
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

CDP Tool, a Matlab Tool for Optimal Control of Hybrid Systems

Hedlund, Sven; Rantzer, Anders

1999

Link to publication

Citation for published version (APA):
Hedlund, S., & Rantzer, A. (1999). CDP Tool, a Matlab Tool for Optimal Control of Hybrid Systems. Department
of Automatic Control, Lund Institute of Technology, Lund University.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/fe1186e3-9338-4941-a00e-d5c688750593


CDP Tool
A MATLAB Tool for Optimal
Control of Hybrid Systems

Sven Hedlund
Anders Rantzer

Department of Automatic Control
Lund Institute of Technology

December 1999



1. Introduction

This manual describes CDP Tool, a MATLAB tool that solves hybrid optimal con-
trol problems via CDP (Convex Dynamic Programming). The manual is orga-
nized as follows: Section 2 defines the problems that this tool is designed for.
Section 3 gives an overview of the available commands and the main ideas be-
hind the computations. Few details are presented in this section, the purpose is
to give the user enough understanding to be able to utilize the full functionality
of the tools. Readers interested in the theory behind the computation are referred
to[HR99]. Section 4 gives a complete description of the MATLAB commands of this
tool, while Section 5 demonstrates the usage in some examples.

1.1 Disclaimer
This software and the accompanying files are distributed “as is” and without any
warranties expressed or implied. Bug reports and suggestions about improve-
ments sent to sven@control.lth.se are appreciated.

2. Problem Formulation

Define a hybrid system as{
ẋ(t) � fq(t)(x(t), u(t))
q(t) � ν(x(t−), q(t−), µ (t−))

(1)

where x(t) ∈ X ⊂ Rn is the state vector, u(t) ∈ Ωu ⊂ Rm is a continuous input
signal of the system. There is also a discrete input, µ (t) ∈ Ωµ , which allows for
the selection between N different system modes, q(t) ∈ Q � {1, 2, . . . , N}. Sq,r is
a set (parameterized by q and r) such that switching from mode q to r is possible
when x ∈ Sq,r ⊆ X . The time argument, t, will often be omitted in the sequel for
readability.

The optimal control problem is to minimize the cost functional

J(x0, q0, u(⋅), µ (⋅)) �
∫ tf

t0

lq(x, u)dt +
M∑

k�1

s(x(t−k ), q(t−k ), q(t+k )) (2)

subject to (1) while bringing the system from an initial state (x0, q0) at time t0,
to a final state (xf , qf ) at time t f , where the end time, t f , is free. Here, M is
an arbitrary number of switches occurring at times t0 < t1 < t2 < . . . < tM < t f
and s(x, q, r) is an associated cost for switching from discrete state q to r, the
continuous part being x just before the switch.

Sec. 3.4 will show that this MATLAB tool also handles exponential time weighting
of the cost function.

3. Understanding the Tools

The commands available for solving the control problem are listed in Table 1.
There are three main groups of programs: a group of four commands that in

1



Table 1 Commands for optimal control of hybrid systems.

command description

cdplows Compute a lower bound on the value function, single-point
maximization

cdplowes Compute a lower bound on the value function of an expo-
nential time weighting problem, single-point maximiza-
tion

cdplowm Compute a lower bound on the value function, multi-point
maximization

cdplowem Compute a lower bound on the value function of an ex-
ponential time weighting problem, multi-point maximiza-
tion

cdpctrl Compute a control signal, based on an approximation of
the value function

cdpsim Simulate controlled system
cdpsimf Simulate controlled system, fixed time step

cdpsime Simulate controlled system with exponential time cost
function

cdpsimef Simulate controlled system with exponential time cost
function, fixed time step

crop Crops a multi dimensional array

linprog Specifies what LP solver to use in the lower bound com-
putation programs

cdpsf “cdp simulation file”, used by cdpsim

cdpsfe “cdp simulation file”, used by cdpsime

various ways approximate the value function of a hybrid optimal control problem,
one command for deriving a control signal from the value function, and four
commands for simulating hybrid systems. The last two programs listed in the
table are used by the other programs.

3.1 Approximations of the Value Function
Define the value function, VL

q(x) as

VL
q0
(x0) � min

u∈Ωu , µ∈Ωµ
J(x0 , q0, u, µ ) (3)

Then, any set of functions Vq : X =→ R, q � 1, 2, . . . , N that satisfy

0 ≤ ∂ Vq(x)
∂ x

fq(x, u) + lq(x, u)
∀x ∈ X , u ∈ Ωu, q ∈ Q (4)

0 ≤ Vr(x) − Vq(x) + s(x, q, r)
∀x ∈ Sq,r q, r ∈ Q : q �� r (5)

0 � Vqf (xf ) (6)

2



(with the specifications in (1) and (2)) is a lower bound on VL
q (x)1 [HR99]. This

is a hybrid version of the well known Bellman inequality.

Since the inequalities (4)-(6) are linear constraints on Vq(x), maximization of
Vq0(x0) subject to the inequalities is an LP problem.

