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Abstract

This thesis presents new cryptanalysis results for several different stream
cipher constructions. In addition, it also presents two new stream ci-

phers, both based on the same design principle.
The first attack is a general attack targeting a nonlinear combiner. A

new class of weak feedback polynomials for linear feedback shift registers
is identified. By taking samples corresponding to the linear recurrence rela-
tion, it is shown that if the feedback polynomial has taps close together an
adversary to take advantage of this by considering the samples in a vector
form.

Next, the self-shrinking generator and the bit-search generator are ana-
lyzed. Both designs are based on irregular decimation. For the self-shrinking
generator, it is shown how to recover the internal state knowing only a few
keystream bits. The complexity of the attack is similar to the previously
best known but uses a negligible amount of memory. An attack requiring a
large keystream segment is also presented. It is shown to be asymptotically
better than all previously known attacks. For the bit-search generator, an
algorithm that recovers the internal state is given as well as a distinguishing
attack that can be very efficient if the feedback polynomial is not carefully
chosen.

Following this, two recently proposed stream cipher designs, Pomaranch
and Achterbahn, are analyzed. Both stream ciphers are designed with small
hardware complexity in mind. For Pomaranch Version 2, based on an im-
provement of previous analysis of the design idea, a key recovery attack
is given. Also, for all three versions of Pomaranch, a distinguishing attack
is given. For Achterbahn, it is shown how to recover the key of the latest
version, known as Achterbahn-128/80.

The last part of the thesis introduces two new stream cipher designs,
namely Grain and Grain-128. The ciphers are designed to be very small in
hardware. They also have the distinguishing feature of allowing users to
increase the speed of the ciphers by adding extra hardware.
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1

Introduction

The amount of data being exchanged and stored electronically is rapidly
increasing. A significant amount of this data needs to be protected and

the protection is in many cases of great importance. The need to protect
messages or information is not new but has been present for a long time. A
popular and very well-known example is the secret writing used by the Ro-
man military and political leader Julius Caesar in the first century BC. In the
communication with his generals each letter in the alphabet was replaced by
the letter 3 positions later, known as the Caesar cipher. Another ancient ci-
pher is the scytale, used by the ancient Greeks and first mentioned in the 7th
century BC. It consists of a cylinder and a strip of leather. When the strip of
leather is wrapped around the cylinder, the secret message is written on it.
Once unwrapped, the message appeared to be random letters. Only a recip-
ient with a cylinder of the same diameter can then read the message. The
first documented use of secret writing dates back to around 1900 BC from
when non-standard hieroglyphs have been found in inscriptions. However,
it seems reasonable that the need for secret writing developed shortly after
writing was invented.

1



2 1. Introduction

1.1 Cryptology

The science referred to as cryptology is divided into two parts, cryptography
and cryptanalysis. Historically, cryptography is the science of secret writ-
ing, though that definition requires a slight update as the range of modern
cryptographic services incorporates additional features. Nowadays it can
be referred to the science of designing any algorithm intended to offer a se-
curity goal. Cryptanalysis, on the other hand, is the science of breaking the
same algorithms.

The security goals in modern cryptography can be divided into four cat-
egories

(i) Authentication. The process of verifying the identity of the sender/user.
A computer login authenticates a user by requesting a password. The
user proves his identity by showing that he knows a secret. In a
challenge-response scheme the verifier sends a challenge, e.g., a random
number A, to the prover. The prover calculates a new number B =
f(A,K) where K is some shared secret, and then return B to the ver-
ifier. Since the verifier knows K, he can also find B and if the re-
turned number is correct, the prover has proved his identity. In a
zero-knowledge proof, the goal is to allow the prover to prove that
he knows a secret by not revealing the secret to the verifier. Authen-
tication is closely related to authorization. Authorizing a user means
to verify that an authenticated user has access to information. Thus,
authentication must be performed before authorization.

(ii) Confidentiality. Ensuring that only the intended recipient (an autho-
rized user) is able to read the message. This is achieved by encrypting
the data using a cipher. The Caesar cipher and the scytale mentioned
before are examples of classical ciphers.

(iii) Integrity. Assuring the receiver of a message that it has not been al-
tered. Data sent on a computer network, passing through several
hosts, can be maliciously altered on one host before sent to the next.
Ensuring message integrity can be done using a Message Authentica-
tion Code (MAC), which computes a key dependent checksum of the
message.

(iv) Non-repudiation. The goal here is to prove that the sender really sent
the data. As an example, after signing a contract, the signer should not
be able to deny that he signed it. Non-repudiation can be provided
using digital signatures.
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1.2 Cryptographic Primitives

A cryptographic primitive is an algorithm that attempts to realize one or
several of the security goals given in Section 1.1. The primitives can be
divided into three categories, namely unkeyed primitives, secret key primitives
and public key primitives.

A hash function is an example of an unkeyed primitive. It takes as input
a string of arbitrary length and outputs a string (hash value or message
digest) of fixed length, typically 128, 160, 256 or 512 bits. A hash function
should fulfill several requirements

• Ease of Computation. Given a message it should be easy to find its hash
value.

• Preimage Resistance. It should be hard to find a message with a given
hash value.

• Second Preimage Resistance. Given one message it should be hard to
find another message with the same hash value.

• Collision Resistance. It should be hard to find two messages with the
same hash value.

Some well-known examples of hash functions are SHA-1, MD4 and MD5.
Recent cryptanalysis of these algorithms has lately increased the research
focus on hash functions. The American National Institute of Standards and
Technology (NIST) has initiated a competition to find a new standard for
hash functions and the result is scheduled for late 2011.

Secret key primitives, also known as symmetric primitives, is a class of
primitives that uses the same key for both encryption and decryption. This
requires the sender and receiver to negotiate a key before the communica-
tion starts. Since anyone that possesses the secret key can decrypt messages,
it is vital for the security that this key is exchanged over a secure channel. A
secret key primitive can be a cipher, such as a block cipher or stream cipher,
which provides confidentiality. It can also be a MAC providing message au-
thentication and integrity protection. Then we talk about signing and veri-
fying instead of encryption and decryption. A MAC is usually constructed
using a block cipher or by using a hash function together with a key.

Public key primitives, or asymmetric primitives, use different keys for
encryption and decryption. These primitives have the advantage over se-
cret key primitives that they do not require a secure channel in order to
share the key. Instead they use one public and one private key. A user’s
public key, used for encryption, can e.g., be posted on a webpage while the
private key, used for decryption, is kept secret and is only known to the
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user. Public key cryptography was introduced in 1976 by Diffie and Hell-
man [DH76] and two years later Rivest, Shamir and Adleman presented the
encryption scheme RSA based on the public key principle. Still today, RSA
is probably the most well-known public key scheme used. Another type
of public key primitive is the digital signature. A digital signature can be
created by encrypting the hash value of the message with the private key.
Then the public key can be used to verify the signature. As with a MAC,
a digital signature provides message authentication and integrity protec-
tion. However, digital signatures can also provide non-repudiation since a
signature can only be produced by someone with knowledge of the secret
key. On the other hand, anyone can verify a signature since the public key
is assumed known to all. In the case of MACs, anyone that can verify a
MAC can also create a MAC since the same key is used for both signing
and verifying. Public key cryptography has also spawned new problems.
In particular, how can we be certain that a public key belongs to a certain
person? The solution to this is the use of certificates, in which a trusted third
party guarantees the connection between a user and a public key. In gen-
eral, a public key encryption scheme is computationally much slower than
symmetric encryption schemes. Thus, instead of encrypting a long message
with e.g., RSA, it is common to use RSA to encrypt a symmetric key. The
symmetric key is then used to encrypt or decrypt the message.

1.3 Block Ciphers and Stream Ciphers

Symmetric primitives used to provide confidentiality can be divided into
block ciphers and stream ciphers. The message to be encrypted is called
plaintext and the result of the encryption is called ciphertext. A stream cipher
generates a keystream, which is used to encrypt the plaintext, usually bit by
bit. However, many software optimized stream ciphers, especially modern
ones, encrypts the plaintext word by word where a word consists of sev-
eral bits. Stream ciphers is the topic of this thesis and Chapter 2 is devoted
entirely to this class of primitives.

