4 Case study — Encoding Pipeline

The prototypical system to be considered is a conversational video
pipeline as displayed in Figure 7.3. The software part consists of three
tasks, an audio encoder, a video decoder and a network stack. The en-
coders are assumed to have private access to capturing hardware and
it is also assumed that they are capable of variable rate execution. The
encoders are connected to the network through FIFO-queues, QA and
QV. In order to send a network packet, the stack requires one frame of
audio and video.
In order to evaluate the performance of this system, the following

metrics are defined

80

7.4 Case study — Encoding Pipeline

CPU
Resource
Controller

Audio
Encoder

Network
Stack

Video
Encoder

QA

QV

T

cpu-
time

U

u_a

u_n

u_v

y_a

y_v

y_n

Figure 7.3 An overview of the conversational video pipeline

• Sync error. It is disturbing to the human eye when video and
audio is out of sync and therefore it is natural to consider the
difference in encoding timestamp between the corresponding au-
dio and video frames. If both tasks are assumed to be cyclic and
ta(k) and tv(k) denote the encoding timestamps for audio and
video frames respectively, then

ta(k+ 1) = ta(k) +
Ca(k)

ua(t(k))

tv(k+ 1) = tv(k) +
Cv(k)

uv(t(k))

(7.6)

would be the corresponding dynamics. The sync error es(k) is
then defined as

es(k) = ta(k) − tv(k) (7.7)

• Latency. Delay in the conversation is also an important quality
metric and for this set up it will be the end to end latency, i.e. the
delay from capture to network. If qa(t) and qv(t) are the number of
elements at time t in QA and QV respectively, then let the average
encoding latency el(t) be defined as the sum of the encoding delay
Da,v and the network delay Dn.

The encoding delay is modeled as

Da,v =

Ca(k)

ua(ta(k))
+
Cv(k)

uv(tv(k))

2
(7.8)

81

Chapter 7. Resource control

which is the the average of the audio encoding time and video
decoding time and the network delay as

Dn = (
qa(t) + qv(t)

2
+ 1)

Cn(k)

un(tn(k))
(7.9)

i.e. the time it takes to process the queue backlog plus one cycle
time for the packet itself. el(t) is then defined as

el(t) = Da,v+ Dn (7.10)

or in words, the computational delay combined with the network
backlog in the queues.

• Queue dynamics. Using the cycle dynamics expressed in (5.3),
the dynamics of qa and qv is modeled as

qa(t+ h) = qa(t) + h(ya − yn)

qv(t+ h) = qv(t) + h(yv − yn)
(7.11)

Control design

Latency It follows from (7.10) and (5.6) that latency can be con-
trolled through minimizing the queue lengths and then keeping a
uniform steady state cycle time across all components. The approach
taken in this work is to combine a feedforward control based on the
total amount of resource with a feedback re-allocation to reduce queue
length.
The nominal feed forward controls are computed by combining Equa-

tion (7.4) with
ya = yv = yn (7.12)

which gives

u
f f
a

u
f f
v

u
f f
n

=

k−1a

k−1v

k−1n

kakvkn

ka + kv + kn
U (7.13)

To control the queue lengths, the feedforward controls are then
modified with a feedback term uq. As the control system cannot violate

82

7.4 Case study — Encoding Pipeline

(7.4), uq will be applied as

ua

uv

un

=

u
f f
a

u
f f
v

u
f f
n

+

kv

ka + kv

ka

ka + kv

−1

uq (7.14)

subject to the constraints that the resulting controls ui ≥ 0.
To calculate uq(t), the closed loop dynamics of the queues are eval-

uated. It is assumed that the queues will be of equal length in steady
state (see the section on sync error) so the feedback can be designed
with any one in mind. Recall that

qa(t+ h) = qa(t) + h(ya − yn) (7.15)

Assume that the objective is to drive the queue length to some prede-
termined length r (e.g. zero). To achieve proportional control, let

h(ya − yn) = Kq(r − qa(t)) (7.16)

This converges to r for all 0 < Kq < −2. Let uq denote a feedback term,
by which some of the resources allocated to Cn is transferred to Ca and
Cv, thereby regulating the relative rates of queue item production and
consumption. Substitute

ya = ka(u
f f
a + uq

kv

ka + kv
)

yn = kn(u
f f
n − uq)

and and solve for uq to obtain the actual controls.

Sync error If Ca/ua is approximated by (kaua)−1, it follows from the
definition (7.7) that

es(k+ 1) = es(k) + (kaua)−1 − (kvuv)−1 (7.17)

83

Chapter 7. Resource control

As there is a finite combined flow of CPU resource to the audio and
video encoder, the approach taken here is to introduce us as a feedback
term, modifying the feedforward allocation so that

es(k+ 1) = es(k) + (ka(ua + us))−1 − (kv(uv − us))−1 (7.18)

is driven towards zero. While this seems to interfere with the queue
control, the difference in time scale between the event-to-event dynam-
ics makes its effects on the slower queue controller negligible. In fact,
it is seen in Section 7.5 that controlling the sync error actually greatly
simplifies the queue control. For proportional control, let

(ka(ua + us))
−1 − (kv(uv − us))

−1 = Kses(k) (7.19)

Under deterministic circumstances the sequence es(k) will converge to
zero for any Ks ∈ (0,−2). Given the variations in the cycle execution
times, some care should be taken when selecting Ks as the noise can
drive the system unstable. As this work is done without a detailed noise
model, Ks is chosen conservatively as -0.5. Then solve for us under the
constraint that ua + us ≥ 0 and uv − us ≥ 0.
The resulting control structure is presented in Figure 7.4.