3.2 Discretization
Using a computer to find a value function that satisfies (4)-(6) for a specific
control problem, a straightforward approach is to grid the state space to require
the inequalities to be met at set of evenly distributed points in X . Let e1, e2, . . . , en
denote the unit vectors along the coordinate axes and define the discretization
vector h ∈ Rn such that hi (the i:th component of h) is the distance between the
grid points in the direction of ei. A small part of a discretization in R2 around a
grid point xp is shown in Fig. 1.

e1

e2

xp

xp + h2e2

xp + h1e1

Figure 1 Illustration of the discretization grid in R2.

Each of the value function commands applies a discretization grid like this to
X . The commands handle sets, X , that are hyperrectangles in Rn, and the user
specifies the granularity of the grid by the input vector N ∈ Zn such that the
k:th component of N is the number of grid points in the direction of ek.

An arbitrary discretization of (4)-(6) will not render a cost function that is guar-
anteed to be a lower bound on the optimal cost if the nature of fq and Vq between
the grid points is not taken into consideration. The value function commands can
be set to use a method (that is presented in [HR99]) for preserving the lower
bound property . For each grid point, xp, this method requires the extremal
values of fq and lq in a neighborhood of xp as follows:

Define the hyperrectangle X̂ p surrounding grid point xp as

X̂ p � {xp +
n∑

i�1

θ ihiei : −1 ≤ θ i ≤ 1}. (7)

An illustration of this set in a two dimensional space is shown in Fig. 2.
1Note that the value function, V L

q0
(x0), is the cost for driving the system optimally to the final

point when starting in mode q0, not necessarily staying in this mode. This is the cost when
switching is allowed.

3



e1

e2

xp

xp + h2e2

xp + h1e1

X̂ p

Figure 2 Illustration of X̂ p in R2.

For each grid point, xp, the value function commands then need

f p
q
(u) � min

x∈X̂p
fq(x, u) (8)

f
p
q(u) � max

x∈X̂p
fq(x, u) (9)

lp
q(u) � min

x∈X̂p
lq(x, u) (10)

to form the discretized inequalities. (The extrema should be computed component
wise in the vectors.)
Note that the MATLAB functions presented above can be called without requiring
the true bound property, often rendering a plausible value function without forc-
ing the user on a tricky hunt of local extrema. In addition to being more difficult
to specify, the discrete inequalities that render a true lower bound sometimes
can be conservative, leading to a value function that is far from the optimal one.

The extremal values of (8)-(10) still depend on a continuous parameter, namely
u. The continuous control signal has to be discretized by the user in a tradeoff
between accuracy and computational speed. The reason for leaving this burden
to the user instead of automatically gridding the problem in u (as was done for
x), is that reflections about the structure of the problem might lead to clever
gridding and a reduction of the computational load.

Consider e.g. the analysis of some system with Ωu � [−1, 1]. A standard grid-
ding might have led to the approximation Ωu � {−1,−0.8,−0.6, . . . , 1}. Having
realized that it is a minimum time problem that will result in bang-bang control,
however, the obvious choice is Ωu � {−1, 1}.

3.3 Single-point vs. Multi-point Maximization
Instead of computing the value function in one single point, (x0, q0), it is desirable
to get an estimate for the value function in a larger subset of X in one go. This
is what cdplowm and cdplowem try to do, by maximizing Vq(x) in several grid
points simultaneously. The region that contains the grid points for which Vq is
maximized, denoted O, will of course have to obey O ⊆ X .

Fig. 3 illustrates the two maximization alternatives in R2. The optimal state
trajectories have also been plotted, which raises another issue: the choice of X .
The aim of this MATLAB tool is to minimize the value function (2) subject to
the dynamics in (1), where one of the constraints is on the continuous state:

4



e1

e2

x0

xf xf

O

XX

a) b)

Figure 3 Various choices of maximization in R2 with corresponding optimal state tra-
jectories. a) Single point maximization. b) Region maximization.

x(t) ∈ X . Many control problems do not experience state constraints that are of
significant importance, leading to X � Rn. Since the discretization gives an LP
consisting of a number of inequality constraints for each grid point, however, it is
desirable to keep X as small as possible. The computationally best option when
doing a single-point maximization would be to make X only just big enough to
contain the optimal trajectory — an option that is difficult in practice since the
trajectory is not known in advance. If X is chosen too small, a problem that differs
from the original one is solved, leading to a higher cost. Moreover, there might
not even exist a trajectory from x0 to xf in X , i.e. there is no feasible solution.
The problem of estimating the value function in several points simultaneously
requires several state trajectories to stay in X , which may make the choice of X
even more difficult.

For the original, partly continuous, problem, the result of a maximization in two
different points, (xa, qa) and (xb, qb) would be the same, regardless of whether
they were maximized simultaneously or one by one. The value function of the
discretized problem, however, is coupled between the grid points: if the discrete
version of (4)-(5) holds in every grid point in X , then there is in general a tradeoff
between the value of Vqa(xa) and Vqb(xb). Thus, cdplowm and cdplowem, that
maximize the sum of Vq(x) in the grid points of a user specified “optimization
region”, O ⊆ X , in general give values that are lower than those that would
result from maximizing each point separately. Experience from examples tells,
however, that the difference is rather small, leaving the above disadvantage
beaten by the benefit of receiving the value function in a large region solving one
LP.