In a block cipher, the plaintext is divided into blocks of n bits, with n be-
ing typically 64, 128 or 256 bits. Each block is then transformed by an invert-
ible key dependent function into a ciphertext block. Thus, each key defines
a permutation on n-bit blocks. A block cipher can be used in one of several
modes of operation. Let K be the key, EK the encryption function, DK the
decryption function, m = (m1,m2, . . .) the message and c = (c1, c2, . . .) the
ciphertext1. Further, let IV be a public initialization vector. We give five
common modes of operation for block ciphers.

1As with most programming languages, the index sometimes starts with 0 instead of 1.
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• Electronic Code Book Mode (ECB Mode). This is the most obvious mode
in which all plaintext blocks are encrypted and decrypted indepen-
dently. Thus we have ct = EK(mt) and mt = DK(ct). A problem with
ECB Mode is that redundancy in the plaintext blocks will be preserved
in the ciphertext blocks.

• Cipher Block Chaining Mode (CBC Mode). This mode chains the previous
ciphertext with the current plaintext. Encryption and decryption is
given by ct = EK(mt ⊕ ct−1) and mt = DK(ct) ⊕ ct−1 respectively,
where c0 = IV .

• Output Feedback Mode (OFB mode). This will turn the block cipher into
a stream cipher. A keystream z = (z1, z2, . . .) is generated as zt =
EK(zt−1) with z0 = IV. The encryption and decryption is given as
ct = mt ⊕ zt and mt = ct ⊕ zt respectively.

• Cipher Feedback Mode (CFB Mode). This mode of operation also behaves
like a stream cipher. The keystream z = (z1, z2, . . .) is generated as
zt = EK(ct−1) with c0 = IV . Like OFB Mode, encryption and decryp-
tion is given as ct = mt ⊕ zt and mt = ct ⊕ zt respectively.

• Counter Mode. This is another mode of operation that turns a block
cipher into a stream cipher. The keystream z = (z1, z2, . . .) is generated
as zt = EK(IV ‖ctr) where ctr is a counter which is incremented for
each encryption.

A block cipher in CFB Mode defines a self-synchronizing stream cipher
while OFB Mode and Counter Mode define a synchronous stream cipher,
see Section 2.1. Several other modes of operation have been suggested e.g.,
modes that authenticates the data as well, but the ones mentioned above are
the most well known.

The Data Encryption Standard (DES) is a well-known block cipher. It was
selected as a standard in the United States in 1976 and has been extensively
analyzed since then. DES remained a standard until 2002, when the Ad-
vanced Encryption Standard (AES) replaced DES as a standard for block ci-
phers. AES was the result of a public competition initiated by NIST in 1997.
The most important reason to replace DES as a standard was the small key
size of 56 bits supported by DES. Already in 1998 it was suggested to use
triple-DES instead, which runs the DES algorithm 3 successive times us-
ing a key of 112 or 168 bits. Though this solution solved the problem of
short keys, it should be seen as a temporary solution since the speed of the
algorithm suffered from the tweak. The AES algorithm, named Rijndael,
supports keys of 128, 192 or 256 bits.
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1.4 Thesis Outline

This thesis, as its name suggests, is devoted to the area of stream ciphers.
It will show new ideas in both stream cipher analysis and stream cipher
design. The rest of the thesis is outlined as follows.

Chapter 2 introduces the reader to the area of stream ciphers. The moti-
vation to study stream ciphers and a general framework is first given. Then
we talk about different design blocks that are common in stream ciphers and
also give a few examples of existing stream ciphers. The chapter continues
by discussing some selected ways to attack stream ciphers and it is ended
with some basic theory regarding hypothesis testing.

Chapter 3 will define a new class of feedback polynomials that should
be avoided when designing stream ciphers based on linear feedback shift
registers. We show that it is possible to find efficient attacks if the feedback
polynomial is of this weak form. Also, if the feedback polynomial has a low
degree multiple of the weak form, then the attack can also be efficient.

Chapter 4 will consider cryptanalysis of the self-shrinking generator,
which is conceptually one of the simplest stream ciphers imaginable. We
present two new ideas on how to recover the initial state of the shift reg-
ister used in the construction. The two new ideas will be shown to offer
important advantages over previously known attacks on the self-shrinking
generator.

Chapter 5 will consider a construction called the bit-search generator. It
is similar to the self-shrinking generator in that it is very simple and can
be built using very few components. We give both an attack that recovers
the initial state of the shift register and also a distinguishing attack, which
distinguishes the output sequence from a truly random sequence.

Chapter 6 shows possible ways to cryptanalyze the Pomaranch family of
stream ciphers. At the time of writing there has been three versions and in
total five variants of the cipher presented. We show attacks for all versions
and variants. We show how to recover the key in version 1 and version
2 and we additionally show distinguishing attacks for all variants of the
cipher. The chapter is ended with an attack considering a non-standard
attack scenario. We show that all Pomaranch ciphers are vulnerable in this
scenario.

Chapter 7 is the last chapter on cryptanalysis. We show how to recover
the key in this family of ciphers. Like Pomaranch, there are several versions
of the Achterbahn ciphers, but the chapter will only give cryptanalysis re-
sults for the, at the time of writing, latest version. However, the chapter will
give an overview of the many, sometimes confusing, steps in the develop-
ment of all different versions and variants of Achterbahn.

In Chapter 8 we leave the destructive behaviour of cryptanalysis behind
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and focus on designing stream ciphers. The stream cipher family Grain is
introduced. This family of ciphers aims to provide a secure primitive offer-
ing confidentiality while at the same time being extremely small and easy
to implement in hardware. The design is, to the best of our knowledge, the
smallest known stream cipher considering the key size. Grain also has the
distinguishing feature that it is easy to increase the speed of the cipher by
adding some extra hardware. Thus, it provides a very flexible solution for
confidentiality in hardware environments where area and/or power con-
sumption must be kept small.
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Stream Ciphers

In this chapter we give a more detailed introduction to stream ciphers.
The keystream produced by a stream cipher should be as random looking

as possible in order to make it more resistant to attacks. However, good
randomness properties are not enough in a modern stream cipher. Since a
block cipher can be used in a stream cipher mode of operation, a dedicated
stream cipher must offer at least one advantage over a block cipher in e.g.,
OFB mode. Lately the research on stream ciphers has focused on ciphers
that, compared to AES, offer one or both of the following.

• Faster software performance, may it be either 8-bit, 16-bit, 32-bit or
64-bit architectures.

• Smaller hardware implementation in terms of gates, area and/or power
consumption.

9
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This focus is based on a widespread belief that stream ciphers can provide
better performance than block ciphers in terms of the above mentioned
properties and this seems to be the main motivation to study stream ci-
phers. This widespread belief has also been reflected by the eSTREAM
project [ECR], a European project with a goal to identify new promising
stream ciphers. In 2005, many new designs proposals were submitted to
the project and according to the time schedule, eSTREAM will finish in May
2008. There are two profiles in eSTREAM, namely a software and a hard-
ware profile. All proposals in the software profile has to offer better perfor-
mance than AES in software and the proposals in the hardware profile has
to be smaller and more efficient than AES in hardware.

Synchronous stream ciphers also have the property that the keystream
can be generated before plaintext is available. This can also be seen as an
advantage over block ciphers.

It is easy to design a secure stream cipher. The difficult task is to make
it secure and at the same time provide excellent software or hardware per-
formance. Many different design blocks have been suggested and are also
implemented in various stream ciphers. Some of these design blocks will be
discussed in this chapter.

The outline of this chapter is as follows. In Section 2.1 we give a formal
description of a stream cipher and show how stream ciphers can be clas-
sified. Section 2.2 will give an overview of some common design blocks
and also present a few examples of stream cipher designs. Cryptanalysis
of stream ciphers is discussed in Section 2.3 and some common approaches
and methods are given. Hypothesis testing is an important tool in crypt-
analysis and a short theoretical background is given in Section 2.4. The
chapter is summarized in Section 2.5.

2.1 Classification of Stream Ciphers

In this section we discuss how stream ciphers can be classified. We give a
formal framework for a stream cipher. In large, it is based on the framework
given in [MvOV97] but it should be noted that initialization vectors are not
mentioned in [MvOV97] but is included in our treatment.

LetM be the set of possible plaintext symbols, C be the set of possible
ciphertext symbols, K be the set of possible keys and IV be the set of possi-
ble initialization vectors. The set of possible keystream symbols is denoted
by Z and the tth ciphertext symbol ct ∈ C is given by

ct = h(zt,mt), (2.1)

where zt ∈ Z and mt ∈ M. In decryption we have mt = h−1(zt, ct). De-
pending on the structure, a stream cipher belongs to one of two categories,
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Figure 2.1: A model of a synchronous stream cipher.

synchronous or self-synchronizing.

