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Abstract—We consider the capacity of memoryless finite-state
multiple access channels (FS-MACs) with causal asymmetric
noisy state information available at both transmitters and com-
plete state information available at the receiver. Single letter inner
and outer bounds are provided for the capacity of such channels
when the state process is independent and identically distributed.
The outer bound is attained by observing that the proposed inner
bound is tight for the sum-rate capacity.

I. INTRODUCTION AND LITERATURE REVIEW

Modeling communication channels with a state process fits
well for many physical scenarios. For single-user channels,
the characterization of the capacity with various degrees of
channel state information at the transmitter (CSIT) and at the
receiver (CSIR) is well understood. Among them, Shannon
[1] determined the capacity formula when causal noiseless
state information is available at the transmitter, where state is
independent identically distributed (i.i.d.). The same problem
with non-causal side information is considered in [2]. In [3],
Shannon’s result is extended to the case where noisy state
observation is available at both the transmitter and the receiver.
Later, in [4] this result has been shown to be a special case of
Shannon’s model and the authors also determined that when
CSIT is a deterministic function of CSIR optimal codes can
be constructed directly on the input alphabet.

In the multi-user setting, [5] provides a multi-letter char-
acterization of the capacity region of time-varying multiple
access channels (MACs) with various degrees of CSIT and
CSIR. In [6], a general framework for the capacity region
of MACs with causal and non-causal CSI is presented. In
particular, an achievable rate region is presented for memo-
ryless FS-MAC with correlated CSI and the sum-rate capacity
is determined under the condition that the state information
available to each encoders are independent [6, Theorem 4].
In a related work, MACs where the encoders have degraded
information on the channel state, which is coded to the
encoders, is considered [7]. In [8], memoryless FS-MACs with
two independent states (see also [9] for the single state case),
each known causally and strictly causally to one encoder, are
considered and an achievable rate region, which is shown to
contain an achievable region where each user applies Shannon
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strategies, is proposed. In [8] and [9] it is also shown that
strictly casual state information does not increase the sum-rate
capacity. More recently, in [10] finite-state Markovian MACs
with asymmetric delayed state information at the transmitters
are studied and their capacity region is determined.

The most relevant work to our paper is [11], which obtained
a single letter characterization of the capacity region for
memoryless FS-MAC in which transmitters have asymmetric
partial quantized state observations and the receiver has full
state information. In this work, the authors were inspired from
team decision theory [12], [13]. We herein mainly adopt the
converse technique presented in [11] and partially extend it to
a noisy setup. The present paper, thus, studies the FS-MAC
in which each of the transmitters have an asymmetric state
information which is corrupted by i.i.d. noise processes and the
receiver has complete state information. We provide a single
letter inner bound to the capacity region, in terms of Shannon
strategies [1]. By observing that this inner bound is tight for
the sum-rate capacity, we also provide an outer bound to the
channel’s capacity region. We modify the approach in [11] to
account for the fact that the decoder does not have access to
the state information at the encoders, and that the past state
information does not lead to a tractable recursion.

The rest of the paper is organized as follows. In Section II
we formally state the problem, present inner and outer bounds
to the capacity region with the achievability and converse
proofs and in Section III we present concluding remarks.

Throughout the paper we will use the following notations. A
random variable will be denoted by an upper case letter X and
its particular realization by a lower case letter x. For a vector
v, and a positive integer i, vi will denote the i-th entry of v,
while v[i] = (v1, · · · , vi) will denote the vector of the first i
entries of v. For a finite set A, P(A) will denote the simplex
of probability distributions over A. Probability distributions
are denoted by P (·) and subscripted by the name of the
random variables and conditioning, e.g., PU,T |V,S(u, t|v, s)
is the conditional probability of (U = u, T = t) given
(V = v, S = s). Finally, for a positive integer n, we shall
denote by A(n) :=

⋃
0<s<nAs the set of A-strings of length

smaller than n. We denote the indicator function of an event
by 1{E}. All sets considered hereafter are finite.
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Fig. 1. The multiple-access channel with noisy state feedback.

