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Abstract—A threshold analysis of terminated generalized
LDPC convolutional codes (GLDPC CCs) is presented for the
binary erasure channel. Different ensembles of protograph-
based GLDPC CCs are considered, including braided block
codes (BBCs). It is shown that the terminated PG-GLDPC
CCs have better thresholds than their block code counterparts.
Surprisingly, our numerical analysis suggests that for large
termination factors the belief propagation decoding thresholds
of PG-GLDPC CCs coincide with the ML decoding thresholds
of the corresponding PG-GLDPC block codes.

I. INTRODUCTION

It can be observed that terminated protograph-based LDPC
convolutional codes (PG-LDPC CCs) have better belief prop-
agation (BP) decoding thresholds than their tailbiting versions
or the block codes their are constructed from [1]. An analysis
reveals that this can be prescribed to the slight irregularity
at the ends of their Tanner graphs. This effect is visible
even if the termination factor tends to infinity and both the
code rate and degree distributions approach those of the
corresponding block codes. A comparison with upper bounds
on ML decoding thresholds presented in [2] shows that for
infinite termination factors the BP thresholds ε∞,BP of regular
LDPC CC ensembles must be close to the ML decoding
thresholds of the regular block codes for both the binary
erasure channel (BEC) and the additive white Gaussian noise
(AWGN) channel. It can be observed, that on the BEC they
actually numerically coincide with the tighter upper bounds
εblk,ML on the ML thresholds presented in [3], which are based
on BP EXIT functions [4] (see Table I). The same can also
be verified for the convolutional code version of the irregular
ARJA ensembles [5] investigated in [6]. More recently, for
regular codes and the BEC, the equality of BP thresholds of
convolutional ensembles and ML thresholds of the underlying
block ensembles has been proven analytically in [7].

εblk,BP ε∞,BP εblk,ML

(3,6) 0.4294 0.4881 0.4881
(4,8) 0.3834 0.4977 0.4977
(5,10) 0.3416 0.4994 0.4994
ARJA 0.4387 0.4997 0.4997

TABLE I
THRESHOLDS OF SOME PG-LDPC ENSEMBLES.

In this paper, based on the transfer functions derived in
[8], we extend the threshold analysis of PG-LDPC CCs [1]
[6] [9] to generalized LDPC (GLDPC) codes. In addition to
the recently investigated protograph-based braided block codes
(PG-BBCs) [10] [11] we present some further PG-GLDPC
ensembles and compare their thresholds with the upper bounds
εblk,ML. It turns out that ε∞,BP and εblk,ML are numerically
equal for all investigated PG-GLDPC ensembles.

II. THRESHOLDS OF PROTOGRAPH ENSEMBLES

A. Protograph GLDPC Codes

A protograph is a bipartite graph consisting of a set of
variable nodes Vn with degree Jn, n = 1, . . . , NP , a set
of constraint nodes Cm with degree Km, m = 1, . . . , MP

and a set of edges that connect them. The edges connected
to a variable node Vn or a constraint node Cm are labeled
by ev

n,j or ec
m,k, respectively, where j = 1, . . . , Jn and

k = 1, . . . , Km. The j-th edge of Vn is connected to the
k-th node of Cm if ev

n,j = ec
m,k. In protograph-based GLDPC

(PG-GLDPC) codes, each constraint node Cm can represent an
arbitrary block code Cm of length Km. As an example, Fig. 1
shows a rate R = 1/6 ”Hamming-doped” protograph [12],
created from an accumulate-repeat-accumulate (ARA) code.
This ARA protograph was ”doped” by associating a shortened
(6,3) Hamming code to one of its check nodes.

A protograph can be represented by means of an MP ×NP

bi-adjacency matrix B, which is called the base matrix of the
protograph. The entry in row m and column n of B is equal
to the number of edges that connect nodes Cm and Vn. The

C1
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Fig. 1. Hamming-doped protograph with three constraint nodes Cm and six
variable nodes Vn. Threshold: ε∗ = 0.8122, Shannon limit: εSh = 0.8333.
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base matrix of the protograph in Fig. 1 is given by

B =

⎡
⎣2 1 1 0 0 0

1 1 1 0 0 0
2 1 0 1 1 1

⎤
⎦ . (1)

In order to construct ensembles of PG-GLDPC codes, a
protograph can be interpreted as a template for the Tanner
graph of a derived code, which can be obtained by a copy-and-
permute operation [13]. The protograph is lifted by replicating
each node T times and the edges are permuted among these
replica in such a way that the structure of the original graph
is preserved. As a consequence, a density evolution analysis
for PG-GLDPC ensembles can be performed within the proto-
graph. Equivalently, the Tanner graph of an GLDPC code can
be represented by a bi-adjacency matrix that is derived from a
protograph by replacing each 1 in B by a permutation matrix
and each 0 by an all-zero matrix1. An ensemble of protograph
based GLDPC (PG-GLDPC) codes of length N = TNP is
defined by the set of matrices that can be derived from a given
protograph by all possible combinations of size T permutation
matrices.