Definition 2.1: In a synchronous stream cipher, the keystream is generated
independently of the plaintext and the ciphertext.

Let K ∈ K and IV ∈ IV . In a synchronous stream cipher, there is an inter-
nal state, denoted σt, which is updated as σt+1 = f(σt,K, IV ). The initial
state, σ0, in the keystream generation phase is the result of an initialization
phase, σ0 = γ(K, IV ). The keystream is produced by zt = g(σt,K, IV ). A
model of a synchronous stream cipher is given in Fig. 2.1. Most proposed
stream ciphers are binary additive stream ciphers. In that case, the plaintext,
ciphertext and keystream are binary digits,M = C = Z = F2, and the func-
tion h(zt,mt) is the xor function, ct = mt ⊕ zt. The decryption is then given
by mt = ct ⊕ zt

The initialization vector, IV, is not always included in the framework of
stream ciphers, at least not in older works. Assume that we want to encrypt
two messages, m1 = m11 ,m12 . . . and m2 = m21 ,m22 . . ., using the same
key K. Without a unique IV, the keystream z = z1, z2 . . . generated will be
the same for both messages. Assuming a binary additive stream cipher, the
two ciphertexts, c1 = c11 , c12 . . . and c2 = c21 , c22 . . . will be given as

(c11 , c12 , c13 . . .) = (m11 ⊕ z1,m12 ⊕ z2,m13 ⊕ z3 . . .)
(c21 , c22 , c23 . . .) = (m21 ⊕ z1,m22 ⊕ z2,m23 ⊕ z3 . . .).

(2.2)

Knowing c1t
and c2t

will give information about the pair (m1t
,m2t

) since
there will then only be two possible values for this pair. Thus, the cipher-
text is leaking information about the plaintext. Using an initialization vec-
tor, which can be public, together with the secret key will give a different
keystream since the initialization process depends on both the key and the
IV.

A self-synchronizing stream cipher can be defined as follows.

Definition 2.2: In a self-synchronizing stream cipher the keystream is gen-
erated as a function of the key and δ previous ciphertext bits.
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The internal state consists of the previous δ keystream bits,

σt = (ct−δ, ct−δ+1, . . . , ct−1). (2.3)

For the first δ symbols, the previous δ symbols do not exist and instead,
these are defined by the initialization vector shared between the sender and
the transmitter. Similar to synchronous stream ciphers, the keystream is
produced by zt = g(σt,K) and the ciphertext is given by ct = h(zt,mt).
Using ct = mt ⊕ zt is the most common function also for self-synchronizing
stream ciphers. The two types of stream ciphers behave very differently in
terms of errors on the transmission channel.

• Deletion or insertion of a ciphertext bit. If a ciphertext bit is deleted or
inserted during transmission, the sender and receiver will lose syn-
chronization. For a synchronous cipher, assuming that cx is inserted
at time tx, we then have1

mt =

{
h−1(zt, cx), t = tx

h−1(zt, ct−1), t > tx
(2.4)

and it is clear that the input to h is wrong whenever t ≥ tx. In a self-
synchronizing stream cipher, assume that cx is inserted at time tx, then
we have

mt =



h−1(g(ct−δ, ct−δ+1, . . . , ct−1,K), cx), t = tx

h−1(g(ct−δ, ct−δ+1, . . . , cx,K), ctx
), t = tx + 1

...
h−1(g(cx, ct−δ, . . . , ct−2,K), ctx+δ−1), t = tx + δ
h−1(g(ct−δ−1, ct−δ, . . . , ct−2,K), ct−1), t > tx + δ

(2.5)

and we see that whenever t > tx + δ we get the same decryption, ex-
cept for a time delay, as we would get without the insertion of an extra
ciphertext bit. The error propagation will be at most δ bits, excluding
the inserted bit.

• bit error caused by noise on the channel. If ciphertext bit ctx
is modi-

fied, it is easy to see that, for a synchronous stream cipher, only the
corresponding plaintext bit mtx

will be affected. However, in a self-
synchronizing stream cipher, also the following δ plaintext bits will be
affected, since the modified ciphertext bit will be a part of the state σt,
tx < t ≤ tx + δ.

1As an example, if we have tx = 3, then c1, c2, c3, c4, c5 . . . in the transmitter will become
c1, c2, cx, c3, c4, c5 . . . in the receiver. Thus, ct will appear at time t+1 in the receiver whenever
t ≥ tx.



2.2. Common Design Blocks 13

sj-L

6
����

-cL

-

�s0, s1, . . . sj-L+1

6
����
-cL-1

6

i-

sj-2

6
����

-c2

6

i- -

sj-1

6
����

-c1

6

i

�
sj

Figure 2.2: Model of a linear feedback shift register (LFSR).

Most stream ciphers, including all ciphers investigated or proposed in this
thesis, are synchronous. Examples of self-synchronizing stream ciphers are
Mosquito [DK05] and its successor Moustique [DK07] and SSS [RHPdV05].
Mosquito and SSS have been cryptanalyzed in [JM06] and [DLP05] respec-
tively. The most common implementation of a self-synchronizing stream
cipher is to use a block cipher in CFB mode.

2.2 Common Design Blocks

There are many ways to design stream ciphers. This section discusses some
of the most common building blocks used in stream cipher design. There
exist several more or less irrational designs that use building blocks and
ideas not mentioned in this section.

2.2.1 Feedback Shift Registers

One of the most important and widely used design blocks in a stream ci-
pher is the feedback shift register, and in particular, the Linear Feedback Shift
Register (LFSR), see Fig. 2.2. An LFSR is well suited for hardware imple-
mentations and can also be implemented very efficiently in software. The
input to an LFSR is a linear combination of its state variables. Let the size
of the LFSR be denoted L and the coefficients determining the linear feed-
back function be denoted c1, c2, . . . , cL ∈ Fp. The output of the LFSR is a
sequence s = s0, s1, s2, . . . satisfying the relation

sj = −c1sj−1 − c2sj−2 − . . .− cLsj−L. (2.6)

By introducing c0 = 1 we get the shift register equation

L∑
i=0

cisj−i, j ≥ L. (2.7)
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The first L symbols s0, s1, . . . , sL−1 form the initial state of the LFSR. An
LFSR is usually specified using its connection polynomial or feedback poly-
nomial

C(D) = 1 + c1D + c2D
2 + . . .+ cLD

L, (2.8)

together with its length L.

Definition 2.3: A polynomial C(D) of degree L with coefficients in the
field Fp is said to be irreducible if it can not be written as the product of
two polynomials both of degree < L with coefficients in Fp.

Primitive feedback polynomials are the most interesting polynomials for
stream ciphers.

Definition 2.4: An irreducible polynomial C(D) of degree L with coeffi-
cients in the field Fp is said to be primitive if the smallest positive integer n
for which C(D) divides Dn − 1 is n = pL − 1.

From now on, we restrict our treatment to the case p = 2, i.e., the LFSR is
defined over the field F2.

The output of an LFSR is periodic if C(D) has degree L. The period of a
sequence is the smallest positive integer T such that st = st+T for all t > 0.
The output sequence produced by an LFSR with primitive feedback poly-
nomial C(D) of degree L has period 2L − 1. This sequence is also called
an m-sequence. In this case, the LFSR goes through all non-zero states be-
fore returning to the initial state. LFSRs with primitive feedback polynomial
have very good statistical properties, which make them suitable for stream
cipher applications.

• The distribution of k-bit patterns, k ≤ L is almost uniform. Looking at
2L +k− 2 consecutive output bits, each non-zero sequence of length k
appears 2L−k times and the zero sequence of length k appears 2L−k−1
times.

• The autocorrelation function

R(i) =
1

2L − 1

2L−1∑
t=0

(2ut − 1)(2ut+i − 1) (2.9)

is small for 0 < i < 2L − 1. More specifically, we have

R(i) =

{
1, if i = 0,
− 1

N , if 0 < i < 2L − 1.
(2.10)
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Despite these nice statistical properties, an LSFR alone can not be used as
a stream cipher. This is due to the linearity of the produced output bits.
If we know L output bits, and the feedback polynomial, we can solve the
corresponding system of linear equations and we can predict all other bits
produced by the LFSR.