7.5 Simulation results

Simulation environment

In order to evaluate controls, a simulation environment has been devel-
oped in Python. The system dynamics is approximated by discretiza-
tion with a time step of 1 ms, which incurs quantization on the cycle
completion time stamps. This is, however, assumed to be of little effect
as the variation due to noise is orders of magnitude greater for these
simulations.
Cycle execution times have been generated as Di+ X i(k) where Di

is an a-priori unknown constant and X i(k) ∈ exp(0.1Di). The realiza-
tions used for the presented simulation results are shown in Figure 7.5.
The randomness is meant to model both software execution time un-
certainty and the stochastic properties of a modern CPU, including the

84

7.5 Simulation results

Control

Resource
Controller

Thermal

Estimator

Queue
Control

Control Control
Flow

Sync

k̂i

yT

ni

qi

U ui

es

biuq

us

u f f

Figure 7.4 The resulting control structure including estimation, feed forward
flow control based on the estimated model parameters and the available CPU
resource and feedback based on queue state and sync error. bi refers to the
coefficients in Equation (7.14).

effects of caches, the memory bandwidth gap and deep pipelines. The
Di values were chosen randomly so that the resulting k-parameters
would lie between 10 and 100. A real sequence of cycle times for a
video decoder is provided for comparison in Figure 7.6. h is globally
defined as 1.

Thermal control

The thermal model of the CPU is based on [33], but to make the effects
of the thermal dynamics more visible in the simulations, the parame-
ters have been scaled so the dynamics are faster. This makes the effects
of control and disturbances more prominent. In the simulations, the
parameters in Equation 5.7 is chosen as a = 2 and b = 1.5. The main
purposes of the thermal model are

• to provide a scenario for the varying availability of CPU resource
and

• to show how physical models can be combined with the software
models,

85

Chapter 7. Resource control

0 20 40 60 80 100
k

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

C
i(
k
)

AudioEncoder VideoEncoder NetworkStack

Figure 7.5 Generated cycle times used in the simulation examples below.

so switching for more realistic parameters would not change the design
decisions significantly though the thermal controller must then be re-
tuned. However, as the focus of this thesis is on the application per-
formance as affected by both hardware and software, more advanced
temperature control strategies are left for future research.
A scenario where a disturbance enters occurs at 5 seconds is shown

in Figure 7.7. This could be a situation where the unit is left in direct
sunlight that causes an insolation effect of 15 degrees C / s. The con-
troller keeps the temperature by throttling the available CPU-time.
As the temperature approaches the set point, the total utilization is
lowered to about 80%. At 5 seconds, the disturbance causes the tem-
perature to rise and the controller responds by lowering the utilization
even further, settling at about 55%. If there are no active cooling mea-
sures or direct measurements of external disturbances, the set point

86

7.5 Simulation results

0 20 40 60 80 100 120
k

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

C
(k

)

MPEG-2 decoder sequence

Figure 7.6 A sequence of execution times for an MPEG-2 decoder working
on a video stream. This encoding standard interleaves complete image descrip-
tions with delta descriptions. Decoding a complete image is significantly harder,
causing the high peaks.

must be sufficiently below the critical level to keep the CPU from over-
heating.

Parameter estimation

Figure 7.8 shows the estimated execution rates and corresponding ki-
parameter estimates over the same simulation. The discontinuous na-
ture of the virtual flows is evident in these plots. Note that it takes
some time before the network stack starts to execute and this is be-
cause of the queue-controller. It throttles the network stack while the
queues are filled and because of this, the k-parameter estimator needs
more time to form k̂n. This causes the large overshoot in the queue
length before it settles on the desired level.

87

Chapter 7. Resource control

0 2 4 6 8
time(s)

55

60

65

70

75

80

85

T
 (

d
e
g
re

e
 C

)

T controlled
T Uncontrolled
T ref

0 2 4 6 8
time(s)

�0.5

0.0

0.5

1.0

1.5

2.0

U

U=sat(P+I,0,1)
P-part
I-part

Figure 7.7 PI control of temperature with a constant disturbance of 15 degrees
C / s entering at 5s. The uncontrolled dynamics are shown for comparison.

Even though the actual execution rate changes over time, the es-
timate mean remains stable while the variance increases as the exe-
cution rates drop in the later part of the simulation, as seen in the
upper plot. This is because a single event being outside or inside the
estimation window will affect the estimate more. The window-based
estimation scheme will break down when the rate drops below 1 cycle
per second.

Latency performance

As there is no information about future demands for the CPU resource,
a reasonable strategy is to minimize latency at all times. This is done
by utilizing all available CPU-time while respecting the temperature
set-point, thereby reducing the execution time for all tasks and by con-

88

7.5 Simulation results

0 2 4 6 8
time(s)

0

20

40

60

80

100

120

140

k̂

AudioEncoder VideoEncoder NetworkStack

0 2 4 6 8
time(s)

0

5

10

15

20

25

30

ŷ

AudioEncoder VideoEncoder NetworkStack

Figure 7.8 Rate and parameter estimation for all three tasks. Rates are esti-
mated by counting events with a sliding time window with length 1 second. The
network stack (red) lags behind in the beginning due to queue control.

trolling the queues. The reason why the queue controller is not trying
to drive the queue lengths to zero is that this could cause blocking in
the network stack, which in turn would reduce the accuracy of k̂n. This
could be treated by designing a better estimator.
The latency control performance is displayed in Figure 7.9. A sce-

nario without queue control is provided for comparison and the prob-
lem with this is evident. Even though the system reaches steady state,
where the queue lengths no longer change significantly, effects of the
initial transient remains and cause significantly higher latency.

89

Chapter 7. Resource control

0 2 4 6 8
time(s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

la
te

n
cy

Control
No control

0 2 4 6 8 10
time(s)

0

2

4

6

8

10

12

q v

Avg Q w control
Avg Q no control
r

Figure 7.9 End-to-end latency and average queue length compared with and
without control. The uncontrolled case (green) is about 2-3 times worse than
what it obtained through control (blue).