3.4 Exponential Time Weighting
The methods presented above, also can be used for problems with exponential
time weighting of the cost function. Define the cost function Je(x0, q0, u(⋅), µ (⋅))
as

Je(x0, q0, u(⋅), µ (⋅)) �
∫ ∞

t0

l̃q(x, u)e−atdt+
M∑

k�1

s̃(x(t−k ), q(t−k ), q(t+k ))e−atk (11)

where a ∈ R+. (The other parameters are defined analogously to (2).) If Vq(x, t)
is defined as the cost for starting in (x, q) at time t, then the continuous part of

5



the general time dependent Bellman inequality can be written

∂ Vq(x, t)
∂ t

+ ∂ Vq(x, t)
∂ x

fq(x, u, t) + lq(x, u, t) ≥ 0 (12)

Rewriting the functions like Vq(x, t) � e−atṼq(x) and lq(x, u, t) � e−atl̃q(x, u),
(12) becomes

−aṼq(x) + ∂ Ṽq(x)
∂ x

fq(x, u) + l̃q(x, u) ≥ 0 (13)

Thus, the time dependence introduced in the Bellman inequality cancels and
techniques similar to those presented above apply. The function cdplowes and
cdplowem implement a discretized version of (13). The former function perform
a single-point maximization, the latter one a multi-point maximization.

3.5 Computing the Feedback Control Law
Provided that the lower bound, Vq, is a good enough approximation of the optimal
cost, the optimal feedback control law can be calculated as

û(x, q) � argmin
u∈Ωu

{
∂ Vq

∂ x
fq(x, u) + lq(x, u)

}
µ̂(x, q) � argmin

µ∈Ωµ ex∈Sq,ν

{Vν (x) + s(x, q,ν)}
(14)

where ν � ν(x, q, µ ). Thus, the continuous input, û, is computed in a standard
way. The discrete input, µ̂ , is chosen such that switching occur whenever there
exist a discrete mode for which the value function has a lower value than the cost
of the value function for the current mode minus the cost for switching there.
The function cdpctrl, that uses (14) to compute the control signal in a mesh of
points, will in most practical cases take the result from cdplowm or cdplowem as
input.

3.6 Simulation
The simulation commands take a hybrid system with a cost function and the as-
sociated control law as input and return the resulting trajectories, x(t), q(t), u(t),
and J(t) or Je(t). The basic functions for simulations are cdpsim and cdpsime,
but there also exist faster, less accurate fixed time step size versions, cdpsimf
and cdpsimef.

4. Command Reference

This section describes the commands in detail. Being very similar to each other,
some of the commands of Table 1 are grouped into the same entry on the following
pages. The commands cdpsf and cdpsfe are not found in this section, since they
are of little interest to the standard user.

Note that all of the input parameters that are vectors, should be entered as
column vectors.

6



cdpctrl

Purpose
Derive a feedback control law from a value function approximation.

Synopsis
[U, Q] = cdpctrl(f,l,s,uv,V,xv,swtol)

Description
cdpctrl derives a feedback control law from a value function approximation
returned by cdplowm or cdplowem.

Parameters
f The string f contains the name of an m-file that describes a system of

differential equations such that f(x, q, u) gives the dynamics of fq(x, u)
in (1).

l The string l contains the name of an m-file on the form l(x, q, u) with
the input parameters corresponding to the parameters of either lq(x, u) in
(2) or l̃q(x, u) in (11).

s The string s contains the name of an m-file on the form s(x, q1, q2) with
the input parameters corresponding to the parameters of either
s(x, q1, q2) in (2) or s̃(x, q1, q2) in (11).

uv is a column vector that contains all possible values of u. The control signal
u is continuous in the original problem, but the user has to approximate it
by a discrete set (cf. 3.2). Use an empty vector (uv = []) as a place holder
if there is no continuous input.

V is an (n+ 1)-dimensional matrix that corresponds to the value function as
follows. Let a grid point xp be defined by its index-vector p=[p1, p2, ..., pn]'
(all the indices are positive integers) such that
xp �[xv{1}(p1), xv{2}(p2), ..., xv{n}(pn)]'. Then,
Vq(xp) �V(p1, p2, ..., pn, q)

xv is a struct of vectors that gives information about the discretization. xv{k}
is a vector with N(k) equidistant points in the ek direction such that
xv{k}(1)=xmin(k) and xv{k}(N(k))=xmax(k).

swtol compensates for numerical inaccuracy. Discrete mode switching from qi
to qj will be enforced if Vj − Vi + (1−swtol) ⋅ s(x, i, j) ≤ 0. If not specified,
this parameter is given the default value 0.01.

U The output parameter U is an (n + 1)-dimensional matrix that represents
the control law for u such that u � u(x, q). Defining xp as above, the control
law is u(xp , q) �U(p1, p2, ..., pn, q)

Q The output parameter Q is an (n + 1)-dimensional matrix that represents
the switching strategy. Defining xp as above, Q(p1, p2, ..., pn, q1)� q2
implies switching to mode q2 from (xp, q1).

