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ABSTRACT

The effects of cracking, creep, shrinkage and support displace-
ments on the deflection and the force distributicn at serviceabi-
Tity Timit state and on the rotation requisite at ultimate 1imit
state have been investigated for loaded beams, columns and frames.

The problem has been tackled by establishing first refined calcu-
lation models based on the behaviour of the concrete and the re-
inforcement and then simplified models, the reliability of which
is controlled in relation to these, and at last by putting the

simplified models together in models describing the behavicur of

the whole structure.

The investigaticn has resulted in relations for the determination
of the deformations of concrete on account of tensite and com-

' pressive stresses, basic creep, drying creep and shrinkage and
regard has been taken to stress changes in these relations, Further-
more simplified force-deformation relations have been established
for reinforced concrete subjected to normal force, moment, moment
plus normal force and shear force at the same time as creep and
shrinkage. Calculation methods for beams and columns based on the
stated simplified bilinear moment-curvature relations have been
evaluated and are accounted for and descriptions are given on how
to use them for more complicated structures. A systematized cal-
culation method has been established for frames based on the Toad-
deformation relations for beams and cclumns and conditions have
been given, for which frames may 59 cajiculated by a simpie method.

A great number of calcuiations have been performed to show the
effects of imposed deformations on Toaded beams and they are
gccounted for in diagrams and tabies by which the defiecticn,
moment distribution and rotation requisite may be determined.



NGTATIGNS

$1-unites are used unless otherwise stated.

AC area of concrete
AS area of tensile reinfercement
A; area of compressive reinforcement
of area of tensile reinforcement in span
Ass area of tensile reinforcement at support
é diffusivity m2/days
4 diffusivity at high pore humidity
Ea modulus of elasticity of aggregate
EC medulus of elasticity of concrete
Em modulus of elasticity of cement paste
ES modulus of elasticity of reinforcement
En secant modulus of elasticity of concrete at maximum stress
(EI)r §;§§?;§1 rigidity at cracked state for an additional moment

(EI)rC flexural rigidity at cracked state for an additional moment
loading at creep

(ET) flexural rigidity at cracked state for an additional moment
Toading at creep and shrinkage

flexural rigidity at cracked state for an additional moment

(ET)
loading at creep, shrinkage and normai force

rcsi

(EI)O flexural rigidity at uncracked state

(EI)OC flexural rigidity at uncracked state and creep

(EI)ocs flexural rigidity at uncracked state and creep and shrinkage

(EI)OCSN flexural rigidity at uncracked state and creep, shrinkage
and normal force

F concentrated Taterail load

GA shear rigidity

H relative humidity, pore humidity

Hen ambient relative humidity

K s1ip modulus
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moment

maximum moment in span
plastic moment

plastic moment in span
plastic moment at support

¢racking moment, the moment for which the flexural rigidity
passes frem uncracked to cracked state

cracking'mnment at creep and shrinkage

cracking moment at creep, shrinkage and normal force
moment at support

yield moment

normal force

temperature e

shear force

original water content in concrete L/m3

deflection, support displacement, slip
deflection at creep

deflection at creep and shrinkage
deflection at short-term load

width

distance from the centroid of the tensile and compressive rein-
forcement to the edge in tensicn and compression respectively

effective depth

function

mean flexural strength of concrete
mean compressive strength of concrete
mean tensile strength of concrete
tensile strength of reinforcement
total depth

constant

length of member, span iength, distance between cracks



Emax

ECC
cc

fecs
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maximum shortest cracking distance
distributed Tload

curvature

curvature at zero moment

safety factor

time, days

age at loading, days

depth of neutral axis

Tever arm

EC/ES, coefficient

material coefficient governing creep

coefficient governing the influence of age at loading on creep
ratic between the diffusivities at low and high pore humidity
shear strain, coefficient

coefficient ghverning the time function of creep

ratio between the final shrinkage in upper and lower edge
increment

strain

concrete strain, stress-related strain of concrete
creep (total or basic) of concrete
specific creep of concrete

drying creep of concrete

instantaneous strain of concrete
shrinkage strain

final shrinkage strain

strain in a local coordinate system
specific creep of cement paste

plastic strain

tensile strain at which concrete cracks
reinforcement strain

average strain of reinforcemeni



-9 -

Eq strain at maximum tensile stress

eé strain at maximum compressive stress
4 coefficient

n ceefficient

] retation, rotation requisite, slope
by coefficient

£ coefficient

te coefficient

o A /(b - h)

p' A;/(b + h)

o stress

9, stress in aggregate

o, stress in concrete

Cec compressive stress in concrete

Tot tensile stress in concrete

Teta average tensilte stress in concrete
T stress in cement pasie

O fictitious tensile strength at shrinkage
o stress in tensile reinforcement

Gé stress in compressive reinforcement
b creep coefficient

v (T4} - a * A/ (b-h)

! (T+o} =« = A/(b-h)

Other notations are explained where they are used.
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! INTRODYCTION

In the present Swedish design methods schematic rules are followed
for the consideration of the effects of imposed deformations. The
effects of imposed deformation is the name for those redistribu-
tions of forces which take place in statically indeterminate struc-
tures as a consequence of imposed defcrmations combined with additic-
nal deformations, which must be such that the total deformation
should be compatible with the external cornections of the structure.
As examples of imposed deformations shrinkage, temperature changes,
‘support displacements and deformaticns in connection with imperfect
fit of members may be mentioned. It may be an advantage to include
in the imposed deformations &1 those deformations which de not
correspond to the elastic effects of the applied forces and in this
work also cracking and creep are regarded as imposed deformations,
which is normally not the case.

The importance of the effects of imposed deformations is totally
different for the serviceability 1imit state and the ultimate limit
state. In serviceability limit state.defections and crack widths

are controlled with regard to integrity of secondary structures,
jmpenetrability, the risk of corrosion as well as aesthetic demands.
The analysis is normally carried out according to the elastic theo-
ry, in which the forces due to imposed deformations should be in-
cluded. At uitimate 1imit state the safety against failure is con-
trolled to be satisfactory. This is performed through a stability
analysis, in which the imposed deformations should be regarded, and
a control that the cross-sections can carry the section forces.
These are generally determined by calculations according to the
plastic theory without consideration to the effects of imposed de-
formations. Then, for the coilapse mechanism assumed, & control

must be done, that the rotation reguisite at each pilastic hinge does not
exceed the rotation capacity. In order to determine the required
rotations at the plastic hinges the rotations between the hinges
must be caleculated. Elastic behaviour is assumed in the regions
between the plastic hinges. This impiies that the imposed deforma-
tions should be included in the calculation of the rotations between

the plastic hinges. The rotation capacity is influenced by creep
and shrinkage. The present code dces not take into consideration
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the difference between the two states, but forms a compromise,
which often seems to underestimate the importance of the effects
of imposed defermations at serviceability Timit state, and over-
estimate their importance at ultimate 3imit state.

As an example of a schematic and, from the previous section, diver-
ging treatment of the influence of the effects of imposed deforma-
tions, it may here be mentioned that, at the design of bridges, a
standardized support displacement should be used, that the infiuence
of cracking on the variation of flexural rigidity of a structure is
usually neglected, that, at calculation of the influence of support
displacements, the structure should be assumed to be uncracked, and
that, at ultimate Timit state calculations, generally only an elas-
tic analysis is done, where the effects of the imposed deformations
are included in the same way as other loads. According to the
suggestion for a new Swedish concrete code, the more differentiated
design method described above wiil be used. This invelves an increa-
sed ampunt of calculation, and & practice for a simplification of
the calculation work has not yet been developed.

This investigation aims at presenting diagrams or formulae or cal-
culation methods which can serve as a guidance for the desigrers,
when they are to treat the influence of the effects of imposed de-
formations or loaded concrete structures at serviceability Timit
state as well as at ultimate limit state.

In order to make this guidance rest on a solid basis and to be as
generally valid as possibie, it has here been chosen to build up
refined calculation modeis, departing from the force-deformation
relation of the reinforcement and the concrete, and which, at the
present state of knowledge, describe the behaviour of reinforced
concrete as well as possible. With the aid of these refined cal-
culaticn models, simplified calculation models have been built up,
the reliability of which has been controlled against the more
accurate calculation models. These simplified models have then been
used on more complicated structures, and have resulted in diagrams,
formulae or methods for the calculation of the influence of the
effects of imposed deformations.
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2 CALCULATION MODELS

The calculation work has been pursued according to three calcu-
fation methods with different degrees of division and accuracy.

In method A (Fig. 2.1) ane starts from elements of concrete and
reinforcement for which a refined calcualtion model is valid, and
then these are put together into segments which iater are joined
into beams and columns and finally into frames. In method B

(Fig. 2.2) one starts from simplified force-deformation relations
for the segments, ard in method C (Fig. 2.3) from load-deformation
‘relations for beams and columns which are based on the simplified
force-deformation relations of the segments. References to these
methods will be made in conmection with the statement of calcula-
tion results in the fellowing chapters. Below is a closer descrip-

tion of the models.

Caiculation model A

The cencrete and reinforcement elements of method A can only carry
axial forces. The reinforcement is assumed to be ideally elasto-
plastic. The force-deformation relations of concrete are built

upen the condition that the total strain of concrete is

identical with the sum of the stress related strain, the shrinkage,
the basic creep, and the drying creep. Caiculation models have

been established for these different strains. The models take
stress vartations into consideration since great such variations
normally appear during a drying process. At the establishment of
the models great regard has been taken to the fact that, when they
are entered into the integrated calculation model, then this should
describe'the behaviour of concrete as well as possible. The material
dependent parameters of the models are determined by the consistency
of the concrete at the time of concreting and the stirength. In order
to be able to determine the shrinkage and the drying creep of the
concrete elements as a function of time, a caiculation wodel has
been established, by which the drying process of the seqment may

be calculated at a one- and two-dimensional drying process through
an element division of the cross-section and a forward difference
calculation in time. In the model the diffusivity is nonlinearly
dependent on the relative humidity of the concrete,
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The material properties of concrete and the models for its beha-
viour are described in ehapter 3.

At a calculation where the segments are divided into elements the
depth of each concrete element has been put equal to a tenth of
the depth of the segment. and the width of the concrete element
has been put equal to the width of the segment at a one-dimensional
drying process and equal to a tenth of the width at a two-dimen-
sional drying process. The reinforcement element has been placed in
the centres of gravity of the tensile and compressive reinforce-
‘ments with the same areas as these. Regard has not been taken to
the variation of:the stresses ovér the e]ements,but-the stresses
have been assumed to be equal to those in the centres of gravity
of the elements. For the segments it is assumed that plane cross-

sections remain plane.

In the calculations several iteration processes have been used. for
segments divided into e1ements two processes are required to ful-
il the conditions of equT}ibrium. If creep occurs an additional
one must be used in order to make the creep proportional to the
average stress of the e]eménts.within the time step, and for sta-
tically indeterminate strdétures,-one more iteration process must
be used to make the deformations of the segments fulfil the

bond conditions.

Both the force and the deformation methods have been used in the
calculations,. the deformation method in order to determine the
forces of the elements, and the force method ir order to determine
the rigidity of the segments, whereupon the section forces of the
structure have been determined by the deformation method.

With this methed (method A} the forces and deformations of a
structure may be followed as a function of time at drying and
varying loading. Furthermore, the reliability of the simplified
force-deformation relaticns of method B as well as the accuracy of
the calculation of a whole structure can be controlled with the use
of the relations of method A.
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Calculation method B

Generally, there is no interest in how forces and deformations
develop as a fumction of time, but werely of the initial and
final states. For these cases simplified calculation models
have been worked out by which it is possible to determine the
force-deformation relations of the segments. Such models are
established for loading with normal forces, moments, moments
and normal forces, and shear forces. Under creep and shrinkage
it is assumed in the modeis that the loading of the segments

is constant during the time Tapse, whereas a model has been
worked out for shart-time loading, where the load may vary. The
simplified force-deformation relations are treated in chapter 5.

The relations are derived with the assumption that the cross-
sections of the segments remain plare. The rigidities of the seg-
ments are calculated by the force-method, and the section forces
of the structure are calculated by the deformation method. For
statically indeterminate structures an iterative process must

be used to fulfil the boundary conditions,

The calculation method can be used for the final state at constant
toading or at short-time loading when the Toad varies, for example
to find out the influence of a support settlement during a Toading
process. (section 6.3).

Calculation method C

Method C can onlty be used foracaiculation of the initial and final
states. The load-deformation reiations have been determined for
simply supported beams loaded with lateral Toads, end moments and
rormal forces. At the derivation of the relations (aid formulae

in Appendix A4) the beam has been divided into uncracked and cracked
sections after the moment distribution that occurs when alt loads
work simultaneously. At the determination of the deformations a
simplified bilinear moment-curvature relation , which takes into
consideration creep, shrinkage and normal force, has been used.

With the aid of these load-deformation relations a systematized
frame calculation model has been worked out, by which loaded
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concrete frames, subjected to support displacements, may be cal-
culated. The model can be used at short-time loading, creep and
non-uniferm shrinkage with the consideraticon of partial cracking.
The calculation is carried out according to the deformation

method. The stiffness matrices for the beams and columns of the frame
are calcylated by the inversion of their flexibility matrices, which
are determined from the load-deformation relfations. An iteration
must be performed to make the division of c¢racked and uncracked
sections correspond to the distribution of forces. The frame
~calculation medel is used in chapter 8, and the load-deformaticn
reiations of the beams are used in chapters 6 and §. )
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3 THE MATERIAL PROPERTIES OF CONCRETE

A great many investigations describing the mechanical properties
of concrete are reported in literature, but the coverage of im-
portant parts is still incomplete. The resulis of the investiga-
tions and their interpretations are often contradictory, the
quality varies and the conditions are badly described in many
cases. It is often difficult to discern the influence of indi-
vidual parameters since the test results are accounted for as
a function of the influence of several parameters at the same

" time. This depends on the complex behaviour of concrete, which
involves difficulties in performing tests where the infiuence
af individual parameters can be isolated.

Influences are generally described by parameters unknown to the
designer. The investigations are seldom planned in such a way,
that the results could be used as a basis for a description of

the total behaviour of concrete under different influences,
eriabling a designer to make his estimate on the basis of his know-
iedge on the concrete structure in guestion.

An integrated description of the behaviour of concrete, based on
an understanding of the processes in the microstructure of the
cement paste, has been put forward by Bazant /69BA/. In order to
use his thecries, however, a vast experimental background is
required to correlate the large number of parameters. This makes
them very laborious fc use in practical applications and it is
doubtful whether such a correlation of parameters means anything
else than a description on a phenomenoiogical bases. In this work,
an integrated phenomenclogical model, starting from submodels of
the behaviour of concrete, has been developed, the description
uitimately being based on parameters given for the structure.
Great consideration has been taken to the fact that when the
different submedeis are put into an integrated calculation model, then
this model will describe the known behaviour of the concrete as
well as possible. Effort has been made not to complicate the
models unnecessarily but te decrease the number of parameters
controlling them, so that oniy parameters, the values of which
can be stated with sufficient accuracy, have been used.
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Submodels for, among other things, the stress-strain relation,
the shrinkage, the basic creep and the drying creep of concrete
have been constructed. Since the concrete in a structure during
a drying process normaily is subjected to big variations of
stresses, the sign of which also may change, this has been
considered in the models.

The description of the material properties has scmetimes been
made relatively comprehensive and the chapter contains passages
of a more general character in order to facilitate the under-
standing of and to give a more integrated description of the
total? behaviour of concrete. At the same time this general in-
formation partly forms the basis of the motivatian.for the

assumpticons made.

The reliability of the simplified calculation models described
tater (chapters 5, 6) is controlled zgainst the results from
calculations made with the models in this chapter.

3.1 Stress-strain relation of concrete

The shape of the stress-strain curve for compressed concrete has
Tittle influence on the behaviour at serviceability limit state
for a structure subjected to pure bending since the deviation from
a linearity is then insignificant. At service condition, however,
the structure is normally partly cracked. The deformation of the
structure increases considerably upon cracking. Therefore it is
important to know the stress-strain relation for concrete in tension
in order tc be able to judge whether the structure will crack, '
especially since both the cracking moment and the deformation at
cracking are affected by the non-uniferm shrinkage at drying.

In the ultimate Timit state the stress-strain relation in compres-
sion has a greater influence, since it affects the rotation capa-
city and the ultimate moment expecially in strongly reinforced
cross-sections. The stress-strain relation for concrete in tension
affects the flexural rigidity and hence has importance for the
determination of the rotation requisite and the buckling load as
well as for calculations according to second crder theory.
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3.1.1 Stress-strain relation for

The stress-strain relation in Fig. 3.1 is on the whole linear up
to a third of the maximum stress. The divergence from linearity
depends on the fact that internal micrecracks, some of which

have existed from the beginning, develop in the bonds between

the mortar and the coarse aggregate, At 70 to 90 % of the ultimate
stress mortar cracks begin to increase noticeably, and at the

same time new bond cracks form and develop continuous crack
'patterns, and the nonlinearity is further emphasized. The descen-
ding part of the curve is characterized by an increased break-
down of the bonds between aggregate and mortar, and by crack
formation ir the mortar and an interlinking of the cracks /72LIYU,
63HSU/. The long term compressive strength of concrete is about

75 4 of the short term strength /59RU/, i.e. the same as the
stress at which cracks develop in the mortar. The maximum
compressive strain at failure is about 6 to 8 times larger than
the one at maximum stress /70SW/. The rise and fall of the curve
are steeper at higher strength of concrete. In pure bending the
peak point of the curve occurs at both higher stress {about 20 %)
and higher strain (about 50 %) than it does at concentric compres-
sion /65ST/. A review of different formulae describing the stress-
strain relations of concrete can be found in /70PQ/.

An equation which describes the stress of concrete as a function of
the strain should fulfil five conditions.

1. The curve passes through the origin, i.e. o__ = 0 when € = 0

(ol
2. The slope of the curve in the origin equals the modulus of elas-
ticity of the concrete, i.e. dccc/dec = EC when € = 0

3. The curve passes through the peak point, i.e. Tp T fccm when

. i i.e. de = 0 for
4. The curve has a maximum, i.e doccf £e or e, = el

i

5. The curve passes through a certain point on its descending branch,

foe. o, =05y when £o T Ty

The following eguation suggested by Sargin /69SA/, which has proved to
correspond well with experiments satisfies these conditions.
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<c

fccm

Figure 3.1 Principle diagram for the stress-strain relation for
concrete in compression at constant strain rate.
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ey + (az - 3)ea§

g . =T
cc ccm Z
1 +7(0¢.E - 2)-a3 ta,0y

where ag = EC/EA, ay = Ec'sé/fccm = EC/E0 and ay is a parameter
which mainly determines the slope of the curve after the peak
point. The equation is relatively simple and has the advantage
that the parameters are determined by factors which are known to
the designer.

The modulus of elasticity of concrete exhibits a relatively large
variation. It may therefore occur that the real modulus of elasti-
city diverges from the assumed one by 20-2&5 %. The variation of
the moduius of elasticity with the strength of concrete at iow

stresses can be described by the eguation

- ; 2
Ec = 5200 ‘/fccm MN/m

In American codes the constant has been given the value 4740
whereas in Swedish codes it has been assigned a somewhat higher
value (about 5400). '

The magnitude of eé is dependent on the shear reinforcement, the
rate of loading and the strain gradient. Most researchers consider
is aTso dependent on the strength of cencrete. Sargin /69SA/
regards it independent of the strength of concrete. Here s; has
been given the value 0,0021 /689SA/ at concentric compression and

the infiuence of the other factors menticned above is disregarded.
For bending e/ has been given the value 0.003.

Saeng /64SAE/ has stated that the vaiue of EC/EO, i.e. e varies
from 1,3 to 4 when the strength of concrete varies from 70 to 7 MN/mE.
This will alsc be the case with the values assumed above of EC and

CO.

Here we will mainiy treat structures at serviceability limit
state which means that the slope of the descending curve will not
have any greater significance. The paramsier % has therefore
been given the value 1 instead of about 0,65 /69S5A/. When the
parameter oy has the value 1, the formula is somewhat simplified
and is transformed into a formula originally proposed by Saeng
/B4SAE/ .
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Figure 3.2 Principle diagram for the stress-strain relation for
concrete in tension at constant strain rate.
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3.1.2 Stress-strain reiation for concrete

intemsion e
The stress-strain relation in Fig. 3.2 is on the whole linear up
to about 60 % of maximum stress after which the microcracks, that
have existed from the start in the bonds between mortar and coarse
aggregate, develop more strongly. At about 75 % of maximum stress
also mortar cracks develop. The bond cracks and the mertar cracks
propagate and interlink at the same time as new bond cracks develop,
and the deviation from Tinearity between stress and strain is
strongly emphasized /66WE/. In the post-peak state, the strain
increases iocally while it decreases in the surrounding areas
/B6EWE, 69HE/ at the same time as the load decreases. The top of
the curve and particularly the descending part of the curve is sub-
stantially dependent on the testing equipment, the dimensions of
the test specimen and the measuring Tength /74HI/. The descending
branch of the curve corresponds to the average strain within the
measuring length where there is an increase of strain in certain
sections, and simuitaneously there is a decrease of strain in
other sections. At the same time as the force is reduced strain
reversal takes place in the test specimen outside the measuring
length, in the fastening devices and in the testing machine iiself.
When the strain increases in the prospective failure zone without
any additional movement in the testing machine the test specimen
fails. The testing machine affects the result since ifs elastic
deformation at unleading is different for different machines. The
length of the test specimen has an influence by the fact that the
reversing deformation gets larger when the test specimen is langer.
A test specimen with a larger cross-section area causes larger
changes of deformation at the uniocading of the machine and the
fastening devices than a test specimen with a smaller one. The
factors enumerated above mainly influence the occurrence of the
failure whereas the measuring length influences the shape of the
curve. The measured average strains will be dependent on the size
of that part of the measurement area within which the decrease of

strain happens.

At normal testing failure occurs as early as at the top of the
curve. By modifying the testing ecuipment we can also get the
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descending part of the curve as reported by for instance /66HU,
66HUG, 68HU, 75MA, 6BEY/. When measuring the strains on short lenghts
with and without strain gradient, strains ir the order of 2000
microstrains have been reccrded /655T, 66HU, 70IM, 68EV/. At a

Tower rate of loading larger strains are obtained /63KO/. The

strain gradient has a great influence on both the maximum strain

and the strain at maximum stress, and may increase these consi-

derably.

The tensiie strength of the concrete depends among other things on
the strength of the cement paste and on the strength of the bonds
between mortar and coarse aggreagte. The bond strength and hence
the tensile strength decrease with increasing maximum size of
aggregate /70J0, 66HU/. According to /69KD/ the influence of the
aggregate grading s insignificant if the maximum aggregate size
is constant whereas, according to /6BHU/, the strength decreases
considerably if the ratio between sand and coarse aggregate becomes
smaller than a certain value. Johnston /7000/ considers the stress
strain curve to be independent of the composition of the concrete
when stress and strain are expressed in per cent of their maximum
values. The strain is about 40 % of maximum strain at 50 % of
maximum stress. Johnston has performed his tests with a testing
machine, where failure occurs at the top of the curve. The maximum
tensile strength is attained 28-90 days after concreting and after
this it remains constant /70K0/. The maximum strain jncreases with
age /GBWE/.

An assumed stress-strain relation for concrete subjected to tensile
stresses should meet the following conditions. The stress should be
Zera when the strain is zero and the siope of the curve at this
point should be the same as the modulus of elasticity for concrete
in tension. The curve must pass the point (eo, fctm)’ where it
must have a horizontal tangent. The moment capacity of a non-rein-
forced beam with a rectangular cross-section and of normal size
should be about 20-80 % larger than that calculated under the
assumption of a rectilinear stress-strain relation and the flexural
stress being equal to the maximum tensile strength (fctm). The
increase depends on the strength of the concrete and on the depth

of the beam /76PE/. It will be smaller at a high strength /71NE/.
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The ultimate moment will be about 25 % Tower if the depth of the
beam increases from 10 to 50 cm /67MA/. This can be explained
theoretically with the aid of fracture mechanics and the assump-
tion that forces remain in the cracks /76PE/. The moment must

not decrease before cracking if the moment-curvature relation is
drawn for a non-reinforced rectangular beam /71AB/. Neither musi
the moment decrease at cracking, if the mement-curvature relation
is drawn for a rectangular beam which dees not coilaps when it
cracks. By curvature is here meant the average curvature and not
the one in the vicinity of the crack. When the tensile reinforce-
ment yields the concrete around this does not carry any forces.

