
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Performance modeling of an Apache web server with bursty arrival traffic

Andersson, Mikael; Cao, Jianhua; Kihl, Maria; Nyberg, Christian

Published in:
IC'03 : proceedings of the international conference on internet computing

2003

Link to publication

Citation for published version (APA):
Andersson, M., Cao, J., Kihl, M., & Nyberg, C. (2003). Performance modeling of an Apache web server with
bursty arrival traffic. In H. R. Arabnia, & Y. Mun (Eds.), IC'03 : proceedings of the international conference on
internet computing (pp. 508-511). CSREA Press.

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/f845b424-a88c-4aff-9465-6e1bbcdd5de2

This is an author produced version of a paper presented at
the 4th International Conference on Internet Computing (IC 03),

June 23-26, 2003, Las Vegas, Nevada.
This paper has been peer-reviewed but may not include the final

publisher proof-corrections or pagination.

Citation for the published paper:
Andersson, M., Cao, J., Kihl, M. & Nyberg, C., 2005,

"Performance modeling of an Apache web
server with bursty arrival traffic",

IC'03 : proceedings of the international
conference on internet computing.

ISBN: 1-932415-02-5. Publisher: CSREA Press.

Performance Modeling of an Apache Web Server with Bursty
Arrival Traffic
Mikael Andersson, Jianhua Cao, Maria Kihl and Christian Nyberg*
Department of Communication Systems, Lund Institute of Technology

Box 118, SE-221 00 Lund, Sweden
Email: {mike, jcao, maria, cn}@telecom.lth.se
Abstract--Performance modeling is an important topic in
capacity planning and overload control for web servers. We
present a queueing model of an Apache web server that uses
bursty arrival traffic. The arrivals of HTTP requests is
assumed to be a Markov Modulated Poisson Process and
the service discipline of the server is processor sharing. The
total number of requests that can be processed at one time is
limited to K. We obtain web server performance metrics
such as average response time, throughput and blocking
probability by simulations. Compared to other models, our
model is conceptually simple. The model has been validated
through measurements and simulations in our lab. The per-
formance metrics predicted by the model fit well to the
experimental outcome.

Keywords--Internet, World Wide Web, web server, perfor-
mance model, MMPP.

I. INTRODUCTION

Performance modeling is an important part of the re-
search area of web servers. Without a correct model of a web
server it is difficult to give an accurate prediction of perfor-
mance metrics. A validated model is the basis of web server
capacity planning, where models are used to predict perfor-
mance in different settings, see Hu et al. [1] or Menascé and
Almeida [2]. In this paper we consider the Apache web serv-
er, described in e.g. [3] and [5], which is a well-known web
server. It is also the most commonly used server according to
[5].

Today a web site can receive millions of hits per day and
it may become overloaded as the arrival rate exceeds the
server capacity. To cope with this, overload control can be
used, which means that some requests are allowed to be
served by the web server and some are rejected. In this way
the web server can achieve reasonable service times for the
accepted requests. In overload control investigations for web
servers, performance models predict improvements when us-
ing a certain overload control strategy, see Widell [6] or Cao
and Nyberg [7]. Overload control is a research area of its
own, but it is depending on performance models that are val-
id in the overloaded work region. Several attempts have been

made to create performance models for web servers. van der
Mei et al. [8] modeled web servers as tandem queueing net-
works. The model was used to predict web server perfor-
mance metrics and was validated through measurements and
simulations. Wells et al. [9] made a performance analysis of
web servers using colored Petri nets. Their model has several
parameters, some of which are known. Unknown parameters
are determined by simulations. Dilley et al. [10] used layered
queueing models in their performance studies. Cherkasova
and Phaal [11] used a model similar to the one presented in
this paper, but with assumptions of deterministic service
times and session-based workload. Beckers et al. [12] pro-
posed a generalized processor sharing performance model
for Internet access lines which includes web servers. Their
model describes the flow-level characteristics of the traffic
carried. They established simple relations between the ca-
pacity, the utilization of the access line and download times
of Internet objects.

However, several of the previous models are complicat-
ed. It lacks a simple model that is still valid in the overloaded
work region. A simple model renders a smaller parameter
space thus easier to estimate, while a complicated model usu-
ally contains parameters that are difficult to obtain.

A simple model like the M/M/1/K or M/D/1/K with a
First-Come-First-Served (FCFS) service discipline can pre-
dict web server performance quite well. But conceptually it
is difficult to assume that the service distribution is exponen-
tial or deterministic and that the service discipline is always
FCFS.