See Also
cdplowm, cdplowem

7



cdplowem & cdplowes

Purpose
Compute a lower bound on the value function of a problem with a cost function
that has exponential time weighting.

Synopsis
[V, xv, W] = cdplowem(f, l, s, a, uv, O, XQ, N, tb)
[V, xv, W] = cdplowes(f, l, s, a, uv, xq0, XQ, N, tb)

Description
Both of these two commands, compute an approximation of the value function
implied by (11). cdplowes computes the cost for bringing (1) from (x0, q0) to
(xf , qf ), while cdplowem computes the value function for a region, {(x, q) : x ∈
O , q ∈ Q}2. The commands can be forced to bound the value function from below.

Parameters
The parameters that are not found below are described under cdplowm and
cdplows

l The string l contains the name of an m-file that corresponds to l̃q(x, u)
in (11). The input parameters are the same as for l described under the
cdplow-commands.

s The string s contains the name of an m-file of the switching such that
s(x, q1, q2) corresponds to s̃(x, q1, q2) in (11)

a is the exponential time weight a in (11).
V The structure of the output parameter V is the same as for V returned by

cdplowm and cdplows. The difference is that the matrix V that is returned
by cdplowem and cdplowes corresponds to Ṽq in (13).

See Also
cdplows, cdplowm, linprog

2Cf. Section 3.3 for further details.

8



cdplowm & cdplows

Purpose
Compute a lower bound on the value function

Synopsis
[V, xv, W] = cdplowm(f, l, s, uv, O, xqf, XQ, N, tb)
[V, xv, W] = cdplows(f, l, s, uv, xq0, xqf, XQ, N, tb)

Description
Both of the two commands, in the sequel referred to as the cdplow-commands,
compute an approximation of the value function implied by (2). cdplows com-
putes the cost for bringing (1) from (x0, q0) to (xf , qf ), while cdplowm computes
the value function for a region, {(x, q) : x ∈ O , q ∈ Q}3. Both commands can be
forced to bound the value function from below.

Parameters
f The string f contains the name of an m-file with the hybrid dynamics corre-

sponding to fq(x, u) in (1). This m-file should take at least three input argu-
ments depending on the input tb. If tb� 0, then f is a system of differential
equations such that f(x, q, u) gives the dynamics of fq(x, u). If tb �� 0,
then f will have to accept five input parameters, f(x, q, u, h, vmode).
The two additional parameters h and vmode are needed to compute a true
lower bound and should allow the cdplow-commands to request various
outputs from f: the n-dimensional vector h, that the commands provides
upon calling f, corresponds to the granularity of the discretization grid (cf.
Section 3.2), such that h(k) is the distance between the grid points in the
ek-direction.

The parameter vmode choose the output according to the following table:

vmode Desired output

−1 minx∈X̂p fq(xp, q, u)
+1 maxx∈X̂p fq(xp, q, u)

It is convenient to allow f and l to take a variable number of input ar-
guments when computing true bounds. If they are programmed to return
the nominal (non-extremal) values when called with only three input pa-
rameters, they can be used by cdpctrl and the simulation programs as
well.

l The string l contains the name of an m-file that corresponds to lq(x, u)
in (2). This m-file should take at least three input arguments depending
on the input tb. If tb� 0, the structure of l is l(x, q, u) analogously to
the function f. If a true bound is requested, i.e. tb �� 0, l should accept
four input parameters, l(x, q, u, h). The parameter h is the same as
described for the input f. Note that l does not require the input “vmode”,
since this function should only return minx∈X̂p lq(xp, q, u).

3Cf. Section 3.3 for further details.

9



s The string s contains the name of an m-file for the switching such that
s(x, q1, q2) corresponds to s(x, q1, q2) in (2)

uv is a column vector that contains all possible values of u. The control signal
u is continuous in the original problem, but the user has to approximate it
by a discrete set (cf. 3.2). Use an empty vector (uv = []) as a place holder
if there is no continuous input.

xq0 = [x0; q0] for cdplows where (x0, q0) is the initial state.

O specifies the region of maximization, O ⊆ X , for the multi-point maximiz-
ing function cdplowm (cf. Section 3.3). O = [omin; omax], where omin is
an n-dimensional vector where each component is the lowest value of the
corresponding state in O and omax is a vector containing the highest values
of x in O.

xqf = [xf; qf] where (xf , qf ) is the desired final state. Since the problem is
discretized into a mesh of points, the final state that is used in the algorithm
will become the grid point that is closest to (xf , qf ). Note that choosing XQ
and N such that the final state appears in an exact grid point often leads
to considerably better results (see also the example of Section 5).
A set of several acceptable final states can be specified by replacing the
variable xqf with a function isfinal([x; q]) that for any possible state
(x, q) returns a non-zero value if (x, q) is contained in the set of final states.

XQ = [xmin; xmax; Q] where xmin is an n-dimensional vector where each com-
ponent is the lowest value of the corresponding state in X , xmax is a vector
containing the highest values of x in X , and Q is the number of discrete
modes.