The modulus of elasticity for concrete in tension has been chosen
equal to the one for compressed concrete.

The tensiie strength of the concrete has been chosen to vary with
the compressive strength according to the formula /70CEB/

_ R 2/3
_— 0,28 fcc (Mpa)

f:l‘.‘ m

t

The American codes state about the same value (0,498-fccm3/2) and

the formula agrees well with the original valtue of tensile strength
according to /67MA/, if it is assumed that the flexural strength is
about 50 % higher than the tensiie strength. The formula is assumed
to be valid for totally water-saturated concrete. Most researchers
and codes state lower values than the one stated here. This may depend
on the fact that a relatively short period of drying will reduce
the strength measured. CEB's formuia js valid for the 28 days

value of the strength. Hewever, here the formula is supposed to

be valid independently of the age of concrete, with the restriction
that the fensile strength is not supposed to increase after 90 days
/7040/.

When the strains are smalier than the strain at which maximum
tensile stress occurs the relation is supposed to have the same
shape as the one Tor compressed concrete, viz.
2
L f aq &3/(] + (u] - 2) gy ¥ a3)
ct E

ctm’

c ¢
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Figure 3.3 Stress-strain relation chosen for reinforced concrete
in tension where Esy denotes the strain at which reinforcement
starts yielding, ’

600~
500
400

3004

STRESS (psi)

2004

100+
T T T T 13 3 T o
0 160 200 300 400 500 600 700
MICRO STRAIN '

Figure 3.4 Models established by /74KU/ for the stress-strain rela-
tigr for concrete in tension.
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where oy Eclao/fctm and ay = gc/go

The values of maximum strains and of the shape of the descending
branch of the curve, stated in the above-mentioned literature,
are divergent. The vaiues measured are strongly dependent on the
testing method and therefore it is difficult to transiate the
measured strains into average strains. Conseguently, testing
results are lacking in order to make & more accurate determinaticn
of the shape of the descending part of the curve. It has therefore
. been given the schematic design according to Fig. 3.3. When the
peak point of the curve has been passed then the strain consists
of an average strain. If the concrete has cracked and is rein-
forced then the relation between average stress and average
strain is supposed to follow the dashed Tines. The curve meets
the conditions that have been mentioned above and has the effect
that the flexural strength becomes about 60 % higher than the
tensile strength. In Fig. 3.4 models assumed by another writer
78K/ for the relation between stress and strain are related .

A theoretica! study of the relation between average stress of
concrete and the strain for a centrically reinforced prismatic

bar according to plastic theory and at a progressive cracking
according to the theory of constant slip modulus {appendix Al}
indicates that the assumed relation is correct. {The theory of
constant slip modulus implies among other things that the shear
forces between reinforcement and concrele are proportional to

the slip between them.) However, the average stress should possibly
be somewhat higher for large strains. This is shown in Figs 3.5

and 3.6 that have been calculated for differeni ratics between the
areas of reinfercement and concrete with the aid of the theory of
constant siip modulus. The thick curve in the figures conmstitutes
an average vaive when the crack distances vary. in the calculations
& linear stress-strain relation has been used for the concrete. Af
the beginning of the cracking, forces probably exist between the
concrete on either side of a crack. This causes a greater uncer-
tainty of the shape of the calculated curves shortly after the
cracking. When the final crack distances have developed then the

figures probably give a relatively correct image of reality.
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Figure 3.5 Relation between average strain of reinforcement and
average stress/strength ratio of concrete for concentrically re-
inforced prismatic bar under successive cracking at constant rate
of defarmaticn.
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Figure 3.6 Relation between average strain of reinforcement and

average stress/strength ratio of concrete for concentrically re-

inforced prismatic bar under successive ¢racking at constant rate
of deformaticn.
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3.2 Stress-strainrelation for concrete
at leoad changes

3.2.1 Concrete exposed to compressive
stresses

According to tests made by /705, 70KA/ the stress-strain relation
will be subjected to Toops at unlcading, followed by renewed
icading, as shown in Fig. 3.7. In order to simplify, and as a
satisfyingly good approximation for this work the loop will be
represented by a straight line with the same slope as the

moduius of elasticity at the origin.

where fc denotes the curve of the stress-strain relation for

compressed concrete and ¢, the plastic strain.

pi
3.2.2 Concrete exposed to tensile
stresses

As far as the author knows there is no work which deals with this
subject, peither have any tests of his own been done within the

field. Here are therefore chosen relations which have been con-
sidered to be reasonable and to have reasonable consequences at
their application. If unloading occurs before maximum siress has

been reached then the siress-strain relation is assumed to follow

a straight Tine which has the same slope as the modulus of elas-
ticity at the origin. AL renewed loading the same line is followed until
the original curve is reached and then this curve is followed. If the
peak point has been passed, then at unloading a reversal takes

ptace along a line that intersects the abscissa in the same point

as if unlcading had happened from the peak point. At renewed icading
the same line is followed until the original curve is reached and
then this s foliowed. The principle is shown in Fig. 3.8 and is

expressed analytically through
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Figure 3.7 Stress-strain relation for cencrete in compression
at strain changes.
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Figure 3.8 Stress-strain relation for concrete in tension
at strain changes.
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c Epz}
G,F{SC - Epﬂ)/(sf - Epﬁ}

where ft denotes the curve of the stress-strain relation for concrete
in tension, ¢ ‘ the plastic strain, and £r the preceding strain
where the peak point has been passed, and o the stress belonging
to £

The last assumption of reversal after the peak point has been -
passed is doubtful. If the local strain increment is wholly

elastic then the assumption is correct, but if it is plastic the
assumption is wrong, and at unloading a line that is parallell

to the slope of the modulus of elasticity should be followed.

In reality the strain increment has probabiy both an eslastic and a
plastic component. The error brings about a simplification and

has probabiy no great significance, and it also makes the treatment
easier in those cases when unloading is followed by compressive

stresses.

3.2.3 Stresses change signs

Knowledge is lacking as to how concrete behaves in this case. An
assumption about the behaviour which is estimated to be relatively
realistic and which at the same time is relatively simple is
presented. This is based on the following principles, where fensile
strains and tensile stresses are assumed positive and compressive
stresses and strains are assumed negative.

The starting point of the curve which constitutes the stress-strain
relation for compressed concrete can only be displaced in a posi-
tive direction. The displacement is the same as the maximum plastic
tensile strain that has occurred (egié). The maximum displacement
is the same as the meximum plastic strain that may develop on

the tension side. Similarly, the starting point for the curve for
concrete in tension can only be displaced in a negative direction.
The displacement is the same as the maximum plastic compressive

strain that has occurred (agzé). The model cevers all conceivable



Figure 3.9 Stresses according te the stress-strain relation assu-
med, when the strains vary according to the order indicated by the
numerals.
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Figure 3.10 Stresses according to the stress-strain relation assu-
med when the strains vary according to the order indicated by the
numerals. :
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stress variations and is analytically expressed through

e s et e = —gMaX . e Lemx max
C pL’ 1 ¢ pic TAps o= T pL o pec “ef

Sgp = MIN {ft(ﬁz)’ Ec'(ﬁﬁ'ezpz)’ Gf{az_ang)/(gﬁf 'Eﬁpiﬁ

Ec < apﬁ: 9o = Max { fc(ac—egzi), EC'(sc—Epg)}

where & idenotes the latest plastic strain and the other terms are
‘explained earlier. The assumption is exemplified by Fig. 3.9 and
Fig. 3.10. The numerals of the figures state the order according

to which the points are reached at the assumed stress variations.
The strong stress variations that are shown particularly in Fig. 3.9
probably seldom happen in realtity. If such strong stress variation
should occur, then the assumptions are probably not totally satis~

factory.

3.3 The growth of compressive strength with time

Ching Fung Kee /71KE/ has proposed a formula for the growth of
the compressive strength with time. 1t is valid fer ordinary and
rapid hardening Portland cement for periods from 1 day to 1 year.
The temperature may vary during the process of maturing. The for-
muta has proved to agree weil with the tests that have been

accounted for and is therefore used here

_ M 2 1y
fem TWHID (-1
The maturity is determined by M = yat (11.7 + T}OC days where

4t denotes the number of days during which the concrete has har-
dened at the temperature 7°C. The final strength of concrete is
according to the formula i/m. If the compressive strength of concrete
has been determined with two different degrees of maturity then m

and D may be determined from

b MO - e eeme!
foemtl - MIIMZ)

m - 1CCcm]/fccmz ) Mi/MZ)
feem Ut = /M)
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where indices it and 2 denote terms at the time 1 and 2 respec-
tively. The compressive strength at other times can then be
calculated by interpclation or extrapolation. The formula dis-
regards the moisture content which must be an important factor
since the hydration rate is depending on this.

For normal concrete, with Portland cement as a binder, /70CEB/ has
suggested that the compressive strength in relation to the
compressive strength at an age of 28 days varies with the time

at normal temperature (15-20°C) according to the foilowing table

Age (days) 3 7 28 90 360
normal 0.0 ©0.65 1.00 1.20 1.35

fast hardening 0.5 0.7 1.00 1.15 1.20

If the temperature diverges from 20°C then the age is calculated
by the formula

£at(10 + T)/30

ot
n

With the values of /70CEB/ for 28 and 7 days as starting peint the
equation 3.1 above gives a siower growth of strength with time than
/70CEB/, a fact which appears at a comparison between the above
table and the following one

Age (days) 3 7 28 90 360
rormat 0.40 0.65 1.90 1.14 1.20

fast hardening 0.52  0.75 1.00 1.08 1.11

3.4 The drying process of concrete

The equation for transient two-dimensional moisture conduction at
varying diffusivity can be written /72BA/

éH
By’ o8,

s{C g—H) s{C
X
+
5t

X sy
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where H denctes the relative air humidity of the pores of the
concrete which from now on will be called pore humidity and C
denotes the diffusivity. The equation is analogous to that for
heat conduction and is solved hy making an element approximation
of the differential equation and describing the time variation
approximately with a forward difference procedure. The following
equation s used to obtain an acceptable approximation of the
diffusivity {which is strongly nan-1inear)

H
. ?
C=——— S D (H)-dH
Hy - H
2™
Hy

where indices 1 and 2 signify the paints between which the diffu-
sivity is calculated. The diffusivity has been chosen to vary with
the pore humidity (M) according to Fig. 3.11. The full dine in the
figlire is the variation assumed by Bazant /72BA/, which has shown
good agreement with tests, whereas the dashed Tine, which connects
well with the full line, is the one here sssumed. The parameter Cl
denotes the diffusivity for H = 1 and uO-C] the diffusivity for

H = 0. At the calculations made by Bazant in order to get & good
agreement with the tests reported by him the vaiue of C] has been

6

varying between 14-107° and 40-10” mz/day with one cccasional

value of 193-1078 m2/day. For concrete with an unknown value of

C3 Bazant states that as a2 rough approximation C] = 25-10”{j mzfday
may be chosen. This is the average value of his comparisons betwaen
caiculations and tests. The parameter o has been varying between
0.024 and 0.7, and when its magnitude is unknown i{ has been put
equail to 0.05. The great difference of the diffusivity for high

and low pore humidity depends on capitlary transpori at high pore
humidity. The difference causes great gradients in the pore humidity

during a drying process.

AL present there is ne reliable correiation between the diffusivities
and the composition of the concrete. However, generally it can be
stated that CT increases with the water-cement ratio of the concrete
J72BA, TENI/, and that the opposite is valid for - JFBRNTS .
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Figure 3.11 Diffussivity as & function of pore humidity. where
the full tine is the one stated by /72BA/ and the dashed line is
the one here assumed.
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The coefficient of moisture transfer guoted by /73SA/ is so big
in relation to the diffusivity of concrete that, with good
accuracy, the surface layer of concrete may be considered to have
the same relative humidity as the surrounding air.

It is doubtful whether Bazant's moisture transfer model describes
the drying precess in a phenomenclogically correct way. The model
should, however, give results that are realistic at the right

choice of C] and oy

The calculation method used here has been established and programmed
by Uif Wickstrtm and Sven Strandberg at the Division of Structural
Machanics and Concrete Constructicon, Lund Institute of Technclogy,

Lund, Sweden.

3.5 Shrinkage of concrete

Two phenomena cause shrinkage, viz. drying and carbonization. The
carbonization means that the carbon dioxide of the air reacts with
certain constituents of the cement. The carbonization does not occur
when the concrete is almost dry. The most advantageous condition

for carbonization appears when the pore humidity is about 50 % /72KE/.
For very porous concrete the carbonization shrinkage may then come
close to half of the totai shrinkage. For ordinary concrete the
carbonization, however, penetrates only a few centimeters into the

surface layer.

The drying shrinkage is the greatest part of the shrinkage of
concrete and in this work shrinkage will be treated as if it con-
sisted only of drying shrinkage. This is caused by the fact that
the calcium silicate gel contracts when the moisture content de-
creases., Shrinkage starts at the transition from the capiliary
area to the hygroscepic one which occurs at about 898 © pore humi-
dity. The magnitude of the drying shrinkage forardinary concrete
qualities varies between 400 and 800 microsirain for drving Lo

about 40 % pore humidity.
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3.5.1 Effect of the material

The drying shrinkage of the cement paste is 5-15 times larger than
that of concrete /72KE/. The aggregate counteracts the shrinkage.
The more thickly packed the aggregate is and the higher its
moduius of elasticity the less will be the shrinkage. Outside
Sweden are sometimes used aggregates that are affected by mois-
ture and they may cause a considerable increase in shrinkage. Also
some Swedish aggregate materials such as sandsiore and slate are
affectad by moisture.

The water content of the concrete mixture has a great influence

on the magnitude of the shrinkage. This depends, among other things,
on the fact that when the water leaves the concrete there remains

a pore which does not counteract the development of the shrinkage
in the same way as the aggregate material would have done. The
shrinkage for concrete which caontains 270 kg water per cubic meter
is more than twice as big as for concrete containing 150 kg/ma.

An increase of the air coentent does not involve a great increase
of shrinkage since a decrease of the water content may be done
in order to obtzin the same consistency.

An increase of the cement content and its fineness is by many
considered to cause a greater shrinkage. The composition of the
cement affects the shrinkage. An addition of calcium chleride
may caise an increase of shrinkage by up to 50 % /72KE/.

3.5.2 Effect of the environment

Both the time function and the magnitude of shrinkage are ruled by
the relative humidity of the environment. The final shrinkage

is reached at the same time as the moisture .content of the
concrete is in equilibrium with that of the envirconment. In Fig.
3.12 the Tinal shrinkage is shown as a function of the relative
humidity of the environment in relation to the final shrinkage at
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50 % relative humidity according to /70BE, 70CEB, 70ACI/.

The difference between the curves is refatively small. In this
paper the CEB suggestion is followed. The shrinkage is

not totally reversibie which means that the concrete does not
swell in the same degree when the pore humidity increases as
the first shrinkage at the corresponding decrease.

For indoor structures it may be assumed that the average value

of the relative humidity during one year is about 40 %, the vatlue
being somewhat Tower during heating season and higher during summer.
For cutdoor structures or structures in spaces not being heated

the average value per year may be assumed to be about 80 %.

3.5.3 Magnitude_of the final shrinkage

This chapter is based on ar investigation performed by Hillerborg
/74H1/ concerning the magnitude of the final shrinkage. This in-
vestigation will be the basis for the treatment of shrinkage in

future Swedish codes.

Hillerborg starts from a simpie model according to Fig. 3.13, whe-
re the aggregate counteracts the contraction of the cement paste.
With the aid of equilibrium and compatibility eguations the final
shrinkage of concrete may be expressed as a function of the finai
shrinkage and modulus of elasticity of the cement paste and the
amount and modulus of elasticity of the aggregate. The final shrinkage
and modulus of elasticity of the cement paste are determined by the
water-cement ratio, and the aggregate volume is determined by the
water content and water-cement ratio. This means that the final
shrinkage becomes a function of the water centent and the water-
cement ratic. The cement content has a miner impertance compared

to the water content and a simplification may therefore be done

by expressing the Tinal shrinkage in water content only. Hillerborg
has suggested, within the appropriazte variaticn iimits of concrete
mixtures, that the Tinal shrinkage at 50 % relative humidity is

_ _ . .
Ecss 3.75 (wo 50} microstrain
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Figure 3.13 Model for caiculation of the influence of aggregate
on shrinkage.
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where.w0 denotes the original water content in 2/m3.

Hansen and Mattoch /66HA/ have performed tests which indicate that
the final shrinkage s dimension dependent, whereas tests by
MamiTian /68MA, 69MA/ contradict this. CEB /73CEB/ has suggested

a dimension dependence which is somewhere inbetween. Ir this

work any possible dimensicn dependence of the final shrinkage is

disregarded.

‘The designer does not usually know the water content of concrete,
whereas, however, the consistency is known since it is stated on

the drawings. Consequently, Hillerborg has transformed the parameter
water content into consistency and maximum aggregate size for nor-
mally graded aggregate. As a function of these two parameters the
final shrinkage may be determined from Fig. 3.14 at 50 % relative
humidity. At a different relative humidity Fig. 3.12 sheould be

taken into consideration.

3.5.4  Time_function of shrinkage

Shrinkage, measured in tests consists of the overall defermations
of the test specimen, which is an integrated effect of pure shrin-
kage, creep and stress at every particuiar point.

In order toc determine the pure shrinkage at a certain time in one
point of the structure the foliowing method is used. The finail
shrinkage is determined by the relative humidity of the surrounding
air. The pore humidity of the point, at the moment concerned, is
calculated. The shrinkage is then determined as the final shrinkage
multipiied by the present decrease and divided by the final decrease
of pore humidity. The method is based on the assumption of linearity
between shrinkage and decrease of pore humidity, and implies that
the shrinkage wiil be governed by the same time functicn as the
drying expressed as change in pore humidity.

The relation between final shrinkage and relative air humidity
(Fig. 3.12) is not linear but the deviation is moderate. The drying
to equiiibrium moisture condition theoretically takes an infinite



- 43 -

Logg fue

-
L

- FLUID
SEMI-FLUID /
~ PLASHC S
HARSH /

[ 15 32 64
MAXIKUM SIZE OF
AGGREGATE, mm

Figure 3.14 Relation between final shrinkage, consistency and
The maximum size of aggregate at 50 % relative humidity.
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time. A certain amount of time is probably needed for shrinkage’
to develop in one point. A certaén pore humidity is reached
faster if drying is to happen at a Tower equilibrium state. This
may imply that the deviaticen from a rectilinear relation between
shrinkage and decrease becomes even smaller than what may be
expected when regarding Fig. 3.12.

3.6 Creep of concrete

- Creep is a function of several different parameters such as the
composition of concrete, the properties and amount of materials
inctuded, the temperature and pore humidity of concrete before
as well as during the loading process, the maturity of concrete
at Toading, and the state and magnitude of loading. Humidity and
temperature changes have a great influence on the magnitude of
creep. Creep has not yet been completely surveyed. Lots of tests
have been performed within this field. However, many times the
tests are not particularly well-defined as concerns all parameters,
and sometimes the resuits are contradictory.

With the present knowledge it should be possible to spiit up creep
into basic creep, occurring at equilibrium state of humidity and
temperature, sorption creep, occurring at changes of humidity, and
creep that occurs at temperature changes.

Basic creep may be divided inte an irrecoverable, viscous component

and a recoverable, delayed elastic component /68IL/. The recoverabie
component is assumed to be Targer than the irrecoverable one at the

beginning of the lpading process and soon reaches a limiting value.

The irrecoverable component is assumed toc grow continuously with

a decreasing rate or possibly reach a Timiting value asymptoticaily

after a very long time.

Sorption creep occurs both at drying and wetting. The concrete
generally contains more moisture shortly after concreting than later
when the moisture is in equilibrium with the humidity of the environ-
ment, and therefore sorption creep is often cailed drying creep. De-
pending on the degree of drying, it is in many cases larger than basic
creep and is considered fuily developed when the equiltibrium state of
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moisture is reached. It is assumed to have the same time function

as drying and shrinkage.

When temperature increases a special kind of creep occurs. This

is relatively large compared to basic creep even at moderate
temperature increases and many times larger at big temperature
increases. It is considered to have the same time function as the
temperature increase of concrete and to be proportional to this.

At temperature decreases this creep does not occur. If the tempe-
rature varies in cycles it is insignificant except on the first
temperature increase. This type of creep will not be treated here,
but is described in /66HAN,74TH/. A%i creep is a function of stress.

3.6.1 Basic_creep of concrete

By basic creep is meant the recoverable and irrecoverable creep,
which occur when the concrete is in temperature and humidity
equilibrium with the envircnment. For simplifying purposes it has
here been chosen not to separate the recoverable and irrecoverable
comporents from each other, but to treat basic creep as a whole.
This is partly due to the difficulties in choosing the correct
values of the parameters governing the two components of creep.
The magnitude of basic creep is dependenf an the creep of cement-
paste, the quantity and properties of the aggregates, the pore
humidity, the temperature and the time under Toad, and the age at
loading, and may be expressed as

see = Filo) Folt) folt )4 () - F(T)-Foladrep Frlece)
where

f2 = function of stress

f2 = functicn of time under load

fy = function of age at loading

f4 = function of pore humidity

f5 = function of temperature

f6 = function of the composition of concrete

E%c = specific creep of the cement paste

f, = function of previous creep
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3.6.1.1 Influence of stress on basic creep

Most creep tests are performed on concrete in compression. The
relation between creep at compression and stress is linear when
the ratio between stress and strength is low. When this ratio
exceeds 0.3 to 0.6 then creep increases more than stress /70NE/.
At a low water-cement ratio the deviation from the rectilinear
relation occurs eariier than at a high water-cement ratio /66RU/.
The ratio between stress and strength is gererally not higher for
* concrete in compression at serviceability 1imit state than to make
it possible, as a reasonable approximation, to assume a linear
refation between creep and stress.

It is more difficult tec determine creep in tension since the stresses
must be kept relatively Tow because of the Tow tensile strength of
concrete. Opinions vary as to whether there is any difference

between the influence on creep of tensile and compressive stress
/7ONE/. In serviceability limit state the tensile strength is often
exceeded. This implies that the stress-strength ratio is often high.
Iin order to simplify and because of lack of knowledge the same
linear relations have been assumed between tensile stress and creep

as between compressive stress and creep.
3.6.1.2 Time function of basic creep

It is difficult to find a time function which shows good agreement
with the development of creep at any time. Different creep fests
give different time functions and it is alsc difficult to be totally
assured that the tests accounted for are free from drying creep.

The tensile and the compressive creep are considered to have the
same time function. It has here been chosen to let creep vary with

time according to

Ruetz /66RU/ refates tests where a 6 day creep constitutes 37 % of
the 2 year creep if the age of loading is 28 days. (At a lower age
of loading the 6 day creep constitutes a higher percentage). This
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gives Bc the vaiue 0.244. The term Be has been chosen egual to
0.24. Possibly this value is somewhat high when the time under

Toad surpasses 2 years.

Neville /70Ne/ has stated creep values that correspond to con-
siderably Tower values of the term g, partiguiarly upon Tlonger
times under Joad. At these tests there is probably a drying creep
simultanecusiy. The value 0.24 of the constant impiies that the
creep is doubled when time under foad is multiplied 18 times.

3.6.1.3 Influence of age at loading on basic creep

The dependence of creep upon age at loading is assumed to.vary

according to

Falty) = acg'ty et
where t0 denotes the age of Joading in days and the term @y is
determined so that fq will be equal to I when t, = 28 days.

According to /70HE/, where /B9HE/ is accounied for, the ferms Lo

and Bct may be estimated to 1.95 and 0.2 respectively. These

values are valid for test specimens that have been stored in about
75 % relative humidity of air and where tO varies from 7 to 300 days.
Since the test specimens have probably not been in equilibrium state
of moisture with the environment there is a risk that this has
influenced the results. Ruetz /66RU/ has performed tests where

the test specimens have not had any moisture exchange with the
environment. From the results related by him it is possible to
estimate roughly the constants Gt and Bt to 2.5%4 and 0.28 res-
pectively {14 = tO < 365). Ruetz's tests indicate that the constants
are dependent on the water-cement ratio of concrete. Here, however,
this fact is neglected and the function is chosen

5 oeg.p-0.78
F(t)) = 2.54-t

If the temperature deviates much from 20°C ther time should be
adjusted in the same way as is done upon the growth of strength with

time. The influence of age at Toading is given in the table below
for both /70NE/ and the alternative chosen
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to days 14 28 30 180 360
f3(to) chosen 1.21 1.60 G.72 0.59 0.51
f3{t0) /TONE/ 1.15 1.00 0.79 0.69 0.62

As can be seen the time function chosen here varies more with
time than the one from /70NE/.

