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Abstract—Families of asymptotically regular LDPC block
code ensembles can be formed by terminating (J, K)-regular
protograph-based LDPC convolutional codes. By varying the
termination length, we obtain a large selection of LDPC block
code ensembles with varying code rates and substantially better
iterative decoding thresholds than those of (J, K)-regular LDPC
block code ensembles, despite the fact that the terminated
ensembles are almost regular. Also, by means of an asymptotic
weight enumerator analysis, we show that minimum distance
grows linearly with block length for all of the ensembles in these
families, i.e., the ensembles are asymptotically good. We find that,
as the termination length increases, families of “asymptotically
regular” codes with capacity approaching iterative decoding
thresholds and declining minimum distance growth rates are
obtained, allowing a code designer to trade-off between distance
growth rate and threshold. Further, we show that the thresholds
and the distance growth rates can be improved by carefully choos-
ing the component protographs used in the code construction.

I. INTRODUCTION

Low-density parity-check (LDPC) convolutional codes [1],

the convolutional counterparts to LDPC block codes [2], have

been shown to be capable of achieving the same capacity-

approaching performance as LDPC block codes with iterative

message-passing decoding. (J,K)-regular LDPC block code

ensembles, with constant variable and check node degrees,

have minimum distance that grows linearly with block length

for J > 2, i.e., they are asymptotically good; however, they

also have comparitively poor iterative decoding thresholds.

LDPC codes based on a protograph [3] (or projected graph

[4]) form a subclass of multi-edge type codes that have been

shown to have many desirable features, such as good iterative

decoding thresholds and, for suitably-designed protographs,

linear minimum distance growth (see, e.g., [5], [6]).

So-called asymptotically regular LDPC block code ensem-

bles [7] are formed by terminating (J,K)-regular protograph-

based LDPC convolutional codes. This construction method

results in LDPC block code ensembles with substantially better

thresholds than those of (J,K)-regular LDPC block code

ensembles, despite the fact that the ensembles are almost

regular (see, e.g., [7]). By means of an asymptotic weight enu-

merator analysis [8], we show that the asymptotically regular

LDPC code ensembles in this family are also asymptotically

good. We find that, as the termination factor L increases, we

obtain families of codes with capacity approaching iterative

decoding thresholds and declining minimum distance growth

rates, allowing a code designer to trade-off between distance

growth rate and threshold. Further, we show that the structure

of the convolutional code is crucial to both the thresholds

and growth rates of the asymptotically regular families. By

carefully choosing the component protographs that form the

convolutional protograph, we show that both the iterative

decoding threshold and the minimum distance growth rate of

the ensemble can be improved. Moreover, by increasing the

complexity (measured by the average node degree), we show

that it is possible to significantly improve both the growth rates

and the thresholds as the termination factor gets large.

II. ANALYSIS OF PROTOGRAPH-BASED LDPC CODES

A protograph is a small bipartite graph B = (V,C,E) that

connects a set of nv variable nodes V = {v0, . . . , vnv−1} to a

set of nc check nodes C = {c0, . . . , cnc−1} by a set of edges

E. The protograph can be represented by a parity-check or

base biadjacency matrix B, where Bx,y is taken to be the

number of edges connecting variable node vy to check node

cx. Figure 1 shows an example of an irregular protograph.
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Fig. 1: An irregular protograph with nv = 8 variable nodes

and nc = 6 check nodes.

This protograph is called irregular because the variable and

check node degrees are not constant.

For the analysis of iterative decoding, it is useful to label

the edges in E from both a variable node and a check

node perspective. Then ev
y,l indicates the lth edge emanating

from variable node vy. Similarly, ec
x,m denotes the mth edge

emanating from check node cx. Note that l ∈ {1, . . . , ∂(vy)}
and m ∈ {1, . . . , ∂(cx)}, where ∂(vy) and ∂(cx) denote the

degree of variable node vy and check node cx, respectively.

It follows that if ev
y,l and ec

x,m define the same edge, vy is

connected to cx.