Sync performance

The simulations reveal the importance of the sync controller. Figure
7.10 shows that the sync error while left uncontrolled will actually
drive the system to a stall. The reason for this is that the queue con-
troller uses the average queue length to do the re-allocation. Figure
7.11 shows that even before the k-parameter estimates converge, the
sync controller keeps the audio and video stream tightly together. This
means that the queue lengths are actually the same, an assumption
which can then be safely used by the queue controller.
Figure 7.12 shows how the queue lengths diverge quickly without

sync control and the resulting re-allocation by the queue controller ac-
tually starves both audio end video encoder. It would theoretically be

90

7.5 Simulation results

0 2 4 6 8
time (s)

�3.0
�2.5
�2.0
�1.5
�1.0
�0.5

0.0

0.5

1.0

1.5

e s
 (

s)

es w control es no control

0 2 4 6 8 10
time (s)

�0.06

�0.04

�0.02

0.00

0.02

0.04

0.06

e s
 (

s)

es

Figure 7.10 Sync error compared with (blue) and without (red) control. In
the uncontrolled case, the encoding pipeline stalls which is why the encoding
error seems to remain constant after 2.5 seconds. The lower plot shows the sync
error from the upper plot in detail.

possible to form a MIMO-controller to handle both sync and queues in
the same control law, but recall that the queue controller is a discrete
time system that uses resource flow semantics and therefore cannot in
a simple way utilize information about individual events. The sync con-
troller on the other hand operates on the event sequence and thereby
has access to the cycle completion time stamps.

91

Chapter 7. Resource control

0 1 2 3 4 5
time(s)

0

5

10

15

20

25

30

ŷ
AudioEncoder VideoEncoder NetworkStack

0 1 2 3 4 5
time(s)

�5

0

5

10

15

20

25

30

ŷ

AudioEncoder VideoEncoder NetworkStack

Figure 7.11 Execution rates compared with and without sync control. The
curves have been averaged over a window of 0.1 s to provide better visibility.

0 2 4 6 8
time (s)

�5

0

5

10

15

20

25

q a
,
q v

qa

qv

0 2 4 6 8
time(s)

�0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
i

AudioEncoder VideoEncoder NetworkStack

Figure 7.12 Queue lengths for a scenario with no sync control. The resulting
allocation is based on the average queue length (qa + qv)/2.

92

8

Implementation and

examples

This chapter describes a test system including synthetic tasks, estima-
tor and allocator based on the Linux CFS scheduler used to perform
the experiments presented in Chapter 6.

8.1 Motivation

During the process of research, a prototype resource management sys-
tem was implemented to allow for experimentation and to provide in-
sight into platform design problems. The framework was developed
with special care not to make use of specialized kernel patches or ex-
tensive external libraries, as such dependencies could result in porta-
bility issues. It also serves as a demonstration that resource manage-
ment can be employed using an off the shelf OS, which is especially
important for consumer products where time-to-market is an important
consideration.

8.2 Resource management architecture

Figure 8.1 shows a schematic of the system. The blue block signifies a
standard Linux kernel with CFS group scheduling capabilities (v2.6.24

93

Chapter 8. Implementation and examples

Linux Kernel

CFS Group Scheduler

Allocator

Estimator

Process

Process

Process

Managed
Processes

Unmanaged
Processes

?

events

model

parameters

scheduler

parameters

cpu

time

Figure 8.1 Resource management architecture.

or later up to at least v2.6.35).
The green block represents the resource management framework,

which in turn consists of an allocator and estimator. These two are
contained within the same process for data sharing purposes but as
two separate POSIX threads.
The red blocks represent processes that are managed by the frame-

work, meaning that they execute in a reservation and supply the esti-
mator with data. It is assumed that these account for the majority of
the resource consumption in the system.

MIPC - a minimalistic IPC protocol

Data is transmitted between components using a minimalistic IPC pro-
tocol developed for use with the resource manager. Data is sent as
datagrams and MIPC supports both local UNIX sockets and IP sock-
ets. As the estimation techniques support missing measurements, the
potential overhead of using TCP-based connections can be eliminated.
MIPC itself only handles sending raw byte data so the client will

94

8.2 Resource management architecture

need to specify interfaces on top of that, typically by sharing C-struct
definitions. The important MIPC-operations are

• mipc_connect_server

• mipc_connect_client

• mipc_send

and the full API is found in Appendix A. The protocol supports the bare
minimum required for the framework and for comparison, the compiled
binary is less than 10 kbytes in size and only have dependencies to
the C standard library and libc, while DBus, a popular interprocess
communications mechanism in desktop Linux distributions [26], is over
100 kbytes in size and have dependencies to over 1 Mbytes of additional
libraries.

Unmanaged processes

It is here assumed that the majority of the resource requirements
comes from a subset of the running processes. The remaining is seen
as noise. Should these components require a noticeable amount of re-
sources, this will affect the estimate of the relation between the allo-
cated share and the resulting execution rate, thus effectively make the
CPU seem slower.

Processes or threads

Keeping a component based abstraction level is an important goal,
as this gives increased flexibility to the software designers. By using
processes to track resource usage rather than threads, the anatomy
of the components is hidden from the resource manager. Whether a
process consists of one or several threads of execution should not matter
in this framework.

Experiment setup tools

A range of Python based tools were developed in order to facilitate the
scripting of test scenarios. A Python implementation of MIPC is used
to signal processes. For operations that require root level privileges
and access to non-standard system calls, a few C-based utilities were
created and then wrapped in Python code.

95

Chapter 8. Implementation and examples

8.3 Measuring time and resource consumption

The framework requires the managed components to push data to the
estimation algorithm in the form of cycle completion events. These
events contain

• a time stamp and

• a reading of the accumulated CPU-time for the component.

The resource measurement is performed as the time stamp is taken,
as sending and processing introduce latencies. It also means that the
resource cost of measuring is factored into the overall component re-
source requirements, thereby distributing the overhead rather than
centralizing it on the estimator.
Measurements of resource consumption have been done using the

clock_gettime() [67] system call rather than getrusage [24] as it pro-
vides better precision. An alternative would to be use the cpuacct-
subsystem available with control groups, but the system call was cho-
sen as it is both simpler to use and more efficient than parsing text
files.