3.6.1.4 Influence of pore humidity on basic creep

Relations measured between the magnitude of basic creep upon
equiltibrium relative humidity at lower pore humidity than 100 %

and the magnitude at 100 % are given in Fig. 3.15 /66RU/ for two
different water-cement ratics. The simplified relation assumed here,
which is independent of the water-cement ratio, is shown by the
dashed line. This relation which, on the whole, follows the curve for
the water-cement ratio 0.65, is assumed to be the one that corre-
sponds most fo normal concrete, and may at the the same time be
assumed as a reasonable approximation, since the basic creep upon
heavy drying merely constitutes a minor part of the total creep.
Consequently, the relation may be expressed

R H = 0.80
7 =H2 - 0.6 0.35 £ H = 0.80
n = 0.1 H £ 0.35

where H = the pore humidity of concrete.
3.6.1.5 Influence of {emperature on basic creep

The rate of creep increases with the temperature. If the test spe-
cimen is saturated, however, the velocity of hydration also increa-
ses. In Fig. 3.76 is shown how these two factors co-operate /66RU/.
If the concrete is dried before loading there is no further
nydration and the creep increases continuously with temperature
(Fig. 3.17 /66RU/). The velocity of hydration decreases when the
pore humidity drops below about 80 % and it ceases at about 30 %
/70NE/.
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3.6.1.6 Relation between creep of cement
paste and concrete

The same model that was used to determine the relation between
the shrinkage of concrete and cement paste can be used. Assuming
that the aggregates do not creep or affect the creep of cement
paste through chemical processes, the following equations may be
established at elastic conditions at an exterior stress equal to ]
{Fig. 3.18)

The initial state

i Y 2 .
T=o (1 -87) +o,,8 _equilibrium equatTE?
o a
fEl = EEE compatibility equation
m 2
. -
1-2, 2l oo, total deformation
g 13 e
m d
tater
T =0 (1 - 82) +a '52 equilibrium equation
mZ al
(o3 <
mZ . _ al
T %m3 me E, “m “m3 * e
m compatibility eqguation
1-¢ , ) “a2 . _ .
E * €mc(] B) + - et
m a

total deformation

From these equations follaows

fle e (1 a)(T k)
where

B(Y + £) >k 2 B(1 + &)

(1 +ef-10° P (1 6fa - 1000+ efa - 1+ el tELD)
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Figure 3.18 Model for the calculation of the relatipn between
the creep of concrete and cement-paste.
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for

N and

%ml = “m3 * Om2

where a= Ea/Em and 33 = voiume share of aggregate.

Thegretically k_ is situated in the interval 0.14 2 kp z 0.064 at
& reasonable variation of the parameters encircling kp. At a test
accounted for by /66RU/ k = 0,16. Since k_ for normal concrete
is relatively small, its varjation has little influence, and
therefore the value of kp is assumed to be 0.16.

Neville /70ME/ has assumed that an eguation established by Pickett
concerning shrinkage may also be used for creep
3.k

! = ! -

fec © e (1 87)
where k theoretically is about 1.4 whereas values between 1 and 2
have been determined on comparisons with tests. At shrinkage the
shrinkage of cement paste is not affected by the fact that forces
are transferred to the aggregates. This is, however, the case at
creep, which means that the eguations for shrinkage and creep should

not have the same structure.

The ratio between creep of cement paste and concrete has therefgre
been chosen

elo = 1.16we! (1 - g) (3.2)

where 33 = volume share of aggregate and is equal to the total

volume minus the volume of water and cement.

3 wo

g7 =1 - i) (0.32/vet + 1) (3.3)

where NO is the originai water contents of concrete in ﬁjm3 and vct
the water-cement ratio. At air-entraining regard is taken to this
in a corresponding manner,
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Figure 3.19 6-day creep strain of 28-day old specimens of diffe-
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values for 8 different kinds of cement. /66RU/.
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3.6.1.7 Basic créep for different concrete mixtures

The mineralogical composition of the aggregates may have great
influence on creep /69BE, 70NE/. Somewhat diverging opinions
exist as to how different aggregate materials behave in concrete.
Here it is assumed that the aggregate material consists of granite
which is the most common in Sweden, and which does not react with
the other materials in the mixture.

. The specific basic creep is here described by the formula

where t denctes the time under load in days, and the term Bes @S
described earlier, has been given the value 0.24. Fig. 3.1% /66RU/
shows the specific basic creep of the cement paste after 6 days at
100 % relative humidity, the age of loading is 28 days. By using
the equations 3.2, 3.3 and 3.4 and Fig. 3.19 it is possible to
determine e, a5 a function of the water-cement ratio of concrete
and its original water contents wo. This relation is shown in

Fig. 3.20.

At a different age of loading and pore humidity, a, may be correc-
ted according to sections 3.6.7.3 and 3.6.71.4 respectively.

3.6.1.8 Basic creep at varying stresses

Basic creep s assumed to be preportional to stress i.e. concrete
is supposed tc be linearly visco-elastic. At least five generally
established models are available for the determination of the creep

of concrete at varying stresses.

The most simple and maybe most used design method consists of
counting with a fictitious medulus of efasticity. This method
totally negiects the stress history, it gives a complete and imme-
diate creep recovery at unloading and underestimates the creep at
decrease of stress. Other methods for a determination of creep are
one that is valid for time hardening materials /71CE/, rate of
creep, and one that is valid for strain hardening materials. To a
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certain degree, these two methods take into consideration the

stress history, but they assume that the whole creep is irreversible
and conseguently no creep recovery may occur at unloading. The
superposition method /58R0O/ normaily presupposes that the whole
creep is reversibie. This means that creep is underestimated

at a decreasing stress. The method rate of flow /65EN/ distinguishes
two components of creep, an irreversible and & recoverable

delayed elastic component. This means that in order to use it the
magnitude of each creep component and their time functiens must

be krown.

At an assumed stress variation according to Fig. 3.27, where also
the curve for the specific creep is shown, creep will be calculated
according to a model valid for time hardening materials (TH) as

TH e = oeep * (g + m)-[géc(t] +at) - eéc(ti)]

and according to the superpositicn method (SP) where creep is assu-

med totally recoverable

Sp = cr1'ecc(t1 + At} + Ao'scc(ﬂt)

fee?

and for a strain hardening material (SH}
SH ee2 = fect t (5] + AU)-[ecc(ti + at) - ECC(t1}J
where ti is determined from the relation (n] + AU)'eéC(t’) = et

The TH method is simple to use. However, it does not take into con-
sideration the previous stresses at calculation of the change of
creep during the next time step. No creep recovery occurs at the
decrease of stress, but the creep continuousty increases at loading.

The 5P method is very laborious to use and is not suitable for
computer calculations since it requires that the whole stress
history is used for a calculation of creep under z new time step.
Its advantage is that a creep recovery takes place at decreases
of stress. The method may be improved by using a new specific
creep for every new time step which takes into consideration the
age of Toading for the stress changes.
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The SH method is almost as simple to deal with as the TH methed. In
this method regard is taken to previous creep at a calculation of
the creep changes. No creep recovery cccurs at decreases of stresses.

At a comparison between experimentally measured and calculated values
for creep with the TH and SP methods /58R0/ it appears that the
TH method gives too small creep at increase of stress and too large
at decrease of stress. For the SP method the oppesite condition is
valid. It may be shown that the SH method gives creep values between
- the caiculated ones according to the TH and SP methods for both
increase and decrease of streés. It has here been chosen to use the
SH method, which is considered to give reasonabie creep values in
relation to the calculation work as well as to the insecurity at a
determinaticn of the parameter values which govern the creep.

Ouring a drying process it may occur that the stresses change signs
mare than once in certain parts of a structure. The SH method
established dces not work when creep and stress have different
signs. In order to be able to determine unequivocaily the creep

in these cases, a modification of the creep model has been done.
With this creep is determined by

. i 1 o !
fee 7 fccac T O [}cc(t tat) - ep (b )]

where ¢ is the stress during the time step at, Eéc(t) the specific

creep at time t, and Eecac the creep accumuiated before. The time

t' is determined by
[ 1 - -
orece(t') = e, ~ A

where A is egual to the maximum creep reached before, with the sign

opposite to a.

In order to simplify the understanding of the modei and to describe
its behavicur, a calculation is made for a stress process according
to Fig. 3.22 where also the caiculated creep process is shown.
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Figure 3.21 The assumed stress variation and the specific basic
creep used in the calculation of the effects of stress var1at10n
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Figure 3.22 Creep according to the SH-method when stresses
change signs.
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Al = 9y (t, ~ t2) togye (t2 - t])

ee T Feeacy T %2 [aéc(tl * -ty - Séc(il)} = oyreee(ty) ¥
+ UZEéC-(tI + t4 - t3)

At a computer calculation, two values of A as well as the accumulated
creep must be stored for each concrete element. If the values of

A are not stored in the model, but only accumulated creep is used

and t' is given the value zero when accumulated creep and stress

have opposite signs, the calculation of creep will not be uneguivocal,
which is shown in Fig. 3.23, where the calculation of a time step

is alternatively done by dividing it into two time steps.

In appendix A? equations have been derived for a determination of
creep and relaxation with the SH method at continuous stress changes.

The creep model here assumed, which is based on the assumption that
concrete is strain hardening, does not imply a linear relation
between creep and stress, so that, if another relation is assumed
to prevail, o may be exchanged by this relation.
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Figure 3.23 If the accumulated creep is used as a basic for the
determinatien of t' the model will not be unequivocal at stress
changes.
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3.6.1.9 Basic creep at varying pore
humidity and temperature

Concrete generally contains more moisture at an early age than at
its future equilibrium state of humidity with the environment. The
pore humidity will therefore vary with time. Basic creep is a
function of the pore humidity according to section 3.6.1.4.

Upon calculating basic creep at varying pore humidity, the same
model as is used at varying stress, based on the assumption that
concrete is strain hardening, may be used. The stress must then be
multiplied with the value from the function governing the relation
between pore humidity and basic creep. In the model the pore
humidity as well as the stress may vary at the same time.

If temperature varies the same procedure may be used, and since it
may be assumed that the functions governing the relations between
basic creep and stress, pore humidity and temperature are independent
of each other, ¢ in the model in section 3.5.1.8 may be exchanged

by the values of the functions multiplied with each other.

3.6.2 sorption creep of_concrete

That part of creep which can be assigned to changes in the pore
humidity of concrete s called sorption creep. Here it will be
called drying creep, since it is the most freguent cne as the
pore humidity of concrete normally is higher shortiy after con-
creting than at a later equilibrium state of moisture with the
environment. Generally, drying creep is larger than basic creep.
This is particularly conspicuous for slender structures, subject
to heavy and fast drying. The creep which cccurs at wetting

is analogous to the drying creep. Ruetz /66RU/ has performed
very well-defined tests which describe the behaviour qualitative-

Ty,

There are difficulties in finding reliable experimental data
within this field in Titerature which can be the basis for esta-
blishing a quantitative model. The statement of results and the
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testing conditions may be vague and simultaneously it may be dif-
ficult to know whether equilibrium state of moisture has been
reached during the time lapse of the tests. At an estimate of the
reliability of the model assumed here, the small basis of fests
muyst be taken into consideraticon which, at an extention, should
make possible a safer judgement of the drying creep. The tests
should preferably be performed with slender fest specimens arri-
ving at eguilibrium state of moisture relatively fast.

The model established here 1is based on tests accounted for by
/59PE/ and /65HE/. Furthermore, efforts have been made to design
the model in such a way that other known concrete behaviours are
represented, De la Penas' /59PZ/ tests were performed with. cement
mortar pipes with a wall thickness of 2 mm. After being stored
for seven days in water the test specimens were loaded in com-
pression at 50 and 10% relative humidity for seven days, where-
upon it was estimated that equilibrium state of moisture was re-
ached. L'Hermite's /GSHE, 68HE/ tests were performed with test
specimens of concrete with a 7:7 cm cross-section. After 28 days
storage in water, these were loaded for five years at 50 and 75%

relative humidity.

The model for drying creep is built up in such & way that the
additional drying creep, at the stress o and the time t days
after the beginning of drying and when shrinkage of concrete is
changed by AEcs’ may be expressed

Ae
o —S5 . (1)

en s
€CCS cC

Ae = G'ECCU}-'FCCS(H
where the different terms will be explained below and compared

to the corresponding terms for basic creep.

At a higher stress level the drying creep increases more than
linearly with stress /65HE, 5%PE/, but not as much as the basic
creep. Therefdre a linear relation between drying creep and stress
has been assumed here as for basic creep.

According to de Ta Penas' tests the relation between the total
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creep after seven days, when eauiiibrium state of moisture is
reached, and the basic creep at 100% relative humidity after
seven days is the same for different compositions of mortar.

This ‘implies that the same material parameters which govern basic
creep also govern the drying creep. The influence of the age of
Toading may also be assumed to be the same for the two types of
creep. Since the specific basic creep at a certain time, e. g
seven days, is a funciton of the material parameters and the age
of Teading, the assumptions made above justify a Tinking between
drying and basic creep with the aid of the specific basic creep

at seven days (ggc{7)).

If the total creep in de la Penas' tests is reduced by the hasic
creep occurring during drying, caiculated according to the model
previously described for basic creep, then the relation between
drying creep at drying up to equilibrium state of moisture and
basic creep at seven days in 100% relative humidity respectively
will be 7.4 and 5.55 respectively at 10 and 50% relative humidity
respectively. If it is assumed that drying creep may be Tinked to
basic creep thorugh the specific basic creep after seven days

Eéc {7) then fccs(Hen) may be determined. According to /68HE/ the
drying creep at 75% relative humidity will be about half of the
one at 50% relative humidity. In Fig. 3.24 the assumed rectilinear
relation between fcss(Hen) and the surrounding r?1ative humidity
is shown (40% < Hgy = W0%), as well as de la Penas' values in-
dicated with circles. The magnitude of drying creep at drying

to equilibrium state of moisture has here been linked to basic
creep after seven days. However, it might be Tinked to basic creep

at any time if the function f___{H_ ) had been changed correspon-

C58Y en

dingly.

The time function for the development of drying creep is assumed to be
the same as for the drying process expressed as a reduction of pore
humidity or a change of shrinkage. Since drying creep is fully
developed at the same time as shrinkage (Ecss) the time function

may b xpressed as A .
y be expresse ECS/ECSS

At drying a slender structure reaches equilibrium state of moi-
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Figure 3.24 The ratioc between the specific drying creep at drying
To equitibrium state of moisture and the specific basic creep after
seven days at 100 % relative humidity as a function of the relative

humidity of the environment.
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sture faster than a thick one. Since basic creep is smaller at
a lower pore humidity, the basic creep will be smaller for the
slender structure at the time when the thick one has reached

equilibrium state of moisture. Therefore drying creep must be
smaller for the thick structure since total creep must not be
targer, This is fulfilied if the drying creep, due to a reduc-
tion of pore humidity, is smaller if the reduction occurs at a
later event. A correction factor producing this has therefore

been finserted

foeelt) = maxp - 0.15'Tn (1 + t/28)

(o
where t is equal to time under load in days. To a certain extent,
this time function may also be seen as a parailell to the time
function of basic creep, which has the effect that the basic creep

decreases with time.

The model for drying creep as well as the other models previcusly
described concerning the behaviour of concrete give reascnable
agreement with the tests referred by L'Hermite.

The largest part of the drying creep as well as the drying process
accurs during a relatively short peried since the gradient in the
pore humidity and the coefficient of mofsture diffusivity are at
their largest at the beginning of the drying process.

At varying relative humidity of the environment the creep will
be larger than the one corresponding to a drying to average moi-
sture. /70NE/ states values at a varation between two relative
humidities which correspond to a drying o the lower relative
humidity. /68HE/ states results where variations of relative
humidity betwsen 60 and 90% in the open air, but with the test
specimens sheltered from rain, correspond to creeps measured at
a constant climate with 50% relative humidity in a laboratory.
This implies that drying creep might be estimated at varying
relative humidity by using a lower but constant relative humidity
of the environment when calculating.
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At a judgement of the reliability of the model for drying creep,
regard must be taken to the small basis of tests, which at an ex-
tension should make possible a safer estimate of the drying creep.
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4 THE MATERIAL PROPERTIES OF THE REINFORCEMENT

The reinforcement is assumed ideaily elasto-piastic with the
medulus of elasticity equal te 2.0 -10° MN/n® and the yield
stress equal to the strength fs . Creep that may occur in the
reinforcement is neglected.
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5 FORCE - DEFORMATION RELATIONS OF THE SEGMENT

In this chapter the tensile and cempressive strains caused by normal
force, curvature caused by moment and mowent plus normal force, and
curvature and shear deformation caused by shear force will

be treated. Simplified force - deformation relations are estab-
Tished, where creep and shrinkage are considered, The reliability
of these relations is verified by calculations according to method
A (Fig. 2.1} where regard is taken to the drying process and the
Toad history.

5.1 Deformations of concentric normal force

For non-reinforced segments the initial deformation is easily de-
termined by using the stress-strain relation of concrete accor-
ding to section 3.1 or, at lTow stress levels, with the aid of the
modulus of elasticity for concrete, The Tong-term deformaticn on
account of creep without simultaneous drying may be calculated

according to section 3.6.

During a drying process generally greal stress changes take place
in a specimen. In the separate parts of the specimen there is not
only deformation on account of shrinkage but also of drying creep,
basic creep and stresses during the time lapse. In Fig. 5.1 is

an example of the different components of deformation and the
stresses Tor one-dimensional drying calculated according to me-
thod A {Fig. 2,1) at different times, where regard has been taken
Lo the drying process and the stress history of the different ele-

ments.

In order to determine the deformation of normai force at simul-
taneous drying, the above-mentioned calculation has been per-
formed for square cross-sections where drying occurs in two di-
rections, as well as for cross-sections with one-dimensional dry-
ing. The calculations have been made for several different stress
Tevels and at different combinations of material parameters (acrEF’
Scssref) which govern shrinkage and creep. The relative humidity
of the environment (Hen) has been 40 and 70%. From the calcula-



- 69 -

t fee Eees ¢ Ees
STRESSL—-€1GMPG ! '
Ma} i STRAIN —— 100 .107° J
: .
1 51 =
2015% L i
—
395.31 L % %
2600 }if
% Lj : —
b

Figure 5.1 Strains and stresses calculated according to method
K, Tor a non-loaded and nen-reinforced plate segment with a thick-
ness of 100 mm during a drying process at an ambient RH of 40%.
The top faces of the diagrams ceincide with the plane of symmetry
of the plate. From the left is indicated the time from the begin-
ning of the drying t in days, the basic creep e.r, the drying
creep e.cq. the stress-related sirain ¢, the shrinkage ecq and
the stress o.. The dashed 1ine in the shrinkage strain diagram
indicates the total strain. The figures show that the stress

in the lower edge of the plate, which at the beginning of the
drying process is positive (tensile stress), after three sign
changes becomes negative at the end of the drying process. The
same is valid for the stress in the plane of symmetry w1th the
exception that_the stress has opposite sign. o =19.1076,

€ceg = 500-107
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tion results it appears that the total deformation can be deter-
mined almost exactly by the formula

o €
¢ CS5
+ o -a‘cc-oc+———e P (5.1}
cref ¢cssref

fotot T Sci

where €es and Séc’ which also include the drying creep, can be

determined from Figs 5.2 - 5.5 as a function of time, and ¢
= 500 - 107°
pectively, and « =10 - 107

cref
according to section 3.6 for the current composition of concrete
and fess according to section 3.5. In the calculations diffusivi-
ty is assumed to vary according to sectien 3.4. At a different

variaticn the time function does not agree but the final values

-5 cssref
and 300 © 16 ° for an ambient RH of 40 and 70% res=

6. The term o, may be calculated

are about the same.

The same calculations as above have been made for symmetrically
reinforced cross-sections, and it appears that the deformation
is best calculated with a formula, derived under the assumption
that creep is proportional to the average stress during the time
step, and that plane cross-sections remain piane.

a
o 1+ + ¥ cs
T+ + - (5.2)

Stot T E_
C

where o = N/(behe(1 + avp))s a = E/E 5 o = (Ag + AL)/(bh),
o= peas(2 + 4)/2, ¢ = e, +E , and ¢! and Ecg? the total specific

cc ¢ cc
creep and shrinkage can be taken from Figs 5.2 - 5.5 at the time
in question and at other values of €esspef and O et they may be

modified in the same way as in Eq. 5.1.

In spite of the large stress variations that occur during a drying
process, the above formulae (5.1, 5.2} show that the total defor-
mation can easily be determined by superposing the infiuvence of
the initial deformation, creep and shrinkage.

5.2 Deformations of moment

Simplified relations betwsen moment and curvature have been estab-
lished, With these relations the curvature may be determined at
short-time lcad without previcus drying for first-time Toadings



- 71 -

€.c-5-108
£, 108
b
800 _
| /7’“ SCC
W 500 A
< / L~ P €es
< rd
& 400- re
I ,//// d P
sl
0 / -
& 300 Z ,/
w / / -
x //,/ g
200 e i
2 L P
("5
] L
E 100 // //
I — -~
h=01+/ -
mmff”;‘_,””’
D M S B t/h?
o [l (=) o < (=] [l (=) (=
- o 2 g g g =3 8 8 8
L o~ L= [=] f=3 (=}
e 2 g 3
TIME UNDER LOAD — DAYS/mi i
Figure 5.2 Qne-dimensional drying of a plate with a thickness of
h'mat an ambient RH of 40%. The values of specific creep and
shrink%ge, to be inserted gnto Eg. 5.1 are given as a function
of t/hc. A paf © T0 - 10°%, Ceccpaf © 500 - 1077,
e 5108
£ee- 108
4 ’
600
L=t
/'— ce
W 500 e F
& 7 - o Eee
X
= / -
T 400 Vi <
& // e
R e
& 300 e L
L
w / 4 4
s
[
] / rd
o 260 /
o // / //
o ,,—”'d’ -
& 100+ e
h-0.1 =" e
0 === e t/n?
e ] 3 8 2 g 8 2 g 2
—_ ™ [+ o o o = [=
- o o < (=] o
=] 2 2 =

TIME UNDER LOAD — DAYS/mZ

Figure 5.3 Two-dimensional drying of a square prism with the
side h mat an ambient RH of 40%. The values of specific creep
and shrinkage to be inserted ingo Eq. 5.7, are given gs a func-
tion of t/h*. Tef T 10 - 10-9, Seceref = 500 - 107°. :



- 72 -

and moment changes, appearing at momentanecus support movements.
Simplified relations have aisc been established for a determina-
tion of the curvature at constant moment under the infiuence of
creep, non-uniform shrinkage and simultaneous normal force. The
derivations of these bilinear relations are given in Appendix A3,
and are based on the assumptions that plane cross-sections remain
plane, that a Tinear relation is prevailing between stresses and
strains, that the creep is governed by the final stress at the
current time, that the possibie shrinkage is fully developed, and
. that the cross-sections are rectanguiar. These simplified rela-
tions, which form the basis of calculation method B, are controi-
led against a calculation mwodel {method A} where regard is taken
to the drying process and the ioad history of the elements. With
the latter method calculations also are made to estimate on the
one hand the influence of a certain drying before loading and on
the other hand the relation between moment and curvature at re-

taxation.

5.2.1  Momeni-curvature refations at_short-term_loading

In Fig. 5.6 and Fig. 5.7 the calculations of the moment-curvature
relation are accounted for two different cross-sections. The cal-
culations have been performed according to method A by dividing
the segments into elements and regard has been taken to the Toad
history of the elements. No drying or creep has occurred neither
befoere nor after the loading. In the figures also simplified bi-
linear moment-curvature relations are shown according to Monnier
/69MG/. A s1ight deviation from the straight lines happens near
the cracking moment as well as shortly after the cracking moment.
The latest deviation is largest for 1ightly reinforced segments.

The flexural rigidity of the uncracked segment (EI)0 is in good
agreement with the rigidity, calculated with the censideration
of the reinforcement, and may, according to equation A3.16 be

expressed

(E1)y = =y O <8 (5.3)
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where By = T+ 3{1- 2c/h)2 I TR A VA B RIS A T
P = avAS/(b-h};-¢'= a-A;/(b-h), o = ES/Ec and ¢ = the distance
from the ceniroid of the tensile reinforcement tc the edge in
tensign, which is supposed to be equal to the distance from the
centreid of the compressive reinforcement to the edge in comp-
ression. The coefficient B]és shown in Fig. 5.8 for c¢/h = 0.1.