II. ON THE CAPACITY OF FS-MAC WITH NOISY CSIT
AND COMPLETE CSIR

Consider a two-user memoryless FS-MAC, with two en-
coders, a, b, and two independent message sources Wa and
Wb which are uniformly distributed in the sets Wa ∈
{1, 2, · · · ,Ma} and Wb ∈ {1, 2, · · · ,Mb}, respectively. The
channel inputs of the encoders are Xa and Xb, respectively.
The channel state process is modeled as a sequence {St}∞t=1

of i.i.d. random variables in some space S. The two encoders
have access to causal noisy version of the state information St
at each time t ≥ 1 modeled by Sat ∈ Sa, Sbt ∈ Sb, respectively
and the joint distribution of (St, S

a
t , S

b
t ) satisfies

PSat ,Sbt ,St(s
a
t , s

b
t , st) = PSat |St(s

a
t |st)PSbt |St(s

b
t |st)PSt(st). (1)

We also assume that St is fully available at the receiver (see
Fig. 1) and that (St, S

a
t , S

b
t ) are independent of (Wa,Wb)

∀t ≥ 1. The channel inputs at time t, i.e., Xa
t and Xb

t , are
functions of the locally available information (Wa, S

a
[t]) and

(Wb, S
b
[t]). Let W := (Wa,Wb) and X := (Xa, Xb). Then,

the laws governing n-sequences of state, input and output
letters are given by

PY[n]|W,X[n],S[n],S
a
[n]
,Sb

[n]
(y[n]|w,x[n], s[n], s

a
[n], s

b
[n])

=

n∏
t=1

PYt|Xat ,Xbt ,St(yt|x
a
t , x

b
t , st), (2)

where the channel’s transition probability distribution,
PYt|Xat ,Xbt ,St(yt|x

a
t , x

b
t , st), is given a priori.

Definition 1: An (n, 2nRa , 2nRb) code with block length n
and rates (Ra, Rb) for an FS-MAC with noisy state feedback
consists of

(1) A sequence of mappings for each encoder

φ
(a)
t : (Sa)t ×Wa → Xa, t = 1, 2, ...n;

φ
(b)
t : (Sb)t ×Wb → Xb, t = 1, 2, ...n.

2) An associated decoding function
ψ : (S)n × Yn →Wa ×Wb.

The system’s probability of error, P (n)
e , is given by

1

2n(Ra+Rb)

2nRa∑
wa=1

2nRb∑
wb=1

P
(
ψ(Y[n], S[n]) 6= (wa, wb)|W = w

)
.

A rate pair (Ra, Rb) is achievable if for any ε > 0 there exists,
for all n sufficiently large, an (n, 2nRa , 2nRb) code such that
1
N logMa ≥ Ra ≥ 0, 1

N logMb ≥ Rb ≥ 0 and P (n)
e ≤ ε. The

capacity region of the FS-MAC, CFS , is the closure of the set
of all achievable rate pairs (Ra, Rb) and the sum-rate capacity
is defined as CFS∑ := max(Ra,Rb)∈CFS (Ra +Rb).

Before proceeding with the main result, we introduce mem-
oryless stationary team policies [11] and their associated rate
regions. We first define Shannon strategies.

Definition 2: Let the set of all possible functions from Sa
to X a and Sb to X b be denoted by T a and T b, respectively,
where T a = X a|S

a| and T b = X b|S
b|. Let T a ∈ T a and

T b ∈ T b be two T a-valued and T b-valued random vectors,
respectively, referred to as Shannon strategies.

Definition 3: [11] A memoryless stationary (in time) team
policy is a family

Π =
{
π = (πTa(·), πT b(·)) ∈ P(T a)× P(T b)

}
(3)

of probability distributions on the two sets of random func-
tions. For every memoryless stationary team policy π, R(π)
denotes the region of all rate pairs R = (Ra, Rb) satisfying

Ra < I(T a;Y |T b, S) (4)
Rb < I(T b;Y |T a, S) (5)

Ra +Rb < I(T a, T b;Y |S) (6)

where S, T a, T b and Y are random variables taking values
in S, T a, T b and Y , respectively and whose joint probability
distribution factorizes as

PS,Ta,T b,Y (s, ta, tb, y)

= PS(s)PY |Ta,T b,S(y|ta, tb, s)πTa(ta)πT b(t
b). (7)

We can now state the inner bound to the capacity region. Let

CIN := co

(⋃
πR(π)

)
denotes the closure of the convex

hull of the rate regions R(π) given by (4)-(6) associated to
all possible memoryless stationary team polices as defined in
(3).

