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A Minimum Distance Analysis of a Certain Class
of Two Dimensional ISI Channels
Fredrik Rusek†, Edward K. S. Au‡∗, John B. Anderson†, and Wai Ho Mow‡

†Department of Electrical and Information Technology, Lund University, Sweden
‡Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong

∗Institute for Infocomm Research, Singapore, Singapore

Abstract— In this paper we perform a minimum distance
analysis of a class of two dimensional intersymbol interference
channels. In particular, some important cases of multitrack
multihead magnetic recording systems fall into the studied class.
Previously, Soljanin and Georghiades have studied the same
problem as we do. The results derived in this paper are more
conclusive and they improve upon theirs. The fundamental proof
technique that we will use is to transform the channel into an
equivalent minimum phase channel.

I. INTRODUCTION
In this paper we perform a minimum distance analysis of a

certain class of two dimensional intersymbol interference (ISI)
channels. The class of channels is broad and includes non-
linear as well as linear channels. However the most important
special case is two dimensional linear channels for magnetic
recording systems. For that special case, our analysis signifi-
cantly extends the state of the art.
Consider the N information symbol sequences a1, . . . ,aN ,

where ak = [ak0, ak1, . . .] for 1 ≤ k ≤ N . Each symbol
belongs to a modulation alphabetM. Let A = [a1, . . . ,aN ]′,
where (·)′ is the transpose operator. These N information
symbol sequences generateN signals according to some signal
generation rule F :

sk = F (ak), 1 ≤ k ≤ N. (1)

For the ease of description, F (ak) is assumed to be a vector
over the reals throughout the paper, but it can be easily
extended to the other forms. Note that this rule can be due
to the channel, or intentionally designed in the transmitter,
or a combination thereof. Upon the rule F we impose no
requirements; e.g., we can allow non-linear F .
For the alphabet M of interest an important parameter of

any F is its single-track minimum distance d2
0:

d2
0 � inf

a,e�=0
‖F (a) − F (a + e)‖2,

where e is any error event such that a+e is a valid information
sequence and the Euclidean norm is taken, i.e., ‖x‖ =

√
xx′.

The signals at the output of the channel are given by

yk = αsk−1 + sk + αsk+1 + wk, 0 ≤ k ≤ N + 1 (2)

where 0 ≤ α ≤ 1/2, wk are vectors of white Gaussian noise
and sk � 0 for k ≤ 0 and k ≥ N + 1. The presence of

The work of E. Au and W. H. Mow was supported in part by the Hong
Kong Research Grants Council with grant number 617706.

signals sk−1 and sk+1 in the signal yk is commonly referred
to as interchannel interference or, in the magnetic literature,
as intertrack interference (ITI) which will be the notation in
this paper. Note that (1) and (2) describe a two dimensional
interference channel. In (2), α is a weighting factor of the ITI
that represents the influence of signals sk−1 and sk+1 on sk.
Actually, (2) is a simplified model because it assumes that both
sk−1 and sk+1 influence sk with the same amount. In the case
of a linear F , the orders of (1) and (2) can be interchanged1
and the interference is said to be separable. The z-transform
of the ITI response is t(z) � α + z−1 + αz−2.
Note that there are N +2 output signals for N input signals.

Due to this, (2) is referred to as the non-square channel model.
By defining the (N + 2) × N matrix

T �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 0 · · · · · · 0

1 α 0 · · · ...

α 1
. . . . . .

...
...

. . . . . . . . . α
... · · · 0 α 1
0 · · · · · · 0 α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

we can express (2) as⎡
⎢⎣ y0

...
yN+1

⎤
⎥⎦ = T

⎡
⎢⎣ s1

...
sN

⎤
⎥⎦ +

⎡
⎢⎣ w0

...
wN+1

⎤
⎥⎦ . (4)

Another model of interest, the square channel model, is given
by

yk = αsk−1 + sk + αsk+1 + wk, 1 ≤ k ≤ N. (5)

The analysis of this model is not given due to space limitation,
but will be reported in the near future.
Both the non-square and the square channels appear fre-

quently in magnetic recording research, with a linear F , under
the name multitrack, multihead recording systems [1]. The
non-square case appears if there are more (reading) heads than
tracks; the square case appears if the numbers are equal. In
magnetic recording, F takes the form

F (a) = a � h, (6)