The flexural rigidity in cracked state has by Monnierempirical-

_1y been determined to
~ 4.8 100
(EI)'n =d 'As 10 {(5.4)

for percentages of tensile reinforcement below 1.5%. The dis~
crepancy between this rigidity and the rigidities calculated
here by the use of the above-mentioned method A is less than 10%.
The bilinear relation has a breaking point at the moment {Ea.
A3.20)

2
f «beh
M. = begi - 8y (5.5)
. - 2 . |
where g, = T+¥+ 9" +3(1 -2 ¢/h)"-(¢ +u' +deeu’)
T+ 2éc/h+20"-(1 - ¢/h)

and may be seen from Fig. 5.9 for c/h = 0.1.

5.2.2 HMoment-curvature relations at short-

These relations are useful at the calculation of structures sub-
jected to load changes or support movements. In section 6.3,
simplified relations established by Monnier /69MON/ have been
used for the calculation of beams, exposed to support movements
at serviceability 1imit state and after that loaded until fai-
Ture occurs. Below & compariscn will be made between relations
catculated according to method A and Mennier's wethod, as well
as a short description of these.
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data: b = 0.125, h = G.5, ¢/h = 0.1, A_ = A; = 0.000625, f_ ..
= 25 and f(, = 400. ec
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Homent-curveture relations calculated according to method A at =~
load changes are accounted in Fig. 5.10, where a singly reinforced
segment has been unloaded from two different moment levels and
after that reloaded to the same levels, and in Figs 5.11 and 5.12
where a doubly reinforced segment after loading has been charged
with negative moments and after thet it has been reloaded with
moments larger that the criginal ones.

Honnier /BIMON/ has performed tesis on beams exposed to moment
changes, and on the basis of these he has developed simpiified
moment-curvature relations (Fig. 5.13), which partiy diverge

from those calculated here. Monnier has the opinion that, at
unloading, & straight line should be followed which goes towards

the cracking moment of opposite sign and the curvature belonging to
this. For sections with higher percentages of reinforcement, the de-
viation is small, but somewhat larger at lower percentages of rein-
forcement. If the plastic strain for concrete in tension ha< been as-
sumed somewhat larger than was done here, there would have been a
better agreement with Monmier's assumption. The assumption, that

a straight 1ine should be followed towards the positive crack-

ing moment after a reversal from a moment with the opposite

sign, is more difficult to explain and does not occur with this
calculation method. It is also difficult to prove the correct-

néss of the assumption from the test results related by Monnier.
Monnier‘s relations are relatively simple, their divergence

from those calculated here has probably no practical signi-
ficance at the calculation of a wholz structure, and they might
probably be ysed as a good approximation of the real relations.

5.2.3 Moment-curvature relations at short-time
loading when a certain drying has taken

place_before loading ____________._____

The drying of concrete takes place slowly. For normal sizes of
cross-sections this means that the changes of the pore humidity
are small for periods of a couple of weeks. Cansequently, the
influence of & shorter drying period on the moment-curvature
relation is insignificant. The difference in percentage of the
deformation between a non-dried beam and a partly dried one is
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largest at moments of the same magnitude as the cracking moment
of the non-dried beam, since drying somewhat Towers the cracking
moment. As én example it may be mentioned, that for a beam with
the same cross-section and material properties as the one in
Fig. 5.7, exposed to drying during 32 days in a relative humi-
dity of 40%, the curvature increases most, calculated as a per-
centage, with about 14% at moment loadings around the cracking
moment for the non-dried beam, whereas the fincreases of defor-
mation in percent are considerably smaller at the remaining
~Toad Tevels,

5.2.4 Influence of basic creep on curvature

at_constant moment
For a concrete segment Toaded with a constant moment during a long
period in & constant c¢limate, where there is no drying, the cur-
vature increases with time on account of creep. The additionz)
curvature will be larger in percent for an uncracked segment,
since the whole cress-section of the concrete is active in the
first-mentioned case and since it is the concrete that creeps.

The calcuiations of the curvature at creep has been done with me-
thod A according to the following. The segment has been divided
into elements and the creep at each element has been calculated
with the aid of the average stress of the element in the time step.
The duration of the first time step has been chosen to 24 hours,
and the following time steps have been chosen so that there is

a doubling of the time under Toad.

The relation catculated in this way (method A} between moment and
curvature at different load levels, but for the same time under
load, is iliustrated for two different segments in Figs 5.14 and
5.15. In the figures aiso the moment-curvature relations for
short-time loading are shown as a comparison. According to section
5.2.1 these may be described by two straight lines and a breaking
point. From the figures it appears, that this can be done also

when creep occurs.
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In order to determine this simplified bilinear relation, a deri-
vation of the flexural rigidities of the uncracked and cracked
states respectively has been carried out (Appendix 3). The deri-
vations can be done with the aid of two equilibrium equations
and a compatibiiity eguation, where plane cross-sections remain
plane and the creep is assumed to be proportional to the final
stress at the moment in question. For uncracked segments, the
flexural rigidity according to Eqg. A3.16 is

3

b«h vEC

El) =— G 5.6
e 1201 + o) “1 (5:6)

where B = 1+ 3(1 - 2e/m)7 (5 e y v Apal/( oyt w6 s
a0 (T + ¢)-Asf(b-h), gt e {1+ ¢)'Aé/(b'h), o = ES/EC, ¢ = the
creep ceefficient and ¢ is the distance from the centroid of the
tensile reinforcement to the edge in tension. which has been assu-
med to be equail to the distance from the centroid of the compres-
sive reinforcement te the edge in compression. For c/h = 0.1 By

may be determined from Fig. 5.8.

The flexural rigidity at cracked state, derived in the same way,

gets too large, since it does not take into consideration the un-
cracked concrete between the cracks. This can be compensated by

dividing the flexural rigidity of the segment, subjected to creep
with the rigidity likewise derived when creep does not occur, and
by multiplying it with the flexural rigidity according to section
5.2.1 which takes into consideration the influence of the concrete

between the cracks.

(El)r -
_ cf 2,45 \
(EI)VC = YETTZ?“ 'As-d 10 {5.7)

where, according to [q. A3.38

e ETher (1o /- win)e (3= 3e/h - x/his (/b - o/h) - (/b - Be/h) v

S D e (VT c/h- yih)+(3- 3c/h - y/h)+(y/h - c/h)(y7h - 3e/h) b /o

where
2 /2
»ho= Ty + 9") + 2o (1 -¢/h)+ 2y " ¢/h] - (gt
5 172
¥ih = [{ap + aep' )+ 2avpe (] -c/hy+ 2a-p'sc/h)] - {ap vop')
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Figure 5.12 Moment-curvature relations calculated according to

method A at moment alternations. The numerais denote the order
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ﬁ_gur‘e 5.13 Simplified assumption of the moment-curvature rela-
tions at moment alternations according to /69MON/.
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o = A/{beh), o' = AL/(ben), ¥ = {1+ ¢)eoep and ¥’ =
(1% ¢)earp'

The coefficient 53 mey he determined from Fig. 5,16 for c/h = 0.1.

The breaking point occurs at the same magnitude of moment as upon
shert-time load. The moment cannot be larger since the creep can-
not heal already cracked concrete. It should not be smaller, since
the creep transfers forces from the concreie in tension to the
_reinforcement, and simultaneously there is a growth of strength

in concrete, and these two factors might counteract the smaller
long-term strength of concrete.

The relations determined with the simplified model show good agree-
ment with those more accurately calculated according to method A.

5.2.5 Influence of creep and shrinkage on

Luring long-term loading , a structure is normally exposed to dry-
ing, which means that, except being influenced by basic creep ac-
cording to the previous section, it is also influenced by shrink-
age and drying creep. The increase of the curvature at constant
moment upon Simultaneous drying and creep is censiderably larger
than the one upon creep alone. The larger the drying is, the lar-
ger will be the difference. The drying up to almost equilibrium
state of moisture between concrete and the environment takes very
long time for ordinary struyctures. However, most of the increase
of deformation takes place during a relatively short period. The
shrinkage involves a decrease of the cracking moment.

The calculation of the curvature according to method A has been
done by dividing the segment into elements. For each element, ve-
gard has been taken to the drying process and the influence of
the varying stress histery, on shrinkage, drying and basic creep,
and elastic and plastic strains, upon the calculation of its de-
formation, The calculation has been done with about 30 time steps
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up to the final moment, and within each time step, the average
value of the stresses in each element at the beginning and end
of the time step has determined the creep. The drying and load-
ing have started simultaneously at the age of 28 days. and the
relative humidity of the environment has been 40%. The final
shrinkage has been assumed to be uniformly distributed over the

whole cross-section.

In Fig., 5.17 is a statement of caiculated relations between cur-~
vature and moment for short-time loading (A), for basic creep
during 7 years (B}, and for simultaneous drying and creep dur-
ing 160 days (C) and during 7 years (D)}, It takes about seven
years before the slab reaches aTmost equilibrium state of
moisture with the envirconment. From the figure it appears that
the largest part of the increase of curvature on account of
drying takes place at the beginning. In Figs 5.18 and 5.19

the corresponding curvatures for beams subjected to two-dimen-
sional drying are shown. From the firgures it appears that it
is possible to describe the mement-curvature relation with two
straight 1ines also for segments, subjected to shrinkage. At
different amounts of compressive and tensile reinforcement, a
curvature is received alsc for an uniloaded segment.

In order to determine the simplified bilinear relation the flexu-
ral rigidities at uncracked and cracked stages have been derived
in Appendix A3. The derivation has been done with the aid of two
equilibrium equations and a compatibility eguation, where plane
cross-sections remain plane. The derivation is valid when shrink-
age is fully developad over the whole cross-section, and creep
has been assumed propcrtional to the final stress at the point

of time in guestion.

According to this derivation, the curvature at zero moment accor-
ding to Eq. A3.17 s

[
Lo tan, 5.0
4]
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cdy e W0+ gt w )y + T)e30(1 - 2¢/h){y = p")
T+ 4+ 0+ 3(1 - 2¢/R)S- {0 + ' + 4gey')

whera B

and the flexural rigidity for the uncracked segment according to
Eq. A3.16 is
3
h+h -EC

(ED)ges =

Lt 5.9
0CS 12(1 +4) | (5-9)

b4
where By =1+ 3(1 - 2¢/h) <(F + P+ Apet) /(T o+ ')

‘and € gs denotes the final shrinkage at the edge in tensien and
Y*€egg is the final shrinkage at the edge in compression. ¢ =

(1 + ¢)-a-AS/(b-h) and v' = (1 + ¢}-a-A;/(b-h), a = ES/EC;

¢ = the creep coefficient in which drying creep is included, and
¢ is the distance from the centroid of the tensile reinfarcement
to the edge in tension and the same is assumed te be valid for
the compression reinforcement. The coefficient By and By are

shown in Figs 5.20 and 5.8 respectively for ¢/h = 0.1.

For segments with the same compressive and tensile reinforcement
the curvature 1/r, and the flexural rigidity (EI)OCS are in goed
agreement with the result given at a calculation with the more
accurate method (method AY. At tensile reinforcement exciusively
the curvature 1/r0 may give a result at uniform shrinkage which
exceeds the one of the accurate calculation by up te 30%. For
this case also the flexural rigidity (EI)OCS is about 20% too
large. A more correct value of the curvature T/ro 15 received if
the term (y + 13-3-{1 = 2¢/h)«{¥ - ¢') 1is multipiied Dy 0.7. The
errors of the curvature 1/r0 and the flexural rigidity (EI)OCS
at tensile reinforcement exclusively counteract each other with
the effect that, upon the calculation of a beam where the moment
varies along the longitudinal axis of the beam, the errors have
no practical significance. Consequently, the equations for the
rigidity (EI} .. and the curvature 1/r, together result in good
accuracy, despite the larger approximation made that the final
stress governs creep. This is a large approximation since, at the
small influence of the moment on the stresses, the variation of
stresses becomes very large during the drying process.
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The flexural rigidity at cracked state may be determined with the
aid of equations A3.32 and A3.33 in Appendix A3. However, the
flexural rigidity becomes somewhat large, since the derivation

is based on the assumption that the tensile stresses of concrete
are neglected. However, this conditicn may be evaded by a proce-
dure similar to the one used for the determination of the rigi-
dity for segments subjected to pure creep, i.e. by dividing the
rigidity derived by a rigidity derived similarly with neither
creep nor shrinkage, and then multiply with the flexural rigidity
(EI)r according to section 5.2.1 (Eq. 5.4) which takes the ten-
sile stresses of concrete into consideration. £gs. A3.32 and A3.33
are very laborious to use for the calculation of the flexural rigi-
dity. However, by numerical calculations it is possible to show that
at the same cresp coefficient ¢ the same flexural rigidity is re-
ceived as upon a calculation according to Eq. A3.38, where the
infiuence of shrinkage is disregarded. This impiies that the
flexural rigidity may be determined in the same way as according
to section 5.2.4 (Eq. 5.7), if the influence of drying creep is
included in the creep coefficient. Shrinkage, uriformly or non-
uniformly distributed over the cross-section, consequently does
rot affect the rigidity in cracked state. The flexural rigidity.,
calculated according to this simplified method agrees well with
the one received by the more accurate calculation (method A},

(E1)

res = (Fl)pe ' {5.10)

Shrinkage causes a decrease of the cracking moment, which is de-
rived-in Appendix A3 and may be calculated according to Eg. A3.20.
2 2
beh™ee _ E
€535 ¢, (5.11)

ur-b-h
= g
31+¢) °

M = *B, -
res 6 2

Sl v 300 - 2e/m (0 v+ guey')

where 32 =
1+ 2¢ec/h + 29'-(1 - ¢/h)

is shown in Fig. 5.9 for c¢/h = §.1 and where

oLy = 1) (we(2 - 3e/hYec/h - 07 {1 = ¢/h)-{1 - 3c/h))
T+ 2%/ + 2v'-(1 - c/h)

f5

2
ve (2 - 3¢/h) - ¢'-(1 - 3¢/h) + By-y'-(1 - Z¢/h)
Pt Zyec/h o+ 2901 - c/h)

+
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Figure 5.18 The moment-curvature relations calculated accordﬁng
To method A for a beam segment. A = short- term load, B = paSTC
creep at 100% RH during 45 years, C = drying at 40% RH during 45
years. Section data: b = 0.25, h = 0.5, ¢/h = 061, 3 = 0.00125,
Al = A /2, T = 25 and ., = 400. o = 1G-10°0 and™¢ =
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Figure 5.19 The moment-curvature relations calculated according
to method A for a beam segment. A = short-term load, B = basic
creep at T00% RH during 11 years, C = drying at 40% RH during 11

-years. Section data: b = 0.125, h = 0.5, ¢/h = 0.1, As = A =

- - - - 6
0.000625, fccm =25 and fst = 400. o, = 16.1076 and €os

=5 -
s = 500-10 *.
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is shown in Fig. 5.21 for ¢/h = 0.1.

The fictitious tensile strength o, becomes less than fcbm owing
to the non-linear shrinkage over the cross-section during the dry-
ing process. If it is chosen fo vary with shrinkage according to

o, = f

= Fopne (1 = 500, ) (5.12)

the agreement between the simplified calculation of the cracking
moment according to Eq. 5.11 and the more accurate one according
to method A will be satisfying.

5.2.6 Influence of creep, shrinkage and normal
force on curvature at constant moment

and normal force

Except creep and shrinkage, also a normal force often exists, which
may be assumed to act in the centroid of the cross-section of the
concrete. The curvature at zero moment, cracking moment and the
flexural rigidities at uncracked and crakced states may be calcu-

lated according to Appendix A3.

According to Eg. A3.17 we get

€ N
?_:_CS_S_.%_N;W.BE (5.13)
ry N beh-E,

where the normal force N is positive in tension, By is shown by
Eq. 5.8 and
- 6 {1 - 2¢/h)-(b - 0"

B = . _
R N D

is shown by Fig. 5.22 for c¢/h = 0.1.

The flexural rigidity at uncracked state is not affected by the
normal force and may be determined according to Eg. 5.9
(5.14)

(EDoesn = (Fllocs
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Figure 5.21 The coefficient gg for the calculation of the crack-
ng moment according to Egs. 5.71 and 5.16. Valid for c/h = 0.1.
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It is very laborious to determine the flexural rigidity at cracked
state according to fAppendix A3, and then besides take into consi-
deration the influence of the tension zone of concrete according
to section 5.2.4. Numerical calculations of the flexural rigidity
according to these relations have therefore been performed where
the parameters M, N, v, v', ¢ and €.gg 3T varied within their
current ranges, and the results from these calculations show that
the flexural rigidity, may be determined by the following equa-

tion, if shrinkage does not exist
(ED) ey = (ED) vy (5.15)

where (EI)rc is flexural rigidity in cracked state at basic creep
according to Eq. 5.7 (in ¢ the influence of drying creep will be
included}, and By is shown in Table 5.1. At a Targe shrinkage By
decreases by up to 20% of the difference between 1 and the value
of 8, wWhen shrinkage is lacking. An eventual non-uniformity of
shrinkage does not involve any change.

The cracking moment is determined according to Eq. A3.26.
b Z
b-h o, beh .ECSS.EC Neh
6

Mres = 5 "B " Ty fs T (5.16)

-88

1~ 601 - 2efh)(g-c/h - 9'-{1 - ¢/h))
1+ 20+c/h + 2yp'< {1 - ¢/h)

where 58

is shown by Fig. 5.23 for ¢/h = 0.1 and o, is determined according
to Eg. 5.12 and 8y and 8¢ according to Eq. 5.1%.

5.2.7 Relaxation of moment caused by creep

In the previous sections moment-curvature relations have been
established under the assumption of a constant moment during
time under load, If, instead, a constant curvature is imposed,
and the corresponding moment is calculated (relaxation) the re-
sult will be different. The relations in Fig. 5.24, calculated
according to method A show that the curves at relaxation (C, E)
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at cracked state according to Eq. 5.15.

¢:(1+¢}-a'A5/(b'h)

The coefficient g7 for a determination of rigidity

N+ h fl
N v
0.04 0.15 0.60 2.0
-4 0 1.30 1.04 1.00
-4 1 1.57 1.20 1.06
-3 0 . 1.51 1.15 1.03 1.00
-3 1 1.62 1.26 1.11 1.05
-2 0-1 1.12 1.06 1.02 1.01
-1 0-1 1.01 1.3 1.00 1.0C
0 0-1 1.90 1.00 1.00 1.0
1 0-1 0.99 0.99 0.99 1.00
Z 0-1 0.93 0.91 0.92 0.96
1.2 /
1.0 // 'z
w
< os / e b
.
& /]
T g A
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/ ‘/
0.2 i —
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‘Figure 5.22 The coefficient gg for the caiculation of the curva-
ture 171"0 accarding to Eq. 5.13. Vaiid for ¢/h = 0.1,

G.50

1.00



- 94 -

are rather much below the corresponding curves (B, D) calculated
for constant load.

The relaxation relations would be appropriate to use for, for

exampie, built in unlocaded concrete beams, subjected to support

movements. For concrete structures however, the dead load con-

stitutes a large part of the lecading, and therefore combina-

tions of the relations for constant moment and relaxaticn are

probably more current. This will be further dealt with in chap-
ter 6.

5.3 Deformations caused by shear force

The shear deformation is calculated by the formula

g = V/GA (5.17)

where V denotes the shear force and GA the shear rigidity.

At uncracked state shear rigidity approximately may be put equal
to the area of the cross-section multiplied by the elastic modu-
Tus of concrete divided by ?. The deformation of shear force 1is
normally negligibie for an uncracked segment,

At cracked state the shear force may be assumed to be carried
according to the lattice analogy /66DI/ and its deformation may
be calculated with the aid of this. The concrete compression zone
then works as a compression flange and the tensile reinfarcement
as a tension flange. The shear reinforcement then works as ten-
sion rods and the inclined lattices of concrete between the cracks
as compression rods. Simultaneously as the shear deformation
takes piace, the concrete compression zone will be unlcaded and
an additional tensile force of the same magnitude will be charged
to the tensile reinforcement, causing an additional curvature.

If the cracks are assumed to form an angle of 45° with the Tongi-
tudinal axis of the beam, the shear rigidity may be calculated
with the formula /66DI/
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, Valid for c/h = 0.1.
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figure 5.24 The moment-curvature relations calculatad according
te method & for a plate segment. A = short-term load, B = basic
creep at 100% RH during seven years, C = relaxation at 100% RM
during seven years, D = drying at 40% RH during seven years, E =
relaxation at 40% RH during seven years. Section data: b = 1.0,
h =0.T, C/E = 0.1, As = 0.0005, Al =0, Fcbm = 20 and fst = 400,
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0 +E_+hez
Gh =Y 5 (5.18)
kl + kz-a- DV
A
where o = b

Y t.sinv b

Ab = cross-section area of the stirrup

t = horizontal center to center distance of the stirrups

v = the angel of the stirrup with respect to the axis of the beam

z = distance from tensile reinforcement to the centroid of the
resultant compressive force of concrete

kz = 4, when the stirrups form a 457 angle with the axis of the beam

k2 = 1, when the stirrups form z 90° angle with the axis of the beam
T -7

L >

v = current shear stress

T, = shear stress required for a shear crack to occur

Theoretically, the constant k] should have had the vaiue 1. How-
ever, at tests it has been chserved that the stress in the shear
reinforcement is iower than the one thecretically calculated by
~ the lattice analogy. Consequently, Dilger /66DI/ has given k1

the above mentioned value in order to take this into consideration
and to obtain a better agreement between measured and calculated

shear rigidity.

The additicnal force of tensile reinforcement at vertical stirrups
is egual tc half the shear ferce, and at 450 inclined stirrups
equal to zero. For vertical stirrups the additional curvature may

be calculated to

M”r)zgs'ac:l(1 o1 )
z 2z ES-AS b-x'Ec

Since the concrete strain normally s small in comparison to
the reinforcement tensile strains we may write approximately

sy = — 4 (5.19)

2 ES-AS-d
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The additional curvature is assumed to be zero until cracks oc-
cur and then it increases Yineariy and reaches its full value at
the double stress. This is due to the fact that there must be se-
veral cracks of a certain length before the deformation can be
assumed to be fully developed. Technical difficulties in calcula-
tion may also appear if curvature 1is changed stepwise.

Since the same criteria must be used for the case when carrying
according to the lattice analogy starts to function for the two
deformations, 7, is replaced in the constant k; by the shear
stress which prevails at cracking if this is caused by moment
stresses.

At shrinkage and creep o in Eg. 5.18 might be replaced by (1+¢}-a.
as a rough approximation and 8 in Eq. 5.17 is multiplied with (T+¢).
These deformation models have beer used in calculations in sec-

tion 6.3. )
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5 BEAMS AT SERVICEABILITY LIMIT STATE

Simply supported beams, supported cantilever beams and beams
clamped at both ends are studied. They are subjected to uniform
Tateral ‘load. Deflection, moment distribution and coefficients
for the determination of moment redistribution at support dis-
placements are calculated and accounted for as figures or tables.
These are given as functions of material parameters, geometric
parameters, safety against faiiure and the ratio between the

. areas of suppert and span tensile reinforcement, at both short-
term lead, creep and simultansoys creep and shrinkage, An approxi-
mate formula is established for the determination of moment redis-
tribution at support displacements for non-loaded supported can-
tilever beams and beams clamped at both ends. In Appendix A4 a
caiculation method with aid formulae for the determination of the
moment distribution at other Toad and end conditions is accoun-
ted for. In section 6.3 calculated and measured moment distribu~
tons are compared for supported cantilever beams, which under
loading up to failure are subjected to support displacements,
In Appendix A5 a formula 7s established for the determination
of the reinforcement stress in a crack for a segment subjected

to pure bending.