Assume that belief propagation is used for decoding, with
log-likelihood ratios (LLRs) acting as messages. In every
iteration i, first all constraint nodes and then all variable nodes
are updated. The messages computed at a constraint node Cm

are then equal to

L(i)
c (ec

m,k) = log
∑

v∈C
m,0

k

∏
k′ �=k

exp
(
L(i−1)

v (ec
m,k′)(1/2− vk′)

)

− log
∑

v∈C
m,1

k

∏
k′ �=k

exp
(
L(i−1)

v (ec
m,k′)(1/2− vk′)

)
, (2)

where k, k′ ∈ {1, . . . , Km}. Here we have partitioned Cm

into the sets Cm,0
k and Cm,1

k , corresponding to codewords v

for which vk = 0 and vk = 1, respectively. The message
L

(i)
c (ec

m,k) corresponds to the k-th extrinsic output generated
by an optimal APP decoder for component code Cm, which is
applied to the incoming messages of node Cm. The incoming
messages in the first iteration are initialized by the channel
LLRs of the neighboring variable nodes, i.e., L

(0)
v (em,k′) =

Lch(Vn), where Vn is the variable node connected to em,k′ .
The messages computed at a variable node Vn are equal to

L(i)
v (ev

n,j) = Lch(Vn) +
∑
j′ �=j

L(i)
c (ec

n,j′) , (3)

where j, j′ ∈ {1, . . . , Jn}.

B. Density Evolution for PG-GLDPC Codes

For transmission over a BEC the messages that are passed
between the nodes represent either an erasure or the correct
symbol values 0 or 1. In this case the BP decoder is par-
ticularly simple and exact density evolution can be described
explicitly. Let q(i)(ec

m,k) denote the probability that the check

1The entries of multiple edges between a pair of nodes are replaced by the
sum of permutation matrices

to variable node message which is sent along edge ec
m,k in

decoding iteration i is an erasure. Assuming a conventional
LDPC code, where Cm is a single parity-check code, this is
the case if at least one of the incoming messages from the
other neighboring nodes is erased, i.e.,

q(i)(ec
m,k) = 1−

∏
k′ �=k

(
1− p(i−1)(ec

m,k′)
)

, (4)

where p(i−1)(ec
m,k′), k, k′ ∈ {1, . . . , Km}, denote the proba-

bilities that the incoming messages computed in the previous
iteration are erasures. In case of an arbitrary block code Cm,
equation (4) can be replaced by the general expression

q(i)(ec
m,k) = fCm

k

(
p(i−1)(ec

m,k′), k′ �= k
)

, (5)

where fCm

k is a multi-dimensional input/output transfer func-
tion that characterizes the APP decoder that computes the
messages L

(i)
c (ec

m,k) corresponding to (2). Note that, in gen-
eral, fCm

k can be different for each k ∈ {1, . . . , Km} so
that the order of edges connected to node Cm can affect the
performance of the ensemble. A method for computing explicit
expressions for the APP decoder output distributions that can
be used in (5) was presented in [8]. It is based on a Markov
chain analysis of the decoder metrics in a trellis representation
of the block code Cm.

The variable to check node message sent along edge ev
n,j

is an erasure if all incoming messages from the channel and
from the other neighboring check nodes are erasures. Thus we
have

p(i)(ev
n,j) = ε

∏
j′ �=j

q(i)(ev
n,j′) , (6)

where j, j′ ∈ {1, . . . , Jn} and ε is the erasure probability of
the BEC.

C. Upper-bounding ML Thresholds with BP EXIT Functions

The extrinsic probability pBP,extr that a symbol associated
with variable node Vn remains erased after BP decoding with
I iterations can be expressed as

pBP,extr(Vn, ε) =
∏
j

q(I)(ev
n,j) . (7)

Note that here the product is over all incoming messages of
Vn and the intrinsic channel erasure probability is omitted in
the expression but implicitly involved in the calculation of
q(I)(ev

n,j). The BP EXIT function hBP(ε) [4] is given by the
average of pBP,extr over all transmitted variable nodes2.