An LFSR can be used to produce any sequence of bits. If the output of
a stream cipher can be produced by a relatively short LFSR of length L,
then this LFSR can be found using 2L consecutive output bits. Then, all
other output bits can be predicted because of the linearity. Using this as
background, we define the linear complexity.

Definition 2.5: The linear complexity of a finite binary sequence s = s0, s1, . . .,
denoted L(s), is the length of the shortest LFSR that can generate s.

The Berlekamp-Massey algorithm is an efficient algorithm that can deter-
mine the linear complexity L(s) of a finite sequence s of length n. The basis
for the algorithm is due to Berlekamp as a way to decode BCH codes, see
e.g., [LC04]. Later, in [Mas69], Massey showed that the algorithm could be
used to find the shortest LFSR that can produce a given sequence. The com-
putational complexity of the Berlekamp-Massey algorithm is at mostO(n2).

2.2.2 Boolean Functions

Boolean functions are very common in stream ciphers. A Boolean function
f(x1, x2, . . . , xn) on n variables may be viewed as a mapping from a vector
x = (x1, x2, . . . , xn) where xi ∈ F2, 1 ≤ i ≤ n to a single output bit,

f : Fn
2 → F2. (2.11)

The number of Boolean functions of n variables is 22n

and we denote the set
of all Boolean functions on n variables by Bn. A function f(x1, . . . , xn) ∈ Bn

can be defined by its truth table, i.e., a binary string of length 2n,

f = [f(0, 0, . . . , 0), f(1, 0, . . . , 0), f(0, 1, . . . , 0), . . . , f(1, 1, . . . , 1)], (2.12)

defining the output for each possible input. A Boolean function f is balanced
if the truth table contains an equal number of 1’s and 0’s.

Any Boolean function f(x1, . . . , xn) can be written in one of several nor-
mal forms. In cryptology, the most common normal form is the Algebraic
Normal Form (ANF). This represents the Boolean function as a polynomial
over F2.

Definition 2.6: The algebraic normal form of a Boolean function f(x1, . . . , xn)
∈ Bn is given by

a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

aijxixj ⊕ . . .⊕ a12...nx1x2 . . . xn, (2.13)
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where the coefficients a0, aij , . . ., a12...n ∈ F2.

Other examples of normal forms are the disjunctive normal form and the
conjunctive normal form. The algebraic degree, deg(f), is the number of vari-
ables in the highest order term in the ANF with non-zero coefficient. A
Boolean function is affine if there exists no term of degree > 1 in the ANF.
We denote the set of all affine functions of n variables by A(n). An affine
function with the constant term a0 = 0 is called a linear function. The Ham-
ming weight of a binary string S is the number of ones in the string. This
number is denoted by wt(S). The Hamming distance between two strings,
S1 and S2 is denoted dH(S1, S2) and is the number of places where S1 and
S2 differ. Note that dH(S1, S2) = wt(S1 ⊕ S2). This allows us to define the
nonlinearity.

Definition 2.7: The nonlinearity of a Boolean function f ∈ Bn, denoted
nl(f), is the minimum distance from the set of all n-variable affine func-
tions,

nl(f) = min
g∈A(n)

(dH(f, g)). (2.14)

Another important property is the correlation immunity, which is a measure
of to which degree its output is correlated to some subset of its inputs.
The mutual information I(X;Y ) is an information theoretic measure of the
amount of information one random variable contains about another random
variable.

Definition 2.8: Let the inputs to an n-variable Boolean function be random
variables X1, X2, . . . , Xn and let the output be a random variable Z. Then a
Boolean function with correlation immunity of order m satisfies

I(Z;Xi1 , Xi2 , . . . , Xim) = 0, i1 ≤ i2 ≤ . . . ≤ im. (2.15)

The immediate application to cryptology is the fact that a biased linear (or
affine) non-constant approximation of an mth order correlation immune
Boolean function must have at least m + 1 terms. An attack taking ad-
vantage of low correlation immunity is the correlation attack described in
Section 2.3.4. A balanced mth order correlation immune function is called
m-resilient. In [Sie84], Siegenthaler showed that there is an important trade-
off between algebraic degree d and correlation immunity, namely that

m+ d ≤ n, (2.16)

with strict inequality if the function is balanced2.

2With the exception of the parity check function X1 ⊕X2 ⊕ . . .⊕Xn which is balanced, of
degree d = 1 and correlation immune of order m = n− 1.
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Many properties of Boolean functions can be described by the Walsh
transform. Let x = (x1, . . . , xn) and ω = (ω1, . . . , ωn) both belonging to Fn

2

and x · ω = x1ω1 ⊕ . . . ⊕ xnωn. Let f(x) ∈ Bn. Then the Walsh transform of
f(x) is a real valued function over Fn

2 defined as

Wf (ω) =
∑
x∈Fn

2

(−1)f(x)⊕x·ω. (2.17)

Using the Walsh transform, a Boolean function f is balanced if and only
if Wf (0) = 0. The nonlinearity of f is given by

nl(f) = 2n−1 − 1
2

max
ω∈Fn

2

|Wf (ω)|. (2.18)

A function is m-resilient (respectively mth order correlation immune) if and
only if its Walsh transform satisfies

Wf (ω) = 0,∀ω ∈ Fn
2 s.t. 0 ≤ wt(ω) ≤ m (respectively 1 ≤ wt(ω) ≤ m).

(2.19)
Parseval’s Theorem states that the sum of the square of the Walsh transform
is constant,

∑
ω∈Fn

2
W 2

f (ω) = 22n.
Bent functions are a special class of Boolean functions. They are charac-

terized by the fact that the Walsh transform is constant. Combining (2.18)
with Parseval’s Theorem, it is easy to see that Bent functions have the high-
est possible nonlinearity, nl(f) = 2n−1 − 2n/2−1, that Bent functions must
have n even and that they cannot be balanced. A simple Bent function, used
in Chapter 8, is

f(x1, x2, . . . , xn) = x1x2 ⊕ x3x4 ⊕ . . .⊕ xn−1xn. (2.20)

Webster and Tavares [WT86] introduced the concept of Strict Avalanche Cri-
terion (SAC).

Definition 2.9: An n-variable Boolean function f(x) satisfies the SAC if
f(x)⊕ f(x⊕ α) is balanced for any α ∈ Fn

2 such that wt(α) = 1.

The Propagation Criterion was introduced in [PLL+91] and is a generalization
of SAC.

Definition 2.10: A Boolean function f ∈ Bn satisfies the propagation crite-
rion PC(l) of degree l if f(x)⊕f(x⊕α) is balanced for any α ∈ Fn

2 such that
1 ≤ wt(α) ≤ l.

Obviously SAC is equivalent to PC(1). Higher order propagation criterion
is motivated by the fact that some input bits to the Boolean function can be
fixed in a known plaintext scenario.
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Definition 2.11: A Boolean function f ∈ Bn satisfies the propagation cri-
terion PC(l) of degree l and order m if any function obtained from f by
keeping m input bits constant satisfies PC(l).

Higher order SAC was introduced in [For90]. SAC of order m is equivalent
to PC(1) of order m.

2.2.3 S-Boxes

S-boxes are very common in block ciphers, but are also widely used in
stream cipher designs. Theory of S-boxes is not vital for the understand-
ing of this thesis, but their importance motivates a short overview.

An (n,m) S-box is a mapping f : F2n → F2m . Let x = (x1, x2, . . . , xn) be
the input to the S-box and let y = (y1, y2, . . . , xm) denote the output of the
S-box. Then we can write

y = f(x) ⇒


y1 = f1(x1, x2, . . . , xn),
y2 = f2(x1, x2, . . . , xn),
...
ym = fm(x1, x2, . . . , xn).

(2.21)

The Boolean functions f1, f2, . . . , fm are called component functions. An
S-box can be represented by the truth tables or the ANF of the component
functions. Sometimes it is also possible to represent an S-box as an operation
in a finite field.

Basically, an S-box substitutes (nonlinearly) one value for another. Some
S-boxes are static and thus assumed known to the adversary, but it is also
common to have key dependent S-boxes. A static S-box can be designed to
counter some specific attacks efficiently. A key dependent (or varying) S-
box can not have optimum parameters at all times. On the other hand, they
can be good in average and are unknown to the adversary.