In this paper we describe a model of the Apache web
server [3], that consists of a processor sharing node with a
queue attached to it. The total number of jobs in the system
is limited. The arrival process to the server is assumed to be
a two-state Markov Modulated Poisson Process (MMPP).
MMPP’s are commonly used to represent bursty arrival traf-
fic to communication systems, such as web servers (Scott et
al., [13]). The service time distribution is arbitrary. A system
like this is called an MMPP/G/1/K*PS queue. The average
service time and the maximum number of jobs are parame-
ters that can be determined through a maximum likelihood
estimation, see Cao et al. [14]. By simulating the system, we
were able to obtain web server performance metrics such as
throughput, average response time and blocking probability.* This work has been supported by the Swedish Research Council under

contract No. 621-2001-3053.

Our validation environment consists of a server and a
computer representing clients connected through a switch.
The measurements validate the model. Results show that the
model can predict the performance metrics at both lighter
loaded and overloaded regions.

The rest of the paper is organized as follows: In section
II we describe our new web server model. Our model is val-
idated through measurements and simulations in Section III.
Section IV shows the results and the discussion. The last sec-
tion concludes our work.

II. WEB SERVER MODEL

We model the web server using an MMPP/G/1/K*PS
queue as Figure 1 shows. The requests arrive according to a
two-state Markov Modulated Poisson Process (MMPP) with
parameters , , r1, r2. An MMPP is a doubly stochastic
Poisson process where the rate process is determined by a
continuous-time Markov chain. A two-state MMPP (also
known as MMPP-2) means that the Markov chain consists of
two different states, S1 and S2. The Markov chain changes
state from S1 to S2 with intensity r1, and transits back with
intensity r2. When the MMPP is in state S1, the arrival pro-
cess is a Poisson process with rate , and when the MMPP
is in state S2, rate is used, according to Figure 2.

The mean rate and the variance v in a two-state
MMPP are given as follows, see e.g. Heffes [15]:

(1)

and

The service time requirements for jobs in the queue
have a general distribution with mean . A job in the queue
receives a small quantum of service and is then suspended
until every other job has received an identical quantum of

service in a round-robin fashion. When a job has received the
amount of service required, it leaves the queue.

The service can handle at most K requests at a time. A
request will be blocked if the number K has been reached.
The probability of blocking is denoted as Pb. The rate of
blocked requests is given by Pb. The throughput H is the
rate of completed requests and the average response time T
is the expected sojourn time of a job. The average response
time, throughput and blocking probability (T, H, Pb) are per-
formance metrics that can be obtained by simulations.

III. EXPERIMENTS

A. MMPP parameters

To be able to use the MMPP in our experiments, its parame-
ters had to be determined. We chose to set the mean arrival
rate for the MMPP process, and then determine MMPP
parameters from that value. r1 and r2 were set to 0.05 and
0.95 respectively. The low rate, , was set to

Equation (1) then gives :

(2)

This means that is a high rate and that it can be seen as a
sudden burst rate. will be used 5% of the time according
to the settings of r1 and r2. The parameters have been set
this way in order to simulate bursty traffic with random
peaks in the arrival rate in both measurements and simula-
tions.

B. Measurements

Our validation measurements used one server computer and
a client computer connected through a 100 Mbits/s Ethernet
switch. The server was a PC Pentium III 1700 MHz with
512 MB RAM. The computer representing the clients was a
PC Pentium II 400 MHz with 256 MB RAM. Both comput-
ers used RedHat Linux 7.3 as operating system. Apache
1.3.9 [3] was installed in the server. We used the default
configuration of Apache, except for the maximum number
of connections. The client computers were installed with a
HTTP load generator, which was a modified version of S-
Client [16]. The S-Client is able to generate high request
rates even with few client computers by aborting TCP con-
nection attempts that take too long time. The original ver-
sion of S-Client uses deterministic waiting times between
requests. We modified the code to use an MMPP arrival
process instead, as described above.

The client program was programmed to request dynam-
ically generated HTML files from the server. The CGI script
was written in Perl. It generates a fix number Nr of random
numbers, adds them together and returns the summation. By
varying Nr we could simulate different loads on the web
server.