6.1 Theoretical analysis of moment distribu-
tion and deflection for beams subjected
to uniform lateral load

At first the calculation assumptions and notations used in the
foliowing are described. Only bending deformations have been

taken into account. Simplified moment-curvature relations accor-
ding to chapter 5 have been used. The calculation has been per-
formed by intearaiion of the curvature along the beam with regard
te the boundary conditions. Consideration has not been taken to

the effects of possible moment redistributions on the moment-cur-
vature relaticns, T.e. the moment-curvature established for con-
stant moment has been used. Yielding is not assumed to take place
in any cross-section, The magnitude of the Toad is such that safety
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azgainst bending failure according to a plastic theory analysis is
equal to s. In the determination of the safety against failure
the yielding moment has been assumed equai to

M, = 0.82:h.A-Fy (6.1)

The members are assumed to be beams with rectangular cross-section

or to be one-way slabs and to have constant concrete cross-section
along their whole Tength. They are assumed to be reinforced in

such a way that the ultimate resisting moment of the cracked sec-
tion is greater than the cracking moment, and furthermore to have
such a design that the deformation caused by shear forces is smail and
that the safety against shear failure is larger than safety against

bending failure.

The effects of the terminations of the reinforcement are neglected,
and at positive moment the area of the tensile reinforcement 1is
assumed to be equal to Asf and at negative moment equal to Ass'

At negative moment there is also a compressive reinforcement

equal to Asf/4' The distance from the centroid of the tensile
reinforcement to the edge in fension has been assumed one fenth

of the total depth of the beam. The same condition is valid for
the compressive reinforcement.

In the preseatation of the resylts from the calculations it has
appeared advantageous to use a parameter ¢ which mainly governs
the degree of cracking for the beams, and where a large value of
r means small cracking and a small value means large cracking.
The parameter ¢ is defined by the eguation

r o= EEE@_i“_ (6.2)

oot Tst

vhere Fcbm denotes the flexural strength of concrete, s the safe-
ty against bending failure for the beam, fst the tensile strength
of the reinforcement, and Prot is the total share of reinforcement.
For simply supported beams Prot is defined as Asf » for beams clamped

at both ends as Ass * e , and for supported Egﬁfilever beams as
B
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n+A

st with n given by
b+h

2+ A /A .+ 2T + A /A

_ ss’ st ss’ Tsf

n = 2 ~ 1 + 0.43 ASS/ASf {6.3)
or

ASS/ASf 1 2 3 4 5 6
n 1.46 1.87 2.25 2.62 2.97 3.32

The definition of Prot implies that the load-carrying capacity of
the beams is not changed at a redistribution of the reinforcement
between support and span as iong as Crot is constant.

6.1.1 Moment distribution and deflection
at short-term load

Thé suppert moment at short-term load is shown in Fig 6.7 for
beams clamped at both ends and in Fig 6.2 for supported cantilever
beams. It is given as & function of the ratio of the areas of sup~
port and span tensile reinforcement (Ass/Asf)’ r (Eq. 6.2) and the
reinforcement strength divided by the safety against failure (fst/s).
For a beam clamped at both ends and with constant flexural rigidity
along its length the support moment will be egual to 2/3-q12/8 and
the maximum deviation from this value in the figure is about + 15
per cent. For ¢ = 4 the beam is uncracked. The great variation for
¢ = 2 depends on the fact that the span moment and span cracking moment
have almost the same magnitude. For a supported cantilever beam
with constant flexural rigidity along its length the support mo-
ment will be equal to q12/8 and the maximum deviation from this
valye in the figure is about + 28 per cent and - 19 per cent.
For ¢ = 6 the beam 1s uncracked. The vertical lines in Figs. 6.1
and 6.2 show the scatter when the strength of concrete fccm varies
between 15 - 60 MPa and fst/s between 229 - 457 MPa. The figures
are valid only as lonq as yielding does not take place in any sec-
tion, which 1imits the permissible value of the support moment to

M

1= s/(1+m) < —5— < sn/{l +n) (6.4)
ql”/8
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Figure 6.1 The support moment for a beam clamped at both ends
subjected to uniform lateral Toad as a function of the reinforce-
ment distribution {A.c/Asf). < (Eq. 6.2} and fst/s. The vertical
1ines show the scattér when f.., varies between 15-60 Mpa and
fst/s between 229-459 Hpa.
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Figure 6.2 The support moment for a supported cantitever beam
subjected to uniform lateral load as a function of the reinforce-
ment distribution (Ags/A ¢), - {Eq. 6.2) and fop/s. The vertical
1ines show the scatter when foem varies between 15-6G Mpa and
fst/s between 229-459 Mpa.
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for the beam clamped at both ends, and to

M 2
4 - Byse(Vl+ n- 1)/n < ———%44 < 4s+(vl + - 1)/ (6.5)
Togee/8

for the supported cantilever beam whare n = Ass/Asf

The maximym span moment is determined by the equation

M M
I (6.6)
q+4/8 q-i /8
for the beam clamped at both ends and by
—Mﬁ—— = (- M; y (6.7)
g2 /8 qes-/2

for the supported cantilever beam.

from Fig. 6.3 the maximum deflection may be determined for the
beam clamped at both ends at short-term load. The deflection dia-
gram is constructed so that for sach iine the load-carrying capa-
¢ity is constant if only redistribution of reinforcement between
support and span takes place with a preservation of the same

value of Prot- The figure shows that a redistribution of the re-
inforcement has 1ittie influence on the magnitude of the deflec-
tion. The lines are drawn for the sirength of concrete Fccm = 35
MPa. The upper limits of the vertical lines are valid for fccm =
60 MPa and the lower Timits for Fccm = 15 MPa. Similarly, the in-
fluence of the reinforcement distribution on the deflection at the
location of the maximum span moment is small for the supported
cantilever beam, The maximum deflection is only stightly larger
than the defiection at the location of the maximum span moment.

In Figs. 6.4 and 6.5 the deflection at the location of the maximum
span moment s shown as a function of z and fst/s, for the suppor-
ted cantilever beam and the beam clamped at both ends. The figu-
res are drawn for fccm = 35 MPa and Asslhst = 2 but are valid,
with satisfactory accuracy, also for other concrete qualities and
reinforcement distributions. In Fig. 6.6 the defiection at the
centre for a simply supported beam is shown (fccm = 35 MPa).

6.1.2 Moment distribution and defiection
at basic creep

The moment changes due to basic creep are reilatively smalt which
implies that the used moment-curvature relations for constant mo-
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ments are adeguate. Generally, there is a slight increase of the
support moment in relation to the one at short-term load, which
is shown by the following table

support mement increase, per cent

r 6 4 3 2.8 2 1.5 1Y 0.5 0.37%
supported

cantilever -2 1-3 6-8 2-4 0-4 0-5 4-%

beam

beam ciam-

ped at 1-5  4-8 8-11 4-7 0-5 -2-5 6-9

both ends

where the variations of the moment increase depend on the varia-
tfons in £ (15 < < 60) and f /s (229 < f /s < £57).

The deflection at the location of the maximum span moment at basic
creep is denoted with a, and the corresponding defiection at
short-term load with a, (Figs. 6. 4 - 6.6). The ratio between the
deflections is represented by ——T————— as & function of ¢ and

t/s, and is accountied for in F1g 6.7 for the beam clamped at
bath ends, in Fig. 6.8 for the supported cantilever beam and in
Fig. 6.9 for the simply supported one. The diagrams are valid
for fccm = 35 MPa and a ratio between the areas of support and
span tensile reinforcement equal to 2 for the statically inde-
terminate beams. For other concrete qualities and reinforcement
ratios - $c+ 3 deviates not more than a few per cent at the
most froM the values stated in the figures.

6.1.3 Moment d*stribution and deflection

The moment changes due to simultaneous creep and shrinkage are
relatively small, which means that the calculation conditions may

be considered to be fulfilled. Fer an uncracked or slightly cracked
supported cantilever beam or beam clamped at both ends, the shrink-
age counteracts the increase of support moment on account of creep,
whereas for more cracked beams the shrinkage coacts with the creep
and increases the support moment in relation te the one at short-term
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Figure 6.7 The maximum deflection a. for a beam clamped at both

ends subjected to uniform Tateral load and basic creep as a func-
tion of ¢ (Eg. 6.2}, the creep coefficient ¢, fgt/s and a, {Fig.
6.4). Only bending deformations are considered.
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Figure 6.8 The deflection a. at the location of the maximum

span moment for a supported cantilever beam subjected te uniform
lateral load and basic creep as a function of ¢ (Eq. 6.2), the
creep coefficient ¢, f.¢/s and a, (Fig. 6.5). Only bending defor-
mations are considered.
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Figure 6.9 The maximum deflection a. for a simply supported

beam subjected to uniform lateral lcad and basic creep as a func-
tion of ¢ (Eq. 6.2), the creep coefficient ¢, fc4/s and a, (Fig.
6.6). Only bending deformations are considered.
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foad. For the supported cantilever beams the shrinkage decreases
the support moment for ¢ > 2.5 s¢ that it will be maximally 6%
smaller than at short-term load. If £ < 1.5 the shrinkage and the
creep increase the support moment so that it will be maximally

8% larger than at short-term load. For the beams clamped at both
ends “the shrinkage decreases the support moment for ¢ > 4 on
account of cracking at support so that it will be maximally

about 6 per cent smaller than at short-term load. Ifg< 2.5 the
shrinkage and the creep increase the support moment so that it
will be maximally about 10% larger than the moment at short-term

load due to heavier cracking in span.

The deflection at the location of the maximum span moment &t creep
and shrinkage is denoted by acS and the defiection for short-term
load by 3 {Figs. 6.4 - 6.6). The ratio between the deflections

X aesg . . .
1srem@mnmdby€—TT;?j and is accounted for in Figs. 6.10 -
6.12. ¢ is the creeB coefficient. The diagrams are valid for the
concrete strength fccm = 35 MPa and ASS/ASf = 2. At other con-
crete strengths and ratios between the tensile reinforcement

s . acs
areas the deviation is at the most a few per cent when
. acs ao'(1 + )
is smalier than 1 and up to about 10% when s IT 3

is larger than 1.5. o

For a beam, which is uncracked or stightly cracked in the initial
state, the deflection change will be larger at a great shrinkage
combined with a small creep, since the shrinkage reduces the crack-
ing moment and in this case the creep counteracts this reduction

very littile.

6.1.4 Moment redistribution at support

The design of the beams, the Joad of the beams and the assumed po-
sitive direction of the support displacement as well as the for-
mula for the determination of the support moment changes are shown
in Fig. 6.13.

The same calculation conditions as in section 6.1 are valid. The
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toading and the support displacement are assumed to take place

simultaneously.

The factor &, in Fig. 6.13 for the strength of concrete f em = 35

MPa and at a support displacement a = fste12-10 /{s-h) for diffe-

rent magnitudes of creep and shrinkage is shown in Table 6.1 for sup-
ported cantilever beams and in Table 6.2 for beams clamped at both ends.

At short-term load and fccm = 60 g is dincreased by maximally 8

units and for fccm = 15 g, is decreased by maximalty 8 units. If
creep and shrinkage take place, the change of £ with the strength
of concrete will be considerably smaller, For r < 2 the rigidity
for the determination of the moment change is relatively indepen-
dent of the magnitude of the support displacement, which is due

to the fact that the beams are rather heavily cracked from the

toad alone and that the magnitude of the support displacement has
1ittle influence on the cracking and does not cause any further

cracking of significance.

For beams with a larger value of r the magnitude of the support
displacement has a considerably larger influence, and this nflu-
ence increases for hicher values of r. For these beams the rigi-
dity decreases with the magnitude of the support displacement,
since the formation of cracks at support increases and hence the
rigidity decreases. These beams are at the same time relatively
1ight1y reinforced and therefore the difference between the ri-
gidity at cracked and uncracked state is great.

For the beam clamped at both ends the moment reduction at the one end
will be approximately the same as the moment increase at the other
end for ¢ < 2, whereas it will be larger for higher values of ¢

since the beam will be considerably less cracked or uncracked and
consequently much more rigid at the support where the moment re-
duction takes piace.

For beams with the same strength of concrete, (fccm) reinforement
quality {fst), safely against failure (s) and the same total per-
centage of reinforcement (ptot} and the same ratio between the
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Figure 6.13 Notations and formulae for the determination of the
change of the support moment at support displacement.
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fable 6.1 The coefficient £, defined accerding to Fig. 6.13 for the
determination of rigidity updn the calculation of the changes of the
support moment for a supported cantilever beam subjected to uniform
Tateral load as a function of ¢ (Eq. 6.2), A /Asf’ fst/s, the creep

coefficient ¢ and the final shrinkage c . . °°

1+4 i 1 2 3 b 3 3 4 4 fst/s Ass da.
irec-
€ras 1G G 0 0 200 200 400 400 600 Sf tian
4
6 103 53 37 51 3% 28 26 19 229 1 + -
5 88 52 37 40 32 25 21 18 +
4 59 40 30 34 28 23 20 15 +
3 54 36 28 30 720 19 15 +
2.5 44 33 26 27 25 20 19 16 + -
2 41 31 26 28 26 22 20 18 + -
1.5 45 35 29 32 28 26 23 22 + -
1 57 44 37 42 36 34 31 24 4 -
0.5 93 75 67 73 61 5% 52 51 + -
5 104 54 37 50 36 28 23 19 -
4 97 49 34 40 30 25 21 15 -
3 66 40 30 30 28 20 19 15 -
) 104 54 37 52 3 3t 26 20 z + -
5 93 54 38 4 35 28 24 20 +
4 72 45 33 40 32 27 23 18 +
3 67 43 33 37 3% 23 22 7 +
2.5 54 39 30 4 27 22 21 17 +
2 46 34 30 31 29 25 22 20 + -
1.5 50 40 33 36 32 29 26 24 + -
1 67 51 42 48 41 38 34 32 + -
5 105 55 38 51 3% 30 25 21 -
4 01 52 36 45 34 28 24 1s -
3 75 46 34 33 33 21 20 16 -
2.5 48 36 29 w27 22 20 18 -
& 105 55 38 52 36 32 27 21 4 + -
5 98¢ 55 3¢ 48 37 3¢ 25 21 +
g 83 49 36 44 34 30 25 20 +
3 78 49 36 41 35 26 24 17 +
2.5 65 46 36 38 33 24 22 19 +
2 61 42 33 3% 30 2% 23 21 +
1.5 59 43 35 39 33 30 27 25 +
5 105 55 39 52 37 32 26 22 -
4 104 54 38 48 36 31 2% 16 -
3 86 50 37 34 35 22 21 16 -
2.5 49 38 1 30 27 23 21 17 -
2 46 36 29 3t 27 24 22 20 -
1.5 51 39 33 37 31 29 26 24 -
4 46 32 25 28 23 20 17 12 343 1 +
3 43 29 23 22 22 1% 14 12 +
2.5 3¢ 24 20 20 18 15 14 12 + -
2 28 22 19 21 19 16 15 14 + -
1.5 30 25 21 23 2y 19 17 16 + -
1 39 31 27 30 26 25 23 21 + -
0.5 68 53 45 51 44 43 38 37 + -
4 94 47 32 38 28 22 19 12 -

49 33 25 22 21 15 14 12

(9N}
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T+¢

3

2 3 3

4

4

f_,./s A 2

105 0 0 0 200 200 400 400 6OC °t =% direc-
Cess sf tion
[
4 57 38 29 33 27 23 20 14 343 2 +
3 53 35 27 27 26 18 17 13 "
2.5 33 20 24 25 22 17 16 14 +
2 3% 27 22 24 21 19 17 15 +
1.5 3 28 24 27 24 22 20 18 i -
1 2 35 30 35 30 28 25 24 .-
4 98 50 34 43 31 26 21 13 -
3 56 38 29 28 25 16 15 13 -
2.5 33 26 2 21 20 17 16 14 -
2 31 25 21 23 20 18 17 15 -
3 67 43 31 38 30 25 22 17 2 +
3 63 41 31 32 30 21 19 14 +
2.5 46 35 28 20 25 19 17 14 +
2 43 31 25 26 23 20 18 16 +
1.5 A1 3 26 29 25 23 20 19 N
4 100 51 35 46 33 28 23 13 .
3 55 43 32 24 26 17 16 13 -
2.5 33 27 23 22 21 17 16 13 -
2 32 25 22 24 20 18 17 15 -
1.5 35 98 4 26 23 21 19 18 -
3 3 25 20 18 17 12 12 10 457 1 ‘-
2.5 23 19 16 16 15 12 12 10 . -
5 21 18 15 16 15 13 12 1 .-
1.5 23 19 17 18 16 15 14 13 ‘-
1 29 28 p1 23 21 20 18 17 ;-
3 g5 31 24 21 21 15 14 11 2 -
2.5 20 23 206 20 18 14 13 11 -
7 27 21 18 19 17 15 14 17 -
1.5 28 22 19 21 19 17 16 15 ;-
i 35 28 24 27 24 23 20 18 -
2.5 25 20 17 17 16 12 13 1 -
2 73 019 17 18 16 15 14 12 -
3 53 35 27 26 25 18 16 12 457 4 "
2.5 3% 28 23 23 21 15 14 12 -
? 33 95 20 21 18 16 15 13 ¥
1.5 31 24 21 23 20 18 17 15 +
3 a6 39 20 19 19 13 13 10 -
2.5 25 21 18 18 16 13 13 1 -
2 24 20 18 19 17 15 13 12 }
1.5 27 22 16 21 19 i7 16 1%
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areas of the tensile reinforcement at support and in span {ASS/ASf)
we get the same moment change in percentage if the expression
a-h/£2 is constant. For low values of ¢ we get the same total mo-
ment change jf the parameters in the expression a-hS/R2 are changed
in such a way that the value of the expression is not changed.

In order to examine the influence of the loading history on the
moment change, refined calculations {method A) have been performed
for a supported cantilever beam. The beam has been divided Tongi-
tudinatly into 9 segments and each segment has been divided into
ten concrete elements and two reinforcement elements, and consi-
deration has been taken to the load history, the drying and creep
process of each element. The magritude of the support displacement,
the design and the load intensity of the beam have been chosen

so that as great differences as possible are obtained between the
cracking patterns and hence the moment distribution at the diffe-
rent Toading histories. The quantities have been chosen so that
if the support displacement takes place first or at the same time
as the lcading, cracking occurs only at the support, whereas if the
loading takes place first cracking is also developed in the span.
{b=1.0, h=0.7, dm?éls, 1=4.0, ASfEO.UOOQM, ASS/AszE.Oﬁ, fccm=35,
fst=400, ac=]0‘10 s eCSS=500-10 s Hen=60%, q=0.03513, &=0.009).
The ratio between the rigidities at support and in span has its
smallest value if the support displacement takes place first,
since the cracking zone at support gets Targer in this case than
if the loading takes place first or at the same {ime as the sup-
port displacement when there is no cracking in span. If the Toad-
ing takes place first, the ratio between the rigidities has its
largest value and we get the largest support moment at this Toad-
ing history. The maximum difference between the largest and the
smallest support moments at the different leading histories is
below 5% at short-term load. At long-term load the difference de-
creases due to creep and if there is shrinkage at the same time
the difference decreases further since the cracking moment is re-
duced, and we get the same cracking patterns independently of

the loading history. This means that the moment change at support
displacements in normally valid independently of the loading his-
tory at long-term 1oad and with satisfactory accuracy at short-

term Toad.
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Table 6.2 The ceefficient £, defined according te Fig. €.13 for the
determination of the rigidity upon the calculation of the increase of
the support moment for a beam clamped at both ends subjected to uniform
tateral Toad as a function of ¢ (Eq. 6.2), A__/A ., f_./s, the creep
coefficient ¢ and the final shrinkage e ss'7sf? st

css’
I+ i 2 3 2 3 3 & 4
st/ Ass
Sce C G G 200 200 400 400 600 Aot
4 8 54 36 46 36 27 24 16 229 1
3 59 41 32 32 28 20 19 15
2.5 49 34 27 28 25 20 18 15
. 43 31 25 28 24 21 19 16
1.5 43 32 27 29 25 22 21 18
1 49 37 31 35 31 28 26 24
0.5 77 59 50 57 A% 47 42 4D
4 89 54 37 48 3 29 25 1y 2
3 67 45 34 36 31 23 21 17
2.5 58 38 36 33 28 23 20 7
2 52 36 29 33 28 24 21 18
1.5 52 38 31 34 30 26 23
] 58 43 36 41 35 32 29 2
6.5 91 68 56 65 55 53 46 45
4 91 55 37 49 36 30 26 19 4
3 73 47 35 39 33 25 22 18
2.5 64 42 32 36 30 25 22 19
2 58 40 31 36 36 26 23 20
1.5 59 42 33 37 32 28 25 22
1 64 48 39 44 37 3 30 28
43 32 26 25 22 17 15 12 1
2.5 3% 2 21 22 19 16 14 12
2 2 24 20 22 19 16 15 13
1.5 30 24 20 22 19 17 16 18
1 33 27 23 25 22 21 19 18
0.5 53 42 36 40 3% 34 31 9
3 50 36 28 29 25 19 17 14 2
2.5 43 30 24 26 22 19 17 14
2 39 28 23 26 22 19 17 14
1.5 37 28 23 25 22 20 18 .16
1 40 31 27 30 26 24 21 20
0.5 63 49 41 47 40 38 34 33
3 55 39 30 32 27 21 19 15 4
2.5 48 33 26 29 24 20 18 14
2 44 31 25 20 20 20 18 16
1.5 2 31 26 28 24 21 19 17
i 45 34 29 32 28 25 23 2]
2.5 30 22 18 & 16 13 17 10 457 3
2 27 20 15 18 i5 13 12 10
1.5 23 019 16 17 15 14 13 1
i 25 21 18 20 18 16 15 14
0.5 40 32 28 32 23 27 2% 23
2.5 35 25 20 22 19 16 14 12 2
2 32 23 19 21 18 15 14 12
1.5 29 23 19 20 18 16 15 13
1 31 25 21 23 21 19 17 16
2.5 39 28 22 26 21 17 15 13 a
2 36 26 21 24 20 17 15 13
1.5 32 25 21 22 20 17 16 14

1 34 27 23 25 22 21 a9 17
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The moment change following an instantaneous support dispiacement
decreases considerably with time on account of creep and shrink-
age, If the support displacement takes place successively, the
decrease will not be as large, due to the fact that the rejaxa-
tion on account of creep and shrinkage is not acting upon the
total support dispiacement during the whole process. The later
the support displacement takes place the smaller will be the de-
crease. If the support displacement takes place successively at
a rate which approximately corresponds to that of the creep and
drying processes of the beam, the decrease may be roughly esti-
mated to about 2/3 of the decrease at an instantaneous support

displacement.

At the determination of the values of the tables (Tables 6.1 and
6.2) the moment-curvature relation for constant moment has been
ysed for long-term 1oad. The curves for the moment-curvature re-
Tations at constant curvature (relaxaticn) Tie below these (Fig.
5.22). In the calculations there is a combination of relaxation
and curvature change at constant moment. A more accurate calcu-
lation (method A) gives rigidities insignificantly below those
that we get with the more simple calculation method used here.

At the determination of the total moment at long-term load and
support displacement, regard must be taken to the possible mo-
ment change that is caused by creep and shrinkage on the beam
subjected to Toad alone {sections'6.1.2, 6.1.3).

From the tables is shown that the rigidity upon the calculation
of moment changes en acccunt of support displacements normaltly
becomes much smaller than according to the present Swedish codes.
where the rigidity of the uncracked cross-section is t0 be used
with consideration to the reinforcement.

Neglecting the infiuence of reinforcement at creep and calcula-
ting the rigidity by dividing EC with 1 + ¢ may, at a high stee!
ratio (¢ smail} have the effect of an underestimation of the ri-

gidity.



- 119 -

6.2 Support moment due to support displa-
cement for nenloaded concrete beams

An approximate equation is derived for the determination of the
support moment for nonloaded supported cantilever beams and beams
ciamped at both ends. The derivation oroceeds from the bilinear
moment-curvature relation, but disregards the influence of the
curvatures 1/r0. These are small at uniform shrinkage and counter-
act each other at support and span, and therefore the error ari-
sing from this approximation is insignificant. The eguation is
valid when cracking takes place at support and is expressed for
the supported cantilever beam by

Mgl 2 (ED,
a = — e l(n - 1) o204 1)+ cE -1 (6.7)
6+(E1),. (€D},

where n = Ms/Mr and Ms denotes the support moment of the support
displacement a. The cracking moment Mr and the flexural rigidities
(EI)0 and (E1} may be calculated according to chapter 5 for the
reinforcement &t support. At creep and shrinkage the suppert mo-
ment may be determined by inserting the cracking moment and ri-
gidities then valid. In this case the moment change is overesti-
mated since the curve for the moment-curveture relation at relaxa-
tion is below the curve for the relation at constant moment for
which the flexural rigidities are stated. The coefficient n is
solved from the equation by a trial and error calculation.

For the beam clamped at both ends & and & in Eg. 6.7 are exchanged
for a/2 and 2/2 respectively.