Reservations with CFS Group Scheduling

The group scheduling functionality (see Section 3.2) that was intro-
duced with Linux v2.6.24 offers an easy to use way to do soft reser-
vations. From an experimental point of view, this requires some extra
effort as the allocation theory developed assumes hard reservations.
Shares are calculated by the algorithm as percentage of the total

CPU capacity. This must then be translated into an integer number, as
used by CFS, in such a way that the desired share equals the integer
weight / the sum of all weights. To avoid quantization problems, the
total available shares have been selected to be 10000. The CFS sched-
uler does not allow for an individual reservation period to be set on a
process basis so apart from share, no additional parameters must be
set.
Effectuating the allocation requires writing the shares to the virtual

files in a control group type file system.

96

8.3 Measuring time and resource consumption

Synthetic components

In order to run experiments with relevant load profiles, a synthetic
component was implemented and instrumented with logging and a
MIPC-based reconfiguration interface. The components execute in ac-
cordance with the cyclic component model (see Section 5.3) and with
parametrized behavior. Cycle time is drawn randomly from an inter-
val specified at startup and changed periodically. The parameters that
govern the behavior are

• k_min, k_max - controls the distribution of the cycle times.

• change_interval - determines how often cycle times are ran-
domized.

• rate - the rate set-point.

The components also log all completed cycles together with a snapshot
of the parameter set.

Estimator implementation

The estimation is a passive component in this framework and updates
estimates only when needed, in this case triggered by the allocation
thread. A MIPC-server is set up to collect all incoming data events
from the managed components, which is then stored in a record for
each individual client. The client submits a unique identifier, in this
implementation the process id of the main component thread, which
is then used as a primary key in a table containing all the managed
components.
The implementation supports individual estimator functions for

each component and supplies three default methods for rate estima-
tion:

• time window (counting events over an interval)

• event window (FIR-structure, time for a fixed number of events)

• autoregressive filter of the event arrival intervals (IIR-structure)

As all events are stored, the estimation history can be replayed at the
conclusion of the experiments and compared with the component log
files.

97

Chapter 8. Implementation and examples

Allocator implementation

The allocator is implemented as a periodic thread running at 1 Hz.
The work order is

• pull parameters from the estimator

• iterate the incremental solver from Chapter 6 until the potentials
are within the tolerance level

• effectuate the allocation by writing to the cgroup file system

The allocation algorithm utilizes a red-black b-tree [25] to sort the
components by potential, which allows for robust performance. It is
straight forward to both add and remove tasks from the tree, thereby
allowing the structure to persist between iterations. This circumvents
the often heavy set-up portions of off-the-shelf solvers.
A system parameter is the termination threshold. The algorithm

checks the difference in potential between the highest and lowest level
and if they are close enough, the solver terminates. In the simulations
used for this thesis, the tolerance is set to 0.001.

8.4 Example runs

This section presents the results from a sequence of experiments run on
a desktop Linux computer. The hardware was a 2.4 Ghz Pentium 4 with
512 Mb of main memory running a Linux 2.6.27-based Debian system.
The background noise consists of the software that runs on a typical
Debian desktop, including the X11/Gnome graphical environment, as
well as an Apache web server and a MySQL database engine.

Estimation and control

The first experiment is to validate the estimation and control strategy.
A single software component with constant but unknown cycle execu-
tion time is here controlled using feedforward based on an estimation
of the k-parameter.
Figures 8.2 and 8.3 shows the scenario using one second time win-

dow estimation and a 15 long event window estimation respectively.

98

8.4 Example runs

0 2 4 6 8 10 12 14
time (s)

10

20

30

40

50

60

70

ra
te

 (
e
v
e
n
ts

/s
)

Estimated rate using sliding time window (1s)

estimated rate
bw / set point

Figure 8.2 Estimation and control using time window

0 2 4 6 8 10 12 14
time (s)

10

20

30

40

50

60

70

ra
te

 (
e
v
e
n
ts

/s
)

Estimated rate using FIR-estimator (m=15)

estimated rate
bw / set point

Figure 8.3 Estimation and control using event window

99

Chapter 8. Implementation and examples

The time window performs well at higher rates, having more informa-
tion to form the estimate, while the event window estimator is more
responsive to change.

Constrained allocation

In this scenario, three components are running in a situation where
the system is overloaded. The components change their cycle execution
rates randomly every 3 seconds, with k_max/k_min equal to 2. Figure
8.4 shows the estimated rates over time and Figure 8.5 displays the
cost with a comparison with static worst case allocation. Towards the
end of the experiment, the component set is close to their worst case
cycle times, and this causes the system cost to approach that of the
worst case allocation.
To study how the performance depends on the level of uncertainty,

a series of experiments were run with increasing k_max/k_min. In
scenarios with low uncertainty, the dynamic strategy performs worse
than the static alternative, as the estimated parameters will, due to
the presence of noise, never be completely correct. However, as un-
certainty grows, the dynamic strategy shows significant performance
advantages, which is shown in Figure 8.6.

100

8.4 Example runs

0 2 4 6 8 10 12 14
time (s)

0

5

10

15

20

25

30

ra
te

 (
e
v
e
n
ts

 /
 s

)

11263
11267
11264

Figure 8.4 Allocation in an over-utilized system with rates estimated using a
one second time window.

0 2 4 6 8 10 12 14 16
time (s)

2000

3000

4000

5000

6000

7000

8000

C
o
st

 J

DCA
SWA

Figure 8.5 Cost for Dynamic Convex Allocation (DCA) vs Static Worst case
Allocation (SWA) over time.

101

Chapter 8. Implementation and examples

1 2 3 4 5 6 7 8 9
k_max / k_min

0

5000

10000

15000

20000

25000

n
o
rm

(J
)

SWA
DCA

Figure 8.6 Average Cost for Dynamic Convex Allocation (DCA) vs Static Worst
case Allocation (SWA) as uncertainty grows.

102

9

Conclusions

It can scarcely be denied that the supreme goal of all theory
is to make the irreducible basic elements as simple and as
few as possible without having to surrender the adequate
representation of a single datum of experience.