An ensemble of protograph-based LDPC block codes can

be created from a base matrix B using a copy-and-permute

operation [3]. A parity-check matrix H from the ensemble of

protograph-based LDPC block codes can then be obtained by

replacing ones with an N × N permutation matrix and zeros

with the N × N all zero matrix in the base matrix B. In the

case when a variable node and a check node are connected

by r repeated edges, the associated entry in B equals r and

the corresponding block in H consists of a summation of r
N × N permutation matrices. The ensemble is defined as the

set of all possible parity-check matrices H that can be formed

using this method.

By construction, every code in the resulting ensemble has

the same node degrees and structure. The ensemble design rate

is given as R = 1− nc/nv . (In the case of puncturing, where

u ≤ nv is the number of variable nodes transmitted over the

channel, R = (nv −nc)/u.) In addition, the sparsity condition

of an LDPC matrix is satisfied for large N . The code created

by applying the copy-and-permute operation to an nc × nv

protograph base matrix B has block length n = Nnv .

A. Density evolution for protograph-based ensembles

Since every member of the protograph-based ensemble pre-

serves the structure of the base protograph, density evolution

analysis for the resulting codes can be performed within the

protograph. We assume that belief propagation (BP) decoding

is performed after transmission over a binary erasure channel

(BEC) with erasure probability ε. In every decoding iteration,

all of the check nodes are updated followed by all of the

variable nodes. The messages that are passed between the

nodes represent either an erasure or the correct symbol value

(0 or 1).

Let q(i)(ec
x,m) denote the probability that the check to

variable node message sent along edge ec
x,m in decoding

iteration i is an erasure. (Note that this will be the case if at

least one of the incoming messages from other neighbouring

variable nodes is erased.) Explicitly,

q(i)
(

ec
x,m

)

= 1 −
∏

m′ 6=m

(

1 − p(i−1)
(

ec
x,m′

)

)

, (1)

where p(i−1)(ec
x,m′) denotes the probability that the incoming

message in the previous update of check node x is an erasure,

with m, m′ ∈ {1, . . . , ∂(cx)}. In contrast, the variable to

check node message sent along edge ev
y,l is an erasure if the

incoming message from the channel and the messages from all

the other neighbouring check nodes are erasures. This happens

with probability p(i)(ev
y,l), where

p(i)
(

ev
y,l

)

= ε
∏

l′ 6=l

q(i)
(

ev
y,l′

)

, (2)

with l, l′ ∈ {1, . . . , ∂(vy)}. The density evolution threshold of

an ensemble is defined as the maximal value of the channel

parameter ε for which p(i) converges to zero as i tends to

infinity.

B. Weight enumeration for protograph-based ensembles

The preserved structure of members of a protograph-based

LDPC code ensemble also facilitates the calculation of average

weight enumerators. An ensemble average weight enumerator

Ad tells us that, given a particular Hamming weight d, a typical

member of the ensemble has Ad codewords with Hamming

weight d. Combinatorial techniques for calculating enumera-

tors for protograph-based ensembles have been presented in

[8] and [9].

The asymptotic spectral shape function of a code ensemble

can be written as

r(δ) = lim sup
n→∞

ln(Ad)

n
, (3)

where δ = d/n, d is the Hamming weight, n is the block

length, and Ad is the ensemble average weight enumerator.

Suppose the first positive zero crossing of r(δ) occurs at δ =
δmin. If r(δ) is negative in the range 0 < δ < δmin, then

δmin is called the minimum distance growth rate of the code

ensemble, and we can say that the majority of codes in the

ensemble have minimum distance d ≥ Nδmin.

III. TERMINATED PROTOGRAPH-BASED LDPC

CONVOLUTIONAL CODES

A rate R = b/c (time-varying) binary LDPC convolutional

code [1] can be defined as the set of infinite binary sequences

v[−∞,∞] that satisfy the equation v[−∞,∞]H
T

[−∞,∞] = 0,
where

H
T
[−∞,∞] =



















. . .
. . .

H
T
0 (0) · · · H

T
ms

(ms)
. . .