1A slight change of notation is needed though.
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where h is an ISI response and � denotes convolution. More-
over, the most important case for magnetic recording systems
is an ISI response of the form

h = [1 −1] � [1 1] � [1 1] � · · · � [1 1]︸ ︷︷ ︸
L terms

, (7)

for some integer L ≥ 1.
We consider the minimum Euclidean distance, which is

defined by
d2
min � min

E �=0
d2(E),

with E � [e1 . . . ,eN ]
′
. The fundamental importance of d2

min

is that the error probability at high signal-to-noise ratio is
well approximated by Q(

√
d2
min/2N0), where N0 is the power

spectral density of the additive white Gaussian noise, and Q(·)
is the standard Q-function. It should be pointed out that no
energy normalization of the Euclidean distance is done in this
paper; this follows the approach of [2].
The aim of this paper is to analytically derive the minimum

distance in terms of the single-track minimum distance d2
0 for

any α in the range 0 ≤ α ≤ 1/2. A number of results have
been derived previously by Soljanin and Georghiades [2]. In
order to compare the contribution of this work with theirs, we
list their results for the non-square case as follows.
Results of [2]
1) If α ≤ 1/4, then d2

min = (1 + 2α2)d2
0 for all N and F .

2) If N ≤ 3, M = {±1} and F (a) = a � h with h as
in (7), then

d2
min =

{
(1 + 2α2)d2

0, α ≤ 1 − 1/
√

2
(2 + 4α2 − 4α)d2

0, 1 − 1/
√

2 ≤ α ≤ 1/2,
(8)

provided that d2
0 ≤ 6. For a h of the form (7), d2

0 ≤ 6
for L = 1, 2, 3.

An obvious weakness of [2] is that the result 2) only
considers N ≤ 3. This work will relax that condition to
an arbitrary N . Moreover, the result 1) will be improved. A
minimum distance analysis for some other two dimensional
interference channels can be found in [3].

A. Euclidean Distance and Minimum Euclidean Distance
In this section we give the basics of the Euclidean distance

computation between two data signals. For notational conve-
nience, the presentation is based on a linear F , but it can be
easily extended to a non-linear F .
The distance between the signals generated from the infor-

mation blocks A and A + E is

d2(A, A + E) =
N+1∑
k=0

‖α(F (ak + ek) − F (ak))

+(F (ak−1 + ek−1) − F (ak−1))
+α(F (ak−2 + ek−2) − F (ak−2))‖2

=
N+1∑
k=0

‖αF (ek) + F (ek−1) + αF (ek−2)‖2

= d2(E), (9)

where F (ek) � 0, for k ≤ 0 and k ≥ N + 1. Thus, for
a linear F , the Euclidean distance between two signals is a
function only of the error event E. If we define g(z) as the z-
transform of the autocorrelation of the ITI response t(z):

g(z) = t(z)t(z−1)
= α2z−2 + 2αz−1 + (1 + 2α2) + 2αz + α2z2,

the distance d2(E) can be written as

d2(E) =
N∑

k=1

N∑
�=1

gk−�F (ek)F (e�)′. (10)

We can also write (10) as

d2(E) = [F (e1), . . . , F (eN )]T ′T

⎡
⎢⎣ F (e1)

...
F (eN )

⎤
⎥⎦ ,

where T ′T becomes the Toeplitz matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 2α2 2α α2

2α 1 + 2α2 2α
. . .

α2 2α 1 + 2α2 . . . . . .
. . . . . . . . . . . . α2

α2 2α 1 + 2α2 2α
α2 2α 1 + 2α2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The results in forthcoming sections are based on the fact that
T ′T determines the Euclidean distance, not T itself. Thus, we
can replace T in (4) with any V such that V ′V = T ′T .
In forthcoming sections we will frequently use the term

K-track error event, where 1 ≤ K ≤ N . By this we mean,
without any loss of generality, that e1 �= 0, eK �= 0 and ek =
0, for k > K. Moreover, it is simple to prove that if ek = 0
for k = 2 or k = K − 1, then such an event cannot possibly
achieve d2

min. The reasons for this are as follows. Assume
e2 = 0. At the tracks 0 and K + 1 we will always pile up
at least an amount 2α2d2

0 of Euclidean distance. At track 1,
since e2 = 0 at least a distance d2

0 is built up. In total this
will generate at least a distance (1 + 2α2)d2

0. Subsequently,
(1 + 2α2)d2

0 will appear as a lower bound to d2
min for all α;

thus, we can safely assume that ek �= 0, for k = 1, 2, K−1, K
and that ek = 0, for k > K.
The rest of this paper is organized as follows. In Section II,

the main results are stated. In order to not destroy the fluency
of the paper, the proof-techniques and the proofs are deferred
to Section III. Finally, conclusions are presented in Section IV.

