
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Composing ad-hoc applications on ad-hoc networks using MUI

Svensson Fors, David; Magnusson, Boris; Hedin, Görel

Published in:
[Host publication title missing]

2005

Link to publication

Citation for published version (APA):
Svensson Fors, D., Magnusson, B., & Hedin, G. (2005). Composing ad-hoc applications on ad-hoc networks
using MUI. In [Host publication title missing] (pp. 153-164). Organisatoren Net.ObjectDays, c/o tranSIT GmbH,
Ilmenau, Germany.

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/7489dbb3-b920-4740-aeb8-afed150cbbe4

Composing ad-hoc

applications on ad-hoc

networks using MUI

David Svensson, Boris Magnusson, Görel Hedin

Lund University1

Abstract. The MUI framework supports composition of ad-hoc applica-
tions from services available on ad-hoc networked devices. MUI is an open-
ended framework, relying on migrating user interfaces and standardized data
formats for connecting services, allowing existing devices to be connected to
new devices without needing any pre-defined knowledge of their services.
We illustrate the benefits of the approach with scenarios involving devices
like cameras and laptops that are connected through wireless networks.

1 Introduction

More and more devices in our daily environment are being equipped with wireless com-
munication capabilities, both at home, at work, and out in the street. Using Wi-Fi, Blue-
tooth, and similar technologies, they can connect and form local ad-hoc networks, not
relying on a central network infrastructure. This development brings us closer to the vi-
sion of ubiquitous computing [1], where computation blends into the environment, sup-
porting people without requiring constant attention. Services can become available
when needed. An example can be when a user, carrying his handheld computer, comes
into the vicinity of a particular device, such as his home TV or a ticket vending machine
at the train station. Services from these devices can be brought to the handheld compu-
ter at that moment. In order to make adequate use of services in this context, special
preparation of the handheld must not be needed each time. Instead, services should ide-
ally just emerge on the handheld, ready for immediate use. It should also be possible to
combine previously unknown services into new applications. For a more general intro-
duction to the challenges and goals in the field of ubiquitous computing, see for exam-
ple [11]. In particular we focus on the demand for forming ad-hoc applications, i.e., the
possibility to combine devices and services with no, or very general, prior knowledge
of each other.

In order to support such ad-hoc applications we have developed the MUI frame-
work (Migrating User Interfaces). MUI allows (1) user interfaces for services to be mi-
grated to other devices, e.g. the handheld in the example above, making it possible to
interact with the services remotely, and still in a direct fashion. Services can also (2) be
connected to each other via typed data connections. Such connections can be set up re-

1. Author’s address: Dept. of Computer Science, Lund University, Sweden.
E-mail: david.svensson@cs.lth.se

2.
motely, from a third device. For example, using a handheld to connect an MP3 player
to a loud speaking system.

 For more complex service-to-service interactions, the user interface descriptions
can (3) play a dual role of programmatic interfaces, or proxies, for the services. These
proxies can be utilized by programs or scripts that glue services together in (4) assem-
blies.

MUI was originally started as a project with funding from VINNOVA1, but is now
also part of the EU IST project PalCom [5], which, at large, seeks to make ambient com-
puting systems more understandable by humans. This is done by trying to meet a
number of challenges, of which perhaps the most important are balancing invisibility
with visibility, and finding ways of allowing construction and deconstruction of sys-
tems at appropriate levels.

This paper is structured as follows: Section 2 puts the work in context of previous
work in the field. Section 3 presents a scenario that illustrates how MUI can be put to
work. Section 4 gives a more in-depth discussion of the framework. Section 5 discusses
the overall goals and challenges of PalCom in more detail, and evaluates the MUI
framework from this perspective, providing directions for future work. Section 6 con-
cludes the paper.

2 Previous Work

There are several earlier systems proposing solutions to the general problem of how to
combine distributed services in a flexible manner. In this section we will discuss some
of them and contrast them with the suggested technology in MUI.