. . .

H
T
0 (t) · · · H

T
ms

(t + ms)
. . .

. . .



















is the transposed parity-check matrix, also called the syndrome

former matrix. The binary (c − b)× c submatrices Hi(t), i =
0, 1, · · · ,ms, satisfy the conditions that Hms

(t) 6= 0 for at

least one t ∈ Z and that H0(t) has full rank for all t. We

call ms the syndrome former memory and νs = (ms + 1) · c
the decoding constraint length. These parameters determine

the width of the nonzero diagonal region of H[−∞,∞]. The

sparsity of the parity-check matrix is insured by demanding

that its rows have Hamming weight much less than νs. The

code is said to be regular if its parity-check matrix H[−∞,∞]

has exactly J ones in every column and K ones in every row.

The code is irregular if its row and column weights are not

constant, and the degree distribution is used to characterize

the check and variable node degrees in the Tanner graph of

the code. In general, the code is time-varying; a time-varying

LDPC convolutional code is periodic with period T if Hi(t)
is periodic, i.e., Hi(t) = Hi(t + T ),∀ i, t, and if Hi(t) =
Hi,∀ i, t, the code is time-invariant.



A. Constructing protograph-based LDPC convolutional codes

Analogously to block codes, an ensemble of LDPC con-

volutional codes can be constructed from a protograph. We

proceed by forming a time-invariant infinite base matrix1 with

component bc × bv submatrices B0,B1, . . . ,Bms
as follows:

B[−∞,∞] =



















. . .
. . .

Bms
· · · B0

. . .
. . .

Bms
· · · B0

. . .
. . .



















. (4)

The infinite Tanner graph associated with B[−∞,∞] can be

regarded as a convolutional protograph. An ensemble of

time-varying LDPC convolutional codes can be formed from

B[−∞,∞] using the protograph construction method based on

N × N permutation matrices described in Section II.

B. Forming terminated protograph-based LDPC convolutional

codes

Suppose that we start the base matrix defined in (4) at time

t = 0 and terminate it after L time instants. The resulting

finite-length base matrix is given by

. . .

. . .

B[0,L−1] =





















B0

...

Bms

B0

...

Bms





















(L+ms)bc×Lbv

. (5)

The matrix B[0,L−1] can be considered as the base matrix

of a terminated protograph-based LDPC convolutional code

ensemble. Termination in this fashion results in a rate loss.

Without puncturing, the design rate RL of the terminated code

ensemble is equal to

RL = 1 −

(

L + ms

L

)

bc

bv

= 1 −

(

L + ms

L

)

(1 − R) , (6)

where R = 1 − Nbc/Nbv = 1 − bc/bv is the rate of the

unterminated LDPC convolutional code ensemble. Note that,

as the termination factor L increases, the rate increases and

approaches the rate of the unterminated LDPC convolutional

code ensemble. The protograph-based LDPC block code en-

semble associated with B[0,L−1] can be studied using the

analysis discussed in Section II.

1If the base matrix is binary, it represents the parity-check matrix of a
rate R = 1− bc/bv time-invariant convolutional code with syndrome former
memory ms.

IV. ANALYSIS OF TERMINATED PROTOGRAPH-BASED

LDPC CONVOLUTIONAL CODES

In this section, we begin by forming asymptotically regular

LDPC block code ensembles by terminating several rate R =
1/2 protograph-based LDPC convolutional code ensembles

with increasing complexity. The iterative decoding thresholds

and minimum distance growth rates of the resulting LDPC

block code ensembles are calculated and compared. We then

show that the procedure can be applied to (J,K)-regular

protograph-based LDPC convolutional codes with varying

rates.