Theorem 1 (Inner Bound): CIN ⊆ CFS .
The achievability proof follows the standard arguments of joint
ε-typical n-sequences [14, Section 15.2].

Definition 4: [14, Section 15.2] The set Anε of ε-typical n-
sequences {(x1

[n], · · · , x
k
[n])} with respect to the distribution

PX1,··· ,Xk(x1, · · · , xk) is defined by

Anε =
{

(x1
[n], · · · , x

k
[n]) ∈ X

1 × · · · X k :

| − 1

n
log (P (s))−H(S)| < ε,∀S ⊆ {X1, · · · , Xk}

}
where s denotes ordered set of sequences in x1

[n], · · · , x
k
[n]

corresponding to S.



Proof of Theorem 1: Fix (Ra, Rb) ∈ R(π).
Codebook Generation Fix πTa(ta) and πT b(t

b). For each
wa ∈ {1, · · · , 2nRa} randomly generate its corresponding n-
tuple ta[n],wa

, each according to
∏n
i=1 πTai (tai,wa). Similarly,

For each wb ∈ {1, · · · , 2nRb} randomly generate its corre-
sponding n-tuple tb[n],wb

, each according to
∏n
i=1 πT bi (tbi,wb).

These codeword pairs form the codebook, which is revealed
to the decoder while codewords tli,wl is revealed to encoder l,
l = {a, b}.

Encoding Define the encoding functions as follows:
xai (wa) = φai (wa, s

a
[i]) = tai,wa(sai ) and xbi (wb) =

φbi (wb, s
b
[i]) = tbi,wb(s

b
i ) where tai,wa and tbi,wb denote the

ith component of ta[n],wa
and tb[n],wb

, respectively, and sai
and sbi denote the last component sa[i] and sb[i], respectively,
i = 1, · · · , n. Therefore, to send the messages wa and wb,
we simply transmit the corresponding ta[n],wa

and tb[n],wb
,

respectively.
Decoding After receiving (y[n], s[n]), the decoder looks for

the only (wa, wb) pair such that (ta[n],wa
, tb[n],wb

, y[n], s[n])
are jointly ε−typical and declares this pair as its estimate
(ŵa, ŵb).

Error Analysis Without loss of generality, we can as-
sume that (wa, wb) = (1, 1) was sent. An error occurs,
if the correct codewords are not typical with the received
sequence or there is a pair of incorrect codewords that
are typical with the received sequence. Define the events
Eα,β

4
=
{

(T a[n],α, T
b
[n],β , Y[n], S[n]) ∈ Anε

}
, α ∈ {1, · · · , 2nRa}

and β ∈ {1, · · · , 2nRb}. Then by the union bound we get

Pne = P
(
Ec1,1

⋃
(α,β) 6=(1,1)

Eα,β
)
≤ P (Ec1,1)

+
∑

α=1,β 6=1

P (Eα,β) +
∑

α 6=1,β=1

P (Eα,β) +
∑

α 6=1,β 6=1

P (Eα,β)

(8)

where P (Ec1,1) denotes the probability that no message pair is
jointly typical. It can easily be verified that {Yi, Si, T ai , T bi }∞i=1

is an i.i.d. sequence and by [14, Theorem 15.1.2], P (Ec1,1)→
0 for sufficiently large n. Next, let us consider the second term∑

α=1,β 6=1

P (Eα=1,β 6=1)

=
∑

α=1,β 6=1

P ((T a[n],1, T
b
[n],β , Y[n], S[n]) ∈ Anε )

(i)
=

∑
α=1,β 6=1

∑
(ta

[n]
,tb

[n]
,y[n],s[n])∈Anε

PT b
[n]

(tb[n])

PTa
[n]
,Y[n],S[n]

(ta[n], y[n], s[n])

≤
∑

α=1,β 6=1

|Anε |2−n[H(T b)−ε]2−n[H(Ta,Y,S)−ε]