The properties of S-boxes are closely related to those of Boolean func-
tions. Let L be the set of all non-constant m-variable linear functions. Let
(l◦f)(x) = l(f(x)) be the n-variable Boolean function given by the composi-
tion of l and f . An (n,m) S-box is balanced if l ◦ f is balanced ∀l ∈ L and an
(n,m) S-box is correlation immune of order t if l ◦ f is correlation immune
of order t ∀l ∈ L. Further, an (n,m) S-box is t-resilient if l ◦ f is t-resilient
∀l ∈ L.

Definition 2.12: The nonlinearity of an S-box f is defined as the minimum
nonlinearity of all non-zero linear combinations of the component functions

nl(f) = min
l
{nl(l ◦ f)}. (2.22)
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i = j = 0;
while (1)

i = (i + 1) mod 256;
j = (j + S[i]) mod 256;
Swap(S[i],S[j]);
out = S[(S[i] + S[j]) mod 256];

Figure 2.3: The keystream generation phase in RC4.

The nonlinearity of an (n,m) S-box f is upper bounded by nl(f) ≤ 2n−1 −
2(n−2)/2 with equality only if n is even and m ≤ n/2 [Nyb91].

Definition 2.13: The algebraic degree of an S-box f is defined as the mini-
mum algebraic degree of all non-zero linear combinations of the component
functions

nl(f) = min
l
{deg(l ◦ f)}. (2.23)

Probably, the most well-known S-box today is the (8, 8) S-box used in AES
(Rijndael) [DR02]. The input is represented as an element in F28 . The out-
put is then defined as the multiplicative inverse3 in the finite field followed
by an affine transformation. In [Nyb93], it was shown that the inversion
mapping in a finite field has high nonlinearity and that it has also very
good properties in countering differential attacks. This particular S-box has
also been used in several stream ciphers, e.g., SNOW 2.0 [EJ02], Hermes-
8 [Kai05] and Hiji-bij-bij [Sar03].

2.2.4 Large Tables

Using large tables is extremely efficient in software and some of the fastest
stream ciphers are based on this principle. As an example we use the most
well-known and widely used stream cipher, RC4. RC4 uses a table S defin-
ing a permutation of all 256 possible bytes. Additionally, two index pointers
i and j are used. The keystream generation phase is given in Fig. 2.3. Each
iteration updates i and j, swaps two entries in the table and outputs an en-
try as a function of i and j. There are many cryptanalytic results on RC4, see
e.g., [MS01, FM00, KMP+98, PP03, PP04a, Gol97b]. Other stream ciphers us-
ing large tables are VMPC [Zol04], RC4A [PP04b] and Py [BS05]. To the best
of our knowledge, there is still no cipher based solely on a large table that
does not suffer from (at least) distinguishing attacks. In [Max05b], attacks
on VMPC and RC4A are given. For an attack on Py we refer to [WP07].

3The zero element is mapped onto itself.
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2.2.5 T-functions

Compared to the previously described building blocks, T-functions are rela-
tively new. The usage of T-functions was first proposed in 2002 by Klimov
and Shamir [KS03]. Assume an n-bit state S = (s0, s1, . . . , sn−1), with s0
being the least significant and sn−1 the most significant bit. A T-function
updates every bit in the state as

si(t+ 1) = si(t) + f (s0(t), s1(t), . . . , si−1(t)) , (2.24)

i.e., every bit is updated as a linear combination of itself and a function of
its less significant bits. This bijective mapping is interesting in cryptogra-
phy, especially because it is possible to find mappings resulting in S hav-
ing a single cycle. In [KS03], it was shown that the state update function
S(t + 1) = S(t) + (S2(t) + C) mod 2n is a permutation with a single cycle
of length 2n if and only if, for the constant C = (c0, c1, . . . , cn−1), we have
c0 = c2 = 1. Following [KS03], there has been several papers written on
T-functions [KS04a, KS04b, KS05, HLYH05, Dau05]. There are also some re-
cent stream cipher proposals based on T-functions, TSC-1, TSC-2 [HLYH05],
TSC-3 [HLY+05], TSC-4 [MKH+06], and MIR-1 [Max05a].

2.2.6 Some Well-Known Stream Ciphers

In this section we give a few examples of existing stream ciphers. The de-
signs are only briefly discussed and we refer to the design documents for a
more detailed description.

Two classical stream cipher designs are the nonlinear combiner and the
nonlinear filter generator. Many modern ciphers are based on one of these
ideas and many attacks are also focused on cryptanalysis of these ciphers.
The nonlinear combiner consists of a set of n LFSRs denoted R1, R2, . . . , Rn.
Denote the output of Ri at time t by si(t). Then the keystream z(t) is given
as

z(t) = f(s1(t), s2(t), . . . , sn(t)), (2.25)

where f is an n-variable nonlinear Boolean function. The nonlinear filter
generator is an alternative to the nonlinear combiner and uses only one
LFSR. The keystream is then given as a Boolean function of a subset of the
LFSR bits. Fig. 2.4 shows the principle of the nonlinear combiner and the
nonlinear filter generator. Constructing a secure stream cipher using one
of these ideas is not very practical, given the development in cryptanaly-
sis. This is e.g., shown in [BL05]. Instead, other design blocks are added to
improve security. One example is the LILI stream ciphers, which add clock
control to the nonlinear filter. LILI-128 has 2 LFSRs, Rc of size 39 and Rd

of size 89. The function fc takes, at time t, two bits from Rc as input and
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Figure 2.4: Principle of the nonlinear combiner (left) and the nonlinear
filter generator (right).

outputs an integer c(t) ∈ {1, 2, 3, 4}. Then Rd is clocked c(t) times. The key-
stream z(t) is given as the output of a 10-variable Boolean function, taking
inputs from Rd. The function fd is chosen to be balanced, 3-resilient, has
algebraic degree 6 and nonlinearity 480. Due to several attacks on LILI-128,
an improved version denoted LILI-II was designed. It uses larger LFSRs,
of size 128 and 127 respectively, and also a more complex Boolean output
function fd.

A variant of the nonlinear combiner is the summation generator. It was
proposed by Rueppel [Rue86] and adds memory to the construction. The
memory is a carry value c(t) of dlog ne bits. The keystream z(t) and the
carry update is given by

z(t) = s1(t)⊕ s2(t)⊕ . . .⊕ sn(t)⊕ c0(t) (2.26)
c(t+ 1) = b(s1(t) + s2(t) + . . .+ sn(t) + c(t)) /2c (2.27)

where c0(t) is the least significant bit of c(t). The motivation for this design
is that it is possible to avoid the tradeoff between degree and resiliency of
the Boolean combining function as given in (2.16) by using memory. The
stream cipher E0 [Blu04], used in the Bluetooth standard is related to the
summation generator. The difference is that the (2 bit) memory is updated
in a slightly more complicated way.

The Achterbahn family of stream ciphers is another variant of the nonlin-
ear combiner. Instead of using LFSRs, these ciphers deploy a set of nonlinear
feedback shift registers. Cryptanalysis of this family is given in Chapter 7.

Some of the simplest stream ciphers are the shrinking generator and the
self-shrinking generator. These are described in more detail in Chapter 4.

Several modern stream ciphers use word-based LFSRs. Using an LFSR
defined over F232 allows the cipher to take advantage of the statistical prop-
erties provided by LFSR sequences and at the same time have an efficient
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implementation in software. Probably, the most well-known cipher in this
category is SNOW 2.0 [EJ02], an improvement of SNOW [EJ00]. The SNOW
stream ciphers are inspired by the nonlinear filter generator. Instead of a
Boolean output function, some LFSR state variables are taken as input to a
finite state machine (FSM).

2.3 Methods of Cryptanalysis

2.3.1 Classifying the Attack

Before we discuss different cryptanalytic approaches, we need to introduce
and define some basic terminology. Most attacks on stream ciphers belongs
to one of two main categories depending on the goal of the attack.

• Key recovery attack. In a key recovery attack, the adversary will re-
cover the secret key used in the cipher. The complexity of this attack
is directly comparable to the complexity of trying all possible keys, an
exhaustive search or a brute force attack, described in Section 2.3.2.

• Distinguishing attack. In a distinguishing attack, the adversary will
not retrieve the secret key. Instead, the goal is to distinguish the key-
stream sequence produced by the stream cipher from a truly random
sequence.