–Albert Einstein[30]

9.1 Summary

The topic for this thesis is resource management under uncertain con-
ditions, with focus on embedded systems. The contributions in this
field are: a model for resource allocation for rate-based software com-
ponents, an algorithm for solving convex allocation problems suitable
for media platforms and a control scheme for software components with
multi resource dependencies. The overall goal has been to find ways
to overcome the limitations of worst case-based designs through adap-
tivity and feedback control. A short discussion on the contributions is
given below.

Models for resource allocation

The currently dominant methods for resource management in embed-
ded systems are based in real-time scheduling theory. While these
methods are at this point very precise, they are also constrained by
the need for prior information. The models used in real-time contexts

103

Chapter 9. Conclusions

are meant to be applicable to many types of software, but this expres-
siveness also makes them complex. An important principle in control
design is to find simple models that capture the essence of the problem,
an idea that inspired the cyclic component model.
The cyclic component model is designed to mimic the input-output

models used traditionally for control in order to simplify the application
of control theoretic results. It is through these similarities that cyclic
components can be integrated into dynamic models containing both
software and hardware.
In order to estimate the dynamics of cyclic components on-line, it

is necessary to find alternatives to sample-based approaches. This is
partially due to that information is only available from the components
as they output completed results, but also from the fact that a system
can be constructed from components working on many different time
scales. This will make it hard to find sample intervals. By instead
formulating the states in continuous terms, this problem is removed
and also makes it easier to integrate the estimations into event-based
dynamics.

Convex allocation algorithm

Deciding on how to spend constrained resources is about making com-
promises, which is the domain of optimization. The algorithm pre-
sented in this thesis provides flexibility when designing policies for
sharing computational resources, while still being lightweight enough
to be used for adaptivity on limited hardware. By allowing the mix-
ing of cost functions, a system designer can control the trade-off made
during overload, even if neither software nor hardware specifications
are known at design time. Specifying performance in application cen-
tric metrics, proposed in this thesis to be the desired execution rate,
makes it easy for 3rd party developers to express the needs of their
applications.

Control of multi-resource dependent components

Components that have dependencies to more than one resource are
important building blocks for cyber physical systems. Finding system
wide policies for resource management requires modeling of the entire
supply chain, where components that influence more than one flow
will likely have a high impact on performance. The scheme presented

104

9.2 Future work

in this thesis uses control-like structures as unforeseeable disturbances
can only be attenuated through feedback.
The case study of a conversational video pipeline exemplifies several

problems that must be dealt with in such systems, including synchro-
nization and supply/demand imbalances. It also demonstrates some
effects resulting from a resource where supply depends on utilization
through some dynamic, in this case the thermal properties of the CPU.

9.2 Future work

Below is given some future directions of research based on the work
presented in this thesis.

Event-based control and sensing

Resource management is to a large extent about answering the ques-
tions "how much" and "when". This thesis has been about systems
where the number of events are large and the problem formulations
concerned with the quantity of events generated. In situations where
the events are few, an event-based control approach could be more ef-
fective. For mobile systems, the trade-off between sensing and acting
is one interesting direction.

Stability and convergence of adaptive reservations

If adaptive resource management is to be employed in safety criti-
cal or otherwise high risk situations, theory to prove convergence and
stability in dynamic situations is necessary. While the optimization al-
gorithm presented will converge to the optimum, it is not clear what
will happen to components that are started or resumed from suspen-
sion in overload conditions. This is essentially a reinforced learning or
dual control situation, but the simplicity of the component models used
could make it possible to find efficient strategies.

Mixed models for cyber physical systems

The conversational video example presented only contains resource de-
pendencies in one direction. In more complex situations, it is likely that
the software will be controlling hardware, which in turn can require

105

Chapter 9. Conclusions

power and other resources to function. The modeling of such a sys-
tem would require further development of the resource flow concepts
presented in this thesis.

106

A

Listings

A.1 MIPC

#define MIPC_FAILED -1

#define MIPC_SUCCESS 1

#define MIPC_MODE_LOCAL 1

#define MIPC_MODE_INET 2

#define MIPC_MAX_MSG_SIZE 1024

#define MIPC_PORT_BASE 40000

#define MIPC_PATH "/tmp/mipc/"

struct mipc_msg {

int size;

void *data;

};

typedef struct mipc_msg mipc_message;

typedef int mipc_connection;

int mipc_create_socket(char *path);

int mipc_exists(char *path);

107

Appendix A. Listings

void* mipc_loop(void *arg);

int mipc_connect_server(int addr,

int (*recieve)(mipc_message *msg),

int mode);

mipc_connection mipc_connect_client(int addr);

mipc_connection mipc_connect_inet_client(char *hostname,

int port);

int mipc_send(mipc_connection conn, mipc_message *msg);

mipc_message* mipc_new_message(void);

void mipc_free_message(mipc_message *msg);

108

B

Bibliography

[1] Luca Abeni and Giorgio C. Buttazzo. Integrating multimedia
applications in hard real-time systems. In Proceedings of the 19th
IEEE Real-Time Systems Symposium (RTSS ’98), pages 4 – 13,
Madrid, Spain, 1998.

[2] Luca Abeni and Giorgio C. Buttazzo. Adaptive bandwidth reser-
vation for multimedia computing. In Proceedings of the Sixth In-
ternational Conference on Real-Time Computing Systems and Ap-

plications, Washington, DC, USA, 1999. IEEE Computer Society.

[3] Luca Abeni, Giuseppe Lipari, and Giorgio C. Buttazzo. Constant
bandwidth vs proportional share resource allocation. In Proceed-
ings of IEEE International Conference on Multimedia Computing

and Systems (ICMCS ’99), volume 2, pages 107 – 111, Florence,
Italy, 1999.

[4] Luca Abeni, Luigi Palopoli, Scuola Superiore, and Jonathan
Walpole. Analysis of a reservation-based feedback scheduler. In
Proceedings of the 23rd IEEE Real-Time Systems Symposium

(RTSS 2002), pages 71–80, Austin, Texas, USA, 2002.

[5] ACTORS: Adaptivity and control of resources in embedded sys-
tems. http://www.actors-project.eu, April 2008.