A. An asymptotically regular (3, 6) code family

Let a = gcd(J,K) denote the greatest common divisor of J
and K. Then there exist positive integers J ′ and K ′ such that

J = aJ ′ and K = aK ′ with gcd(J ′,K ′) = 1. It follows that

the base matrix of a (J,K)-regular protograph-based LDPC

convolutional code ensemble with syndrome former memory

ms = a − 1 can be defined as in (4), where the submatrices

Bi, i = 0, . . . ,ms, are identical J ′ × K ′ matrices with all

entries equal to one. (Note that, if a = 1, the syndrome former

memory is equal to zero and the convolutional protograph

is not fully connected.) For the (3, 6)-regular ensemble, we

calculate gcd(J,K) = a = 3 and the component submatrices

of size J ′ × K ′ = bc × bv = 1 × 2 are given as follows:

B0 =
[

1 1
]

= B1 = B2.

Using these component submatrices, we can obtain the base

matrix for a (3, 6)-regular LDPC convolutional code ensemble

with syndrome former memory ms = 2 as in (4).2 Starting at

time t = 0, the resulting terminated base matrix after L time

instants is

. . .

. . .

. . .

B[0,L−1] =























B0

B1

B2

B0

B1

B2























(L+2)×2L

. (7)

For L ≥ 3, the ensemble design rate is

RL = 1 −
nc

nv

= 1 −
L + 2

2L
=

L − 2

2L
.

Note that, while the terminated code ensembles approach the

check node degree distribution of the (3, 6)-regular LDPC

convolutional ensemble as L → ∞, for finite L the terminated

ensembles have a reduced fraction of degree 6 check nodes.

For L ≥ 3, the protograph has two degree 2 check nodes, two

degree 4 check nodes, and L − 2 degree 6 check nodes. By

design, the variable node degree distribution remains constant

for all L. The calculated minimum distance growth rates and

BEC thresholds for these ensembles are given in Table I.

2This construction was presented as Example 1 in [7].



L Rate Growth δ
(L)
min

L BEC Capacity Gap to

RL rate δ
(L)
min

ms + 1 threshold εsh Capacity

3 1/6 0.1419 0.142 0.714 0.833 0.119
4 1/4 0.0825 0.110 0.635 0.750 0.115
5 3/10 0.0570 0.095 0.588 0.700 0.112
6 1/3 0.0449 0.090 0.557 0.667 0.110
7 5/14 0.0373 0.087 0.537 0.643 0.106
8 3/8 0.0324 0.086 0.522 0.625 0.103
9 7/18 0.0287 0.086 0.512 0.611 0.099
10 2/5 0.0258 0.086 0.505 0.600 0.095
20 9/20 0.0129 0.086 0.488 0.550 0.062
∞ 1/2 0 0.488 0.500 0.012

TABLE I: Parameters for the terminated (3, 6)-regular LDPC

convolutional code ensembles.

As the termination factor L tends to infinity, we observe

that the minimum distance growth rate δ
(L)
min tends to zero.3

This is consistent with similar results obtained for tail-biting

LDPC convolutional code ensembles in [10]. We also observe

from Table I that the scaled growth rates δ
(L)
minL/(ms + 1)

converge to a fixed value as L increases. A similar result was

first observed in [11] for an ensemble of (3, 6)-regular LDPC

convolutional codes constructed from N × N permutation

matrices, where it was shown that the scaled growth rates

converged to a bound on the free distance growth rate of the

unterminated LDPC convolutional code ensemble. This fact

allows us to estimate the minimum distance growth rate δ
(L)
min

for larger L, where the methods described in Section II-B

become difficult to apply, by multiplying this bound on the

free distance growth rate by (ms + 1)/L.

In addition to the convergence of the scaled minimum

distance growth rate with increasing L, Table I also indicates

that the BEC iterative decoding threshold converges to a

constant value and that the gap to capacity decreases with

increasing L. Since the distance growth rates decrease with

L, this indicates the existence of a trade-off between distance

growth rate and threshold. For this ensemble, the threshold

approaches ε∗ = 0.488 as L → ∞. This is very close to

the Shannon limit εsh = 0.5 for rate R∞ = 1/2. Impor-

tantly, the threshold does not further decay as the termination

factor L increases. This remarkable result was first observed

empirically in [12] for (J, 2J)-regular ensembles constructed

from N × N permutation matrices, and it was shown to be

true for arbitrarily large L in [13]. More recently, it has been

shown in [14] that the iterative decoding thresholds of LDPC

convolutional code ensembles on the BEC are equal to the

optimal maximum a posteriori probability (MAP) decoding

thresholds of their corresponding LDPC block code ensembles.