If the curvature at zero moment (l/ro) is significant for example
at heavy non-uniform shrinkage, or the flexurzl rigidities at
cracked state are different at the two supports for the beam clamp-
ed at both ends, or if the restraints are elastic, then the aid

formulae of Appendix A4 mey be used.
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6.3 Comparison between measured and calculated moment
redistributions at support displacement

This section is mainly based on a paper by the author /72AL/ which
deals with an experimental and theoretical investigation of the effect
of support displacements on Toaded supported cantilever beams. The
experimental part of the investigation was made by pupils,who were
untrained for this type of work, as a part of their education under

the supervision of the author.

The supported cantilever beams were loaded by concentrated Toads
at their third points and the support dispiacement of the clamped
end was simulated by a slope change there. The Toading was made by
about fifteen Toad steps up to the collapse load. For most of the
beams a support displacement was performed at a load corresponding
to the load at serviceability limit state.

Seventeen beams were tested of which eleven were subjected to
support raisings or lowerings at the clamped end by one hundredth
or one two hundredth of the span. The A-and B-beams had the width
b = 150 mm, the depth h = 180 mm, d = 156 mm and the span g = 2100
mm while for the C-beams b = 300, h = 100, d = 81 and ¢ = 2700 mm.
A11 the beams had the same longitudinal reinforcement and the ten-
sile reinforcement consisted of 648 at the clamped end and 448 in
the span, and the cutoff of the reinforcement was made according
to the Swedish concrete reguiaticons. The beams had different kinds
of shear reinforcement. The A-beams had vertical stirrups and the
B-beams had stirrups which formed a 459 angle with the beam axis
between the concentrated loads and the ends of the beam and verti-
cal stirrups between the concentrated Toads. The C-beams had no
stirrups. The stirrups {¢6) were designed to carry the whole shear
force, The strength of the concrete fccm was about 20 MPa and the
strength of the reinforcement fst = 435 MPa,

In /72AL/ calculations have been performed according to method B
(Fig. 2.1) by dividing the beams into 16 segments. Regard was taken
to the moment-curvature relaticons at moment alternations according
to Monnier (section 5.2.2), to the deformations on account of shear
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Figure 6.14 The measured and calculated moments at the clamped
end and at the location of the concentrated load nearest the sup-
ported end for beam AR as a function of the total load and a rai-

sing of the clamped end by 2/100. Measured moments —-— | Calcu-
lated moments ——--— . Moments for a beam which has constant flexu-
ral rigidity along ifs iength and no support displacement . fT2ALY.
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Figure 6.15 The measured and calculated deflections at the location
of the two concentrated loads for beam AR1 as a function of the
total load and a raising of the clamped end by 2/100. The deflec-
tions are given in relation to the supported end and a negative
value indicates a deflection upwards. Measured deflection —-—-.
Calcuiated defiections ——— . /728L/.
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forces (section 5.3) and toc the fact that plastic hinges might be
developed. In the calculations considerations have also been taken
to the real dimensions of the beam, the real placing cf the rein-
forcement and the measured strength of the concrete. Small diffe-
rences exist between the moment-curvature reltations used in these
ca?cﬁ1at10ns and the relations stated in this paper as well as be-
tween the modulus of elasticity and the flexural strength as a
function of the concrete strength (fccm)' In Figs 6.14-6.17 are
shown the measured and calculated moments and deflections for two
of the beams as a function of the total Toad and the support dis-
placement. In /728L/ a thecretical investigation of the influence
of the deformations on account of shear forces has been performed
for the A- and B-beams which are not subjected to support displace-
ments. The investigation shows that this influence on the moment
distribution is insignificant and that it increases the deflection
at service load with about 7 percent for the A-beams and 2,5 percent
for the 8-beams and at the dubble service load with about 15 and 8

percent respectively.

Calculations have alsc been performed according to method ¢ (Fig. 2.3)
with the use of the moment-curvature relations and the relations be-

tween the material parameters stated in this paper. The same systema-
tized calculation model has been used as the one which is described

for frames at the beginning of chapter 8. The beams have been divided
into three members of equal length, which means that the concentrated
loads are applied at the joints. In the calculations the real quanti-

ties of the beams have been used.

In Table 6.3 are shown the measured moment changes at the clamped

end together with the calculated ones according to the two calculation
models described above. The moment changes determined according to

the Swedish regulations are also shown and it can be seen that They
are ? - 3 times too large. Far most of the beams there is good agree-
ment between the calculated and the measured values. The agreement
between the two calculation methods is also good which implies that
the more simple calculation model {method C} could be used at a
determination of the moment changes at support displacements. For the



TOTAL LOAD —kN

TOTAL LOAD kN

- 123 -

g I

] 2 4 ] g 10 12 14 16 18 20
MOMENT — kNm

Figure 6.16 The measured and calculated moments at the clamped

end and at the location of the concentrated lcad nearest the sup-
ported end for beam ALl as a function of the total load and a lowe-

ring of the clamped end by 2/115. Measured moments —-~—. Calcu~
lated moments ——— . Moments for a beam which has constant flexu-
rat rigidity along its length and no suppert dispiacement . /72AL/.
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C-beams the difference between the two methods is largest, which is
natural since the C-beams have no stirrups and the deformations on
account of shear forces will be largest for these.
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7 COLUMNS

Formuiae have been derived for the determination of the deflection
and the restraint moment for a laterally loaded cantilever column.
Furthermore directions are given for the determination of inter-action

diagrams for the buckling ioad.

The column is assumad to have a cracked zone near the support and to
be uncracked in the other parts. Its load together with the notations
used in the formulae are shown in Fig. 7.1. The formulae derived may
also be used for columns fixed at both ends according te Fig. 7.2. For
columns with other loadings, cracking, or end conditions, calculations
may be performed according to the first order theory by the aid of Ap-

pendix A4.

In the derivation a bilinear moment-curvature relation is assumed. This
may be determined according to chapter 5, which implies that regard may
be taken to the influence of the tensile zone of concrete, nonsymmetri-
cal reinforcement, creep and nor-uniform shrinkage.

7.1 Catculation according to first order theory

The deflection a, at the top of the column may be determined by the

equation
1 FV0_£3 3 Mo’ 2
% ° TETT, '[ g (1=7-ay) + —— 0 (1-f7eoq) 4
oit . M g . g )
Yoy {1-6 '61) s ﬂ1'(1'3 )Wt (7.1}

where o, = 1 - (Ei)r/(EI)0 and gk, which constitutes the distance from
the top of the column to the cracking zone, is determined by -

Moo=V, BN +Q - (en)s2 (7.2)

The parameters MP,
to chapter 5 with consideration of normat force and possible non-uniform

1/r0, (EI)0 and (El}r may be determined according

shrinkage and creen.

The restraini moment will be egual to
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Figure 7.1 The notations and moment-curvature relation used in the
evaiuation and the loads and deflection of the column
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Figure 7.2 The conditions for which the formulae derived are valid
for a column hinged at both ends
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-y - .42
Ms =V, e Motaq -t /2 {7.3)

and an improved value may be calculated by adding the moment of the
dafiection and normal force.

- . . 42 .
M= V0 LM g e /2 + ND a, {7.4)

For a completely uncracked column g is equal to 1 and for a comple-

tely cracked one equal to 0.

7.2 Calculation according to second order theory

The deflection a, at the top of the column may be expressed by the

eguation
. :Vdg_ f“ ﬁ2_1)_ﬂg+qw2.(Mnkﬁ-r 1 ,1)+
0 N Kot N N Kok z 7
] 2 0 [ 2 (k,2)
M k 2 2
r 1%.2 i ']/ro
it O idgm)) e (7.5}
o 2 (ky2)
where
. 2
. ] ) Elf ) sTn kZEG-' q - 22 i TE,_ i -l/ro .
1~ cos RZE k,£  sin k]ks No-(k1£)2 N (k]g)Z
Moo g2 RV kit sin kyis
+ - + } -+ (cos ki - : }
o ntgn? gn)? 17K tankie

2 _ z
and kq = NO/(EI}O, k2 = No/(EI}r and the parameters Mr,VT/rO, (EI)0
and (EI)r may be determined according to chapter 5 with consideration
of normal force and possibie non-uniform shrinkage.and creep.

The deflection a, at the location where the moment is equal to the
cracking moment Mr i.e. at the distance gt from the top may be expres-
sed, in relation to the deflection a, at the top of the column, by

. V.rr . (sin ky2g/cos kot - ﬁg . q-22 ) (sin kpaa/cos kyt
o r Nn kzi N0 NO kzi
: 2 M ko2 o,
+ - =) e O-(7) - - ay-cos(kyi-(1-8))
n? 7N Y T n? 2

(7.6}
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The distance g& from the tap of the column may be determined from
the equation
- - . 2 - -
Mr = Vo e + Mo+ q (Br)7/2 + N (a, ar) (7.7)
An appropriate calculation procedure is to determine at first g
from Eq. 7.7 with N, = 0, and then 2, and 3, - 3, from Eqs 7.5 and
7.6 for this vaiue of g, and after that determine a new value of

g from Eq. 7.7 and then repeat the calculation procedure untii the
defiection is determined with satisfactory accuracy.

If the column is completely uncracked the deflection at the top of

the column is equal to

V0'£ tan k1£ _22 tan k.t
N S e b A N A
0 1 [ 1
2
M 2 L
0 q " & [ 1
+Hg - + 3l - - 1) (7.8)
L R O N SR

and if the column is compietely cracked the deflection is egual to

YV 'z tan k, & 2 tan k.t
FYNE AR S P A N A P
0 Nn Ezﬂ NO E22
?
M 2 £ 1/r
- g 1
* (WE'_ . 7t g) st 1 {7.5)
o N t{kpt) {({ky2} 2
The restraint moment is determined by
Moo=Vt a M otqc 2N - a (7.10)
s Q ¢] o o :
7.3 Mathod for the determinationof inter-

action diagrams for the buckiing load

If the cross-section data and the normal force of the column are assu-
med to be known, the uitimate moment (Mu), the cracking moment {Mr)’
the rigidities at uncracked and cracked states (EI)0 and (El)r’ and

the curvature at zero moment (l/rn) may be calculated as well as

ky = JN;T(ETT; and &, = Wﬁ;7TFT7;' with the consideration of possible

creep and shrinkage. If the column is completely uncracked, the unknown
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magnitude of the force which coacts with the normal force may be cal-
culated by a combination of Eqs 7.8 and 7.10. Ctherwise, an itera-
tion procedure must be used which in principle may be performed in

the following way.

By a combination of Egs 7.10 and 7.7 8 and the unknown magnitude of
the force coacting wifh the normal force may be expressed as func-
tions of the normal force, the ultimate mement, the cracking moment
and the deflections a, and a. If in the first iteration step, the
deflections are assumed to be equal to zero, B and the force may be
determined. Then a, and a, may be calcuiated with the aid of Eqs 7.5
and 7.6, By using these deflections new values of & and the force
may be determined and inserted into Egs 7.5 and 7.6. This calculation
precess is repeated until the magnitude of the force is determined
with sufficient accuracy. The calculation procedure may then be re-
peated for a new value of the normal force.

The moment-curvature relations used are established under the assump-
tion of constant moment during the loading time. Since the deflection
on account of creep and shrinkage will increase with time there is al-
so an increase of the moment with time. This leads to somewhat larger
rigidities than those assumed, a fact which will probahly cause a
stight underestimation of the buckling load.
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g FRAMES AT SERVICEARILITY LIMIT STATE

A systematized frame calculation model has been established for
the calculation of loaded cencrete frames subjected to support
displacements. The calculation may be performed for short-term
toad. creep and non-uniform shrinkage and with the consideration
of partial cracking, Width, depth, creep and shrinkage may vary
between the separate members of the frame and the reinforcement

within the members.

The calculation is iterative and is performed according to the de-
formation method. The frame is divided into joints and members,
consisting of beams or columns or parts of these, The system lines

of the frame are represented by the ceniroidal axes of its members.
The members are divided into cracked and uncracked sections with

the aid of the moment distributions formerly calculated. The flexu-
ral rigidities of cracked and uncracked states, the cracking moment
and the curvatures at zero moment (1/r0) are determined according

to chapter 5 for each section. The flexibitity matrix of each mem-
ber may be established according to the same procedure as the aid
formulae of Appendix A4. The deformations of normal force are calcu-
lated as if the members are uncraéked. The shear deformations are
disregarded, but may be included in the analysis without difficulty.
The flexibility matrices are inverted to local stiffress matrices.
These are transformed to the global coordinate system and collected
in the global stiffness matrix. The load vector is set up conside-
ring possible load between the joints. The stiffness matrix and

the load vector are modified for the boundary conditions. The dis-
placements and rotations of the joints are solved from the system of
eguations. The section forces are calculated. If the agreement between
these section forces and those previously calcu?ated is satisfactory,
the calculation is terminated, otherwise it is repeated with the new
force distributions of the members as entrance value for a dividing
of the members into new cracked and uncracked sections. For more
simple frames, where the number of statically indeterminate forces

is small, a manual calculation may be performed with an improvised
force method where the aid formulae of Appendix A4 in combination with
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Figure 8.1 Data for the frames, the calculation results of which
are accounted for in Tabie 8.1,
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the moment-curvature relations of chapter 5 are used.

A few frames are calculated to itlustrate the influence of the effects
of imposed déformations as well as the deviations in the moment distri-
butions between the more accurate calculations according to the model
described above, where regard is taken to partial cracking, and simpli-
fied calculaticns, where the frames are calculated as uncracked and
non-reinforced. In this chapter these methods will be referred to as
the accurate one (partial cracking) and the simple one (uncracked) res-
pectively. In the latter method, each frame member is assumed to be uni-
formly rigid aleng its length and with the flexural rigidity equal to
Ec'bh3/]2 at short-term Toad, and at Tong-term load the elastic modulus
of the concrete is divided by 1+¢. Possible curvature at zero moment
(1/r0) of normal force and uniferm shrinkage are disregarded, but non-
uniform shrinkage is considered. CalcuTation according to this method
may be performed with the aid of manuals with frame formulae or in a
conventional manner, and the influence of different loading cases and
effects of imposed deformation may be superposed.

The shape, serviceability lcad, suppert displacement, creep and
shrinkage of the first frames are shown in Fig. 8.1. Three frames

are symmetric (21 = 22), whereas the fourth frame is unsymmetrical
with different lengths of its columns which has the effect that it is
subjected to sway. In order to examine how the elastic restraints of
the beams influence the effects of imposed deformations and the de-
viation between the calculation methods described, the Tength of the
columns has been varied for the symmetric frames. The'frames are re-
inforced for the moments calculated according to the simple method
for shori-term load without support displacement, and are, for this
load, cracked in the corners as well as in the spans of the beams.
At support displacement this is assumed to take place at the same
time as the loading. The infiuence of other loading histories is
dealt with in section 6.1.4. At non-uniform shrinkage this is assumed
to take place only in the beams and to be 25 % larger at the upper
edge and 25 % smaller at its Tower edge than the value stated in the
figure with 2 linear distribution inbetween. The calculation results
are accounted for in Table 8.1, For the frames 1, 2 and 3 M1 = M2,
whereas for frame 4 M2 = ZMq.
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According to the table the moment distribution may be estimated
relatively satisfactorily with the simple calculation method at
chort-term load without swpport displacement. However, at a rein-
forcement distribution deviating from the one which belongs to the
moment distribution calculated for an uncracked frame the risk in-
creases of a greater deviation between the intended and the real
moment distribution. If the frame has such dimensions and such load
that cracking takes place either only in the frame corners or only
in the span, the deviation may be somewhat larger than the one which
appears from these caleulations but it will probably not be larger
than to make possible a reasonable estimation of the real moment
distribution with the simple calculation method. This condition is
valid also for the supported cantilever beams and the beams clamped
at both ends as described in chapter 6.

Since frames generally have such & design that they are cracked at
serviceability 1imit state and the support displacement generally
causes increased cracking and the ratic betwsen the flexural rigidi-
ties at uncracked and cracked states for short-term load is large,

the difference between the influences of the support displacement
according to the different calculation methods will as a rule be
large. The frames here accounted for are cracked at serviceability
limit state in the frame corners as well as in the spans of the beams,
and the table shows that the influence of the support displacement

on the moment distribution will be only about one half calculated

for a partially cracked frame in comparison with the results from

the simple calculation method. Since the influence of the support
displacement is largest for frame 1, which is the most rigid one as

it has the shortest columns, the total error will be largest for this
frame. Consequently, the simple calculation method is not satisfactaory
for a calculation of the influence of the support displacement at
short-term load, if this causes a large moment redistribution when the
frame is cracked at serviceability 1imit state or if the suppori dis-

placement causes cracking.

The creep has the effect that flexural rigidity decreases. At uncracked
state the decrease is larger in percent than at cracked state, This
jmplies that the curve describing the moment-curvature relation becomes
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more straigth and that the cracking does not have as large an impor-
tance as at short-term load. The influence of the reinforcement on
the flexural rigidity is considerably larger at creep than at short-
term toad, which means that the rigidity of the frame and hence the
moment distribution are better adapted to the one for which the frame
has been reinforced. These two factors probably have the effect that
the agreement between the two calculation methods is better at uni-
form creep in the structure than at short-term load.

The shrinkage causes a contraction of the beam, a curvature (1/r0)

for non-symmetrically reinforced ¢ross-sections and a reduction of

the cracking moment. The two latier factors involve a reduction of
flexural rigidity. In the simple calculation method the shortening of
the beam causes a decrease of the corner moments in the same way as

the support displacement. However, the decrease is considerably smaller
on account of the fact that on the one hand the shortening is smaller '
than the support displacement and on the other hand the creep reduces
the rigidity of tha frame. The decrease of the corner moments is lar-
gest forframe | which is the most rigid ane. The creep of the columns
is larger than the one for the beam which invelves that their rigidity
decreases more causing in turn a decrease of the corner moments. For
frame 2 these reductions will be equal to 1.2 and 0.3 klm respectively
according to the simple method. On calculating with the more accurate
method, the shortening of the beam causes a decrease of the corner
moments by about as much as according to the simple method. The cur-
vature 1/r0 in the span of the beam increases the corner moments,
whereas the curvatures 1/r0 at the ends of the beam and for the columns
decrease them and all this results in a decrease of the corner moments.
The veduction of the cracking moment is Targest in the span which is
simply reinforced, and its influence on the ratio between the flexural
rigidities in span and corners together with creep invelves an increase
of the corner moments. The deviation between the corner moments calcu-
lated according to the two methods is larger at creep and shrinkage
than at short-term load and exceeds 10 % of the moments at short-term
load for three of the four frames. However, the deviation is not

larger than that the simple method may be used for an estimation of
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the moment distribution for the loaded frames at long~term Toad.

The corner moments increase at non-uniform shrinkage of the beam and
the change of the curvature 1/r‘0 belorging to this. This increase is,
however, counteracted by the fact that the cracking moment is compara-
tively more reduced at the ends of the beam than in its span, causing
a dacrease in the ratio between the flexural rigidities at support and
in span for the beam. The table shows that the influence of the non-
uniformity of the shrinkage is very small and that this may be neglec-
ted, whereas the simple method heavily overestimates the influence cf

the non-uniformity of shrinkage.

The influence of the support displacement decreases with time on account
of the fact that the rigidity of the frames decreases at increased creep
and shrinkage. For the frames shown in the table it decreases to about
one half, The difference between the rigidities of the frames calcula-
ted with the different methods also decreases considerably. This is

due to the fact that the ratio between the flexural rigidities at
short-term and long-term load for an uncracked section without consi-
dering the reinforcement is 1 + ¢, whereas the same ratio is smaller

if the reinforcement is considered. This compensates the lower flexural
rigidity at cracking as well as the increased cracking of shrinkage

in the more accurate calculation. A high percentage of reinforcement,
large creep, small shrinkage and 1ittle cracking may involve that the
influence of the support displacement becomes smaller with the simple
method than with the more accurate one. This may also be recognized

at & study of the rigidity for a calculation of the influence of &
support displacement on beams in chapter 6. The factors enumerated

are, however, contradictory since a high percehtage of reinforcement
normally is connected with large cracking and Targe creep with large
shrinkage. The influence of the support displacement on the frames
becomes approximately the same for the two calculation methods.

Among the frames calculated, the influence of the effects of imposed

deformations and the deviation between the calculation methods will

be largest in those cases where the beam is long in relation to the

columns. Due to this, comparative calculations have been made for a

symmetric two-bay frame the data and load of which are shown in Fig.
8.2, and for which the deviations may be expected to become even
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larger. The frame is reinforced for the moments calculated according
to the simple method at serviceability Timit state, and the beams
remain uncracked in span at this lecad. At non-uniform shrinkage this
is assumed to take place only in the beams and with the same distri-
bution as for the previous frames. The calculation results are shown
in Tabie 8.2 and about the same conclusions may be drawn from these
as from the results from the calculations of the frames above.

In Fig. 8.4 the moment diagrams for a2 symmetric two-story, two-bay
frame according to Fig. 8.3 is accounted for, where one side of the
structure i5 loaded with a uniform lateral horizontal load and the
sTabs with uniform lateral vertical Toads. The walls, with a thickness
of 15 cm, are symmetrically reinforced with p = 0,004 at each side
and the slabs, with a thickness of {0 cm, are reinforced in the top
with p = 0,007 at the exterior support and with o = 0,01 at the
interior support. The bottom reinforcement corresponds top = 0,005
in the span and p = 0,0025 at the supports. At non-uniform shrinkage
this is assumed to take place only in the slabs with the same distri-
bution as for the previous frames. The slab$ are uncracked in span

at short-term load. The agreement between the two calculation methods
is, as is shown in the figure, good except for support displacement

at short-term lcad.
Conclusions

From the calculation results and the discussion concerning these, the
following conclusions may be drawn about the reliability of the simple
method for the calculation of the influence of effects of imposed de-

formations on loaded frames.

At short-term 1oad without support displacement the method should give

satisfactory results.

At short-term load with support displacement, the method may over-
estimate the influence of the support displacement by 2 to 3 times if
the frame is cracked at serviceability Timit state or if the support
displacement is of such a magnitude that it causes cracking. If neither
the Toad at serviceability 1imit state nor the support displacement
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causes any cracking, the infiuence of the support displacement is

stightly underestimated.

At Tong-term load the method should give an acceptable result. The
influence of the non-uniformity of shrinkage is neglected.

The moment diagram of the frame for Tong-term load and support dis-
piacement may be estﬁmated with the method with reasonable accuracy.
If the influence of the support dispiacement is great and the creep
is small a certain precaution should be taken, and tikewise if the

frame is uncracked. If the support displacement develops with time at

about the same rate as the creep and skrinkage, its #nfluence can
be catculated in the same way as for an instantaneous support dis-
placement, but its decrease with time will only be about 2/3 of

the decrease for the instantaneous displacement. This is a rather
raugh approximation. The Tater the support displacement takes place

the smaller the decrease will be.

Consequently the moment distribution in the frames at serviceability
1imit state may be calculated approximately with a simple calculation
method, in which the frames are assumed uncracked and nenreinforced,
at short-term load without support displacements and at Tong-term
load with or without support displacements.

[ ~ 0007 MNrm m
]
.
g
-~ 2.5
S ¥ 0.007 MN/m
=
o
i
25
4 Ay A
_ 0.025
5.0 | 50
+

Figure 8.3 Load, design and support displacement for a symmetric
two-story two-bay frame the calcuiation results of which are ac-
counted for in Fig. B.4. f..p = 30 fgt = 400, ¢/h = 0.1. Slabs
¢ = 2. 83, £ = 0.000533, E =1. O ‘G.1. Walls 4 = 2.67,

= 0.000886, b h = 1.0 8.3,
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Figure 8.4 Calculation resuits from the
_symmetric two-story, two-bay frame in
Fig. 8.3. Dimensions kNm and m.
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9. ROTATION REQUISITES AT ULTIMATE LIMIT STATE

In the design of concrete structures two states are distinguished,
viz. the serviceability 1imit state and the ultimate 1imit state. At
serviceability limit state deflections and crack widths are control-
led with regard to integrity of secondary structures, impenetrabi-
11ty,.the risk of carrosion as well as aesthetic demands. The analy-
sis is normaily carried out according to the elastic theory.

At ultimate Timit state the safety against failure is controiled to
be satisfactory. This is performed through stability analysis and a
control that the cross-section can carry the section forces. These
are generally determined by an analysis according to the plastic thec-
ry. Ther it must be contralled, for the collapse mechanism assumed,
that the rotation requisite at each plastic hinge does not exceed its

rotation capacity.