N allows the user to specify the granularity of the discretization grid. N is an
n-dimensional column vector such that N(k) is the number of grid points
in the direction of ek.

tb is used to choose whether to compute a true lower bound (tb �� 0) or not
(tb� 0)

xv The output parameter xv is a struct of vectors that gives information about
the discretization. xv{k} is a vector with N(k) equidistant points in the ek
direction such that xv{k}(1)=xmin(k) and xv{k}(N(k))=xmax(k).

V is an (n+ 1)-dimensional matrix that corresponds to the value function as
follows. Let a grid point xp be defined by its index-vector p=[p1, p2, ..., pn]'
(all the indices are positive integers) such that
xp �[xv{1}(p1), xv{2}(p2), ..., xv{n}(pn)]'. Then,
Vq(xp) �V(p1, p2, ..., pn, q)

W W is an (n + 1)-dimensional matrix that reflects the dual variables of the
solution to the LP that is solved. W(p1, p2, ..., pn, q) is an aggregation
of the dual variables involved in the discretization of (4) for the state (xp, q),
where xp is defined as in the description of V.

See Also
cdplowes, cdplowem, linprog

10



cdpsim & cdpsimf

Purpose
Simulate a controlled hybrid system.

Synopsis
[t,x,q,u,J] = cdpsim(f,l,s,U,Q,xv,xq0,tspan,xqf,rxftol)
[t,x,q,u,J] = cdpsimf(f,l,s,U,Q,xv,xq0,dt,tspan,xqf,rxftol)

Description
cdpsim and cdpsimf simulate a hybrid system using the feedback control law
returned by cdpctrl. The difference between the commands is that cdpsim calls
an ODE solver in MATLAB, while cdpsimf uses a fixed time step to allow faster
(and less accurate) simulations.

Parameters
f The string f contains the name of an m-file that describes a system of

differential equations such that xdot = f(x, q, u) gives the dynamics of
fq(x, u) in (1).

l The string l contains the name of an m-file that describes a cost such that
l(x, q, u) corresponds to lq(x, u) in (2).

s The string s contains the name of an m-file that describes a cost such that
s(x, q, u) corresponds to sq(x, u) in (2).

U is an (n+1)-dimensional matrix returned by cdpctrl that gives the control
law for u.

Q is an (n+1)-dimensional matrix returned by cdpctrl that gives the switch-
ing strategy.

xv is a struct of vectors that gives information about the discretization of the
control laws contained in U and Q. This is the same parameter as the one
used in cdpctrl.

xq0 = [x0; q0] for cdplows where (x0, q0) is the initial state.

dt is the fixed time step used by cdpsimf.

tspan The parameters tspan, xqf, rxftol set various stopping criteria. tspan is
a vector specifying the interval of integration [t0; tfinal]. No simulation
time will pass tfinal. The simulation could, however, finish earlier if the
final point, xqf = [xf; qf] is reached. It is considered to be reached when
q �qf and xf − rxftolh ≤ x ≤ xf + rxftolh, where h ∈ Rn is a vector
representing the grid size (cf. Sec. 3.2). If rxftol is omitted, the default
value 0.5 is used. If xqf is omitted, then the time is used as the only
stopping criterion. A set of several acceptable final states can be specified
by replacing the variable xqf with a function isfinal([x; q]) that for any
possible state (x, q) returns a non-zero value if (x, q) is contained in the set
of final states.

xqf cf. tspan

11



rxftol cf. tspan

t The output vectors x, q, u, and J contain the trajectories of the solution.
Each entry of these vectors correspond to a time returned in the column
vector t.

x is a vector that contains the trajectory of the continuous state, x. Each
entry in x corresponds to a time in t.

q is a vector that contains the trajectory of the discrete mode, q. Each entry
in q corresponds to a time in t.

u is a vector that contains the trajectory of the control signal u. Each entry
in u corresponds to a time in t.

J is a vector that contains the accumulated cost along the solution trajectory.
Each entry in J corresponds to a time in t.

See Also
cdpctrl, cdpsime, cdpsimef

12



cdpsime & cdpsimef

Purpose
Simulate a controlled hybrid system, the control of which has been derived from
a cost function with exponential time weighting.

Synopsis
[t,x,q,u,Je] = cdpsime(f,l,s,a,U,Q,xv,xq0,tspan)
[t,x,q,u,Je] = cdpsimef(f,l,s,a,U,Q,xv,xq0,dt,tspan)

Description
cdpsime and cdpsimef simulate a controlled hybrid system, for which the control
law returned by cdpctrl has been derived from a cost function on the form (11).
The difference between the commands is that cdpsime calls an ODE solver in
MATLAB, while cdpsimef uses a fixed time step to allow faster (and less accurate)
simulations.

Parameters
The input parameters are described below. The output parameters are the same
as the output from cdpsim and cdpsimf.

f The string f contains the name of an m-file that describes a system of
differential equations such that f(x, q, u) gives the dynamics of fq(x, u)
in (1).

l The string l contains the name of an m-file that describes a cost such that
l(x, q, u) corresponds to l̃q(x, u) in (11).

s The string s contains the name of an m-file that describes a cost such that
s(x, q, u) corresponds to s̃q(x, u) in (11).

a is the exponential time weight a in (11).
U is an (n+1)-dimensional matrix returned by cdpctrl that gives the control

law for u.