B. More asymptotically regular rate R = 1/2 code families

Here, we consider how the thresholds and distance growth

rates of other asymptotically regular rate R = 1/2 code

families are affected by increasing the variable node degree

3An infinite termination factor corresponds to the unterminated LDPC
convolutional code ensemble. Using the techniques developed in [10], this
convolutional code ensemble can be shown to be asymptotically good in the
sense that the minimum free distance grows linearly with encoding constraint
length.

J to values greater than 3. Using component submatrices

Bi = [ 1 1 ], i = 0, . . . ,ms = a = J − 1, (4) defines

the convolutional base matrix of a rate R = 1/2, (J,K)-
regular LDPC convolutional code ensemble. Terminating these

codes using the procedure defined in Section III-B results in

families of asymptotically regular (J,K) LDPC block code

ensembles. As we increase J , the complexity (measured as the

average node degree) grows. Table II describes the complexity

of the terminated ensembles with variable node degree J and

termination factor L.

Aymptot. reg. Rate Variable Avg. check
ensemble RL node degree node degree

(3, 6) (L − 2)/2L 3 6L/(L + 2)
(4, 8) (L − 3)/2L 4 8L/(L + 3)
(5, 10) (L − 4)/2L 5 10L/(L + 4)
(J, 2J) (L − J + 1)/2L J 2JL/(L + J − 1)

TABLE II: Complexity of the terminated rate R = 1/2
protograph-based LDPC convolutional code ensembles.

For finite L, the average check node degree of the asymptot-

ically regular code ensemble is strictly less than that of the

unterminated convolutional code ensemble. The check node

degree increases with L, tending to the average check node

degree of the unterminated ensemble as L tends to infinity. The

variable node degree remains constant at J for all termination

factors L.

Figure 2 plots the minimum distance growth rates for

families of terminated code ensembles with J = 3, 4, and

5, some (J,K)-regular ensembles, and the Gilbert-Varshamov

bound for the entire ensemble of block codes, where the values

J = 3, 4, and 5 correspond to asymptotically regular (3, 6),
(4, 8), and (5, 10) families, respectively.
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Fig. 2: Minimum distance growth rates for several families

of terminated rate R = 1/2 protograph-based LDPC convolu-

tional codes.

As with the asymptotically regular (3, 6) family analysed in

Section IV-A, we find that increasing the termination factor

L results in declining minimum distance growth rates for

the asymptotically regular (4, 8) and (5, 10) families. We



again observe that the scaled minimum distance growth rates

δ
(L)
minL/(ms + 1) converge as L increases, which allows us

to estimate the growth rates for L ≥ 10. As expected, there

is a significant increase observed for the growth rates of the

(4, 8) family compared to the (3, 6) family. There is a further

improvement for the asymptotically regular (5, 10) family, but

the increase is not as significant. We would expect this trend

to continue as we further increase the variable node degree J .

Figure 3 plots the BEC iterative decoding thresholds for the

asymptotically regular (3, 6), (4, 8), and (5, 10) LDPC code

families. We observe that the gap to capacity decreases as
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Fig. 3: BEC thresholds for several families of terminated rate

R = 1/2 protograph-based LDPC convolutional codes.

the termination factor L increases. For regular ensembles of

the same rate, one would expect the thresholds to worsen as

we increase J and K. Figure 3 shows that this is also the

case for the asymptotically regular code families, for small

termination factors L. Thus, by increasing J , and hence the

complexity, we obtain a more pronounced trade-off between

distance growth rates and threshold for small values of L.

However, as the termination factor L tends to infinity, we

observe that the threshold of the asymptotically regular LDPC

code families converge to a value close to capacity. This value

improves as we increase J (ε∗ = 0.4881, 0.4977, and 0.4994
for the asymptotically regular (3, 6), (4, 8) and (5, 10) LDPC

code families, respectively). This indicates that, for large L,

both the distance growth rates and the thresholds improve with

increasing complexity. We would expect this trend to continue

as we further increase the variable node degree J .