Any key recovery attack is also a distinguishing attack. A distinguishing
attack is obviously much less powerful than a key recovery attack. It has
been argued that a distinguishing attack with high complexity (but lower
than exhaustive key search) does not render the cipher broken [RH02]. A
distinguisher can be seen as a black box, taking a sequence of symbols as
input and outputs either cipher or random. It is possible to imagine attacks
falling outside or slightly in between a distinguishing attack and a key re-
covery attack. The attack on Pomaranch given in Section 6.9 is an example
of this. That attack can be used as a distinguishing attack but it will also
recover some part of the plaintext when only the ciphertext is known to the
adversary. Another possible attack is a state recovery attack, in which the goal
is to recover the state of the cipher.

Another classification of an attack is based on the amount of knowledge
we assume that the adversary has. We distinguish between 4 different sce-
narios.

• Ciphertext only attack. The adversary has only knowledge of the en-
crypted string. In this case, the plaintext must have some redundancy
in order for an attack to be applicable. The redundancy is usually the
knowledge that the plaintext is English text or that the text is in ASCII
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format and no special characters are used. In the latter case we then
know that every eighth bit is zero.

• Known plaintext attack. The adversary knows both the plaintext and
the corresponding ciphertext. This means that the adversary also has
knowledge of the keystream.

• Chosen plaintext attack. In this scenario, the adversary can choose a
plaintext and construct the corresponding ciphertext. This can also be
seen as the adversary has access to the encryption device.

• Chosen ciphertext attack. Same as above, but the adversary has access
to the decryption device and can construct plaintext from a chosen
ciphertext.

Again, it is possible to imagine extensions to these scenarios. As an example,
in a related key attack it is also assumed that the adversary knows that two
different keys are related to each other in some known way, e.g., some bits
are the same.

A third classification of an attack is at which part, the initialization phase
or the keystream generation phase, of the cipher the attack targets.

• Initialization phase. In general, the cipher is reinitialized several times
with the same key but with different IVs. If the key and/or the IV
is not properly diffused into the state it is sometimes possible to get
information about the key. These attacks can also be divided into Cho-
sen IV attack and Known IV attacks, depending on to which extent the
adversary can control the generation of IVs.

• Keystream generation phase. In general, only one initialization of the
cipher is required and the keystream corresponding to this IV is used
in the attack. The attack can take advantage of statistical or algebraic
weaknesses in the keystream generation in order to recover the key or
to distinguish the keystream from random.

2.3.2 Brute Force Attack

The easiest and most straight forward way of recovering the key is to search
through all possible keys, known as a brute force attack4. Given a keysize
of |K| bits, this method will require at most 2|K| tries, while the expected
number of tries is 2|K|−1. Brute force, or exhaustive key search, in a known-
plaintext scenario is applicable to all stream ciphers and the notion of break-
ing a cipher can be defined as finding a method that finds the secret key

4The brute force attack should not be confused by the literal meaning of the phrase in which
the adversary, using physical abuse or public humiliation, retrieves the secret key.
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faster than an exhaustive key search. Naturally, the size of the key in a ci-
pher is chosen such that a brute force is impossible in practice. The most
common choice for the key size is 128 or even 256 bits. In eSTREAM, a
need for ciphers allowing a key size of 80 bits has been recognized, though
the adequacy of these short keys has been disputed. As a comparison, the
data encryption standard has a key size of 56 bits and because of U.S. Gov-
ernment restrictions a version of RC4 using key size of only 40 bits was
sometimes used to "secure" IEEE 802.11 wireless networks.

The complexity of a brute force attack should not just be seen as the up-
per limit of the complexity of successful cryptanalysis. Considerable effort
has also been put into building machines or clusters that can perform a brute
force attack efficiently. In [Ber05], the author shows that many computers
in parallel can be used in a brute force search, and the cost for the attack is
also given. The author also argues that several attacks believed to be faster
than brute force are in fact more expensive and should not be considered as
breaking the algorithm.

The EFF DES Cracker [EFF07] is a DES cracking machine that was built
in 1998. The cost of the machine is about $250000 and consists of 29 cir-
cuit boards with 64 chips on each. The machine can try all 256 possible
DES keys in about 5 days. This was almost 10 years ago and technology
has developed since then. More recently, an FPGA based machine named
Copacobana [KPP+06] was built, costing less than $10000. The machine is
optimized for cryptographic hardware. It can brute force a DES key in about
one week but it can also perform other cryptographic tasks.

2.3.3 Time-Memory Tradeoff Attacks

This attack has two phases, a preprocessing phase and a real time phase. The
preprocessing phase collects information about the cipher and this infor-
mation is saved in tables. In the real time phase, the precomputed tables
together with data from an unknown key are used to find the key. The first
time-memory tradeoff attack was given by Hellman in [Hel80] and was ap-
plied to block ciphers in a chosen plaintext scenario. Some notation in this
section will be adopted from the published work on time-memory-tradeoff
attacks and it will thus slightly differ from the notation in the rest of the
thesis.

Let P be the plaintext block and C = Ek(P ) be the ciphertext block
encrypted with cipher E using the key k. Let R be a reduction function. In
the preprocessing phase we calculate m chains of keys as

ki = f(ki−1) = R(Eki−1(P )), (2.28)

starting with some value k1. Each chain is t keys long and thus we cre-
ate a matrix containing mt keys, see Fig. 2.5. Only the m starting points
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Figure 2.5: Matrix created in Hellman’s attack.

k1,1, k2,1, . . . , km,1 and the m endpoints k1,t, k2,t, . . . , km,t are saved, giving
the tradeoff between the real time computational complexity and the mem-
ory needed. In the real time phase, the adversary observes a ciphertext and
tries to find its predecessor in the chain (2.28). This is done by going for-
ward in the chain until a saved endpoint is reached. When we know in
which chain the key is, we can go forward from the corresponding starting
point until we find the observed ciphertext ki. The key used in that step,
ki−1, is then the key used in the encryption. If two values in the matrix
collide, the two chains will merge and all subsequent values in that chain
will also collide. We assume that the first m chains, covering mt keys, are
disjoint. If N is the size of the search space, then, as long as t ·mt ≤ N the
next chain is also disjoint with high probability. Thus, m and t are chosen
such thatmt2 = N . Anm× tmatrix withmt2 = N will only cover a fraction
of 1/t of the search space. To solve this, tmatrices are created, all using a dif-
ferent reduction function R. Then, if two values in different tables intersect,
they will not merge.

An improvement is to use distinguished points, referenced to Rivest
in [Den82]. Instead of having chains of constant length, a chain is termi-
nated when the value ki is of a special form, e.g., the last log t bits are zero.
This will significantly reduce the memory access. The value ki is compared
with the list of endpoints only if it is of the special form. Another advan-
tage is that all merging chains will have the same endpoint and can thus be
detected.

Another improvement are so called rainbow tables [Oec03]. Instead of
having t tables of size m× t each, only one table is used of size mt× t. The
idea is to use a different type of chains, which can collide within the same
table without merging. Each point in the chain uses a different reduction
function, R1, R2, . . . , Rt−1. Colliding chains will then only merge if they
collide in the same point in the table, i.e., they merge with probability 1/t.
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This version of the time-memory tradeoff attack is widely used in practice
to find passwords after intercepting their hash values.

Only one chosen plaintext block is used in the time-memory tradeoff
attack on block ciphers and it is not clear how more plaintext can improve
the attack. The tradeoff curve between time T and memory M in the attack
is given by

TM2 = N2 (2.29)

and a typical point on the curve is T = M = N2/3. The preprocessing time
is P = N .

In the case of stream ciphers, the situation is different. The size of the
search space N is given by the number of possible states and since the
keystream is determined only by the state5, we can include data D as a
part of the tradeoff, resulting in a time-memory-data tradeoff. The first
time-memory-data tradeoff attack on stream ciphers was independently de-
scribed by Golić [Gol97a] and Babbage [Bab95]. Each state is associated with
the first logN bits of keystream produced from that state. In the preprocess-
ing phase, M random states with corresponding logN bits of keystream are
saved in memory and sorted by keystream. In the real time phase, the ad-
versary is given a keystream sequence ofD+logN−1 bits and extracts allD
possible windows of logN consecutive bits. For each window, the memory
is logarithmically searched in order to find if it collides with a keystream
sequence saved in the table. We expect to find a collision if DM = N . The
preprocessing time is P = M and the time complexity in the real time phase
is T = D. The tradeoff curve is thus

TM = N. (2.30)

A typical point on the curve is T = M = N1/2. This suggests that any
stream cipher should have a state at least twice the keysize.