≤ 2nRb2−n[H(T b)+H(Ta,Y,S)−H(Ta,T b,Y,S)−3ε]

(ii)
= 2n[Rb−I(T b;Y |S,Ta)−3ε] (9)

where (i) holds since for β 6= 1, T b[n],β is independent
of (T a[n],1, Y[n], S[n]) and (ii) follows since T b and (T a, S)

are independent and I(T b;Y, T a, S) = I(T b;T a, S) +
I(T b;Y |T a, S) = I(T b;Y |T a, S), where I(T b;T a, S) = 0.
Following the same steps for (α 6= 1, β = 1) and (α 6= 1, β 6=
1) we get ∑

α 6=1,β=1

P (Eα,β) ≤ 2n[Ra−I(Ta;Y |T b,S)−3ε],∑
α 6=1,β 6=1

P (Eα,β) ≤ 2n[Ra+Rb−I(Ta,T b;Y |S)−3ε], (10)

and the rate conditions of the R(π) imply that each term tends
in (8) tends to zero as n → ∞. This shows the achievability
of a rate pair (Ra, Rb) ∈ R(π). Achievability of any rate pair
in CIN follows from a standard time-sharing argument.
We now present an outer bound to CFS , which is obtained by
providing a tight converse to the sum-rate capacity. Let

COUT :=

{
(Ra, Rb) ∈ R+ ×R+ :

Ra +Rb ≤ sup
πTa (ta)π

Tb
(tb)

I(T a, T b;Y |S)

}
.

Theorem 2 (Outer Bound): CFS ⊆ COUT .
Proof: We need to show that all achievable rates satisfy

Ra +Rb ≤ sup
πTa (ta)π

Tb
(tb)

I(T a, T b;Y |S),

i.e., a converse for the sum-rate capacity. We use the converse
technique of [11] and extend it to a noisy setup. Therefore,
following [11] let ασ := 1

nPS[t−1]
(σ), η(ε) := ε

1−ε log |Y| +
H(ε)
1−ε . Observe that limε→0 η(ε) = 0 and∑

σ∈S(n)

ασ =
1

n

∑
1≤t≤n

∑
σ∈S(t−1)

PS[t−1]
(σ) = 1,

where S(n) and S(t−1) are the sets of all S-strings of length
n and (t − 1), respectively. First recall that, since Xa

t =

φ
(a)
t

(
Wa, S

a
[t−1], S

a
t

)
and Xb

t = φ
(b)
t

(
Wb, S

b
[t−1], S

b
t

)
, we

have

T at = φ
(a)
t

(
Wa, S

a
[t−1]

)
∈ X a|S

a|,

T bt = φ
(b)
t

(
Wb, S

b
[t−1]

)
∈ X b|S

b|
. (11)

We now show that the sum of any achievable rate pair can
be written as the convex combination of conditional mutual
information terms which are indexed by the realization of past
complete state information.

Lemma 1: Let T at ∈ T a and T bt ∈ T b be the Shannon
strategies induced by φat and φbt , respectively, as shown in
(11). Assume that a rate pair R = (Ra, Rb), with block length
n ≥ 1 and a constant ε ∈ (0, 1/2), is achievable. Then,

Ra +Rb ≤
∑

σ∈S(n)

ασI(T at , T
b
t ;Yt|St, S[t−1] = σ) + η(ε). (12)

Proof: Let Tt := (T at , T
b
t ). By Fano’s inequality, we get

H(W|Y[n], S[n]) ≤ H(ε) + ε log(|Wa||Wb|). (13)



Observing that

I(W;Y[n], S[n]) = H(W)−H(W|Y[n], S[n])

= log(|Wa||Wb|)−H(W|Y[n], S[n]).