C. Other asymptotically regular code families

The procedure described in Section IV-A can be extended to

form the base matrix of an arbitrary (J,K)-regular protograph-

based LDPC convolutional code ensemble. For example, in the

(3, 9)-regular case, gcd(3, 9) = 3 = a, and the submatrices

Bi, i = 0, . . . ,ms = a − 1 = 2, are identical J ′ × K ′ =
1 × 3 matrices with all entries equal to one. By using these

component submatrices in (4), we obtain the base matrix

for a (3, 9)-regular LDPC convolutional code ensemble with

syndrome former memory ms = 2. For termination factors

L ≥ 2, (5) defines the base matrix of a protograph-based

LDPC code ensemble with two degree 3 check nodes, two

degree 6 check nodes, and L−2 degree 9 check nodes; hence

it is asymptotically regular. The rate of the asymptotically

regular ensemble with termination factor L ≥ 2 is RL =
(2L − 2)/3L.

In the same way, we can construct the base matrices of

(3, 12)- and (4, 6)-regular protograph-based LDPC convolu-

tional code ensembles using the submatrices

Bi =
[

1 1 1 1
]

, i = 0, . . . ,ms = a − 1 = 2, and

Bi =

[

1 1 1
1 1 1

]

, i = 0, . . . ,ms = a − 1 = 1,

respectively.

Figure 4 displays the BEC thresholds and growth rates

for the asymptotically regular LDPC block code ensembles

discussed in this section and some (J,K)-regular block code

ensembles, along with the Shannon limit and the Gilbert-

Varshamov bound, respectively. For each family, the iterative

decoding threshold converges to a value close to the Shannon

limit for R∞ as L gets large. The design rates RL of the

asymptotically regular ensembles, given by (6), cover a large

range and approach the rate of the (J,K)-regular LDPC

convolutional code ensemble. The range of achieveable code

rate can be expanded by considering higher or lower rate

(J,K)-regular convolutional code ensembles.

V. EDGE-SPREADING

As mentioned in Section IV-A, if gcd(J,K) = a = 1
then ms = 0 and the convolutional protograph is not fully

connected. In other words, the base matrix (4) consists of

disconnected blocks B0. This can be avoided by creating

the submatrices B0,B1, . . . ,Bms
using an edge-spreading

technique [7]. Here, the edges of the protograph base matrix

B are spread over the component submatrices such that B0 +
B1 + . . . + Bms

= B. Note that the submatrices necessarily

have the same size as B and the technique is not limited to the

case a = 1, i.e., it can also be used when gcd(J,K) = a > 1.

In fact, as we note below in Example 4, the greatest common

divisor method for forming component submatrices can be

considered as a particular type of edge spreading. To illustrate

the technique, we now compare the thresholds and distance

growth rates of several families of asymptotically regular (3, 6)
LDPC code ensembles formed by edge spreading.

Example 1: Consider the following all-ones base matrix of

size nc × nv = 3 × 6:

B =





1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1



 . (8)

Using the component submatrices,

B0 =





1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1



, B1 =





0 0 1 1 1 1
1 1 0 0 1 1
1 1 1 1 0 0



,
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Fig. 4: BEC thresholds and minimum distance growth rates for families of asymptotically regular (J,K) LDPC convolutional

code ensembles.

we can form the base matrix of a (3, 6)-regular protograph-

based LDPC convolutional code with syndrome former mem-

ory ms = 1 as in (4). Note that B0 + B1 = B. Figure 5

shows the associated convolutional protograph obtained using

component submatrices B0 and B1, along with the termination

factors L that form asymptotically regular ensembles.

L=2 =3L

B0 1B B0 B01B 1B

t=0

{{ { { { {

Fig. 5: The convolutional protograph of Example 1, along with

some termination factors for increasing L.