II. MAIN RESULTS

We start with exact results on d2
min.

Theorem 1: For an arbitrary N ≥ 2 and any M as well
as F ,

d2
min =

{
(1 + 2α2)d2

0, α ≤ 1 − 1/
√

2
(2 + 4α2 − 4α)d2

0, 1 − 1/
√

2 ≤ α ≤ ξ,
(11)
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where ξ is the root of 2− 7α +4α2 +2α3 satisfying 0 < ξ <
1/2 (ξ ≈ 0.389).

For arbitrary N , any modulation alphabet M and signal
generation rule F , the minimum distance is still achieved by a
single-track error event for α ≤ 1−1/

√
2. This improves upon

the result from [2] that suggests that it is true for α ≤ 1/4.
The second part of Theorem 1 states that the worst event in
the range 1 − 1/

√
2 ≤ α ≤ 0.389 is a two-track error event

for any N , M and F .

The next result treats the range 0.389 ≤ α ≤ 0.4082.

Theorem 2: For ξ ≤ α ≤ 1/
√

6 ≈ 0.4082, N ≥ 3 and
arbitrary M and F , the d2

min-achieving event is either a two-
track or a three-track event and

2
1 − 3α2 + 6α4

1 + 2α2
d2
0 ≤ d2

min ≤ (2 + 4α2 − 4α)d2
0. (12)

Moreover, there exist M and F such that d2
min achieves its

boundary values.

The implication of Theorem 2 is that for such an α, there is
no need to consider any four or more track error events when
searching for d2

min. This significantly eases the computational
burden.

In the range 1/
√

6 ≤ α ≤ 1/2, we can lower-bound d2
min

as follows.

Theorem 3: For 1/
√

6 ≤ α ≤ 1/2, the worst error event
can involve more than three tracks and d2

min is bounded by

2
1 − 18α4 + 72α6 − 216α8

(1 + 6α2)(1 − 12α4)
d2
0 ≤ d2

min ≤ (2 + 4α2 − 4α)d2
0.

(13)

Although the above theorems are conclusive and improve
significantly upon [2], there is still some ambiguity in the
region 0.389 ≤ α ≤ 1/2. This ambiguity results from our
very general assumptions on F . If more assumptions on F
are made, we can obtain more precise result in the entire
range 0 ≤ α ≤ 1/2.

Theorem 4: Let e and ẽ be two valid non-zero error events.
For N ≥ 2, if

min
e,ẽ�=0

∥∥∥∥F (a) − F (a + e) − 1
2
(F (ã) − F (ã + ẽ))

∥∥∥∥2

≥ 1
4
d2
0

then

d2
min = (2 + 4α2 − 4α)d2

0, 1 − 1/
√

2 ≤ α ≤ 1/2.

For our most important special case, a binary modulation
alphabet M = {±1} (i.e., 2PAM) and a linear F of the
form (6), the condition in Theorem 4 can be written as

min
∥∥∥∥
(

e +
1
2
ẽ

)
� h

∥∥∥∥2

≥ 1
4
d2
0

which is equivalent to

min ‖(2e + ẽ) � h‖2 ≥ d2
0.

For the binary modulation alphabet, the error events consist
of symbols from the ternary error alphabet {−2, 0, 2}, which
implies that the event 2e + ẽ consists of symbols from the
error alphabet {0,±2,±4,±6}. But this is precisely the error
alphabet that would arise if the modulation alphabet was the
quaternary alphabet {±1,±3} (i.e., 4PAM). We have therefore
shown the following.

Corollary 1: For a 2PAM modulation alphabet, N ≥ 2 and
F (a) = a�h, if the minimum distance of F (a) under a 4PAM
alphabet satisfies

d2
0,4PAM = d2

0 (14)

we have

d2
min =

{
(1 + 2α2)d2

0, α ≤ 1 − 1/
√

2
(2 + 4α2 − 4α)d2

0, 1 − 1/
√

2 ≤ α ≤ 1/2
(15)

for the 2PAM alphabet under investigation.

The corollary surprisingly states that if F (a) has the same
minimum distance for 2PAM and 4PAM, then d2

min of the two
dimensional channel is completely determined. If this is not
the case, d2

min is still determined for α < 0.389, but a full
search has to be performed for α ≥ 0.389. There are several
complexity reduction techniques for such a search, but those
are not the target of this paper. Note that (14) is fulfilled for
all ISI responses with exactly two non-zero taps.
We now assume a h of the form (7) and check for which L

(14) is satisfied. The outcome is that it is satisfied for (at
least) 1 ≤ L ≤ 3 which implies that the minimum distance is
exactly given by (15) for those L regardless of N . Compared
with [2], this is a major improvement.