(14)

Combining (13) and (14) gives

(1− ε) log(|Wa||Wb|) ≤ I(W;Y[n], S[n]) +H(ε)

and

Ra +Rb =
1

n
log(|Wa||Wb|)

≤ 1

1− ε
1

n

(
I(W;Y[n], S[n]) +H(ε)

)
. (15)

Furthermore, I(W;Y[n], S[n]) can be written as

n∑
t=1

[
H(Yt, St|S[t−1], Y[t−1])−H(Yt, St|W, S[t−1], Y[t−1])

]
(i)
=

n∑
t=1

[
H(Yt|S[t], Y[t−1])−H(Yt|W, S[t], Y[t−1])

]
(ii)

≤
n∑
t=1

[
H(Yt|S[t])−H(Yt|W, S[t], Y[t−1],Tt)

]
(iii)
=

n∑
t=1

[
H(Yt|S[t])−H(Yt|S[t],Tt)

]
=

n∑
t=1

I(Tt;Yt|S[t]) (16)

where (i) follows from the fact that St is i.i.d. and independent
of W, in (ii), Tt := (T at , T

b
t ) are Shannon strategies whose

realizations are mappings tit : Sit → Xi
t for i = {a, b} and

thus (ii) holds since conditioning reduces entropy. Finally,
(iii) follows since

PYt|W,St,S[t−1],Y[t−1],T
a
t ,T

b
t
(yt|w, st, s[t−1], y[t−1], t

a
t , t

b
t)

=
∑
sat ,s

b
t

PYt|St,Sat ,Sbt ,Tat ,T bt (yt|st, sat , sbt , tat , tbt)

×PSat ,Sbt |St(s
a
t , s

b
t |st)

= PYt|St,Tat ,T bt (yt|st, tat , tbt) (17)

where the first equality is verified by (2), where xit = tit(s
i
t)

for i = {a, b}, and by {St} being i.i.d. and independent of

W. Now, let χ(ε) := H(ε)
n(1−ε) and combining (15)-(16) gives

Ra +Rb =
1

n
log(|Wa||Wb|)

≤ 1

1− ε
1

n

n∑
t=1

I(T at , T
b
t ;Yt|S[t]) + χ(ε) + (n− 1)χ(ε)

(a)

≤ 1

1− ε
1

n

n∑
t=1

I(T at , T
b
t ;Yt|S[t]) + η(ε)

− ε

1− ε
1

n

n∑
t=1

I(T at , T
b
t ;Yt|S[t])

=
1

n

n∑
t=1

I(T at , T
b
t ;Yt|S[t]) + η(ε) (18)

where (a) is valid since I(T at , T
b
t ;Yt|S[t]) ≤ log |Y|. Further-

more,

I(T at , T
b
t ;Yt|S[t])

= n
∑

σ∈S(t−1)

ασI(T at , T
b
t ;Yt|St, S[t−1] = σ), (19)

and substituting the above into (18) yields (12).
Observe now that, for any t ≥ 1, I(T at , T

b
t ;Yt|St, S[t−1] = σ)

is a function of the joint conditional distribution of channel
state St, inputs T at , T

b
t and output Yt given the past realization

(S[t−1] = σ). Hence, to complete the proof of the outer
bound, we need to show that PTat ,T bt ,Yt,St|S[t−1]

(tat , t
b
t , yt, st|σ)

factorizes as in (7). This is done in the lemma below. In
particular, it is crucial to observe that the complete state
observation at the decoder is enough to provide a product form
on T a and T b. Before stating the lemma, let us introduce some
more notations. Let σa and σb denote particular realizations
of Sa[t−1] and Sb[t−1], respectively. Let

Υa
σa

(ta) := {wa : φ
(a)
t (wa, s

a
[t−1] = σa) = ta},

Υb
σb

(tb) := {wb : φ
(b)
t (wb, s

b
[t−1] = σb) = tb} (20)

and

πσa

Ta(ta) :=
∑

wa∈Υaσa (ta)

1

|Wa|
,

πσb

T b
(tb) :=

∑
wb∈Υbσb

(tb)

1

|Wb|
,

πσTa(ta) :=
∑
σa

πσa

Ta(ta)PSa
[t−1]

|S[t−1]
(σa|σ),

πσT b(t
b) :=

∑
σb

πσb

T b
(tb)PSb

[t−1]
|S[t−1]

(σb|σ). (21)

Lemma 2: For every 1 ≤ t ≤ n and σ ∈ (S)t−1, the
following holds

PTat ,T bt ,Yt,St|S[t−1]
(ta, tb, y, s|σ)