The resulting design rate of the terminated code ensemble is

RL = (L−1)/2L. The terminated protograph has three degree

2 check nodes, three degree 4 check nodes, and 3L−3 degree

6 checks, so it is an asymptotically regular (3, 6) ensemble.

Example 2: The following component submatrices of (8)

have only degree 3 check nodes:

B0 =





1 1 1 0 0 0
0 1 1 1 0 0
0 0 0 1 1 1



 and B1 = B − B0.

Using B0 and B1 as given above, the asymptotically regular

(3, 6) ensemble defined by (5) has six degree 3 check nodes

and 3L−3 degree 6 checks for termination factors L ≥ 2. The

protographs in this terminated family will be highly regular

with no degree 2 check nodes.

Example 3: In order to reduce the memory requirements

for implementing the codes, it is also interesting to consider

repeated edges. Consider the following nc × nv = 1× 2 base

matrix

B =
[

3 3
]

.

The edges of B can be spread as follows:

B0 =
[

2 1
]

and B1 = B − B0 =
[

1 2
]

.

Using these component submatrices, the base matrix (4) de-

fines a (3, 6)-regular protograph-based LDPC convolutional

code. Figure 6 shows the associated convolutional protograph,

along with the termination factors that form asymptotically

regular ensembles. As with Examples 1 and 2, this ensemble

has syndrome former memory ms = 1; however, the decoding

constraint length is νs = (ms + 1)bv = (ms + 1)nv = 4N ,

whereas νs = 12N for Examples 1 and 2.

=3Lt=0 L=2

Fig. 6: The convolutional protograph of Example 3, along with

some termination factors for increasing L.

Example 4: Using edge spreading, it is also possible to

form base matrices that define the same (J,K)-regular LDPC

convolutional code ensembles as the examples discussed in

Section IV, which were formed by using a method based on

the greatest common divisor of J and K. The greatest common

divisor method is equivalent to the particular edge spreading

of a J ′ × K ′ base matrix B with all entries equal to a into

ms + 1 = a all-one J ′ × K ′ component submatrices. For

example, for the (3, 6)-regular ensemble, gcd(J,K) = a = 3,

J ′ = 1, and K ′ = 2. Then, by splitting B = [ 3 3 ] into

B0 = B1 = B2 = [ 1 1 ], with B0 + B1 + B2 = B, we

have the same component submatrices as the asymptotically

regular (3, 6) family presented in Section IV.



L Rate Example 1 Example 2 Example 3 Example 4

RL ε∗ δ
(L)
min

ε∗ δ
(L)
min

ε∗ δ
(L)
min

ε∗ δ
(L)
min

2 1/4 0.6358 0.0874 0.6471 0.0920 0.6448 0.0950 0.6353 0.0825
3 1/3 0.5600 0.0496 0.5673 0.0512 0.5671 0.0524 0.5574 0.0449
4 3/8 0.5249 0.0362 0.5298 0.0367 0.5301 0.0376 0.5223 0.0324
5 2/5 0.5064 0.0289 0.5098 0.0292 0.5103 0.0299 0.5046 0.0258
6 5/12 0.4965 0.0241 0.4989 0.0243 0.4993 0.0249 0.4955 0.0215
7 3/7 0.4914 0.0207 0.4930 0.0208 0.4933 0.0213 0.4911 0.0184
8 7/16 0.4893 0.0181 0.4902 0.0182 0.4903 0.0186 0.4892 0.0161
20 19/40 0.4881 0.0072 0.4881 0.0073 0.4881 0.0075 0.4881 0.0065
∞ 1/2 0.4881 0 0.4881 0 0.4881 0 0.4881 0

TABLE III: BEC thresholds and distance growth rates for various asymptotically regular (3, 6) LDPC code families constructed

by edge spreading. The rate of these families is given as R = (L − 1)/2L.

Moreover, the same convolutional base matrix can be

formed from different edge spreadings. For example, consider

the all-ones base matrix B of size 3×6. Using edge spreading,

we can form the following component submatrices:

B0 =





1 1 0 0 0 0
1 1 1 1 0 0
1 1 1 1 1 1



 and B1 = B − B0.