III. PROOFS
Before proceeding to the proofs, we make some prepara-

tions. Denote by F (e) the matrix [F (e1), . . . , F (eN )] and
by F x2

x1
(e) the vector [F (ex1), . . . , F (ex2)]. We will make

use of the following three facts.
Fact 1: As stated in Section I, it is only the matrix T ′T that is
important for a distance computation, and not T itself. Thus,
we are free to choose any factorization of T ′T , and the one we
will use is the so-called minimum phase factorization. Since it
is well known that g(z) is the autocorrelation of the real-valued
polynomial t(z) = α + z−1 + αz−2, it follows that the roots
of g(z) appear in complex conjugated pairs and that if r is a
root, then is also 1/r∗, where (·)∗ is the complex conjugate
operator. The minimum phase version of g(z) results if h(z) is
created from the roots that lie inside of the unit circle. The
four roots of g(z) are

r1 = r2 = −−1 +
√

1 − 4α2

2α

r3 = r4 = −−1 −√
1 − 4α2

2α
. (16)

It is easy to see that r1 and r2 lie inside the unit circle. Thus,
we can express the minimum phase version as

v(z) � v0 + v1z
−1 + v2z

−2 = c

(
1 + z−1

√
1 − 4α2 − 1

2α

)2

,
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where c is a constant that normalizes the energy of v(z) to 1+
2α2. In what follows, we will only need the middle coefficient
of v(z), namely v1, whose value is equal to 2α after some lines
of manipulations.
Fact 2: It is true that

[F (e1), . . . , F (eN )]T ′T [F (e1), . . . , F (eN )]′

= [F (eN ), . . . , F (e1)]T ′T [F (eN ), . . . , F (e1)]′. (17)

Fact 3: For any symmetric positive definite matrix G of size
3 by 3, the optimization problem

min [x1 x2 x3] G [x1 x2 x3]′

subject to ‖x1‖2, ‖x2‖2, ‖x3‖2 ≥ d2
0

is solved by three vectors that lie in the same plane.
We are now well prepared to prove Theorems 1–3.

Proof of Theorems 1–3 Denote by d2
� the minimum distance

of any �-track error event. Clearly, we have that d2
1 =

(1 + 2α2)d2
0 and d2

min = min{d2
1, . . . , d

2
N}. This proof will

compute d2
2 and d2

3 explicitly and a lower bound for d2
� , � ≥

4. The lower bound will then be shown to be larger than
d2
1, d

2
2 and d2

3 in a certain range of α.
Consider a two-track error event E = [e1 e2]′. Because

d2(cE) = c2d2(E), we can without loss of generality assume
that ‖F (e1)‖2 = d2

0. We then have the optimization problem

min
e2

F (e)
[
1 + 2α2 2α

2α 1 + 2α2

]
F (e)′

under the constraint ‖F (e2)‖2 ≥ d2
0. The solution to this

optimization is of the form F (e2) = −kF (e1), k ≥ 1. Let
f(k) denote the distance resulting from F (e2) = −kF (e1).
To find the minimum distance of two-track error events, we
take the derivative of f(k): f ′(k) = 2k(1 + 2α2) − 4α = 0
which has the solution k = 2α/(1 + 2α2). But this solution
violates the constraint ‖F (e2)‖2 ≥ d2

0 and k = 1 becomes the
minimizer. This results in the minimum distance

d2
2 = (2 + 4α2 − 4α)d2

0.

For d2
3, the optimization problem to be solved is

d2
3 = min

e1,e2,e3
F (e)

⎡
⎣1 + 2α2 2α α2

2α 1 + 2α2 2α
α2 2α 1 + 2α2

⎤
⎦F (e)′

(18)
under the constraint ‖F (e�)‖2 ≥ d2

0, � = 1, 2, 3. Due to
Fact 3, we can safely assume that F (e1), F (e2) and F (e3)
lie in the same plane, and we can therefore treat them as
complex numbers. It is simple to show that the minimum
of (18) occurs for e1 = e3 = emin, where emin is any error
event with ‖F (emin)‖2 = d2

0, and

F (e2) =
{ −F (e1), 0 ≤ α ≤ 1 − 1/

√
2

− 4α
1+2α2 F (e1), 1 − 1/

√
2 ≤ α ≤ 1/2.