The two attacks on block ciphers and stream ciphers can be combined to
decrease the amount of memory and keystream needed, making the attack
more suited for practical applications. Clearly, it is more practical to assume
a limited amount of known data and memory is much more expensive than
clock cycles. The combined approach was given by Biryukov and Shamir
in [BS00]. The chain is produced by loading the state with the previously
produced logN bits. Only the starting points and the endpoints are stored
in memory. The number of points covered by the tables is P = N/D with
N = mt2. Thus, with D observed keystream windows, the adversary will
expect to find a collision. The tradeoff curve in this case is given by

TM2D2 = N2 (2.31)
5If the key and/or IV is used in the state update function, these are seen as a part of the state

here.
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with the restriction D2 ≤ T ≤ N . It is possible to decrease the lower bound
if the stream cipher has low sampling resistance. An example is the attack
on LILI-128 given in [Saa02]. We refer to [BS00] for a more detailed analysis
of sampling resistance. A typical point on this curve is P = T = N2/3,
M = D = N1/3.

A more general framework for the time-memory-data tradeoff attack
is given in [BMS06]. It is shown that the Babbage-Golić attack and the
Biryukov-Shamir attack can be seen as special cases of this framework.

2.3.4 Correlation Attacks

One of the most important and studied attacks on stream ciphers are the
correlation attacks. The target of correlation attacks is the nonlinear com-
biner using a nonlinear Boolean combining function f . We denote the ith
LFSR used in the nonlinear combiner by Ri and its size by Li. An exhaus-
tive search, recovering the initial states of all LFSRs used in the nonlinear
combiner would require

T =
M∏
i=1

2Li (2.32)

tries, where M is the total number of LFSRs. However, it is possible to
do much better using a correlation attack. The correlation attack was first
described in [Sie85]. It uses the fact that there is always a linear correlation
between the output of a subset of the LFSRs and the output of the nonlinear
Boolean function. This correlation can be found by looking at the Walsh
transform of the Boolean function and can be written as

Pr(z(t) = xi1(t)⊕ xi2(t)⊕ xi3(t)⊕ . . .⊕ xim(t)) =
1
2
(1 + ε), (2.33)

where z(t) is the keystream bit at time t and xij (t) is the output of register
xij

at time t. The smallest subset of LFSRs that has to be considered in order
to have |ε| > 0 is given by the resiliency6 m of the Boolean function. For the
mutual information between any subset of m′ LFSR bits and the keystream
bit z it holds

I(Xi1 , Xi2 , . . . , Xim′ ;Z) = 0, m′ ≤ m, (2.34)

whereXi and Z are random variables. Moreover, there is at least one subset
of m+ 1 LFSR bits and the keystream bit z such that

I(Xi1 , Xi2 , . . . , Xim′ ;Z) > 0, m′ = m+ 1. (2.35)

6We assume that the function f is balanced.
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Figure 2.6: The keystream can be seen as the output of an LFSR sent
over a binary symmetric channel.

Thus we need to consider m′ > m LFSR outputs in our linear approxima-
tion of f . If we consider the simplest case when m = 0, the computational
complexity will be

T =
∑

i

2Li ≈ max(L1, L2, . . . , LM ), (2.36)

which is much faster than the exhaustive search attack complexity in (2.32).
The output bits of the LFSRs used in (2.33) are linearly generated so the

sum
x(t) = xi1(t)⊕ xi2(t)⊕ xi3(t)⊕ . . .⊕ xim′ (t) (2.37)

can be expressed as the output of another, larger LFSR of size

L = lcm(Li1 , Li2 , . . . , Lim′ ). (2.38)

Further, the nonlinear Boolean combining function can be replaced by a bi-
nary symmetric channel (BSC). Fast correlation attacks are usually studied
in this BSC model. The output of the generator is seen as a noisy version
of the output of the LFSR. The cryptanalysis can then be seen as a decod-
ing problem where the initial state bits of the LFSR are the information bits,
the output of the LFSR is the corresponding codeword and the keystream
is the received codeword after the introduction of a noisy channel with er-
ror probability p 6= 0.5, see Fig. 2.6. The number for keystream bits needed
in order to decode the received codeword can be derived from the channel
coding theorem. Let the rate of the code be R = L/N . The highest possible
rate, called the capacity C, for the binary symmetric channel is

CBSC = 1− h(p), (2.39)

where
h(p) = −p log p− (1− p) log(1− p) (2.40)
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is the binary entropy function. For any code with R < C there exists a cod-
ing technique that can reconstruct the codeword at the receiver with arbi-
trarily low error probability. If R > C arbitrarily low error probability is not
achievable. Letting CBSC > L/N gives us a lower bound on the keystream
length N needed for correct decoding,

N >
L

1− h(p)
. (2.41)

We can write p = 0.5(1 + ε), where ε is called the bias or the imbalance.
Then, for small values of p, we can use the Taylor series ln(1+x) ≈ x−x2/2
together with log(1 + x) = ln(1 + x)/ ln(2) and approximate 1− h(p) as

1− h(p) = 1 + p log p(1− p) log(1− p)

= 1 +
1
2
(1 + ε) log

(
1
2
(1 + ε)

)
+

1
2
(1− ε) log

(
1
2
(1− ε)

)
≈ 1 +

1
2 ln 2

(
(1 + ε)(ε− ε2

2
− ln 2)− (1− ε)(ε+

ε2

2
+ ln 2)

)
= 1 +

ε2 − 2 ln 2
2 ln 2

=
ε2

2 ln 2
(2.42)

Thus, the keystream length can be given as

N >
2L ln 2
ε2

. (2.43)

The correlation attack only uses weaknesses found in the Boolean combin-
ing function. It does not take advantage of the linear feedback in the LFSRs
and the fact that there are always parity check equations in the LFSR out-
put bits that holds with probability 1. However, this property is used in the
fast correlation attacks introduced by Meier and Staffelbach [MS89]. All fast
correlation attacks are divided into two steps, a preprocessing step and a
processing step. In the preprocessing step, parity check equations involv-
ing the output bits of the LFSR are found and in the processing step, these
equations are used to find the initial state of the LFSR. For a more detailed
analysis of fast correlation attacks we refer to [J0̈2].

2.3.5 Algebraic Attacks

Algebraic attacks are a relatively recent addition to the list of cryptanalysis
techniques. Yet, the formulation of the idea dates back to Shannon [Sha49].
For several ciphers, algebraic attacks have been shown to be much more
powerful than any other known attacks. The idea is to write the cipher as
a system of equations involving only key bits and keystream bits. Since all
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ciphers include a nonlinear part, this system of equations will be of degree
≥ 2. Solving a system of nonlinear equations over F2 is known to be an
NP-complete problem even for quadratic equations. However, if the system
is overdefined, things may get a little bit easier. Assume that we have M
equations in n variables and of degree d ≤ n/2. There are

T =
d∑

i=1

(
n

i

)
≈
(
n

d

)
(2.44)

possible monomials and if M ≥ T , each monomial can be replaced with a
new variable and the resulting linear system can be solved. This is known as
linearization. If not enough equations are available, other methods such as
the XL algorithm or Gröbner bases can be used. This situation is more com-
mon in algebraic attacks on block ciphers and we refer to [CKPS00, Fau02]
for more information on this.

In the case of stream ciphers based on LFSRs with linear feedback and
a nonlinear Boolean output function f , each new known keystream bit will
result in a new equation. Thus, it is favourable to require enough keystream
bits in order to apply linearization instead of using the less efficient XL al-
gorithm or Gröbner bases. Though, it should be noted that in the first attack
on the stream cipher Toyocrypt in [Cou03b], the XL-algorithm was used.
In that attack, f had to be approximated by a low degree function and the
amount of keystream required for linearization was too much to keep the
error probability sufficiently small. In [CM03], it was shown that even if f
is of high degree, algebraic attacks could still be very efficient if there was a
function g such that f · g was of low degree or 0. The year after, in [MPC04],
this approach was generalized. It was shown that it is enough to find a func-
tion g of low degree such that g · f = 0 or g · (f + 1) = 0. This motivated a
new property for a Boolean function f , the algebraic immunity, AI(f).

Definition 2.14: The smallest degree of a function g such that g · f = 0 or
g · (f + 1) = 0 is called the algebraic immunity of f , denoted AI(f). The
function g is called an annihilator of f .