Jini [2] is an early attempt to support combination of distributed services. The focus
of Jini is programmatic, i.e. it is about programs that communicate. A central mecha-
nism in Jini is a look-up service that aids client programs to find available services.
Proxies for services are defined as Java code and in practice also the service provider is
a Java program. In contrast, MUI has a user focus, i.e., it is a user that finds and com-
bines services, at least initially. MUI uses a lightweight description of services rather
than Java code which enables MUI service providers (and service customers) to be im-
plemented in any language. This is particularly important when small service providers
(such as sensors and actuators) are considered. The MUI service descriptions can be
used both to directly drive user interfaces, and also as programmatic interfaces. In the
latter case, glue code at the service customer will bridge from the customer to the pro-
vided service, rather than relying on standardized Java APIs that are defined and must
be known prior to connecting to the service.

Speakeasy [11] and MUI share an overall idea of recombinant computing and agree
on (1) keeping the user in the loop in deciding when and how components should inter-
act with each other, and (2) using a small set of generic interfaces. Here, Speakeasy uses
the terms serendipitous integration (the ability to integrate resources in an ad-hoc fash-
ion), and appropriation (using resources in unexpected ways). Speakeasy does, howev-

1. VINNOVA - Swedish Agency for Innovation Systems, http://www.vinnova.se

3.
er, use mobile Java code to encapsulate communication details, where MUI uses more
lightweight descriptions in a textual (XML) format. For data communication, such as
audio or video, the Speakeasy solution puts the burden of having a JVM also in dedi-
cated devices such as MP3 players and speakers. The use of downloaded Java code also
raises security issues as has been observed when using applets. For UI information, the
use of Java to describe these means that customizing the user interface for different out-
put devices is problematic. In contrast, the textual descriptions used in MUI allow the
output devices to control the rendering. Furthermore, the MUI solution gives an archi-
tectural advantage in that the same interface description can be used both to drive a UI
and to drive a programmatic API.

The focus in the Speakeasy project and MUI are partly different. The focus in
Speakeasy has been on providing user interface mechanisms that enable an end user
without programming expertise. This is an important aspect of MUI as well, but in ad-
dition we have a focus on building ad-hoc composite applications, assemblies, using the
control part of a remote device as an API. Assemblies in MUI can offer new services
which can be used in other assemblies in their turn, thus providing a hierarchical com-
position mechanism.

Barton et. al. [12] have chosen to build on existing HTTP technology, enhanced
with a “Producer” mechanism to register services with a HTTP-server and XForms to
communicate between such services and sensors (which here is used for any source of
information). XForms share, with MUI, the approach to use XML-inspired textual de-
scriptions for communication, thus avoiding dependence on Java. Being based on ex-
isting HTTP it is, however, limited by the capabilities of that technology such as a com-
munication model based on pull and no direct support for push, as well as other restric-
tions.

Our early work with MUI has been presented in the master’s thesis [6] and in the
paper [7]. In the master’s thesis project, a prototype with a VCR was built, where a user-
interface description could be migrated from the VCR to a handheld computer via Blue-
tooth: the handheld computer became a remote control to the VCR. The paper [7] pre-
sented MUI’s discovery protocol, and XML-based languages for service and UI de-
scriptions. At that stage, the focus was on migration of user interfaces. Since then we
have started to work also with assemblies, and with using the interface descriptions as
programmatic APIs.

3 Scenario: Distributed slideshow

As an example of a scenario where MUI can be applied, consider a slight variant of the
traditional presentation session scenario, where slide shows are projected onto a large
white screen. In the traditional scenario, the slide shows run on a laptop connected to
the projector. When it is time for the next speaker, he either switches to his slide show,
which has been copied in advance to that laptop, or he plugs in his own laptop. In our
variant of this scenario, we make use of MUI to provide more flexibility. Rather than
physically connecting a laptop to the projector, we use a computerized projector that the
laptops can communicate with via the wireless network. Furthermore, a mobile phone
can be used as a remote controller for the slide show on the laptop. This scenario is more

4.
flexible in several ways: First, the slide shows can be run on the different speakers’ own
laptops, giving an obvious advantage in terms of less preparation in advance. Second,
the laptops can be left anywhere in the room, and the speaker can also be located any-
where in the room, not necessarily beside the laptop. Third, more than one slideshow
can be shown at the same time, with images interleaved. This can be useful in group
discussions, where one person might want to jump in with a few slides in the middle of
a presentation.