(19)

Consequently,

d2
3 =

{
(3 − 8α + 8α2)d2

0, 0 ≤ α ≤ 1 − 1/
√

2
2

1+2α2 (1 − 3α2 + 6α4)d2
0, 1 − 1/

√
2 ≤ α ≤ 1/2.

We now turn to error event that involves four or more tracks.
For a K-track error event E, by using the minimum phase
factorization from Fact 1, we have the lower bound

d2(E) ≥
2∑

k=0

‖v0F (ek) + v1F (ek−1) + v2F (ek−2)‖2

+
K+1∑

k=K−1

‖v0F (ek) + v1F (ek−1) + v2F (ek−2)‖2.

= v2
0‖F (e1)‖2 + ‖v0F (e2) + v1F (e1)‖2

+ ‖v0F (e3) + v1F (e2) + v2F (e1)‖2

+ ‖v0F (eN ) + v1F (eN−1) + v2F (eN−2)‖2

+ ‖v1F (eN ) + v2F (eN−1)‖2 + v2
2‖F (eN )‖2.

Note that eN−2 equals e2 and e3 in the case of N = 4 or 5,
respectively. The above lower bound is unfortunately too loose.
In order to strengthen it we invoke Fact 2:

2d2(E) ≥ v2
0‖F (e1)‖2 + ‖v0F (e2) + v1F (e1)‖2

+ ‖v0F (e3) + v1F (e2) + v2F (e1)‖2

+ ‖v0F (eN ) + v1F (eN−1) + v2F (eN−2)‖2

+ ‖v1F (eN ) + v2F (eN−1)‖2 + v2
2‖F (eN )‖2.

+ v2
0‖F (eN )‖2 + ‖v0F (eN−1) + v1F (eN )‖2

+ ‖v0F (eN−2) + v1F (eN−1) + v2F (eN )‖2

+ ‖v0F (e1) + v1F (e2) + v2F (e3)‖2

+ ‖v1F (e1) + v2F (e2)‖2 + v2
2‖F (e1)‖2.

Rearranging the terms by using the afore-mentioned nota-
tion F x2

x1
(e) and the facts that v2

0 + v2
1 + v2

2 = 1 + 2α2,
v0v1 + v1v2 = 2α and v0v2 = α2, we get

2d2(E) ≥ F 3
1(e) G3 F 3

1(e)′ + F N
N−2(e) G̃3 F N

N−2(e)′

where

G3 =

⎡
⎣ 2 + 4α2 4α 2α2

4α 1 + 2α2 + v2
1 2α

α2 2α 1 + 2α2 − v2
1

⎤
⎦

and

G̃3 =

⎡
⎣ 1 + 2α2 − v2

1 2α 2α2

2α 1 + 2α2 + v2
1 4α

α2 4α 2 + 4α2

⎤
⎦ .

Consequently we have for any � ≥ 4

2d2
� ≥ min

e1,e2,e3
F 3

1(e)G3F
3
1(e)′

+ min
eN ,eN−1,eN−2

F N
N−2(e)G̃3F

N
N−2(e)′. (20)

Since the solutions to the two optimization problem in (20)
are identical, we conclude

d2
� ≥ d2

LB,4 � min
e1,e2,e3

F 3
1(e)G3F

3
1(e)′. (21)

It should be pointed out that G3 in (21) can be generated from
any factorization of T ′T . In particular we could use T . But
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such an approach leads to a weak bound. Instead we use the
minimum phase factorization and obtain

G3 =

⎡
⎣ 2 + 4α2 4α 2α2

4α 1 + 6α2 2α
α2 2α 1 − 2α2

⎤
⎦ .

Due to its construction, G3 is positive definite for any α.
At this point, we consider it to be a standard exercise, armed

with Fact 3, to show that the solution of (21) is given by

d2
LB,4 ≥

{
3

1+6α2 (1 − 4α2 + 12α4)d2
0,

1
2 − 1

2
√

3
≤ α ≤ 1√

6

2 1−18α4+72α6−216α8

(1+6α2)(1−12α4) d2
0,

1√
6
≤ α ≤ 1

2 .

(22)
For α ≤ 1/2 − 1/2

√
3, d2

LB,4 > (1 + 2α2)d2
0 and no error

events involving four or more tracks can result in d2
min.