We were interested in the following performance met-
rics: average response time, throughput and blocking proba-

Fig. 1. An MMPP/G/1/K*PS model of a web server

K

Pbλ

λ

x

MMPP(λ1,λ2,r1,r2)

λ1 λ2

λ1
λ2

Fig. 2. The MMPP-2 state machine

λ1
λ2

r1

r2

S1 S2

λ

λ
λ1r2 λ2r1+

r1 r2+
----------------------------=

v
r1r2 λ1 λ2–()2

r1 r2+()2
-----------------------------------=

x

λ

λ1

λ1 0 75, λ⋅=

λ2

λ2

r1 r2+() λ⋅ λ1r2–()
r1

--=

λ2
λ2

bility. The throughput was estimated by taking the ratio
between the total number of successful replies and the time
span of the measurement. The response time is the time dif-
ference between when a request is sent and when a success-
ful reply is fully received. The average response time was
calculated as the sample mean of the response times after re-
moving transients. An HTTP request sent by a client com-
puter will be blocked either when the maximum number of
connections, denoted as Nconn,max, in the server has been
reached or the TCP connection is timed out at the client com-
puter. A TCP connection will be timed out by a client com-
puter when it takes too long time for the server to return an
ACK of the TCP SYN-request. The blocking probability
was then estimated as the ratio between the number of block-
ing events and the number of connection attempts in a mea-
surement period.

We carried out the experiments in four cases by varying
Nr and Nconn,max. Table 1 shows the configurations of the
four experiments: A1, A2, B1 and B2. The performance met-
rics were collected while the mean arrival rate (in number of
requests/second) was changed from 20 to 300 with step size
20.

C. Simulations

The results from the measurements were compared with the
performance metrics from simulations. The system was
implemented in a discrete event simulation program written
in Java.

When it comes to and K in the model, we used the
same parameters that were found in [14], where a similar
model was used, with Poissonian arrivals instead of MMPP
arrivals.The parameters can be seen in Table 2. The parame-
ters were obtained by a maximizing the log-likelihood func-
tion of the observed average response time in [14].
Note that it is the same parameters, that is, no new parame-
ters have been obtained. If the model is correct, it should be
possible to use these parameters.

IV. RESULTS AND DISCUSSION

In all experiments, we notice that the performance metrics
predicted by simulations fit well to the measurements. Tak-
ing into account that the parameters used in the simulations
are estimated from different experiments with the same
server configurations but different arrival processes, the
small discrepancy between our simulations and measure-
ments is acceptable.

Using the estimated parameters from [14], we predicted
the web server’s performance with discrete event simula-
tions and compared it with corresponding measurements.
Figure 3 shows the average response time, the throughput

and the blocking probability curves. We also show 95% con-
fidence intervals for the average response time curves.

Since the task of B1 and B2 is more computational in-
tensive than that of A1 and A2, the average response time of
A1 and A2 is lower than that of B1 and B2. See Figure 3(a)
where the server is limited to the same maximal number of
requests. The throughput is affected too. When Nconn,max is
set to the same, the throughput of A1 and A2 is greater than
that of B1 and B2.

The performance of the web server is also subjected to
Nconn,max when the same task is running on the server. The
greater Nconn,max is, the higher the response time will be
when heavy traffic is offered. Figure 3(a) and (b) show how
the Nconn,max property works in Apache. At a certain rate,
Apache allows no more processes to be started, which results
in a limited worst case response time. However, the maxi-
mum throughput of the server is not conditioned on
Nconn,max. That is because the throughput of the web server
under high request rates is determined by the server speed
and the processing requirement of each job, not by Nconn,max.

V. CONCLUSIONS

We have presented a queueing model of an Apache web
server, using a bursty arrival process. We obtained web
server performance metrics such as average response time,
throughput and blocking probability through simulations.
We validated the model through four sets of experiments
which included measurements and simulations with bursty
arrival traffic. The performance metrics predicted by the
model fitted well to the measurements.

Future work will include more validation under differ-
ent types of loads such as network intensive and hard-disk
intensive cases. It would also be interesting to see how well
the model fits web servers that use an event-driven approach
instead of multi-threading.

REFERENCES

[1] J. Hu, S. Mungee and D. Schmidt, “Principles for developing and
measuring high-performance web servers over ATM”, in Proceedings
of INFOCOM ‘98, March/April 1998, 1998

[2] D. A. Menascé and V. A. F. Almeida, Capacity Planning for Web Ser-
vices. Prentice Hall, 2002.