Consider a (2,7) regular PG-GLDPC ensemble with Ham-
ming component codes of length Ncc = 7, as illustrated in
Fig. 2. The BP EXIT function of this ensemble is shown
in Fig. 3. The vertical line indicates the channel value at
which the grey area below the curve is equal to the rate
of the ensemble, which forms an upper bound εML on the
threshold of an optimal ML decoder. This follows from the
area theorem [14] and the fact that hBP(ε) can never be below

2Punctured nodes which are not transmitted are excluded.
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Fig. 2. Protograph of a (2,7) regular PG-GLDPC code. The edge labels
denote the associated columns in the parity-check matrix of the component
Hamming code.
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Fig. 3. BP EXIT function of a (2,7) regular PG-GLDPC code based on (7,4)
Hamming component codes.

the EXIT function of the ML decoder. A detailed analysis
of unstructured irregular ensembles, including results on the
tightness of this bound, can be found in [4]. For structured
protograph ensembles this technique has been applied in [3].

III. TERMINATED PG-GLDPC CONVOLUTIONAL CODES

Analogously to block codes, an ensemble of GLDPC con-
volutional codes can be constructed from a protograph. Such
protograph-based GLDPC convolutional codes (PG-GLDPC
CCs) can be described by means of a convolutional protograph
[6] with base matrix

B[−∞,∞] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

Bmcc
. . . B0

. . .
. . .

Bmcc
. . . B0

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

where mcc denotes the memory of the convolutional codes
and the MP × NP component base matrices Bi, i =
0, . . . , mcc, describe the edges from the NP variable nodes
at time t to the MP constraint nodes at time t + i. At
time instant t the corresponding encoder creates a block vt

of TNP symbols, resulting in the infinite code sequence
v = [. . . ,v1,v2, . . . ,vt, . . . ]. The decoding constraint length
is defined as ν = (mcc + 1)TNP .

A. Protograph-Based Braided Block Codes

The protograph-based BBC (PG-BBC) ensembles consid-
ered in [11] are an example of PG-GLDPC CC ensembles as

horizontal constraints

vertical constraints

t t + 1 t + 2 t + 3

. . .. . .

Fig. 4. Tanner graph of a PG-BBC with (7,4) Hamming component codes,
defining Ensemble A7. The nodes are grouped according to the time instant
at which the code symbols are generated.

defined above. These can be derived by using the Tanner graph
of a tightly BBC [10] as a protograph. The component base
matrices of such a PG-BBC can be identified as

B0 =

[
1 i 0

1 0 i

]
, Bi =

[
0 0 ei

0 ei 0

]
, (8)

where i = 1, . . . , mcc, ei = (0, . . . , 0, 1, 0, . . . , 0) is the length
mcc vector with a one at the i-th position and zeros elsewhere,
0 is the all-zero vector, and i the all-one vector. Throughout
this paper we use the term Ensemble ANcc

when referring to
such PG-BBCs based on component codes of length Ncc.

For PG-BBCs with (7,4) Hamming component codes (i.e.,
NP = 7 and MP = 2), the resulting convolutional protograph
is illustrated in Fig. 4. Its girth is equal to eight, which follows
from the structure of the array and is true for any tightly
BBC. Observe that the sum of the component base matrices is
equal to the base matrix B of the corresponding GLDPC code,
which is the all-one matrix of dimension MP ×NP = 2× 7.
This reflects the fact that the graph of the PG-BBC in Fig. 4
can be obtained by repeating the GLDPC graph in Fig. 2 and
permuting the edges among several adjacent time instants.

B. Convolutional Protographs with mcc = 1

Following the edge-spreading approach, considered in [6]
for the design of PG-LDPC CCs, let us now consider
some alternative constructions of PG-GLDPC CC ensembles.
Starting from an arbitrary block protograph, defined by an
MP ×NP base matrix B, we divide the edges among times
t, t + 1, . . . , t + mcc. For a given target memory mcc, any set
of component base matrices B0,B1, . . . ,Bmcc

which satisfies
the condition

mcc∑
i=0

Bi = B (9)

corresponds to a possible assignment of edges, resulting in
a convolutional protograph with the same variable and check
node degrees as the original block protograph.