= PS(s)PY |S,Ta,T b(y|s, ta, tb)πσTa(ta)πσT b(t
b). (22)



Proof: Let S := (S, Sat , S
b
t ) and s := (s, sat , s

b
t). Observe

that

PTat ,T bt ,Yt,St|S[t−1]
(ta, tb, y, s|σ)

=
∑
sat∈Sa

∑
sbt∈Sb

PS,Tat ,T bt ,Yt|S[t−1]
(s, ta, tb, y|σ)

=
∑
sat∈Sa

∑
sbt∈Sb

PY |S,Tat ,T bt (y|s, ta, tb)

×PS,Tat ,T bt |S[t−1]
(s, ta, tb|σ) (23)

where the second equality verified by (2) since xit =
tit(s

i
t) for i = {a, b}. Let us now consider the term

PS,Tat ,T bt |S[t−1]
(s, ta, tb|σ) above. We have the following

PS,Tat ,T bt |S[t−1]
(s, ta, tb|σ)

=
∑

wa∈Wa

∑
wb∈Wb

∑
σa

∑
σb

PW,Sa
[t−1]

,Sb
[t−1]

,S,Tat ,T bt |S[t−1]
(w, σa, σb, s, ta, tb|σ)

(i)
= PS(s)

∑
wa∈Wa

∑
wb∈Wb

∑
σa

∑
σb

PW,Sa
[t−1]

,Sb
[t−1]

,Tat ,T
b
t |S[t−1]

(w, σa, σb, t
a, tb|σ)

(ii)
= PS(s)

∑
wa∈Wa

∑
wb∈Wb

∑
σa

∑
σb

1{tl=φ(l)
t (wl,σl), l=a,b}

×PW,Sa
[t−1]

,Sb
[t−1]

|S[t−1]
(w, σa, σb|σ)

(iii)
= PS(s)

∑
wa∈Wa

∑
wb∈Wb

∑
σa

∑
σb

1{tl=φ(l)
t (wl,σl), l=a,b}

× 1

|Wa|
1

|Wb|
PSa

[t−1]
,Sb

[t−1]
|S[t−1]

(σa, σb|σ)

(iv)
= PS(s)

∑
σa

PSa
[t−1]

|S[t−1]
(σa|σ)

∑
σb

PSb
[t−1]

|S[t−1]
(σb|σ)

∑
wa∈Wa

1

|Wa|
1{ta=φ

(a)
t (wa,σa)}

∑
wb∈Wb

1

|Wb|
1{tb=φ(b)

t (wb,σb)}

(v)
= PS(s)

∑
σa

PSa
[t−1]

|S[t−1]
(σa|σ)

∑
wa∈Υaσa (ta)

1

|Wa|∑
σb

PSb
[t−1]

|S[t−1]
(σb|σ)

∑
wb∈Υbσb

(tb)

1

|Wb|

(vi)
= PS(s)

∑
σa

PSa
[t−1]

|S[t−1]
(σa|σ)πσa

Ta(ta)∑
σb

PSb
[t−1]

|S[t−1]
(σb|σ)πσb

T b
(tb)

(vii)
= PS(s)πσTa(ta)πσT b(t

b) (24)

where (i) is valid since the current state is independent of W
and (T a, T b), (ii) is valid by (11), (iii) is valid since W is
independent from the state processes, (iv) is valid by (1) and
(11), (v) is valid due to (20) and (vi)− (vii) is valid due to
(21). Substituting (24) into (23) proves the lemma.

We can now complete the proof of Theorem 2. With Lemma
1 it is shown that the sum of any achievable rate pair can be

approximated by the convex combinations of rate conditions
given in (6) which are indexed by σ ∈ S(n) and satisfy (7) for
joint state-input-output distributions. More explicitly, we have

Ra +Rb ≤
∑

σ∈S(n)

ασI(T at , T
b
t ;Yt|St, S[t−1] = σ) + η(ε)

=
∑

σ∈S(n)

ασI(T at , T
b
t ;Yt|St)πσ

Ta
(ta)πσ

Tb
(tb) + η(ε)

≤ sup(
πσ
Ta

(ta)πσ
Tb

(tb), σ
) I(T at , T

b
t ;Yt|St) + η(ε)

≤ sup
(πTa (ta)π

Tb
(tb)∈Π)

I(T at , T
b
t ;Yt|St) + η(ε)

where the second step is valid since I(T at , T
b
t ;Yt|St, S[t−1] =

σ) is a function of the joint conditional distribution of channel
state St, inputs T at , T

b
t and output Yt given the past realization

(S[t−1] = σ). Hence, since limn→∞ η(ε) = 0, any achievable
pair satisfies Ra +Rb ≤ supπTa (ta)π

Tb
(tb) I(T a, T b;Y |S).