[3] “Apache web server”, http://www.apache.org
[4] Y. Hu, A. Nanda, Q. Yang, “Measurement, Analysis and Performance

Improvement of the Apace Web Server”, in 18th IEEE International
Performance Computing and Communications Conference, 1999,
Phoenix.

[5] Netcraft Web Server Survey, http://www.netcraft.com/survey/
archive.html

[6] N. Widell, “Performance of distributed information systems”,
Department of Communication Systems, Lund Institute of Technol-
ogy, Tech. Rep. 144, 2002, lic. Thesis.

TABLE 1
THE CONFIGURATION OF THE FOUR EXPERIMENTS

Nr = 1000 Nr = 2000

Nconn,max = 75 A1 B1

Nconn,max = 150 A2 B2

x

TABLE 2
THE PARAMETERS USED IN THE SIMULATIONS

A1 A2 B1 B2

0.00708 0.00708 0.00866 0.00834

208 286 215 298

x̂

K̂

[7] J. Cao and C. Nyberg, “On overload control through queue length for
web servers”, in 16th Nordic Teletraffic Seminar, 2002, Esboo, Fin-
land.

[8] R. D. V. D. Mei, R. Hariharan and P. K. Reeser, “Web server perfor-
mance modeling”, Telecommunication Systems, vol. 16, no. 3,4, pp.
361-378, 2001.

[9] L. Wells, S. Christensen, L. M. Kristensen and K. H. Mortensen,
“Simulation based performance analysis of web servers”, in Proceed-
ings of the 9th Internation Workshop on Petri Nets and Performance
Models (PNPM 2001). IEEE Computer Society, 2001, pp. 59-68.

[10] J. Dilley, R. Friedrich, T. Jin and J. Rolia, “Web server performance
measurement and modeling techniques”, Performance Evaluation,

vol. 33, pp. 5-26, 1998.
[11] L. Cherkasova and P. Phaal, “Session-based admission control: A

mechanism for peak load management of commercial web sites”,
IEEE Transactions on computers, vol. 51, no. 6, pp. 669-685, June
2002

[12] J. Beckers, I. Hendrawan, R. E. Kooij, and R. van der Mei, “General-
ized processor sharing performance model for internet access lines”,
in 9th IFIP Conference on Performance Modelling and Evaluation of
ATM and IP Networks, 2001, Budapest.

[13] S. L. Scott, P. Smyth, “The Markov Modulated Poisson Process and
Markov Poisson Cascade with Applications to Web Traffic Model-
ling”, Bayesian Statistics, Oxford University Press, 2003.

[14] J. Cao, M. Andersson, C. Nyberg, M. Kihl, “Web Server Performance

Modeling Using an M/G/1/K*PS Queue”, in 10th International Con-
ference on Telecommunications, 2003, Papeete, Tahiti.

[15] H. Heffes, “A Class of Data Traffic Processes - Covariance Function
Characterization and Related Queuing Results”, The Bell System
Technical Journal, Vol. 59, No. 6, July-August, 1980.

[16] G. Banga and P. Druschel, “Measuring the capacity of a web server”,
in USENIX Symposium on Internet Technologies and Systems,
December 1997, pp. 61-71.

Fig. 3. (a) Average response time of A1 and B1 with 95% confidence intervals. (b) Average response time of A2 and B2 with
95% confidence intervals. (c) Throughput of A1 and B1. (d) Throughput of A2 and B2. (e) Blocking probability of A1 and B1.
(f) Blocking probability of A2 and B2.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300

pe
rc

en
ta

ge
 (

%
)

requests/second

(e)

meas. A1

sim. A1

meas. B1

sim. B1

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

de
pa

rt
ur

es
/s

ec
on

d

requests/second

(c)

meas. A1

sim. A1

meas. B1

sim. B1

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300

m
ill

is
ec

on
ds

requests/second

(a)

meas. A1

sim. A1

meas. B1

sim. B1

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300

pe
rc

en
ta

ge
 (

%
)

requests/second

(f)

meas. A2

sim. A2

meas. B2

sim. B2

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300

de
pa

rt
ur

es
/s

ec
on

d

requests/second

(d)

meas. A2

sim. A2

meas. B2

sim. B2

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300

m
ill

is
ec

on
ds

requests/second

(b)

meas. A2

sim. A2

meas. B2

sim. B2

	I. Introduction
	II. Web Server Model
	III. Experiments
	IV. Results and Discussion
	V. Conclusions