We can now summarize, in the range 0 ≤ α ≤ 1 − 1/
√

2,
d2
1 is larger than any other d2

� , � ≥ 2 and the first statement
of Theorem 1 follows. Equating d2

2 and d2
3 we obtain, after

some manipulations, the second statement follows (in the
range α ≤ ξ, d2

LB,4 > d2
2). Moreover, the error events that

achieves d2
min always exist and it follows that Theorem 1 states

the exact d2
min.

In the range ξ < α < 1/
√

6, it can be shown that d2
3 <

d2
2 < d2

LB,4, and Theorem 3 follows. While the upper bound
is achieved for example for F (a) = a and a binary alphabet,
the lower bound can only be achieved if error events of the
type (19) exist.
In the range 1/

√
6 < α < 1/2, d2

LB,4 < d2
� , � ≤ 3 and

Theorem 3 follows.
We next prove Theorem 4.

Proof of Theorem 4 In this case we use the lower bound

d2(E)≥
1∑

k=0

‖v0F (ek) + v1F (ek−1) + v2F (ek−2)‖2

+
K+1∑
k=K

‖v0F (ek) + v1F (ek−1) + v2F (ek−2)‖2.

=v2
0‖F (e1)‖2 + ‖v0F (e2) + v1F (e1)‖2

+‖v1F (eN ) + v2F (eN−1)‖2 + v2
2‖F (eN )‖2. (23)

By proceeding in the same fashion as in the previous proof,
where the key step is to use the minimum phase factorization,
we obtain

d2
min ≥ min

e1,e2
F 2

1(e)
[
1 + 6α2 2α

2α 1 − 2α2

]
F 2

1(e)′. (24)

It is easy to see that to solve the optimization (24) we must
have ‖F (e1)‖2 = d2

0. Assume that ‖F (e2)‖2 = k2d2
0 and

there is an angle θ between F (e1) and F (e2). Then we have

d2
min ≥ (

1 + 6α2 + k2(1 − 2α2) + 4αk cos θ
)
d2
0. (25)

In order for the right hand side of (25) to equal d2
2, we must

have

cos θ =
2(k2 − 1)α − 4α + (1 − k2)

4kα
. (26)

Differentiating (26) with respect to α gives

∂ cos θ

∂α
= (k2 − 1)

(
1
2k

+
1

4kα2

)
.

Since the derivative is always positive for k ≥ 1, it follows
that cos θ in (26) is an increasing function of α. However, the
existence of such k and θ is a property of F and not of α.
It therefore suffices to consider α = 1/2. It is worthwhile to
point out that the fact that cos θ is an increasing function of α
is a consequence of the minimum phase factorization. For a
non-minimum phase factorization it is not the case.
Now recall that the lower bound (23) measures the distance

at tracks 0, 1, N and N + 1. In the case of α = 1/2 however,
all the roots of g(z) coincide. Consequently, all the phase
factorizations coincide and we have v(z) = h(z) = α +
z−1 + αz−2. Because the ITI is symmetric, the minimum
distance on the two first and the two last tracks coincide.
Consequently there is no need to use Fact 2 at α = 1/2.
In order to have d2

min = (2 + 4α2 − 4α)d2
0, it is sufficient if

we accumulate a distance amount (2 + 4α2 − 4α)d2
0 at tracks

0, 1, N and N + 1. Since we will accumulate at least 2α2d2
0

at tracks 0 and N + 1, we need to accumulate at least an
amount (1 + α2 − 2α)d2

0 at track 1 and an equal distance
amount on track N . But since tracks 1 and N are identical
from a minimum distance point of view at α = 1/2, we have
that if

min
e1,e2

∥∥∥∥F (e1) +
1
2
F (e2)

∥∥∥∥2

≥ d2
o

4
,

then the F under investigation does not allow any k and θ
such that (26) can be fulfilled and the theorem is proved.

IV. CONCLUSION
In this paper we have studied the minimum distance problem

for two dimensional interference channels. By transforming
the ITI response [α 1 α] into its minimum phase version, we
have derived the exact minimum distance, for all possible
ISI responses, up to α ≤ 0.389 (c.f. Theorem 1). In the
range 0.389 ≤ α ≤ 0.5, we have lower-bounded the minimum
distance (c.f. Theorems 2 and 3). In order to resolve the
ambiguity in the latter range, we derived a sufficient condition
on the ISI response, i.e., Theorem 4, in order to be able to state
the exact minimum distance in the entire range 0 ≤ α ≤ 0.5.
The results derived in this paper are more conclusive and they
improve upon [2].
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