[6] David P. Anderson, Shin Tzou, Robert Wahbe, Ramesh Govindan,
and Martin Andrews. Support for continuous media in the DASH
system. In Proceedings of the 10 International Conference on Dis-
tributed Computing Systems (ICDC ’90), pages 54 –61, Berkeley,
CA, USA, 1990.

109

Appendix B. Bibliography

[7] Android.com. http://www.android.com, 2010.

[8] Aquosa. http://aquosa.sourceforge.net/, 2010.

[9] K.E. Årzén. A simple event-based PID controller. In Proceedings
of the 14th IFAC World Congress, 1999.

[10] Karl Johan Åström and Richard M. Murray. Feedback systems:
an introduction for scientists and engineers. Princeton University
Press, 41 William Street, Princeton, New Jersey, 2008.

[11] Sanjoy K. Baruah, Aloysius K. Mok., and Louis E. Rosier. Preemp-
tively scheduling hard-real-time sporadic tasks on one processor.
In Proceedings of the 11th Real-Time Systems Symposium (RTSS
’90), pages 182–190, Lake Buena Vista, Florida, USA, 1990. IEEE
Computer Society.

[12] Shuvra S. Bhattacharyya, Gordon Brebner, Jörn W. Janneck,
Johan Eker, Carl von Platen, Marco Mattavelli, and Mickaël
Raulet. OpenDF: a dataflow toolset for reconfigurable hardware
and multicore systems. ACM SIGARCH Computer Architecture
News, 36(5):29–35, 2009.

[13] Stephen P. Boyd and Lieven Vandenberghe. Convex optimization.
Cambridge University Press, Cambridge, 2004.

[14] Giorgio C. Buttazzo. Hard real-time computing systems: pre-
dictable scheduling algorithms and applications. Kluwer Aca-
demic Publishers, Dordrecht, Netherlands, 1997.

[15] Giorgio C. Buttazzo, Marco Spuri, and Fabrizio Sensini. Value vs.
deadline scheduling in overload conditions. In Proceedings of the
16th IEEE Real-Time Systems Symposium (RTSS ’95), Pisa, Italy,
1995.

[16] Marco Caccamo, Giorgio C. Buttazzo, and Lui Sha. Capacity
sharing for overrun control. In Proceedings of the 21st IEEE Real-
Time Systems Symposium (RTSS 2000), pages 295 – 304, Orlando,
FL, USA, 2000.

[17] Marco Caccamo, Giorgio C. Buttazzo, and Lui Sha. Elastic feed-
back control. In 12th Euromicro Conference on Real-Time Systems
(ECRTS 2000), pages 121–128, Stockholm, Sweden, 2000.

110

[18] Bogdan Caprita, Wong Chun Chan, Jason Nieh, Clifford Stein,
and Haoqiang Zheng. Group ratio round-robin: O (1) proportional
share scheduling for uniprocessor and multiprocessor systems. In
Proceedings of the USENIX Annual Technical Conference, pages
36–36, 2005.

[19] Anton Cervin and Johan Eker. The control server: A computa-
tional model for real-time control tasks. In Proceedings of the 15th
Euromicro Conference on Real-Time Systems (ECRTS 2003), pages
113 – 120, Porto, Portugal, 2003.

[20] Anton Cervin, Johan Eker, Bo Bernhardsson, and K.E. Årzén.
Feedback–feedforward scheduling of control tasks. Real-Time Sys-
tems, 23:23–53, 2002.

[21] Computational geometry algorithms library. http://www.cgal.

org, 2010.

[22] Hojung Cha, Jaehak Oh, and Rhan Ha. Dynamic frame dropping
for bandwidth control in MPEG streaming system. Multimedia
Tools and Applications, 19(2):155–178, 2003.

[23] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Approximation
algorithms for bin packing: A survey, pages 46 – 93. PWS
Publishing Co, Boston, MA, USA, 1997.

[24] IEEE Computer Society. Portable Applications Standards Com-
mittee. IEEE Std 1003.1, 2004 Edition. The Open Group Tech-
nical Standard Base Specifications. IEEE, 3 Park Avenue, New
York, NY 10016-5997, U.S.A., 2004.

[25] Thomas H. Cormen. Introduction to algorithms. MIT Press, Cam-
bridge, MA, USA, 2001.

[26] Software/dbus. http://www.freedesktop.org/wiki/Software/

dbus, 2010.

[27] Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis
and simulation of a fair queueing algorithm. In SIGCOMM
’89: Symposium proceedings on Communications architectures &

protocols, pages 1–12, New York, NY, USA, 1989. ACM.

111

Appendix B. Bibliography

[28] Tech analysis: Crackdown 2 demo. http://www.eurogamer.net/

articles/digitalfoundry-crackdown2-demo-blog-entry, June
2010.

[29] Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-
time (BVT) scheduling: supporting latency-sensitive threads in
a general-purpose scheduler. SIGOPS Oper. Syst. Rev., 33(5):261–
276, 1999.

[30] Albert Einstein. On the method of theoretical physics. Philosophy
of Science, 1(2):163–169, 1934.

[31] Johan Eker and Jörn W. Janneck. CAL language report. Technical
Report UCB/ERL M03/48, University of California at Berkeley,
2003.

[32] Alexandre P. Ferreira, Daniel Mosse, and Jae C. Oh. Thermal
faults modeling using a rc model with an application to web farms.
In Proceedings of the 19th Euromicro Conference on Real-Time
Systems (ECRTS 2007), pages 113–124, Pisa, Italy, 2007.

[33] Yong Fu, Nicholas Kottenstette, Yingming Chen, Chenyang Lu,
Xenofon D. Koutsoukos, and Hongan Wang. Feedback thermal
control for real-time systems. In Proceedings of the 16th Real-Time
and Embedded Technology and Applications Symposium (RTAS

2010), pages 111–120, Stockholm, Sweden, 2010.

[34] Tobias Geyer. Low Complexity Model Predictive Control in Power
Electronics and Power Systems. Cuvillier Verlag, Göttingen, 2005.