Figure 1 shows a set up for this scenario. The devices in this scenario: projectors,
laptops, etc., are MUI:fied, i.e., they run the MUI system. This is easily accomplished
for a laptop. The projector, on the other hand, needs to be equipped with an embedded
computer with wireless capabilities. Today, this situation is easily emulated by using a
standard projector and physically connecting it with a dedicated computer.

The projector has a MUI service, Screen, that can receive JPEG images and
project them onto the physical screen. A laptop has a MUI service, SlideShow, which
has a user interface for controlling a slide show (with buttons Play, Stop, Next, etc.),
and which can send out slide show JPEG images on network connections. The mobile
phone has a MUI browser, that can discover nearby devices and their services. Through
the browser, the user can ask the Screen to connect itself to the SlideShow of a spe-
cific laptop, causing the images sent out from that laptop to appear on the screen. In the
browser, the user can also ask for the SlideShow user interface which causes this to
migrate from the laptop and pop up on the display of the phone. Then, he/she can use
the phone to change slides during the presentation. The laptop also has a MUI browser,
so, if desired, the user can issue the user interface commands (Play, Stop, Next, ...) and/
or set up the service connections directly from the laptop as well. If several people have
their slide shows connected to the projector, the latest slide is shown on the screen
whenever one of them changes to a new slide.

Figure 1 Distributed slideshow scenario

Camera
SendPicture

Next JPEG JPEG JPEG

Projector
Screen

Phone
Browser

Laptop-1
SlideShow

Laptop-2
SlideShow

5.
3.1 Extending the scenario: adding a camera
The MUI system is open-ended, allowing new devices with new services to easily be
added and connected. Suppose the presentation is at a conference for bottle cap collec-
tors, and a person in the audience would like to show a particular rare bottle cap. With
a camera with a MUI service Camera that can send JPEG images, she can simply take
a picture of the bottle cap, and send it to the projector to show the image.

3.2 Ad-hoc composition
In order to support composition of ad-hoc applications, MUI relies on standardized con-
nection types. This is in contrast to systems that rely on standardized service types, like
Jini [2]. I.e., in MUI it is possible to connect the laptop to the projector because they
send and receive JPEG images. The service Screen does not need any prior knowledge
of the service SlideShow, or vice versa. This allows a service to be used in new, per-
haps unforeseen, ways. The SlideShow can be connected to any other service that can
receive JPEG images as well, e.g., printers, file storage devices, etc.

4 The MUI framework

MUI is based on services. Services are what runs on the devices, and what offer func-
tionality to users and to other services. The services describe themselves in XML serv-
ice descriptions, which are distributed to other devices on the network by means of a
discovery protocol [7]. More complex services can be formed as composite services
with subservices (see Figure 2), but it is the basic, atomic, services that are ultimately
connected via the ad-hoc network. These have a certain type, and can be either provid-
ers or customers. We will describe below the different roles these two play in connec-
tions. Figure 3 shows a small example of an XML service description, for the Screen
in the slideshow scenario.

The type of an atomic service determines the kind of connections that can be estab-
lished to it. There are two main kinds of connections: (1) control connections, allowing
the service to be controlled by another device, either programmatically or via a gener-
ated user interface; and (2) data connections, for transfer of typed data.

The Speakeasy infrastructure [11] is in many ways similar to ours: services have
meta-data descriptions, and connections can be either for transmission of data, or for

Figure 2 Service hierarchy

Service

Provider Customer

Atomic serviceComposite service

*

6.
control. In both systems, there is also a browser from which the user can view and set
up connections.

4.1 Control connections
The protocol implemented by a control connection is described as a service interface of
the type control. These descriptions can be rendered as a user interface in order to allow
the user to inspect the functionality of the service, and to interact with it directly, which
is a key aspect of MUI. An example is the user controlling the laptop SlideShow serv-
ice via the mobile phone: an XML description for a simplified version of this interface
is shown in Figure 4.