As a direct consequence of Theorems 1 and 2, we have the
following corollary.

Corollary 1:

CFS∑ = sup
πTa (ta)π

Tb
(tb)

I(T a, T b;Y |S). (25)

Proof: We need to show that ∃ (Ra, Rb) ∈ CIN achieving
(25). We follows steps akin to [14, p.535] where discrete
memoryless MACs are considered. Let us fix πTa(ta)πT b(t

b)
and consider the rate constraints given in CIN

I(T a;Y |T b, S) = H(T a|T b, S)−H(T a|T b, Y, S)

= H(T a)−H(T a|T b, Y, S) (26)
I(T b;Y |T a, S) = H(T b|T a, S)−H(T b|T a, Y, S)

= H(T b)−H(T b|T a, Y, S) (27)

and

I(T a, T b;Y |S)

= H(T a, T b)−H(T a, T b|Y, S)

= H(T a) +H(T b)−H(T a|T b, Y, S)−H(T b|Y, S), (28)

where (26), (27) and (28) are valid since T a and T b are inde-
pendent of each other and independent of S. Observe now that
for any πTa(ta)πT b(t

b), I(T a;Y |T b, S) + I(T b;Y |T a, S) ≥
I(T a, T b;Y |S) since H(T b|Y, S) ≥ H(T b|T a, Y, S). There-
fore, the sum-rate constraint in CIN is always active and hence,
there exists (Ra, Rb) ∈ CIN achieving (25).

Remark 1: One main observation about the proof of The-
orem 2 is the fact that, once we have the complete state
information, conditioning on which allows a product form
on T a and T b, there is no loss of optimality (for the sum-
rate capacity) in using associated memoryless team policies
instead of using all the past information at the receiver. This
fact is observed in [11] when the information at the encoders
are asymmetric quantized version of the information at the
decoder.

Remark 2: For the validity of Corollary 1, it is cru-
cial to have the product form on (T a, T b). If this



is not the case, we would get that I(T a;Y |T b, S) +
I(T b;Y |T a, S) = H(T a|T b)+H(T b|T a)−H(T a|T b, Y, S)−
H(T b|T a, Y, S) and I(T a, T b;Y |S) = H(T a|T b)+H(T b)−
H(T a|T b, Y, S)−H(T b|Y, S). Therefore, it is possible to get
an obsolete sum-rate constraint in CIN and hence, achievability
of CFS∑ is not guaranteed.

Remark 3: It should be noted that the main difference
between the problem that we consider here and the one
considered in [11] is the information at the decoder about
the information at the encoders. More explicitly, in [11], the
information at the encoders are available at the decoder and
as such, as the authors explicitly mention in their paper, the
decoder does not need to estimate the coding policies used
in a decentralized time-sharing. From this perspective, the
main contribution of our work can be thought as showing
that when this is not the case, by enlarging the input space,
there is no loss of optimality (for the sum-rate capacity) if the
optimization is performed by ignoring the past information at
the encoders given that the decoder has complete CSI.

III. CONCLUSION AND REMARKS

The present paper has investigated the memoryless FS-MAC
with asymmetric noisy CSI at the encoders and complete
CSI at the decoder. Single letter inner and outer bounds
are presented when the channel state is a sequence of i.i.d.
random variables. The main contribution of the paper, i.e., the
tight converse for the sum-rate capacity and hence, an outer
bound to the capacity region, is realized by observing that
the information available at the decoder is enough to attain
a product form on the channel input functions and hence,
there is no loss of optimality if we ignore the past noisy state
information at the encoders.
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