In order to determine the required rotations at the piastic hinges
the rotation between the hinges must be calculated. Elastic behaviour
is assumed in the regions between the plastic hinges. This implies
that the formulae stated 1n.Append1x A4, which are based on the bili-
rear moment curvature relations stated in chapter 5 considering the
cracking, shrinkage and creep of concrete, are appropriate for the de-
termination of the rotations between the plastic hinges. The formulae
are established for some commen loading cases and will be used in the
following. The deformaticns due to shear forces are not regarded.

Supported cantilever beams and beams clamped at both ends as well as
two-hinged portal frames subjected to uniform lateral Idad and support
displacements are studied. Their purpose is, on the one hand, to serve
as examples of how to perform the calculations, on the other hand, to
examine which parameters govern and how they govern the rotation re-’

quisite.

9.1 The rotation requisites for a supported cantilever beam subjected
te uniform lateral load and to support displacement.

The beam studied s shown in Fig. 9.1 together with its load, sup-
port displacement, moment distribution at ultimate limit state and
cracking zones. The figure also shows the divisien of the load into
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Figure 9.1 Befinition of the notations used in the evaluation.
Bivision into subleoading cases.

PLASTIC HINGE 1N SPAN

PLASTIC HINGE AT THE SUPPORT

Y

Figure 9.2 Within the areas incgicated the flexural rigidity assu-
med 15 incorrect since regard is not taken to the loading history.
Within certain areas dencted the beam is assumed uncracked despite
the fact that in an earlier stage it has been crackad.
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appropriate partial loadings. With the aid of these and the aid
formulae in Appendix A4 the slope at the support eBmay be calcula-

ted
b = 0, T Op - (32 + 33)/2 + afL (9.1)

where‘e0 {due to g and Mps} according to Appendix A4 is equal to

3
8, = EE%E%YQ [egrlag ) [53: (4385085 (4-3,) | ~(agm1) sy (4-38) )+

‘R
_ é%%fr . [a3+(a2—])‘(33'ﬁg)'(°‘3"1}'82]+
o .

13

- oqETy [ (o) (85600 (g ) (108 | +

£ 2 . 2
t 5 [Vrcz (By+By ) /44177 o~ (1-(By+6,) /4)] (9.2)
The other notations are shown in Fig. 9.1 and Appendix Ad4.

If the plastic hinge is developed first at the support the rotation
requisite in the plastic hinge there must be equal to

6g = 8, * afe {9.3)

in erder to attain the plastic moment alsc in the span.

If a plastic hinge is developed first in span then 85 = 0 and the
rotation reguisite will be egual to

Be = -2 7 (8, + af2)/(By * 85) = = & (6, +a/i) ' (9.4}

The uniform lateral load q and the parameters § may, with the aid of
the equilibrium conditions, be expressed as functions of the plastic

and cracking moments
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2 7
gt Me {9.5)
o2 em M 42 TR M (9.6)

ps’ pf ps’pf :
b = (1 - T=HLTH O By 2 0 (9.7)
- Ve - < .
By = (1 + 2 Mpf)lx By < By s 1 (9.8)
8y = (1 /T =W M )/ By z By 2] (9.9)

The cracking moments Mr’ the curvatures 1/r0 and the flexural ri-
gidities (EI)G and (EI)r may be calculated according to chapter 5
considering possible nonuniform shrinkage and creep, If these para-
meters are inserted together with the }oad and the plastic moments
into e0 the rotation requisites may be expressed as a function mul-
tiplied with ¢/h

_ % ) : hyal
g “Th f(pfs Pge pS’ DS, c/h, l+p, QCSS, Ya fst, fCCR’I’ a-h/e }
: (9.10)

which impiies that the rotation requisites increase with the length
of the span and decreases with the depth of the beam.

The calculation method used does not take into consideration the loa-
ding history, which implies that certain parts of the beam will be
considered uncracked although they have already been cracked at a lo-
wer load level (Fig. 9.2). This implies that the calculated rotaticn
reguisites will be somewhat large. The increase is, however, probably
so small that it is insignificant. At shrinkage the influence gets
eveﬁ smailer, since this reduces the cracking moment.

Numerical catculations have been performed to examine how the rotation
requisites at support and in span are affected by the cracking and the
reinforcement distribution between support and span at both short-term
and long-term load. The following calculation assumptions are valid.

The plastic moment is Targer than the cracking moment. The plastic
moments have been determined by

M =0.9-d-A_ -f {8.11}
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Compressive reinforcement does not exist in span and is at support
equal to ane fourth of the area of the tensile reinforcement in span.
No consideration has been given to the cutoff of the reinforcement.
The depth and width ef the rectangular cress-section are the same
for the whole beam. In order to reduce the number of parameters in
the presentat1on of the results, the amount of reinforcement, the
strength of concrete and the tensile strength of the reinforcement
have been transferred into & parameter ¢ which is defined by

-
[}

cbm
= {9.12)
Ptot ‘st
2 A
2. st (9.13)

where oo =7~ 5R

with AZ according to Eq. {2.6) or A2 T 4,2+ 1.6 ¢ MpS/Mpf

The definition of ¢ implies that for beams with the same ¢ the bea-
ring capacity is not affected by a reinforcement redistribution bet-
ween support and span. The parameter ¢ governs the degree of cracking
for the beams and a small value of ¢ implies heavy cracking. If the
beam is completely cracked ¢ is equal to zero.

The result from the calculations is shown in Figs 9.3 - 9.7. The nu-
merals by the curves denote the value of ¢ for which they are valid.

The maximum deviations of the rotation requisites from the values sta-
ted in the figures are about + 10 % at short-term load and about + 15 %
at leng-term load, depending on the variation of Prot? fccm (15 = fccm <
< 60) and fst {400 < fst < 800). The values stated are the average va-
lues when f_. and fst vary as described.

If the beams are at the same time subjected to both Toad and a support
displacement a, defined according fo Fig. 9.1, the rotation requisites
stated in the figures increase with a/L at support and decreasé with

» + a/e in span with x according to Eq. 9.6 or 1 = 2,12 + 0.29 - M /Mpf.

The figures show that the rotation requisite at support is largest at
heavy cracking and when the ratio between the plastic moments at sup-
port and in span (M /M f) is small, whereas the opposite is valid for
the rotation requ1szte in span. At a comparison between Figs 9.3 and
9.4 and Figs 9.5 and 9.6, it may be noted that the shrinkage has rela-
tively small influence on the rotation requisite, but increases this
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somewhat at support for Mps/Mpf = 0.5 - 1 as well as in span for
MPS/M £ = 4 - 5. The non-uniformity of shrinkage probably has no ef-
fect (Figs 9.6 and 9.7). Figs 9.3 and 9.5 show that creep increases
the rotation reguisite considerably. According to /76PL/ the rota-
tion capacity also increases considerably under creep.

9.2 The rotation requisites for a beamclamped at both ends
subjected to uniform lateral ioad and to support displacement

Fig 9.8 shows the symmetricaily reinforced beam together with its Toad,
support displacement and moments at ultimate 1imit state. The division
inte subloading cases is also shown With the aid of these subloading
cases and the aid formulae of Appendix A4, the slicpes at the supports
and at the centre of the span, after simplifications where regard is
taken to the symmetri, may be expressed by

GB = Bo + ec/z + a/ft (9.14)
By = B, * ec/z - a/s {9.15)

where

Q
M__-%
-(1+232-Zs§)] - E%ET)- - [0:1—(0t1-1)-{]—281)+(a2—])'(1-262)] +
0

ﬂ%j; . [MH'(a1-1)-2sI+Mr2-(a2-3)-(1-232)] +

.3 '
s - m—j*qg’f - [o:-l—(m.[-”‘(]-281)'(“‘231-25]2)*(32"1)'“"252) :

% - . . - -
+z {S/rm (By+8,)41/r 57 (1-64 32)} (9.16)
The other notations are shown in Fig 9.8 and Appendix A4,

If the plastic hinge is developed Tast in the span then &= 0 and the
rotation regquisites at the supports will be equal to '

8p = 8, * &/t (9.17)

6y = 8, - /L (.18)
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If the plastic hinge is developad last at support A then By = 0
and the rotstion requisites in span and at the support B will be

equai to
6 =<2 8, +2 " alk (9.19)
6y =2 " a/t (9.20)

With the aid of eguilibrium conditions the uniform lateral Toad g
and the parameters B may be expressed as functions of the plastic and

cracking moments

v .2
g2t =B8N (8.21)
A2 =1+ M /N (9.22)

ps’ pf )
B] = (x- T - II“]; pf)/zj\ 0 < B-I s 1/2 (9.23}
By = O - T=HE N2 By s By 5 1/2 (9.24)

The cracking moments Mr’ the curvatures 1/r0 and the flexural rigi-
dities (EI}0 and (EI)r may be caiculated according to chapter & con-
sidering possible nen-uniform shrinkage and creep. If these values
tegether with g, ﬁ] and 32 as well as the plastic moments are inser-
ted into 6, the rotation requisites & may be expressed by

e . : s/l
8 =g " Flogs ngs pgr e O/ 1oy i v Fops Trgpe @ n/e”)
(9.25)

which implies that the rotation requisites increase with the length
of the span and decrease with the depth of the beam.

The calculation is performed for the coliapse state and does not con-
sider the effects of those moment redistributions which take place at
increasing load after the development of the first plastic hinge. This
implies that the caleculated rotation requisites become insignificantly

larger than the real ones.

The same numerical calculations have been performed for the beams
clamped at both ends as for the supported cantiiever beam. The same
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calculation assumptions are valid with the exception &f Prot which
is determined according to

brop = (hos + BN/ (B - ) (9.26)

at the determination of ¢ according to Eq. 9.12.

The results from the calculations are shown in Figs 9.9 - 9,13 where
the numerals by the curves dencte the value of ¢ for which each curve
is valid. The same maximum deviations are valid and the same conclu-
sions may be drawn as for the supported cantilever beams. The rotation
requisites at the supportsare somewhat larger for the beams clamped
at both ends than for the supparted cantilever beams, whereas the ro-

tation requisites in span are considerably smaller.

For a support displacement a, according to Fig. 9.8 the rofation re-

quisites are modified as above.

9.3 The rotation requisites for two-hinged frames

The design of frames at ultimate 1imit state may be performed as fol-
lows. The best economy is obtained if the frame is designed such that
the whole frame collapses at ultimate lead. Therefore a complete col-
lapse mechanism is assumed. The number of plastic hinges will then be
one more than the number which is required to render the whole struc-
ture statically determinate. Choose the plastic moments sc that the
equilibrium conditions are fulfilled and determine the moment diagram
for the frame for which it is to be reinforced. Determine the rotation
requisites. If the rotation requisite is put equal to zero in the plas-
tic hinge developed last, then the rotation requisites may be deter-
mined in the remaining plastic hinges. If the rotation requisite some-
where is negative then either the plastic hinge developed last is
another one or the wreng direction is assumed for one or some of the
plastic moments. IT somewhere the retation requisite exceeds the rota-
tion capacity the frame will coliapse before the complete cellapse

mechanism is attained.

Caiculation methods for the determination of the rotation regquisites in
frames and beams are accounted for in literature in among others /72CEB/.
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Three examples of the caleulation of the retation requisites for Joa-
ded two-hinged frames subjected to support displacements will be per-
formed in order to illustrate how the aid formulae of Appendix A4
together with the flexural rigidities and cracking moments calcula-
ted accarding to chapter 5 may be used for the deformation of the

rotation requisites.

The first example concerns a frame according to Fig. 9.14, which is
symmetric around C. In the figure is also stated an appropriate di-
vision into subleading cases. The rotations in the plasiic hinges at
A and B will be
B, = 8, = &+ -5 - §.27
8y = fg = By ec/E ap ax/2£p { )]

If the plastic hinges are developed last at A and B the rotation re-

quisite in span may be calculated by inserting 8y = 8 = Q.

8o = —280 + ax/ﬂp + Zep (9.283
where
Mooz ;
5. = - (a_ - -13-{1= +
° ?%TTSP (s = LoprTi- {128, )7)
Mep 2o ! 2 8.29)
- - - . . - — g' .
Z(ED), (epmi)gpr{z=8p) = oo o {

which may be taken from Tab. 9.1 {page 151) if the moments in the columns
are equal to their plastic moments.

The rotation 8, may be calculated according to £q. 9.16, or —Ze0 may
be found in Figs 9.8 -~ $.13 if the plastic moments of the columns are
larger than those of the beam, s0 that the plastic hinges are develo-
ped in the beam. If plastic hinges are develeped first at A and B
their rotation requisite will be BA = BB = eO - ep - aX/ZEp.

The beam may be regarded elasticaliy fixed at the columns. The elastic
restraint has the effect that the rotation requisite increases in span.

If the frame is assumed to be a continuous beam simply supported at
A and B also, then the rotation requisite decreases at the supports
Aand B with s and increases in span with 26 compared to the rota-
tion requisite for a beam clamped at A and B.
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Figure 92.14 Loading, suppert displacements, collapse mechanism.
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nation of the rotation requisites.
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In the second example one of the columns is loaded with a uniform la-
teral load according te Fig, 9.15 and the frame is assumed to be re-

inforced so that plastic hinges at ultimate limit state are develeped
at A and B. With the aid of the subloading cases in the figure,

the rotations at the plastic hinges may be determined as

i M

M
6, = —eAgA - ogp +afiy +afo - eAgA + SAEB (9.30}
M M M
A pB ph pB 3
Bp = -8 + g/t -a fén + 8 - B (8.3%)
8 Bp p x'"p B Bb

If the plastic hinge is developed in B, the rotation requisite in
B may be determined by inserting By = 0 and eliminating a/&p.

= g )
by = & (9.3e)
where
M H M M

. = _g PB ph . 49 _ pA pA

B, sBp + eAp + HAp axlzp + Byt Bap +

M M
_a.PB _ o pB

8pi) Oap (9.33}

I e, bacomes negative, the assumption that the plastic hinge is de-
veloped first at B is incorrect. Instead it is developed at A and its

rotation requisite will be

a, = -8 {9.34)

in the third example the plastic moments are of the same magnitude
in the whole frame and a collapse mechanism according to Fig. 9.18
is obtained. With the notations of the figure, the rotations at A
and B will be

M M M
A R _ah D
B 8 5 zpl/ﬂp + a/g,p + ax/ZsLp Ban * Opb (9.35)

= %p T "mp T ¢
MpB ) MA Mp
o = —eBp talt, - ax/ZQD + 8gp ~ fpp (9.36)
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If the plastic hinge is developed first at B, the rotation requisite
may be determined by inserting Bp =0 = 0 and eliminating a/ﬁp.

a, = © (9.37)

where

M M MA M M M

A e S A B TR YL

%0 = Sap T Pap * fap T AR, * O * gy T fpf " fap  (2-38)

If the plastic hinge is developed first at C, then N will be negative
and the rotation requisite in C may be calculated by inserting &, =6, =0

and eliminating a/ip.

£

- P

=--£2 .5 (9.39)
l[.ﬂ 0
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10 CONCLYSIONS

A refined calculation model can be astablished, which carefully
describes the behaviour of concrete, considering among other things
the stress-strain relation for concrete intension, the basic creep
when- the stresses change signs, the drying process and the drying

creep.

For structures, however, it has been shown that simplified models
based on the creep coefficient (including the drying creep) and

the final shrinkage can be used with satisfactory accuracy in spite
of the cracking and the large stress variations, which take place

in structures during a drying process.

The deformaticn caused by nermal force can be calculated by super-
posing the influences of the stress-related deformation, the creep

{inctuding drying creep) and the shrinkage.

A simple bilinear moment-curvature relatien for bending can be es-
tablished considering cracking, creep {including drying creep), non-
aniform shrinkage and normal force and where the parameters, curvature at
zero moment, cracking moment and the flexural rigidities at un-

cracked and cracked state, can be described by a combinaticen of

formulae and diagrams.

By using this relation the influence of the imposed deformations
may be determined and for beams moment distribution, deflection
and influence of support displacement may be accounted for by dia-
grams, tables and calculation methods. For supported cantilever
beams and beams clampad at both ends subjected to uniform Tateral
load at serviceability limit state the following may be mentioned.

& redistribution of the reinforcement between support and span has
Tittle influence on the deflection as long as the redistribution
does not change the carrying capacity of the beams and the influence
of the shear deformations is small. At creep and shrinkage the ratio
between the deflections at iong-term and short-term load is largest
for an initial uncracked or slightly cracked beam.



For a beam clamped at both ends and reinforced for the moments
calcutated for a beam with the same flexural rigidity along its
length, the support moments calculated in this way decrease at
short-term load with maximally about 10 percent if only cracking
takes place at the support and increase maximally about 7 percent
at heavy cracking, At long-term lcad the support moments increase
because of creep by 0 - 8 percent in comparison with those at
short-term Toad, If shrinkage takes place at the same time as creep
the support moments decrease at small cracking by maximally about

6 perceni and increase at heavy cracking by maximally about 8 per-
cent. The corresponding moment changes at the clamped end for
supported cantilever beams will be a few percent larger than the

values mentioned above.

The vigidity of the beam to be used for a calculation of the support
moment change for a support displacement at short-term toad is only
about 40 to 50 percent of the flexural rigidity tor an uncracked segment.
Heavier cracking and iarger displacement decreass the rigidity. If
loading and support displacement take place at the same time the
rigidity for the calcuiation of the support moment change at creep
and shrinkage is only about 15 to 20 percent of the flexural rigidi-
ty for an uncracked seoment which is not expssed to creep and
shrinkage. The differences will be larger if the shear deformations
are of importance. As long as both Toading and suppori displacement
take place in a short period the influence of the sequence is small
at short-term and negligible a3t long-term load. If the support dis-
placement develops with time at about the same rate as the ¢reep

and shrinkage, its influence car be calculated in the came way as
for zn instantanzous support displacement, but iis decrease with time

se for the instanianecus dis-

will cnly be about 2/3 of the dec

soprovimation. The fazer the suj

placement. This is & rather rough

cort dispiacement takes plage the smaller the cecrezase will be,

Calculation models sccording to the second arder thecry can be

established for columns for the determingtion of the d«

moments by using the bilinear momenl-curvature relations mentioned.




- 166 -

These models can also be used in the determination of inter-action
diagrams. In the models regard may be taken to cracking, creep, non-
uniform shrinkage and different areas of the tensile and compressive

reinforcement.

The moment distribution in frames at serviceability 1imit state may

be calculated approximately with a simple calculation method, in

which the frames are assumed uncracked and nonreinforced, at short-

term load without support displacements and at long-term load with

and without support displacements, if the frames are reinforced

according to the moment distribution at short-term load caltculated

by this methed. Thus the influence of an instantaneaus support displace-
ment at shori-term load should not be calculated with this simple method.
The influence of the nonuniformity of shrinkage should be neglected, since
the simple method very strongly cverestimates its influence.

For beams the rotation requisites at ultimate limit state increase
at increased ratio between span and depth, and an elastic restraint
increases the rotation requisite in span and decreases it at support.
Heavier cracking increases the rotation reguisite at support and de-
creases it in span. Creep increases the rotation requisites consi-
derably both at support and in span. Uniform and nonuniform shrinkage
increase the rotation requisites insignificantly.
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H PRACTICAL APPLICATIONS

In this section an enumeration of the formulae and figures which are
applicabie for the problem in question wiil be done.

1 ~ Deformation due to concentrical normal force
under creep and shrinkage

Unreinforced cross-section: Eg. 5.1, Figs 5.2 - 5.5
Symmetrically reinforced cross-section: Eg. 5.2, Figs 5.2 - 5.5

2 Moment-curvature relations due te bending

The simplified moment-curvature relations are defined by the para-
meters in the following figure.
M

€,

(ET),

—e 1/t

1,'ru

2.1 Shert-term load

]/r0 =0
(EI)0 : Eq. 5.3 Fig. 5.8
Mr : Eq. 5.5 Fig. 5.9

(E1), : Eq. 5.4

2.2 Long-term_load, basic_creep

l/rn =0

(Ei)0 : Eq. 5.6 Fig. 5.8

M. : Eq. 5.5 Fig. 5.9 (4=0)
(EI), = Egs 5.7 Fig. 5.16

2.3 Long-term_load, creep and_shrinkage
1/r Eq. 5.8 Fig. 5.20

0
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(EI)0 : Eg. 5.9 Fig. 5.8

Mr Eqs 5.11 and 5.12 Figs 5.9 and 5,21

(El)r : Eg. 5.7 Fig. 5.16

2.4 Long-term load, creep, shrinkage and_normal_force
1/r0 : Eg. 5.13 Figs 5.20 and 5.22

(EI}, : Eq. 5.9 Fig. 5.8

Mr : Egqs 5.16 and 5.12 Figs 5.9, 5.21 and 5.73

(EI)r : Egs 5,15 and 5.7 Fig. 5.16 and Table 5.1

3 Beams at serviceability limit state

3.1 Moment distribution

3.1.1  Supported cantilever beams and beams clamped at both
ends subjected to uniform lateral load.

Short-term Toad: Figs 6.1, 6.2.
Long-term Toad, basic creep: Figs 6.1, 6.2 and page 104.
Long-term load, creep and shrinkage: Figs 6.1, 6.2 and page 108.

3.1.2 Supported cantilever beams and beams fixed at both
ends subjected te uniform lateral Toad and support

displacement.
The influence of the support displacement: Tables 6.1 and 6.2.

3.1.3  HNonloaded supported cantilever beams and beams clamped
at both ends subjected to support displacements.

Eq. 6.7.

3.1.4 Moment aistributicn for beams with other loadings and

end conditions.
Use the calculation method and the aid formulae in Appendix Ad.

3.2 Peflection_{only bending_deformations_are_regarded}
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3.2.1  Simply supported beams, supported cantilever beams and
beams clamped at both ends subjected to uniform lateral

Toad.

Short-term load: Figs 6.4, 6.5 and 6.6.
Long-term load, basic creep: Figs 6.7, 6.8 and 6.9.
Long=term load, basic creep and shrinkage: Figs 6.10, 6.11 and 6.12.

3.2.2 Other types of beams, loadings and end conditions.

The moment distribution may be determined accerding to Appendix Ad
and the simplified moment-curvature relations stated may be used
in the integration processes in order to determine the deflection,

4 Columns

4.3 Moment distribution and deflection for a Taterally
loaded column fixed at the one end and free at the

Calculation according to first order theory: Formulaze in section 7.%.
Calcutation accoridng to second order theory: Formulae in section 7.2.

4.2 Moment distribution and deflection for columns with cther

Calculation according to first order theory: Use the aid formulae
and calculation method described in Appendix Ad.

4.3 Method for the determination of inter-action diagrams
for_the_buckling load for the columns described above (4.1)

Use the calculation method described in section 7.3 and the formu-

iae which are menticned.

5 Frames at serviceability ¥imit state

The moment distribution in frames at serviceability limit state may
be calculated approximately with a simple calculation methad, in
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which the frames are assumed uncracked and nanreinforced, at short-
term load without support displacements and at long-term load with
and without support displacements, if the frames are reinforced ac-
cording to the moment distribution at shori-term load calculated by
this method. The influence of ihe nonuniformity of shrinkage should
be neglected, since the simple method very strongly overestimates
its influence. At short-term load with support displacements the
method described in Appendix A4 can be used. This method may also
be used if a more accurate moment distribution is desired for the
other loading cases or if the reinforcement distribution diverges
from the moment distribution calculated by the simple method described.

6 Rotation requisites at ultimate Timit state

Supported cantilever beams subjected to uniform Tateral load and
suppert displacement: Eqs 9.3 and 9.4 and Figs 9.1 and 9.3 - 9.7.

Beams clamped at both ends subjected to uniform lateral load and
support displacement: Eqs 9.17 - 9.20 and Figs 9.8 - 9.13.

Beams elastically clamped at both ends subjected to unifarm lateral
load and support displacement: page 158, Figs 9.8 - 9.13 and £q. 9.29
or Table 9.1.

Two-hinged portal frames: Calculation descriptions in section 3.3
with references to the rotation requisites for beams.
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Al. Determination of the average stress of concrete in a concentri-
cally reinforced prismatic bar in tension, as a functien of the strain
of the prism according to the theory of canstant slip modulus /BBGR/.