When a control customer is connected to a control provider, the service description
is migrated to the customer, and the user interface can be rendered on the receiving de-
vice. The XML description specifies mappings from actions in the user interface to
what commands should actually be sent over the network to the service, and the service
can also send out messages which lead to updates in the user interface. So, after the user
interface has been migrated, the roles of the two sides are really symmetric—we have
a peer-to-peer arrangement, where, e.g., both pull and push are possible. It is up to the
service programmer, who also writes the service description, to decide upon the details
of this protocol. A brief example of this kind of two-way communication will be dis-
cussed in Section 4.5.

Representing a user interface as a description has the advantage that the different
browsers on different devices, having different display capabilities, can use different
ways to present the user interface. This is an area that has attracted some attention in
itself, see for example [8], and there are a number of XML-based user-interface mark-
up languages, e.g. UIML [13].

An alternative use of the service descriptions is as proxies that can be used for con-
trolling the service programmatically from another device. This allows composite serv-
ices to be built, relying on distributed subservices, where a script on one device can co-

Figure 3 Service description for the screen, which is a customer for JPEG
images. The URN identifies the service. There is one subservice (a user

interface), whose service description is referenced by its URN.

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE CustomerInfo SYSTEM "mui-info.dtd">

<CustomerInfo name="Screen"

 customerContentType="image/jpeg"

 urn="mui://10.0.0.3/screen">

 <Subservice urn="mui://10.0.0.3/ui"/>

</CustomerInfo>

7.
ordinate the subservices. In PalCom, this script is referred to as an assembly [9]. We will
briefly discuss an example of this in Section 4.5.

4.2 Data connections
Besides control connections, there are data connections for transfer of typed data. These
are formed when a customer of a given type is connected to a provider of the same type.
For example, the Screen service is a customer for type JPEG, and can be connected to
providers of type JPEG, e.g., those in SlideShow and SendPicture. Currently, we
use MIME types to distinguish different types.

The data connections can also be called streaming connections, because data flows
from provider to customer, one message at a time. This suits multimedia formats, such
as streaming audio and video, but can also be used in less resource-demanding applica-
tions, such as when one JPEG image is sent every time a speaker switches to the next
slide in the slideshow example.

4.3 Remote connection of services
An important aspect of MUI is the possibility to connect two services from a third de-
vice. This was exemplified above, where the user connected the laptop’s SlideShow
to the projector’s Screen, using the browser on the mobile phone. In order to allow this,
there is a simple protocol which devices can use for instructing a device to connect one
of its services to a service on another device: the mobile phone instructed the projector
to connect its Screen to the laptop’s SlideShow. Similarly, it is possible to disconnect
two services that are currently connected. This functionality builds on a property of the
discovery protocol, viz., that devices announce information not only about the devices
themselves, and about their services, but also about established connections. This sup-
port for connections gives more visibility for the user. He can see not only what devices
and services there are, but he can also view and control the connections.

4.4 The MUI browser
A MUI browser has been implemented, on which nearby MUI devices and services can
be inspected and controlled, and from which new connections can be established. Using
the browser for remote control allows devices to be networked that do not themselves
have any or very limited user interaction capabilities, e.g., sensors and actuators.
Browsers can be expected to run on more resource-rich devices, such as PDAs and mo-

Figure 4 A control interface describing a simplified slideshow service.
There are two commands for moving between slides.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE ControlStructure SYSTEM "mui-control.dtd">

<ControlStructure text="Slideshow">

 <InCommand id="prev" text="Previous slide"/>

 <InCommand id="next" text="Next slide"/>

</ControlStructure>

8.
bile phones. The current implementation is in Java, but having an underlying JVM is
not essential—the browser could be written in any language.