Using these component submatrices in (4), we obtain the base

matrix of a rate R = 3/6, (3, 6)-regular LDPC convolutional

code ensemble with syndrome former memory ms = 1. This

convolutional base matrix is identical to the base matrix that

was constructed in Section IV-A using the greatest common

divisor method, which resulted in an equivalent rate R = 1/2,

(3, 6)-regular LDPC convolutional code ensemble with ms =
2. In this example, we use the ms = 1 interpretation of the

base matrix to form an asymptotically regular (3, 6) family so

that we have equivalent rates RL for comparison with the other

examples. The terminated base matrices B[0,L−1] here can be

obtained using termination factors L = 2k in (7) for k =
2, 3, . . .. Note that, in this sense, the asymptotically regular

family defined using the greatest common divisor method is

more flexible, since it can achieve ensembles with more finely

grained design rates than those constructed in this example.

The thresholds and distance growth rates calculated for

the asymptotically regular (3, 6) ensembles of Examples 1-

4 are displayed in Table III. An interesting observation is

that by eliminating the degree 2 check nodes, Examples 2
and 3 display larger growth rates and better thresholds than

Examples 1 and 4. All of the thresholds converge to the

same value ε∗ = 0.4881 as L → ∞, which is equal to the

optimal MAP decoding threshold of (3, 6)-regular ensembles.

Example 3, which has the smallest decoding constraint length,

achieves the best distance growth rates. This can most likely be

attributed to having a larger proportion of non-zero elements

in B[0,L−1], i.e., a denser base matrix. For termination factors

L = 2 and 3, Example 2 has the best thresholds, but for L ≥ 4
the repeated edge Example 3 has both the best growth rates

and thresholds.4

There are many ways of spreading the edges among the

component submatrices of a base matrix B, and different

4Constructing LDPC convolutional code ensembles from protographs with
repeated edges in order to reduce memory requirements has recently been
shown to improve the performance of a windowed decoder [15].

constructions can result in varying thresholds and ensemble

growth rates. Choices containing all-zero rows and/or columns

in the submatrices should be avoided, since they can lead to

disconnected subgraphs. Note that simple row and column

permutations (applied to all component submatrices simulta-

neously) do not affect the graph structure, and so, in turn,

they do not affect the threshold and distance growth rate of

the ensemble. A good threshold value is expected when the

checks at time t = 0 have low degree (but at least degree 2).

VI. CONCLUSIONS

We have provided a construction technique for families of

asymptotically regular LDPC block code ensembles formed

by terminating (J,K)-regular protograph-based LDPC convo-

lutional codes. By varying the termination length, we obtain

a large selection of LDPC block code ensembles with varying

code rates and substantially better iterative decoding thresholds

than those of (J,K)-regular LDPC block code ensembles,

despite the fact that the terminated ensembles are almost reg-

ular. By means of an asymptotic weight enumerator analysis,

we showed that the minimum distance grows linearly with

block length for all of the ensembles in these families, i.e.,

the ensembles are asymptotically good. As the termination

length increases, we obtain a family of codes with capacity

approaching iterative decoding thresholds and declining min-

imum distance growth rates.

It was also shown that, by increasing the complexity of the

component submatrices forming the LDPC convolutional code

ensemble, the minimum distance growth rates can be improved

while maintaining a capacity approaching threshold. Further,

using an edge spreading technique, we showed that both the

iterative decoding threshold and the minimum distance growth

rate of the ensemble can be improved by carefully choosing

the component submatrices. As a result of the variable node

degree design, we insure fast convergence rates and thresholds

close to capacity. The discussion in this paper was limited to

the BEC; however, based on the results of [13], we expect

to observe similar behaviour for the additive white Gaussian

noise channel. In practice, the design parameter L adds an

additional degree of freedom to existing block code designs.

Starting from any LDPC block code, it is possible to derive

terminated convolutional codes that share the same encoding

and decoding architecture for arbitrary L.
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