Q is an (n+1)-dimensional matrix returned by cdpctrl that gives the switch-
ing strategy.

xv is a struct of vectors that gives information about the discretization of the
control laws contained in U and Q. This is the same parameter as the one
used in cdpctrl.

xq0 = [x0; q0] for cdplows where (x0, q0) is the initial state.

dt is the fixed time step used by cdpsimef.

tspan = [t0; tfinal] is a vector specifying the interval of integration.

See Also
cdpctrl, cdpsim, cdpsimf

13



crop

Purpose
To crop a multi dimensional array.

Synopsis
[Vc, xvc] = crop(V, xv, NewX)

Description
Having computed a value function, V, using cdplowm or cdplowem, the function
crop is useful for extracting the relevant data of V as is explained below. The
input parameter V and xv, that are outputs from the value function computing
commands, contain the following:

xv The input parameter xv is a struct of vectors that gives information about
the discretization. xv{k} is a vector with N(k) equidistant points in the ek
direction such that xv{k}(1)=xmin(k) and xv{k}(N(k))=xmax(k).

V is an (n+ 1)-dimensional matrix that corresponds to the value function as
follows. Let a grid point xp be defined by its index-vector p=[p1, p2, ..., pn]'
(all the indices are positive integers) such that
xp �[xv{1}(p1), xv{2}(p2), ..., xv{n}(pn)]'. Then,
Vq(xp) �V(p1, p2, ..., pn, q)

Thus, a lower bound on the value function, Vq(x), is returned for all x ∈ X .
Since the maximization of Vq(x) is performed over a smaller region O ⊆ X (cf.
Section 3.3), the value function that cdplowm and cdplowem return is of little use
for x ∈ X\O. The input parameter NewX allows the user to remove x ∈ X\O:

NewX = [xmin; xmax] newX is the X -region that should be kept in the cropped
matrix. xmin is a vector where each component is the lowest value of the
corresponding state in NewX, xmax is a vector containing the highest values
of x in newX.

The output parameters Vc and xvc are the cropped versions of V and xv respec-
tively.

See Also
cdplowm, cdplowem

14



linprog

Purpose
Let the user specify what LP solver to use.

Synopsis
[x, z] = linprog(A,b,c)

Description
The command linprog is called by the value function commands (cdplowm,
cdplows, cdplowem, and cdplowes) to solve linear programs. The default file
linprog.m forwards the LP solving request to the MATLAB program PCx.4 The
user may want to rewrite linprog to call another LP solver.

Parameters
The input parameters are a matrix, A, and two column vectors, b and c. The
output parameter x is the vector that minimizes cT x subject to Ax ≤ b. The
output parameter z is the vector that solves the dual problem of maximizing bT z
subject to ATz � c, z ≤ 0.

See Also
cdplowm, cdplows, cdplowem, cdplowes

4PCx has been developed at the Optimization Technology Center,
http://www-fp.mcs.anl.gov/otc/Tools/PCx/index.html (valid in August, 1999)

15



5. Examples

In order to clarify the usage of the commands in this report, two examples are
presented in this section. These examples contain the essential code, i.e. one
should be able to reproduce similar results by entering the lines marked with the
MATLAB prompt (>>) into MATLAB. Some of the figures are drawn using certain
line types or contain lines that were added to make the discussion about certain
phenomena clearer. The code for this pedagogic bonus has been omitted below.

5.1 A car with two gears
Consider the system {

ẋ1 � x2

ẋ2 � kq(x2)u, q � 1, 2 eue ≤ 1
(15)

where kq(x) is plotted in Fig. 4. This could be seen as a crude model of a car, u
being the throttle, kq(x) the efficiency for gear number q.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

k1(x) k2(x)

x

Figure 4 Gear efficiency at various speeds.

The problem is to bring (15) from xi � (−5, 0), qi � 1 to xf � (0, 0), qf � 1
in minimum time. Torque losses when using the clutch calls for an additional
penalty for gear changes. Thus, the components of (2) have been chosen as
l1(x, u) � l2(x, u) � 1, s(x, 1, 2) � s(x, 2, 1) � 0.5.

We start by writing the functions that define the system: fq is entered into the
file car_f.m, lq into car_l.m, and finally s into car_s.m. We will not compute
a true lower bound in this example. The extremal computations that would be
needed for true bound purposes are included in the files anyway, to show how
this could be done.

car_f.m

function y = car_f(x,q,u,h,vmode);
if (nargin > 3)

%%% perform extremal computations %%%
nx2 = x(2)-h(2); % min value of x2 over a square
xx2 = x(2)+h(2); % max value of x2 over a square
if (q==1)