Existing connections can be viewed, and possibly disconnected, as mentioned
above. The browser utilizes the hierarchical structure of services for making the con-
nection process easier and more natural. E.g., the user can choose to connect the
SlideShow service directly to the Screen, without opening up to see what subservices
they have. In this case, there will be exactly one matching provider-customer pair, and
this pair—the JPEG provider of SlideShow and the JPEG customer of Screen—will
be connected. If there had been more than one matching pair, the user would have been
asked to select the one he intended. This can be seen as a simple way of supporting vis-
ibility at an appropriate level.

4.5 Example of usage: the SitePack
The SitePack is one of the scenarios studied in the PalCom project (see [5], [9] for more
background information). In this scenario, landscape architects out in the field make use
of PalCom technology for combining devices in different set-ups, suitable for the situ-
ation at hand. One example is during the documenting phase, when photos taken at a
site need to be tagged with location and other information, so they can be put together
later at the office. For this purpose, the landscape architects use three devices from the
SitePack: a digital camera, a GPS, and a handheld computer. When a picture is taken,
the current GPS location should automatically be saved with the picture. This is realized
as an ad-hoc application, with an assembly running on the handheld computer, that co-
ordinates the camera and the GPS. The special logic needed for this particular case is in
the assembly. It is important to note that the camera and the GPS are not prepared in
advance for this scenario, except being PalCom-compliant at a general level.

We have implemented a simple version of this scenario using the MUI framework.
The camera and the GPS expose their functionality as MUI services, both as data (GPS
coordinates) and as user-interface descriptions. The user-interface descriptions are used
as programmatic control interfaces by the assembly script, running at the handheld (the
assembly is currently “hard-coded” in Java, but is to be written in a simpler script lan-
guage later). The control interfaces are migrated to the handheld computer when the as-
sembly is activated. As a picture is taken by the camera, the assembly gets notified
through a message over the camera’s control interface. In response to this, it asks for
the latest picture from the camera, using an operation in the control interface. When the
assembly gets the picture, the picture is tagged with the latest coordinate received from
the GPS (using a special coordinate stuffer service, running on the handheld), and is
sent to a back-end server for storage.

Important aspects of the implementation are that it makes use of the two-way com-
munication that is possible with control interfaces, where both the camera service and
the assembly initiate communication at different stages, and that it is an example of a
user-interface description functioning as a programmatic proxy. As mentioned above,
it should also be noted that only the handheld has been especially prepared for this sce-
nario: the GPS and the camera expose their normal interfaces. The preparation of the
handheld consists of construction or installation of the special coordinate stuffer serv-
ice, and of writing the assembly script. The coordinate stuffer, which manipulates JPEG

9.
image meta-data, is an example of a service which is best implemented in a full-blown
programming language, such as Java, and which therefore has to be written by someone
with that knowledge. It offers a service description as other services. The script, on the
other hand, should be possible to write by end-users. This is where the actual adaptation
to the scenario is done.

5 Evaluation and Future work

MUI involves the user in the establishment of connections between services. This gives
her visibility and control over how services form ad-hoc applications. But, at the same
time, this must not become a burden for her. It has to be possible also to automate the
process. E.g., when she comes home, carrying her MP3 player, she might want it to au-
tomatically connect to her set of loudspeakers. Therefore, we are working on support
for saving a set of connections in assemblies, which can be stored, e.g. on the MP3 play-
er, and which can actively establish their connections. This is a simpler form of assem-
bly than the SitePack assembly above. In our continued work, we will combine these
types of assemblies into one type, so that a simple set of connections can be further cus-
tomized with script logic.

From a PalCom perspective, it is interesting to look at how well MUI supports the
so called palpable qualities, i.e. how well it meets the PalCom challenges mentioned
above [5]. Our focus has been mainly on visibility/invisibility, and on construction/de-
construction. Scalability, complemented with understandability, is another important
PalCom challenge. We will relate to these three in turn, and after that there will be a
short discussion of security aspects, which are of course also important in the MUI con-
text.