[35] Ashvin Goel, Jonathan Walpole, and Molly Shor. Real-rate
scheduling. In Proceedings of the 10 IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS 2004), pages
434 – 441, Toronto, Canada, 2004.

[36] S. Jamaloddin Golestani. A self-clocked fair queueing scheme
for broadband applications. In Proceedings of the 13th IEEE
Conference on Networking for Global Communications (INFOCOM

’94), 1994.

[37] Michael Grant and Stephen P. Boyd. CVX: Matlab software for
disciplined convex programming, version 1.21. http://cvxr.com/

cvx, 2010.

112

[38] Michael González Harbour. FRESCOR: Framework for real-time
embedded systems based on contracts. http://www.frescor.org,
April 2008.

[39] Tian He, John A. Stankovic, Michael Marley, Chenyang Lu,
Yin Lu, and Tarek Abdelzaher. Feedback control-based dynamic
resource management in distributed real-time systems. Journal
of Systems and Software, 80(7):997–1004, 2007.

[40] Toivo Henningsson and Anton Cervin. Comparison of LTI and
event-based control for a moving cart with quantized position mea-
surements. In Proceedings of the European Control Conference,
2009.

[41] Ralf Guido Herrtwich. The role of performance, scheduling and
resource reservation in multimedia systems. In Proceedings of
the International Workshop on Operating Systems of the 90s and

Beyond, pages 279–284, London, UK, 1991. Springer-Verlag.

[42] Intel Corporation, Santa Clara, CA, USA. Intel 64 and IA-32
Architectures Software Developer’s Manual Volume 2A: Instruction

Set Reference, A-M, June 2010.

[43] Damir Isovic and Gerhard Fohler. Quality aware MPEG-2 stream
adaptation in resource constrained systems. In Proceedings of the
16th Euromicro Conference on Real-Time Systems (ECRTS 2004),
pages 23–32, Catania, Italy, 2004.

[44] Kevin Jeffay and Steve Goddard. A theory of rate-based execution.
In Proceedings the 20th IEEE Real-Time Systems Symposium,
(RTSS ’99), pages 304 – 314, Phoenix, AZ, USA, 1999.

[45] Hiroyuki Kaneko, John A. Stankovic, Subhabrata Sen, and Krithi
Ramamritham. Integrated scheduling of multimedia and hard
real-time tasks. In Proceedings of the 17th IEEE Real-Time
Systems Symposium (RTSS ’96), Washington, DC, USA, 1996.

[46] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack
problems. Springer-Verlag Berlin, Heidelberg, Germany, 2004.

[47] Edward A. Lee. Cyber-physical systems-are computing founda-
tions adequate. In Proceedings of the NSF Workshop On Cyber-
Physical Systems, Austin, TX, USA, 2006.

113

Appendix B. Bibliography

[48] Edward A. Lee. The problem with threads. IEEE Computer,
39(5):33 – 42, 2006.

[49] Caixue Lin and Scott A. Brandt. Improving soft real-time perfor-
mance through better slack reclaiming. In Proceedings of the 26th
IEEE International Real-Time Systems Symposium, 2005 (RTSS

2005), Miami, FL, USA, 2005.

[50] Mikael Lindberg. A survey of reservation-based scheduling. Tech-
nical Report ISRN LUTFD2/TFRT--7618--SE, Department of Au-
tomatic Control, Lund University, Sweden, 2007.

[51] Mikael Lindberg. Constrained online resource control using con-
vex programming based allocation. In Proceedings of the 4th In-
ternational Workshop on Feedback Control Implementation and

Design in Computing Systems and Networks (FeBID 2009), San
Francisco, CA, USA, 2009.

[52] Mikael Lindberg. A convex optimization-based approach to control
of uncertain execution platforms. In Proceedings of 49th IEEE
Conference on Decision and Control (CDC 2010), Atlanta, GA,
USA, 2010.

[53] Mikael Lindberg. Convex programming-based resource manage-
ment for uncertain execution platforms. In Proceedings of the
Workshop on Adaptive Resource Management (WARM 2010), Stock-
holm, Sweden, 2010.

[54] Mikael Lindberg and K.E. Årzén. Feedback control of cyber-
physical systems with multi resource dependencies and model
uncertainties. In Proceedings of the 31st IEEE Real-Time Systems
Symposium (RTSS 2010), San Diego, CA, USA, 2010.

[55] Giuseppe Lipari and Sanjoy K. Baruah. Greedy reclamation of
unused bandwidth in constant-bandwidth servers. In Proceedings
of the 12th Euromicro Conference on Real-Time Systems (ECRTS

2000), pages 193 – 200, Stockholm, Sweden, 2000.

[56] Giuseppe Lipari and Sanjoy K. Baruah. A hierarchical extension
to the constant bandwidth server framework. In Proceedings of
the Seventh Real-Time Technology and Applications Symposium

(RTAS ’01), Taipei, Taiwan, 2001.

114

[57] Jan Marian Maciejowski. Predictive control: with constraints.
Pearson Education Limited, Edinburgh Gate, Harlow, 2002.

[58] Cucinotta Palopoli Marzario, Tommaso Cucinotta, Luigi Palopoli,
Luca Marzario, and Giuseppe Lipari. Adaptive reservations in a
Linux environment. In Proceedings of the IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 238 –
245, 2004.

[59] Luca Marzario, Giuseppe Lipari, Patricia Balbastre, and Alfons
Crespo. IRIS: a new reclaiming algorithm for server-based real-
time systems. In Proceedings of the 10th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS 2004),
pages 211 – 218, Toronto, Canada, 2004.

[60] Clifford W. Mercer, Stefan Savage, and Hideyuki Tokuda. Pro-
cessor capacity reserves: Operating system support for multime-
dia applications. In Proceedings of the International Conference on
Multimedia Computing and Systems, pages 90 – 99, 1994.

[61] MobileRobots Inc, Amherst, NH, US. Pioneer 3 Operations Man-
ual, 2006.

[62] A Mok, X Feng, and D Chen. Resource partition for real-time
systems. In Proceedings of the 7th IEEE Real-Time Technology
and Applications Symposium (RTAS 2001), pages 75 –84, Taipei,
Taiwan, 2001.