16



if (vmode == -1) % component-wise minimization
y = [nx2; 1*sigmf(xx2, [-5, 0.5])*u];

elseif (vmode == 1) % component-wise maximization
y = [xx2; 1*sigmf(nx2, [-5, 0.5])*u];

end;
elseif(q==2)

if (vmode == -1) % component-wise minimization
y = [nx2; 1*sigmf(nx2, [5, 0.5])*u];

elseif(vmode == 1) % component-wise maximization
y = [xx2; 1*sigmf(xx2, [5, 0.5])*u];

end;
end;

else
%%% use the nominal value %%%

if (q==1)
y = [x(2); 1*sigmf(x(2), [-5, 0.5])*u];

elseif(q==2)
y = [x(2); 1*sigmf(x(2), [5, 0.5])*u];

end;
end;

car_l.m

function y = car_l(x,q,u,h);
% For this example, l is the same regardless of the input.
na = nargin; % dummy-line to allow variable number of inputs
y = 1;

car_s.m

function y = car_s(x, q1, q2);
y = (q1˜=q2)*0.5; % The cost for switching is 0.5

Having entered these functions, we are ready to call cdplowm to get an approx-
imation of the value function. Note that this is a minimum time problem that
will lead to bang-bang control, which means that we save computational time by
letting Ωu � {−1, 1}.

>> uv = [-1; 1];

>> xf = [0;0];
>> qf = 1;
>> xqf = [xf; qf];

>> xmin = [-6.5; -1.5];
>> xmax = [5; 5.5];

>> omin = [-5.5; -0.5];
>> omax = [1; 3.0];
>> O = [omin; omax];

>> N = [53;41];

17



>> odx = [+0.0865; -0.0750]; % put the origin in a grid point
>> xmin = xmin + odx;
>> xmax = xmax + odx;
>> Q = 2;
>> XQ = [xmin; xmax; Q];

>> [V,xv] = cdplowm('car_f','car_l','car_s',uv,O,xqf,XQ,N,0);
>> [Vc,xvc] = crop(V,xv,O);

The three lines commented “put the origin in a grid point” are there to make
the final state appear in a grid point. (E.g. having 53 equidistant grid points
in the e1 direction, ranging from x1 � −6.5 to x1 � 5, simple calculations show
that adding 0.0865 will make one of the points appear at x1 � 0.) Experience
tells that placing the final state in an exact grid point often leads to considerably
better results.

The value functions are plotted by typing

>> figure;
>> mesh(xvc{1},xvc{2},Vc(:,:,1)');
>> title('V_1');
>> xlabel('x1')
>> ylabel('x2')

>> figure;
>> mesh(xvc{1},xvc{2},Vc(:,:,2)');
>> title('V_2');
>> xlabel('x1')
>> ylabel('x2')

and the result is shown in Figure 5 and 6 where xi and xf also have been marked.
The functions look rather similar, since the cost for changing gears is only 0.5.
One can see that V1 has a threshold along the line x2 � 1. Figure 4 reveals
that the first gear is almost useless for high speeds, leading to V1 � V2+ 0.5 for
x2 > 1. This is the cost for using the second gear optimally after a gear switch.

We also compute a control law and use it in simulations

>> [U,Q] = cdpctrl('car_f','car_l','car_s',uv,Vc,xvc);

>> x0 = [-5;0];
>> q0 = 1;
>> xq0 = [x0; q0];
>> tend = 8;
>> [tv,xv2,qv] = cdpsim('car_f','car_l','car_s',U,Q,xvc,xq0,[0;tend],xqf);

The trajectory is plotted by typing

>> figure;
>> plot(xv2(:,1),xv2(:,2));
>> title('Phase plane');
>> xlabel('x_1');

18



−6 −5 −4 −3 −2 −1 0 1 2 −1

0

1

2

3

0

1

2

3

4

5

6

7

8

9

10

x2

V
1

x1

Figure 5 Plot of V1. The initial point, xi, is marked with a vertical dashed line, the final
point, xf , with a solid line.

−6 −5 −4 −3 −2 −1 0 1 −1

0

1

2

3

0

1

2

3

4

5

6

7

8

9

10

x2

V
2

x1

Figure 6 Plot of V2.

>> ylabel('x_2');
>> grid;

and the result is shown in Fig. 7, where the initial point is marked with a
square. The state trajectory coincides with the one of a professional rally-driver
with lousy breaks. In the beginning, maximum throttle is used on the first gear
(solid line). When the speed roughly reaches the point of equal efficiency between
the gears (x2 � 0.5), they are switched in favor of the second gear (dashed line).
At half the distance, the gas pedal is lightened to use the breaking force of the
engine. In the end, the first gear is used again before the origin is hit. As seen
in the figure, the granularity of the discretization grid (h1 � 0.22, h2 � 0.18)

19



prevents the solution from hitting the exact origin.

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

0

0.5

1

1.5

2

Phase plane

x
1

x 2

Figure 7 Phase portrait of a simulation. The solid line shows where gear number one
has been used, the dashed line shows the second gear. The initial point is marked with a
square.

Information about the optimal trajectory can also be found in the dual variables.
Note that the following code makes a single point maximization.