5.1 Visibility and invisibility
Ubiquitous computing brings a degree of invisibility to computing systems, in that they
blend into the environment. PalCom highlights the need for balancing this with an ap-
propriate degree of visibility, so that the systems remain understandable. Regarding vis-
ibility, we find it important that the user can be involved in the process of setting up con-
nections between services. It is of course often desirable with an automatic process for
this, but when the user is involved it is easier for her to understand the system. In many
cases, it will also be necessary, because a program cannot be expected to understand the
interfaces of the previously unknown services that will pop up in these ad-hoc networks.
Another point when it comes to visibility is the merit of letting the discovery protocol
distribute information about established connections, and not only about the services.
This can give the user a view of the current communication.

5.2 Construction and deconstruction
For construction/deconstruction, the notion of assembly is important in PalCom. MUI
combines this with limited pre-defined knowledge of service interfaces. When a new
service is encountered, it should be as easy as possible for the end-user to make use of
it in assemblies. We think this should be approached at different levels: At one level, it
should be possible to save a set of connections as an assembly for later activation. At

10.
another level, programmable scripts should support the need for more complex logic.
In both cases, the deconstruction aspect is crucial—it must be possible to open up an
assembly and inspect its parts, especially when something goes wrong.

The current implementation of MUI contains first versions of support for both lev-
els of assemblies: it is possible to establish a number of connections and save them in a
list for later re-activation, and the SitePack implementation, described in section 4.5,
demonstrates a more complex assembly. Future work will involve refinement of both
types, e.g. with the introduction of a script language for the more complex assemblies,
and unification of the two into one concept, so they can be handled similarly.

5.3 Scalability and understandability
A third PalCom challenge that is certainly relevant for MUI is the need for supporting
scalability, complemented with understandability. When using the MUI browser, the
user must not be overwhelmed with the sheer amount of available services. One step in
the right direction here, which we have implemented and which is also related to the
visibility/invisibility challenge, is the possibility to group services as composite servic-
es. Another useful mechanism in our implementation is the use of type information for
narrowing down the number of possible end-points during the establishment of a con-
nection.

Scoping mechanisms on the network will also be needed, for making sure that the
services discovered are really reachable in the current context. Similar concerns must
be handled for the discovery of established connections. Ideally, only relevant connec-
tions should be shown, and for connections there is also an additional problem area of
visualisation.

5.4 Security
In relation to scoping, there is the general question of security. It is important that un-
authorized users or devices are not able to use your services, or spy on your connections,
or modify them. To some degree, we rely on mechanisms in the lower networking lay-
ers here. In Bluetooth, e.g., two devices have to be paired before they can use each oth-
er’s services. Pairing occurs once, and does not need to be done more in the future. But,
there are several open issues. E.g., it has to be possible to use public services, out in the
street, without having to pair each time, and still without your connections being visible
to everyone. There should be some more advanced scoping mechanism also for this.

In many cases, social conventions provide sufficient security. In the slideshow sce-
nario, all participants that have the pin codes for pairing with the devices, are also trust-
ed with not using the technical possibilities for disturbing a presentation. Social struc-
tures could also be used for scoping. One example is the Speakeasy converspaces [11],
where members of a converspace can invite others to share a set of components. This
way, it will be possible to trust users, on the basis of trust in those who invited them. In
order to use such social conventions and trust, a complement can be logging of events
that can be used to find out who did what after the fact.

11.
6 Conclusions

MUI answers some of the basic challenges in ubiquitous computing. It enables ad-hoc
interaction among devices without prior knowledge of each other. They need to share a
common, generic set of protocols for discovery and communicating service descrip-
tions, but nothing that is special for a particular service. A user can very intuitively con-
nect service descriptions to a browser and remotely control devices. It is also intuitive
in a browser to connect the typed data channels between different devices and thus have
them share information like audio or JPEG pictures. Here the datatypes are standard-
ized, not the services. With this basic functionality, MUI supports many of the scenarios
envisioned as ubiquitous computing.

Sets of connections can be stored as assemblies, saving the user from establishing
the connection over again in case it is a situation that will occur frequently. In more
complex situations, an assembly can be instrumented with a script that ties together
service descriptions from remote devices (now interpreted as APIs rather than UIs). In
this way complex interaction between devices can be constructed in an hierarchical
fashion, thus supporting composition and decomposition.