For the case Ncc = 7, consider splitting B into component
base matrices

B0 =

[
0 0 0 0 1 1 1
1 1 1 0 0 0 0

]
,

B1 =

[
1 1 1 1 0 0 0
0 0 0 1 1 1 1

]
,
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Fig. 5. Segments of the mcc = 1 convolutional protographs defining
Ensemble B7 (left) and Ensemble C14 (right).

resulting in an ensemble of PG-GLDPC CCs with memory
mcc = 1, which we call Ensemble B7. A segment of the cor-
responding convolutional protograph is shown in Fig. 5(left).
A generalization to the Ensemble B15 and other values of Ncc

is straightforward. While we can see that the reduced memory
leads to a more compact representation of PG-GLDPC CCs,
there is still some sparsity observable, reflected in a relatively
low fraction of non-zero elements in the component base
matrices B0 and B1. In case of even Ncc this can be eliminated
by introducing multiple edges in the base matrix B of the
block protograph. Considering shortened (14,10) Hamming
codes as an example, we can use the nodes from the 2 × 7
protograph in Fig. 4 and connect each variable/check node pair
with a double edge. We split the corresponding base matrix

B0 = B1 =
[
1 1 1 1 1 1 1

]
, (10)

and obtain the protograph of Ensemble C14 with MP = 1
check nodes and NP = 7 variable nodes at each time instant,
a segment of which is illustrated in Fig. 5(right). Since now
NP = 7 = Ncc/2, the ensemble has only half the constraint
length as Ensemble B14 for a given lifting factor T . Puncturing
the first variable node at each time instant t results in Ensemble
C14,P with the asymptotic design rate R∞ = 0.5.

C. Thresholds of Terminated PG-GLDPC CCs

Assume now that we start encoding at time t = 1 and
terminate after L time instants. As a result we obtain a block
protograph with the base matrix

B[1,L] =

⎡
⎢⎢⎢⎢⎢⎢⎣

B0

...
. . .

Bmcc
B0

. . .
...

Bmcc

⎤
⎥⎥⎥⎥⎥⎥⎦

MP (L+mcc)×NP L

. (11)

This terminated protograph is slightly irregular with lower
constraint node degrees at the start and end. These shortened
constraint nodes are now associated with shortened component
codes in which the symbols of the missing edges are removed.
Note that such a code shortening is equivalent to fixing these
removed symbols and assigning an infinite reliability to them.
The variable node degrees are not affected by termination.
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Fig. 6. BP decoding thresholds over termination factors L. Ensembles A7 and
A15 are shown in comparison with the ensembles B7 and B15, respectively.
The dashed lines indicate the thresholds of the corresponding GLDPC block
codes.

The parity-check matrix H of the block code, derived from
B[1,L] by lifting with some factor T , has N = NP LT columns
and M = MP LMCT rows, were MC denotes the number of
parity-checks of the component code. It follows that the rate
of the codes is equal to

RL = 1−

(
L + Δ

L

)
MP MC

NP

(12)

for some Δ > 0 that accounts for the rate loss due to the
termination. As L→∞, the rate RL converges to the rate of
the corresponding regular GLDPC code. Assuming full rank
of H, the rate loss coefficient can be identified as Δ = mcc.
However, shortened component codes at the ends of the graph
can cause a reduced rank of H that slightly increases RL.
In our examples, a rank loss could be observed for the PG-
BBC Ensembles A7 and A15, based on Hamming component
codes of length NP = 7 and NP = 15 (with MC = 3 and
MC = 4, respectively), where the coefficients Δ = 2 (instead
of mcc = 3) and Δ = 5.5 (instead of mcc = 7) could be
observed by experiments with random liftings. No rank loss
was observed for the considered ensembles with mcc = 1.

The terminated PG-GLDPC CCs can be interpreted as PG-
GLDPC block codes that inherit the structure of the convolu-
tional codes. The length of these codes depends not only on
the lifting factor T but also on the termination factor L. For a
fixed L, the density evolution thresholds εL,BP corresponding
to codes with base matrix B[1,L] can be estimated by recursive
application of (6) and (5) for different channel parameters
ε. The resulting thresholds for ensembles B7 and B15 are
compared in Fig. 6 with the BBC ensembles A7 and A15

for different termination factors L. The thresholds of all the
considered ensembles versus the code rate are shown in Fig. 7.
Analogously to PG-LDPC CCs (see Table I), we observe
that as L → ∞ the BP thresholds numerically coincide
with the upper bounds on the ML decoding thresholds of the
corresponding block code ensembles. From the achievability
of ε∞,BP it follows that the bounds εblk,ML are tight.
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Fig. 8. BP EXIT functions of terminated PG-GLDPC convolutional codes
from the ensemble B7 for different termination factors L.

The BP EXIT functions of the terminated codes from
ensemble B7 are shown in Fig. 8. Indeed, with increasing L
their BP thresholds converge to their ML thresholds, indicating
optimality of BP decoding. Large L can be realistic in con-
junction with window based decoders, like suggested in [15],
where decoding delay and storage requirement depends on the
window size W , where W < L, but is totally independent of
the length L of the transmitted code sequences. For shorter L,
which introduces a significant rate loss, the BP decoding of
the terminated codes is clearly suboptimal but still provides a
flexible adjustment of coding rate and threshold.
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