>> [Vs,xvs,Ws] = cdplows('car_f','car_l','car_s',uv,xq0,xqf,XQ,N,0);
>> Nxmin = [-6; -0.5];
>> Nxmax = [1; 3];
>> NX = [Nxmin; Nxmax];
>> [Ws,xvs] = crop(Ws,xvs,NX);

>> figure;
>> mesh(xvs{1},xvs{2},Ws(:,:,1)');
>> title('W_1');
>> xlabel('x1');
>> ylabel('x2');

>> figure;
>> mesh(xvs{1},xvs{2},Ws(:,:,2)');
>> title('W_2');
>> xlabel('x1');
>> ylabel('x2');

The optimal trajectory is easily found in Figs. 8 and 9. W1 shows where the first
gear is used, and W2 where the second is used.

5.2 Alternate heating of two furnaces
Since the industrial power fee is determined by the highest peak of the season, it
is desirable to spread the power consumption evenly over time. This is handled by

20



−6

−4

−2

0

2 −0.5
0

0.5
1

1.5
2

2.5
3

0

0.05

0.1

0.15

0.2

x2

W
1

x1

Figure 8 Plot of W1. The initial point, xi, is marked with a vertical dashed line, the
final point, xf , with a solid line.

−6

−4

−2

0

2 −0.5
0

0.5
1

1.5
2

2.5
3

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

x2

W
2

x1

Figure 9 Plot of W2.

load control, which means that the available electrical power is altered between
different loads of the mill.

In this example, the temperature of two furnaces should be controlled by al-
ternate heating. The system has two continuous states that correspond to the
temperature of the furnaces and is given by ẋ � fq(x), where

f1(x) �
[
−x1 + u0

−2x2

]
f2(x) �

[
−x1

−2x2 + u0

]

f3(x) �
[
−x1

−2x2

]

21



Thus, there are three discrete modes: q � 1 means that the first furnace is
heated, q � 2 means that the second furnace is heated, q � 3 corresponds to no
heating. The cost function to be minimized is

J(x0 , q0) �
∫ ∞

t0

2∑
i�1

(xi − ci)2e−tdt+
M∑

k�1

be−tk

where the desired stationary temperature values are c1 � 1/4, c2 � 1/8 and
the cost for switching the power is b � 1/1000. Since the furnaces can only be
fed by a fixed amount of energy, u0, it is impossible to keep them stationary at
the desired temperature. Hence, the time weighting, e−t, is necessary to get a
bounded cost function.

We start by writing the functions that define the system: fq is entered into the
file fu_f.m, lq into fu_l.m, and finally s into fu_s.m.

fu_f.m

function y = fu_f(x,q,u)
u0 = 0.8; % 0.8 will make the system enter mode 3 sometimes,

% 0.4 prevents it
switch (q)
case 1, % Heating furnace no. 1

y = [-x(1)+u0; -2*x(2)];
case 2, % Heating furnace no. 2

y = [-x(1); -2*x(2)+u0];
case 3, % No heating

y = [-x(1); -2*x(2)];
end;

fu_l.m

function y = fu_l(x,q,u)
y = (x(1)-0.25)^2+(x(2)-0.125)^2;

fu_s.m

function y = fu_s(x, q1, q2);
y = (q1˜=q2)*0.001; % The cost for switching is 0.001

With these functions, we are ready to call cdplowem. Note that we have no con-
tinuous input, u, in this example.

>> uv = [];
>> omin = [-0.05; -0.05];
>> omax = [0.40; 0.20];
>> O = [omin; omax];
>> xf = [0.25; 0.125];
>> qf = 3;
>> xqf = [xf; qf];
>> xmin = [-0.10; -0.10];
>> xmax = [0.50; 0.30];

22



>> Q = 3;
>> XQ = [xmin; xmax; Q];
>> N = [21; 21];
>> [V, xv] = cdplowem('fu_f','fu_l','fu_s',1,uv,O,XQ,N,0);
>> [Vc, xvc] = crop(V,xv,O);

The control law is derived and simulation is performed by calling cdpsime this
time

>> [Um, Qm] = cdpctrl('fu_f','fu_l','fu_s',uv,Vc,xvc);

>> x0 = [0; 0];
>> q0 = 3;
>> xq0 = [x0; q0];
>> tend = 6;
>> [tv,xv2,qv] = cdpsime('fu_f','fu_l','fu_s',1,Um,Qm,xvc,xq0,[0;tend]);

and the result is plotted in Fig. 10, which shows a time plot of the states and
Fig. 11, which shows a phase portrait. The figures clearly show how the temper-
ature of one furnace always decreases as the other one is heated. By alternate
heating, the temperatures first climb up to, and above the set-point and then
both furnaces are turned off and the state drifts towards the origin. This pro-
cedure is then repeated over and over again, making the trajectory enclose the
desired steady state (marked with a circle in the phase portrait). The trajectory
has been dashed for t ∈ [0, 3.5] in Fig. 11 to make the limit cycle clear.

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

t

State trajectory

0 1 2 3 4 5 6
0.5

1

1.5

2

2.5

3

3.5

m
od

e

t

Mode

Figure 10 Time plot of the trajectories in the furnace example.

23



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 11 Phase portrait of the trajectories in the furnace example.

6. References

[HR99] S. Hedlund and A. Rantzer. Optimal control of hybrid systems. In IEEE
Conference on Decision and Control, Phoenix, 1999.

24