[or8 dx

/cracks W Ac
} { As, ®
Eg ! .
€
¢ £/2
X
£
Ty dx
K
a j —
{3
K= 250000 /58GR/ I Y J| : 4
| ay+day
a T_Li L i Mhakinh 3
! 1'_|t12+dr12

I
Q.
Loy
auc-rl-— {-e—fn—mdq

Figure Al.1 Notations used at the derivation of the eguations.
With notations according to Fig. Al.1 the fellowing equations may
be derived. A linear relation is assumed between the shear stress

Ty and the s1ip a between concrete and reinforcement {constant stip

moduius).
1, =K a=K- (ag - az} {(A1.1)

The derivation of this gives

dt da] da2 o, c
F;K'(HT_W):K-(ES-EC):K (-E;——E:) (A1.2)

The force in the crack is equal to the farce of the prism

o .
US'A =g *A_+o A {A1.3)
where 02 is the stress of the reinforcement in the crack.

if 0 from Eq. Al.3 is inserted in Eq. A.1.3 we get
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GTV-K

el ¢ 0. " ot o)) (AT.4)
5

. (US
where o = ES/EC and p = AS/AC.

The force increment in the concrete is equal to the force transferred
from the bond surface of the reinforcement

do

Erx—C“Ty'“A‘._"i“D'T (A1.5)

where ¢ is the diameter of the reinforcement bar,

dt
If this equation is derivated and HEE from Eq. Al.4 is inserted we get
2
d o
c 4p - K o
— = -35-"—.—[_:“- (og - o, * {u+1/0)} (A1.6)
dx $
which can be transformed into
d2 2., .0
o 2 K o s
c _ . - ¢ Al.7)
o (Al.
where
2 4
K =$-‘—Ez-('ﬁ+a'p)
The seiution of the eguation is
Q
i US'() ,
o, = k] © sinh{k-x) + k2 - coshik-x) + T g (A1.8)

where the constants k1 and k2 may be determined by considering the
boundary conditions.

For x = 0 T 0 which gives k] =0

-g. g

For x = £/2 o = 0 which gives ko = T+ ar) - cosh (v ~272]

By inserting the constants into Eq. A1.B the stress of concrete may

be expressed
o
o T op |
_ s N _cosh {x-x}
¢ 1 +te o (1 Cosh (v &/2)° (A1.9)

%2
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This equation combined with £g. Al.3 gives an expressiou fer the
reinforcement stress

Q
- s . scosh {k-x) .
s T+ ap Qom U-M2)+“°) (A1.10)

e}

g

For x = 0 the stress of concrete has its maximum value

00'
max s P (a

s (A1.11)

i 1
Cash (e 372)

o

By an integration of Eg. A1.9 and A1.10 from x = G to £/2 the ave-

rage values of the stresses may be determined.
o

&/2 6. - p
= 2. gy = LS 1 _ tgh {k-2/2)
Gcta T J(: Uc dx = T+ ap (] 572 ) (A'i.]E)
3% o0
.2 . . 5 . tgh {w-2/2)
Gsa =7 _([; US dx = _-I +_U-'D (CL-Q + _“TW) (A] .13)

The strain of the prism is egual to the average strain of the re-

inforcement
95 “’2 tgh (x-2/2
e TE T (Teap) et R (A1.14)

Assuming that the maximum concrete stress in Eg. Al.11 is egual to
the tensile strength of concrete, the cracking distance may be cal-

cuiated as a function of 02.
o .
o a
(— 2 ) (A1.15)
9y TP T fotm (1 + ap)

£o= T arccosh

2
K
If the reinforcement stress in the crack is put equal to the yield
stress of reinforcement the maximum shortest cracking distance fmax
may be calculated with the aid of Eq. Al.15. Since the cracking
distances, at increasing load are halved successively, the shortest
cracking distance of the prism will vary between lmax and gmaxlz
depending on the cracking distances which will occur at the first

cracks.

The calculations forming the basis for Figs. 3.5 and 3.6 have been
performed in the foilowing way. At first L has been determined
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with £q. A1.15. The values of ¢ and 02 have then been inserted into
Egs AT1.12 and A1.14. After that 2 has been doubled successively and
new vaiues of o, and feq have been determined. The corresponding
calculations have also been performed for £ = 3/4 - Enax Since

the figures are valid for a constant strain rate the average stres-
ses have been calculated also shorily after the occurrence of a

new cracking.
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A2.1 Basic creep at varying stresses for strain hardeniag concrete

Notations:
Eeci basic creep after time step i
a. stress durinrg time step i

1
st, - time step i, days

Ecc
£
-~
-
-~
-
~
-~
-
- Ne
-~ €ee =0 @t
- cc C
Ve
-
L 2=t
tha th
'
th-1 l atp !

Figure AZ.1 Principle for the calculation of basic creep at tn
when the creep is known at the beginning of the time step

The creep after time step n may according to Fig. A2.1 be calculated

with
B
Seen = %n % (tr')_] + Atn} {AZ.1)
where
g £
. ¢ _ ¢en-l
{tn-'l) = W (R2.2)

By inserting t;_] into Eg. AZ2.1 we get

e /8 =4
- . A cen-1 c c
Ceen = % % ((E;ffgag) + Atn) (A2,3)

which can be transformed irnto

1/8 1/8 1/8
¢ Chfe v a € oat (AZ.4)

Fcen = feen-1 n %) B
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In the same way as een is expressed with the aid of eena1 W8
may express e .. ¢ With the aid of €ecn-?

/8, 1/8, 178,
Feen-1 = feen-2 Flogy e At {A2.5)

By expressing creep successively with the aid of previcus creep
and then summaring up the contributions we get
1/ /8 1/8

n
c _ c [ .
een © feed S E (a5 Aty (A2.6}

T/BC /8, /s, t 1/6C
fect -7 feco -t % '_!;c(t) .dt o (R2.7)
If no creep has occured at time O (ECCO = 0) the basic creep at
time t may be calculated with
t 1/8 B
geelt) = o - (Joft) ©-dt) © (A2.8)
0

A2.2 Relaxation at basic creep

At relaxation the deformation at time t days may be expressed in

two ways
ofE + e (t) = 6 (A2.9)

where & is egual to the original deformation at t = £ which at
linear relation between stress and strain is equal to

5= o JE, (A2.10)

where Gy is the siress at the beginning of the relaxation.

By combining Eqs AZ.9 and AZ.30 and insertiing zcc(t} according to
Eq. AZ.8 we get

t /e B
U-c=EC‘uC'(6fc Cap © (A2.11)
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which can be transformed into

o -o 1/p t 1/8
(EO - ) c ___J’ o c . dt (A2.12)
c (o 0
The derivation of this gives
LI Tl )Wc" Lol de M (h2.13)
8, B o E. - T '
If T/Bc is replaced by
d = 1/3c (A2.18)
Eq. A2.13 may be transformed into
g, " O d-1 (EC . ac)d
("'TT") L e dt {A2.15)
o
Performing the following substitution
R
[00/0 = X dy = 2 - dsJ (A2.16)
4]
and inserting into Eq. A2.15 we get
d
d-1 2 (E.-a.)
d-1 , (1 - i/x) I __ ¢ ¢
X —0— ? dx = T gt (AZ.]?)
which may be transformed into
d
E *a)
d-2 d-1 (
X - {1 - /%) dx =—~w-;r-—*c e dt {A2.18)
Through a series expansion we get
- ]/x)d"I =1 - (d;]) + (d'])'(d'g) _ {d-])'(d-Z)’(d—g) .
1.2 -x T+2.3-x (A2.19)
If Ea. A2.18 is integrated we get
d
X N (E -a) t
2 ®T e S [at (A2.20)
1 0

and if the integration is performed with the aid of £q. A2.19 the

following equation is obtained
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AVt @) oy
a1 G2 20d-3)
a1y (d-2) (d-2)- (x4 - 1), (aenye(d-2)(9-3) (4007 - 1y
5(d-1) 2I7d-5)
d
_ (d-1)-(d=2}-(d-3) . (d-8) - (d-5)- (<98 - 1y | (Be )
120{d-6} d .
(A2.21)

By using Eq. A2.21, the time t necessary for a decrease of stress

to a certain value of the original one, as well as the amount of the
original stress left at a certain time, may be calculated. The number
of terms which must be included in the series expansion depends on

X = UO/G and the desired accuracy.



Appendix A3

A3. Evaluation of moment-curvature relations for réinforced concrete

Assumptions: piane cress-sections remain plane
" linear relation between stress and strain
creep is governed by the stress prevailing when the
moment-curvature relation is determined
shrinkage is fully developed
normal force N is positive at temsion and is acting
at the centrcid of the concrete cross-section
the ¢ross-sections are rectahgular

A3.1 Flexural rigidity at uncracked state (EIO) and curvature when

the _moment is_zero 111501; _________________________________________

The stresses may be expressed as a-function of the strains according
te Fig. A3.1.

o = E - [m SR e gty A oy E":C:L (A3.1)
o, = E, - [m (NX) % E_Lg * fees T Og e(;c] (3.2}
ol =E - {ma . (x-¢) + %:o] (A3.3)
oy = E, - [‘i/r < (h-x-¢) - eozo} (A3.4)

The strain at the neutral axis is ecual to

€520 = fess T UTE) ey o (x)/h (A3.5)

If the strain at the neutral axis together with the creep coefficient
¢ = E . aéc and o = ES/EC are inserted into the stress equations we get

[
F
S T TR LM -t (v x] (A3.5)
ES
o = T [1r - s - trli/n - (o) (A3.7)
o= £ - (1w (ree) + ey - (51 (hx) + hy/b] (A3.8)
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S
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Figure A3.1 MNotations and definitions of strain components used for
the derivation of the moment-curvature relations for reinferced con-
crete
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oy =€ - [1/r - (hoxec) - eigq + (1) (hex) + W)/ ] (A3.9)

Horizontal equilibrium requires that

b (hx)/2+o, t bk o b x/2F

N = o,

ol b b ' (A3.10)
By using

p= (T +e) e op pt={1+¢) 2 p' (A3.11)

and inserting the stresses according to Eqs A3.6 - A3.9 into Eg. A3.10
the position of the neutral axis may be determined

a

1
%=@ (A3.12)
where

oy = T2 - {1 -c/h) + 2 -.c/h S Eegg T [(Y - I+ 29 4+

5%
vayty v 2 ey Mmoo (1 e ) s /(b b - Eg)
and
ap =201 4wt e} (V- (v - 1) s et v/

Moment equilibrium requires that

M=o +b-x/2° (h/2-x/3)+ol - b-h-p' - (h2=-c)+

4o, b hep . (2Z-c)ro b (h=x)/2" (b2 (h-x)/3)
{A3.13)

By inserting the stresses of Egs A3.6 - A3.9 and Eq. A3.11 into Eg.
R3.13 we get

12 M- (? t4) T3l e {(y - 1}/h + 6h - (h - 2¢) ~

T Fess

R USRI e Y IR VA U I
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T U R VR (R (I I TS N (A3.14)

If x from Eq. A3.12 is inserted into this equation the following re-

lation is obtained
M= (EIG) s {i/r - 1/r0) . {A3.15}

where

3
b~ h™ - Eg ST +3 {1 -2 c/h)2 BRI RS

E1 ) =
(Bl * o va7 = 5wty

{A3.18)

) SCSS'(Y-1}(1+w+w')/h+3(1—2c/h)-(w-¢')’(ecss-(1+y)/h~2N-(]+¢)-u/b.hz.gs)

@ Toyet43(1-2¢ /0 (g +ag-u ')

(AZ.17)

A3.2 The cracking moment imr)

The cracking moment is atiained when ¢, (Eg. A3.7} is equal to the tensile
strength Tpo

E
% 7 f1+¢?'& ' [1/r T Fess (Y‘}}/h] C{hx) = o, (A3.18)

If x from Eq. A3.12 is inserted inte this equation the curvature cor-
responding to the cracking mement may be determined.

. o 2
20, (1) o (Trorp" ) /{E T h)te oo ((v=T) 2wt ) /02N {T+¢) o/ (bRT-E )
T+2y-¢c/h+2u' - (1-c/h}

1
1
(A3.19)

If this curvature is inserted into Eq. A3.15 together with (EIO) and
1/r0 from £qs A3.16 and A3.17 respectively, the cracking moment may be

determinea.

N S I U R A I 2 Y CR I A U W
Pt TE e

b b oy ey e (/) (13e/h)
T+ . css Gy




- 190 -

2
bh®E e ooy (2-3¢/h)-p' (1-3c/h)4bury - (1-2¢/h)°
TITEF a) - aq
N b 1-6(1-2¢/h) - (prc/hp' - (T-c/h)) (83.20)
b - g .
where

ay = 1T+2p « ¢/h+ 29" - {1 - ¢c/h)

Assumptions: The concrete does not carry any tensile stresses
Horizontal eguilibrium requires that

N = o b-h-p - 9, b x/2 - 0; b h - p (A3.21)
If the stresses according to Egs A3.6, A3.8, A3.9 and A3.17 are inser-
ted into this equatien the curvature may be defermined as & Tung¢tion

of, amnng'nther things, x

css’ [(v-1) (-2 (hex) - (s’ )27 (g )] -2N-(T40) b/ (b-E,)

h(x2

5|

-2y-h-{h=x-c}+2y' -h{x-c})
(A3.22}

Moment equilibrium reguires that
M= ou-b-x/E-(h/Z—x/3)+c;'b-h- p'-(h/Z-c}+os-b-h- p - (h/2-c) (A3.23)

If the stresses according to Eqs A3.6, A3.8, A3.9 and A3.11 are inserted
into this eguation the moment may be determined as a functien of, among

other things, 1/r and x.

LU AR LOILL S PR J:xz-(3h—2x)+6h-{h—2c)-(w'(h—x—c)w'-(x-c))} .

5

ess S (1-2¢) - (87=0) + eogo~(y=1)[Bh" (n-20) (h-x)*(v'-v) +

- - (3h-2x)] /h (A3.74)
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In order to determine the flexural rigidity the following proceduve
has been chosen
(EI)r = dM/d{1/r) (R3.25)
According te Eq. A3.22 the curvature may be written
Wr = f{x}/g{x} (A3.26)
Derivation with respect tc x gives
d(1/r)/dx = (g(x) + £1{x) - F{x) 9" (x))/e(x)? (3.27)
According to Eq. A3.24 the moment may be expressed

= 1/r - h(x) + k{x) (A3.28)
If this is derivated with respect te x we get
dM/dx = d{1/r)/dx - hi{x} + V/r - B'(x} + k'{x) {A3.29)
wiich may be transformed into

di»zdx - hx) ¢ '( ) . k' X) . (A3.30)

If Egs A3.26 and A3.27 are inserted into A3.30 we get

M h{x)g{x)F{x)h(x) Fx) g (x)4F(x) g(x) h () (0K (x)
a(i/r} g0 T {x)- m g'{x) (R3.31)

I¥ the functions according to Egs A3.22 and A3.24 are inserted into
Eg. A3.31 and if y = x/h the flexural rigidity at cracked state wili

be equal to

3
b h o ES ug

(El}r I ET T s ) VIR (A3.32)

where
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ag = ¥orary {23y (1me/mes(1-e/nf) . wry (vP-3y-c/maa(e/m?)-v' +

£ 3(1-2c/h) 4w
By eliminating 1/r from Eq. A3.24 with the aid of Eqg. A3.22 an equation
of the third degree in y is obtained from which y may be determined.

ajg*oqy T Y gy Fray vy =0 (A3.33)
where

MM (Te) ca/(b ot hD B e

and

Mp= N (D re) s a/(b R Eg e )

6 [N]'(1-2c/h)'(w-(1—c/h)—¢'.c/h)~2Mi-(;I:-(]—c/h)ﬂy‘-c/h)+2(1—2€/h)2-‘f-w‘¢ﬂ

"0 T

ey = 6 [—N1~(1-2c/h)-(w-w’)+2ME-(w';-2{1-2c/h)2-(y-1)-w-¢j
ap = 6 [N1/2+M.!+¢-('i—c_/h)+¢’-c/h+(y—1)'c/h-(]—c/h)'(wzp’)}
g = -2 [N]+w+w‘+(y—]}-(w'c/h+¢"(1-c/h))}

The flexural rigidity may be determined by sclving x from Eq. A3.33 and
inserting it into Eg. A3.32.

A3.4 The flexural rigidity at cracked state when there is neither

In this case the position of the neutral axis may easily be determined
frem Eq. A3.22

X2 h-(h-x-cle2 ~h-(x-¢c)=0 (A3.34)
If x is replaced by z - h the following relations is vaiid

2220 (1 -z -c/h)+26- (z-c/h)=0 (A3.35)
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which has the solution

z=-(v+v')Nh \/(w + w')z + 2y - (1 - ¢/h) + 29" - ¢/h {3.36)

According to Eg. A3.24 the foliowing is valid

M. b '[22-(3—Zz)+6(1n2c/h)-{¢'(1—z-c/h)+¢'-(z-c/h)}}
r = 12(THg) e (A3.37)

By inserting 22 according to Eq. A3.35 it may be transformed into

3

b*h™.E
T;F = HT$§FT-= (E1),. = +¢S,a '[w-(}—c/h-z)-(3—3c/h—z)+
+ u'-(z-e/h) - (z—3c/h)] ©(A3.38)

By calcuiating z from Eq. A3.36 and inserting it into Egq. A3.28 the
flexural rigidity may be calculated.
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A4, Calculation methad for the determination of the moment distribution
in a partially cracked statically indeterminate beam with & bilinear moment-

curvature relation and aid formulae

In the manual calculation the force method is used., The structure is
made statica]ly determinate by inmsertion of unknown forces. The deforma-
tions of the unknown forces and the load are determined and inserted

into the compatibility eguations.

The foliawing procedure is the most appropriate for the caiculation. The
moment. distribution of the beamis estimated by assuming that the flexu-
ral rigidity is constant along the length. Then the beam is divided into
cracked and uncracked sections respectively according to the assumed
moment distribution and a new moment distribution is calculated. After
this the beam is again divided into cracked and uncracked secticons ac-
cording to the new moment distribution and another mement distribution
is calculated. This procedure is repeated until an acceptabie accuracy
between the moment distribution assumed and the one calculated is ob-
tained. Generally one or two iterations are sufficient.

For a bilinear moment-curvature relation according to Fig. A.4-1 the
curvature may be expressed as a function of the moment as

[ M

R (N Ctst

1.1 M .((EI),A_”Jr M Mo M <M
roor, (EI}0 (EI:?O : iEI?r r ¥

The terms E/rn, (EI)D, (EI)r and Mr may be determined according fo
chapter 5 and if creep and shrinkage exist, this is considered. The
calculation is best performed by taking into account the effects of
the factors M/EI, TE%;—-- (TETjg" 1} och 1/r0 separately. This may
be performed with the aid of the moment area method and below aid
formilae for the most common leoading cases are stated. In order to
simplify the formulae, the rigidity (EI}0 is assumed to be the same
for the whole beam, which is a reasonable approximation. The ratic
used in the formulae between the rigidities and the lengths of the
uncracked and cracked sections respectively are shown in Fig. A.4-2.
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[ED), = 1/a - [EL},

= 1/r

‘i/ro

Figure A4.1 The parameters of the bilinear moment-curvature
relation used.

A 8, 8y B
VaylEll, (Ell, 1/ap(Elly [ED, /a5,
A I 1 )
Ay R
-ty
ny- L
F i Ml r
" i, * ;
+ kl
s 2 +
175 N 1/r°2 . rgg .
p ’ ¥ v
fg &
N Ny & .

Figure A4.2 Definition of the notations used in the aid formulae
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1. The slopes at the supports for a uniform lateral load q.

3
. 2
GA+BB=—(——T—?2E§O'[a3+(ﬂ1-])'8]'(3-281)+(u2-1)

[ (3 - 265) ~ 5 - (3-28) ] - ey - 1) B (3-284>J

. .3
BBzTT"g4E§O'I:Q3+(&1-]).83-(4~-3S])+(u2_”'
[sg {4 - 38,) - Bg (4 -382)] - {og - 1) Bﬁ (4 384)J

2. The slopes at the supports for a concentrated lateral load F app-
lied at the centre of the beam.

CF - 22

; . L _ .
A+GB'?¥‘('ET5; [aa—u2/2+(oc-|-1} By + {ap - 1)

g8

oy @ sy - e (g - 1) gy (2 - gy
o :WT“F '52 -[a3 - ap/d ot (e - 1) 2sf+ {op - 1)
]

NPT _ _9a3 . _ -
(65 - (3 -289) - 263 ]~ (ag - 1) - &2 -3 28,)]
The equations are valid only when 82 £1/2 and £y 2 1/2.

3. The slope at the supports for a concentrated lateral load F at the
distance 55 - & from the support A.

, _
I U T I TV [ S PR DR
a* % = Z7Ery [0 -8 [ty - 1) 6 - (- 1) 5+

S Bg sy g (et (g - 1) By (2- By < ey m 1) gy (2 - 8]

2
_F it ) , T B 3,
% = §(ET) [(1 6g) [@1 1) - 28 - (e - 1) - 26 - 8w, +

+ 85 [og # oy - 1) 0B (3= 2830 - (g - 1) - 8n - (3 - 285)]]

The equations are valid only when By 5 Bg and fy 2 Bg.
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4. The slopes at the supports for a couple M applied at the end A,
M2 2z
BA*‘BBzz—(B-);‘[O‘--‘“(Q]'-I)'(I—BI) +{C12'1)'
2 2 2
'[(I—Bz} -(1-33)]+(u3—1)-(1—54)J

BA=-3—I{4-E-i-j£'[uI-(a]-'l)'('|-B-I) +lay - 1)
Q
U AU A I AR IR IR L]

5. The slopes of the supports for a couple M applied at the end 8.

S NN

L _ .
by + 0p = ?TETTE’ [u3 + (u] 1} By + (uz

NCRUREA

Mg .. 3 .33
% = e [a3+(al V) eyt (ay - 1) (By - 8y) 4

3
—{(13-]) 'qul
6. The sl t th ts for the t " ((EI)*" 1
. The stope a e supports for the terms TETTS . TEIT. ~
Q IO

- =k - . . - N - - -
O Tl 3 0 [Me = Gy = 1)y 4 My o (op = 1) 7 (g - Bp) +

tMg o (ag - 1) (1 - gy

2

2) +

I S . IR TR g SNy - (el -
% = 2(EIT, (Mg = (og m 1) B+, oy - 1) - (25 - 8

LPRNCERINNUREH]

The cracking moments M. are assumed positive at cracking in the lower

edge of the beam.

7. The slope at the supports for the terms l/ro.

ot 0y = b [Mrgy et Vg T (8 < sg) + gy (1 - 6y)]
_ L . Cral _ L2 . _ .2
%7 (rgy 8+ gy (85 - 2B + Uy - (1 - )]
The curvatures I/ra are assumed positive if they cause tensile strains

in the Tower edge of the beam.
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AS. Reinforcemeni stress in a crack for segment in pure bending

Under the assumptions that plane cross-sections remain piane, that

the tensile zene of concrete is neglected, that the creep is governed

by the final stress, and that at shrinkage the final stage is studied,
it is possible, with the aid of two equilibrium equations and compati-
Bitity equations, to derive the tensile stress of the reinforcement to

L (A5.1)

where, if no shrinkage takes place
1/ =% - c/h - {x/h}/3 + w'/e - {{x/h)/3-c/h} - (x/h-c/h}/(1 - c/h - x/h)

and where

x/h = M};-+ w')z + 20 - {1 -c¢/h) + 29" -¢/h - (v + '),

A At
v=(l4e) o pfp e W= (1) s g2, a= EJE and

o

¢ is the distance from the centroid of the tensile and compressive re-
inforcements respectiveiy to the edges in tension and compression. The
parameter £ is shown in Fig. A5.1 for ¢/h = G.1. At short-term load

¢ = 0,

If shrinkage takes place then

vy
v+ (x/n)2r(2(1-2/h))

178 = 1-¢/h=-(x/h}/3-¢"' /v ({x/h)}/3-c/n}- (1=
with x/h according to Eq. A3.33.

Fig. A5.2 shows the parameter ¢ for c/h = 0.1 and the parameter

n = ate) M equal to 1. The peaks of the vertical lines are

b - h ‘e
C £ss
valid for n = 4. When n + = £ at shrinkage gets the same value as when

skrinkage does not exist. {Fig. A5.1).
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Figure A5.1 The coefficient £ for the determination of the reinforcement
stress in a crack at short-term lecad and creep according to Eq. AD.D.
c/h = 0.1
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Figure A5.2 The coefficient ¢ for the determination of the reinforcement
stress in a crack at creep and shrinkage according to Eg. Ab.1. ¢/h = 0.1
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