In case an application needs algorithmic support that goes beyond what a scripting
language can offer, the MUI model enables program components to be incorporated in
an assembly, if only they implement the discovery protocol and offer a service descrip-
tion of their capabilities.

The requirement for a device to take part in a MUI system is to observe the generic
set of protocols. MUI is thus an open framework that can be implemented in any lan-
guage. It might be particularly interesting to implement “small” devices such as sensors
or actuators in a low-level language and in such cases the effort to implement the MUI
protocols should be small.

The MUI model is supporting a user-centric perspective where the user decides on
when and how devices and services should interact with each other, but at the same time
offers a programmatic perspective for automating tasks.

7 References

[1] M.Weiser. The computer for the 21st century. Scientific American, 13(2):94–10, Sept.
1991.

[2] Jim Waldo: The Jini Architecture for Network-centric Computing. Communications of the
ACM, pages 76−82, July 1999.

[3] W. Keith Edwards, Mark W. Newman, Jana Z. Sedivy, Trevor F. Smith: Supporting ser-
endipitous integration in mobile computing environments. Int. J. Hum.-Comput. Stud.
60(5-6): 666-700 (2004)

[4] John J. Barton, Tim Kindberg, Hui Dai, Nissanka B. Priyantha, Fahd Al-Bin-Ali: Sensor-
enhanced mobile web clients: an XForms approach. Proceedings of the Twelfth Interna-
tional World Wide Web Conference, WWW 2003: 80-89, ACM.

[5] Palpable Computing – a new perspective on Ambient Computing. IST-002057, http://
www.ist-palcom.org/

12.
[6] Torbjörn Eklund and David Svensson. Mui: Controlling Equipment via Migrating User In-
terfaces. Master’s thesis, Lund University, January 2003.

[7] David Svensson and Boris Magnusson. An Architecture for Migrating User Interfaces. In
Koskimies, Lilius, Porres, and Østerbye, editors, NWPER'2004, 11th Nordic Workshop on
Programming and Software Development Tools and Techniques, August 2004.

[8] Peter Rigole, Chris Vandervelpen, Kris Luyten, Yves Vandewoude, Karin Coninx and
Yolande Berbers: A Component-Based Infrastructure for Pervasive User Interaction, In-
ternational Workshop on Software Techniques for Embedded and Pervasive Systems
STEPS'2005, in conjunction with Pervasive 2005, Munich, Germany, May 11, 2005.

[9] Mads Ingstrup and Klaus Marius Hansen: Palpable Assemblies: Dynamic Service Compo-
sition for Ubiquitous Computing. To appear at SEKE 2005, The Seventeenth International
Conference on Software Engineering and Knowledge Engineering.

[10] Tim Kindberg & Armando Fox: System Software for Ubiquitous Computing. In IEEE
Computing, Pervasive Computing, No 2, 2002.

[11] W. Keith Edwards et. al.: Challenge: Recombinant Computing and the Speakeasy Ap-
proach. In proceedings of ACM MOBICOM’02, Sept 23-26, Atlanta, GA, USA.

[12] John Barton et. al.: Sensor-enhanced Mobile Web Clients: an XForms Approach, In pro-
ceedings of ACM-WWW 2003, May 20-24, 2003, Budapest, Hungary.

[13] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and J. E. Shuster, J. E.
(1999). UIML: An Appliance-Independent XML User Interface Language. WWW8 / Com-
puter Networks, 31(11-16):1695-1708.

	Composing ad-hoc applications on ad-hoc networks using MUI
	1 Introduction
	2 Previous Work
	3 Scenario: Distributed slideshow
	3.1 Extending the scenario: adding a camera
	3.2 Ad-hoc composition

	4 The MUI framework
	4.1 Control connections
	4.2 Data connections
	4.3 Remote connection of services
	4.4 The MUI browser
	4.5 Example of usage: the SitePack

	5 Evaluation and Future work
	5.1 Visibility and invisibility
	5.2 Construction and deconstruction
	5.3 Scalability and understandability
	5.4 Security

	6 Conclusions
	7 References