[63] John B. Nagle. On packet switches with infinite storage.
IEEE/ACM Transactions on Networking (ToN), 35(4):435 – 438,
1987.

[64] Ocera. http://www.ocera.org/, 2010.

[65] Martin Ohlin. Feedback Linux scheduling and a simulation tool
for wireless control. Licentiate Thesis ISRN LUTFD2/TFRT--
3240--SE, Department of Automatic Control, Lund University,
Sweden, 2006.

[66] Shuichi Oikawa and Ragunathan Rajkumar. Portable RK: A
portable resource kernel for guaranteed and enforced timing be-
havior. In Proceedings of the 5th IEEE Real-Time Technology and

115

Appendix B. Bibliography

Applications Symposium (RTAS’99), Vancouver, British Columbia,
Canada, 1999.

[67] The single UNIX RF specification, version 2: clock_gettime. http:

//opengroup.org/onlinepubs/007908775/xsh/clock_gettime.

html, Jan 1997.

[68] Abhay K. Parekh and Robert G. Gallager. A Generalized Proces-
sor Sharing Approach to Flow Control in Integrated Services Net-

works: The Single Node Case, pages 533 – 546. IEEE, 1 edition,
2007.

[69] Ragunathan Rajkumar, Chen Lee, and Dan Siewiorek. A resource
allocation model for QoS management. In Proceedings of the 18th
IEEE Real-Time Systems Symposium (RTSS ’97), pages 298 – 307,
San Francisco, CA, USA, 1997.

[70] Raj Rajkumar, Kanaka Juvva, Anastasio Molano, and Shuichi
Oikawa. Resource kernels: a resource-centric approach to real-
time and multimedia systems, pages 476–490. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001.

[71] Saowanee Saewong and Ragunathan Rajkumar. Cooperative
scheduling of multiple resources. In Proceedings of the 20th IEEE
Real-Time Systems Symposium (RTSS ’99), page 90, Phoenix, AZ,
USA, 1999.

[72] J. Sandee, W. Heemels, and P. van den Bosch. Case Studies in
Event-Driven Control, volume 4416 of Lecture Notes in Computer
Science, pages 762–765. Springer Berlin / Heidelberg, 2007.

[73] Vanessa Segovia and K.E. Årzén. Towards adaptive resource
management of dataflow applications on multi-core platforms. In
Proceedings of Work-in-Progress Session at ECRTS 2010, Brussels,
Belgium, 2010.

[74] M. Shreedhar and George Varghese. Efficient fair queueing us-
ing deficit round-robin. IEEE/ACM Transactions on Networking
(TON), 4(3):375–385, 1996.

[75] Marco Spuri and Giorgio Buttazzo. Scheduling aperiodic tasks
in dynamic priority systems. Real-Time Systems, 10(2):179–210,
1996.

116

[76] Ralf Steinmetz. Human perception of jitter and media synchro-
nization. Selected Areas in Communications, 14(1):61 – 72, 1996.

[77] Dimitrios Stiliadis and Anujan Varma. Latency-rate servers:
a general model for analysis of traffic scheduling algorithms.
IEEE/ACM Transactions on Networking (ToN), 6(5):611–624,
1998.

[78] Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert Bos. Can we
make operating systems reliable and secure? Computer, 39(5):44–
51, 2006.

[79] Wim Taymans, Steve Baker, Andy Wingo, Ronald S. Bultje,
and Stefan Kost. Gstreamer application development manual.
http://gstreamer.freedesktop.org/data/doc/gstreamer/0.

10.30/manual/manual.ps, 2010.

[80] Versalogic Corporation, Eugene, OR, US.Model VSBC-8 Reference
manual, 2007.

[81] Xen. http://www.xen.org, 2010.

[82] Xenomai. http://www.xenomai.org, 2010.

[83] P Xingang, P Goyal, X Guo, and H Vin. A hierarchical CPU
scheduler for multimedia operating systems. In Proceedings of
the USENIX 2nd Symposium on OS Design and Implementation

(OSDI ’96), pages 107–122, 1996.

[84] Melanie N. Zeilinger, Colin N. Jones, Davide M. Raimondo, and
Manfred Morari. Real-time MPC–stability through robust MPC
design. In Proceedings of the Joint 48th IEEE Conference on
Decision and Control and 28th Chinese Control Conferenc, 2009.

[85] Lixia Zhang. A new architecture for packet switching network
protocols. PhD thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science,
1989.

117

Department of Automatic Control

Lund University
Box 118

SE-221 00 Lund Sweden

Document name
LICENCIATE THESIS
Date of issue
September 2010
Document Number
ISRN LUTFD2/TFRT--3249--SE

Author(s)
Mikael Lindberg

Supervisor

Karl-Erik Årzén

Sponsoring organisation

Title and subtitle

Adaptive Resource Management for Uncertain Execution Platforms

Abstract

Embedded systems are becoming increasingly complex. At the same time, the components that make up
the system grow more uncertain in their properties. For example, current developments in CPU design
focuses on optimizing for average performance rather than better worst case performance. This, combined
with presence of 3rd party software components with unknown properties, makes resource management
using prior knowledge less and less feasible.

This thesis presents results on how to model software components so that resource allocation decisions
can be made on-line. Both the single and multiple resource case is considered as well as extending the
models to include resource constraints based on hardware dynamics. Techniques for estimating component
parameters on-line are presented.

Also presented is an algorithm for computing an optimal allocation based on a set of convex utility
functions. The algorithm is designed to be computationally efficient and to use simple mathematical
expressions that are suitable for fixed point arithmetics. An implementation of the algorithm and results
from experiments is presented, showing that an adaptive strategy using both estimation and optimization
can outperform a static approach in cases where uncertainty is high.

Key words

adaptive, resource management, real-time systems

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title

0280–5316
ISBN

Language

English
Number of pages

120
Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library, Box 134, SE-221 00 Lund, Sweden
Fax +46 46 222 42 43 E-mail lub@lub.lu.se