In [MPC04], two algorithms for finding the algebraic immunity of a func-
tion f was given. The computational complexity of these algorithms was
O(D3) with D =

(
n
d

)
, where d is the algebraic immunity i.e., the degree

of g. An improved algorithm was given in [ACG+06] with computational
complexity O(D2). Also, in [DT06] an algorithm with complexity O(nd) is
given. In [DGM05], it is shown how to construct Boolean functions with
good algebraic immunity.

An extension of algebraic attacks is the fast algebraic attack. In this at-
tack, the degree of the equations is reduced in a precomputation step. We
refer to [Cou03a, Arm04] for a more detailed description.
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Algebraic attacks have also been shown to be applicable to nonlinear
combiners using memory. The stream cipher used in Bluetooth is an ex-
ample of a combiner with memory and in [AK03] it was shown that E0
could be broken by an algebraic attack. Some other stream ciphers shown
to be vulnerable to algebraic attacks are Toyocrypt [Cou03b,CM03,Cou03a],
LILI-128 [CM03, Cou03a], the summation generator [LKH+04], SOBER-t16
and SOBER-t32 [CP04].

Another paper that deserves mentioning is [HR04] in which the authors
show that all previous papers on fast algebraic attacks have underestimated
the complexity of inserting the observed keystream into the equations. More-
over, an efficient way of doing this based on the fast Fourier transform is
given.

2.3.6 Guess and Determine Attacks

A guess and determine attack can be divided into 3 main steps.

(i) A part of the internal state of the stream cipher is guessed. This can be
e.g., a part of an LFSR.

(ii) Using relationships between internal state variables and the keystream,
the rest of the state is determined.

(iii) The determined state is verified by running the generator forward,
comparing the produced keystream z̃ = (z̃t, z̃t+1, . . .) with the known
keystream z = (zt, zt+1, . . .). If z̃ 6= z, the guess was wrong and we
return to step 1, making a new guess. Otherwise, if z̃ = z we found
the correct state.

All parts of the guessed state in the first phase do not have to belong to
the same time instant, but the state that is determined in the second phase
must be the full state at a certain time. In this basic setting, the attack re-
quires a very short known keystream. However, it is likely that the rela-
tionship between the state and the keystream requires too many variables
to be guessed. Assuming some special relationship between variables can
remove nonlinearity and keep the number of guessed values sufficiently
small. Then the required known keystream and also the computational
complexity is increased since the adversary has to repeat the attack until
the assumed relationship is fulfilled. An example of this is the attack on
SNOW by Hawkes and Rose in [HR02].

2.3.7 Side Channel Attacks

A side channel attack is fundamentally different from the previous described
attacks. Instead of attacking the mathematical description of the crypto-
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graphic algorithm, side channel attacks target the actual implementations
of the algorithm. Both hardware and software implementations have been
subjects to different attacks.

A timing analysis can give information about the secret key. Timing at-
tacks are based on the time it takes for a device to perform operations. Dif-
ferent inputs take different amount of time to process.

In a power analysis, the idea is to measure the power used by a device,
e.g., a smart card or an RFID tag. The power consumption of a hardware
device is roughly proportional to the amount of bits being flipped at a cer-
tain time. This can be used to gain information about the secret key. Power
analysis can be divided into simple power analysis (SPA) and differential power
analysis (DPA). In SPA, the power consumption is directly interpreted in or-
der to collect information about operations in a device or to retrieve key ma-
terial. In DPA [KJJ99], statistical analysis of the power consumption used in
several runs of the algorithm is used to retrieve information about the key.

2.4 Hypothesis Testing

One of the most important concepts in cryptanalysis, and in particular in
stream cipher cryptanalysis, is hypothesis testing. In this section we give
the background theory for hypothesis testing. For more details we refer
to [CT91, Ch. 12].

The following notation will be used in this section. Random variables
X,Y, . . . are denoted by capital letters and their domains are denoted by
X ,Y, . . .. The realizations of random variables x ∈ X , y ∈ Y, . . . are denoted
by small letters. A distribution is denoted by P . The probability function of
a random variable X following the distribution P is denoted by PrP [x] and
sometimes as just P [x].

We start by defining the relative entropy between two distributions.

Definition 2.15: The relative entropy between two probability mass func-
tions PrP0 [x] and PrP1 [x] over the same domain X is defined as

D (PrP0 [x]‖PrP1 [x]) =
∑
x∈X

PrP0 [x] log
PrP0 [x]
PrP1 [x]

. (2.45)

In literature the relative entropy is sometimes also referred to as informa-
tion divergence or Kullback-Leibler distance. For convenience and ease
of reading, in the following we write the relative entropy as D(P0‖P1) or
D(P0[x]‖P1[x]). Note that in general D(P0‖P1) 6= D(P1‖P0).

In a binary hypothesis test we observe a collection of independent and
identically distributed data. Denote the distribution of the observed data by
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Pobs. We consider two hypotheses, the null hypothesis H0 and the alternate
hypothesis H1:

H0 : Pobs = P0, (2.46)
H1 : Pobs = P1. (2.47)

We define a decision rule which is a function δ : X → {0, 1} such that

δ =

{
0, Pobs = P0,

1, Pobs = P1.
(2.48)

The function δ makes a decision for each x ∈ X . The decision rule divides
the domain X into two regions denoted A and Ac. A is called the acceptance
region of δ and corresponds to the decision to accept the null hypothesis.

There are two types of errors associated with a binary hypothesis test.
We can reject the null hypothesis when it is in fact true, i.e., δ(x) = 1 when
Pobs = P0. This is called a type I error and the probability of this error is
denoted α. The other alternative is that we accept the null hypothesis when
the alternate hypothesis is true, i.e., δ(x) = 0 when Pobs = P1. This is called
a type II error. The probability of this error is denoted β.

How to perform the optimal hypothesis test is given by the Neyman-
Pearson lemma.

Lemma 2.1 (Neyman-Pearson): LetX1, X2, . . . , Xm be drawn i.i.d. accord-
ing to mass function Pobs. Consider the decision problem corresponding to
the hypotheses Pobs = P0 vs. Pobs = P1. For T ≥ 0 define a region

Am(T ) =
{
P0(x1, x2, . . . , xm)
P1(x1, x2, . . . , xm)

> T

}
. (2.49)

Let αm = Pm
0 (Ac

m(T )) and βm = Pm
1 (Am(T )) be the error probabilities

corresponding to the decision region Am. Let Bm be any other decision
region with associated error probabilities α∗ and β∗. If α∗ ≤ α, then β∗ ≥ β.

If we want the two probabilities of error to be equal we should set T = 1.
Assuming that all samples are independent, (2.49) is equivalent to

Am(T ) =

{
m∑

i=1

log
(
P0(xi)
P1(xi)

)
> log T

}
. (2.50)

No general expression for the error probabilities α and β exists. Hence,
we know how to perform the optimal test, but we do not know the per-
formance of the test (in the general case). However, there exist asymptotic
expressions for the error probabilities, i.e., expressions that hold when the
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number of samples is large. The relative entropy is related to the asymptotic
error probabilities through Stein’s lemma. Stein’s lemma states that if we fix
the error probability α then β decreases so that

lim
n→∞

log β
n

= −D(P0‖P1). (2.51)

The value of α does not affect the exponential rate at which β decreases and
according to Stein’s lemma, this situation always occurs. According to (2.51)
we can asymptotically write

β ≈ 2−nD(P0‖P1). (2.52)

From (2.52) we can derive the following. Assume that we have a set of
2L sequences. We know that 2L − 1 of them are drawn from a uniform
distribution P1 and one is drawn from a biased distribution P0. The goal is
to determine which sequence is drawn from the biased distribution. For a
fixed α, the expected number of misclassified sequences is about

(2L − 1) · 2−nD(P0‖P1). (2.53)

If we put this≈ 1 the number of samples needed to find the biased sequence
is roughly given by

N ≈ L

D(P0‖P1)
. (2.54)

In cryptanalysis it is common that the two distributions P0 and P1 are
very close to each other. We denote the bias of a distribution by ε. In cryptol-
ogy literature, there are two definitions of this bias for a binary distribution,
namely

Pr(X = 0) = 0.5 + ε(1), (2.55)
Pr(X = 0) = 0.5(1 + ε(2)), (2.56)

where we temporarily distinguish them by index. When considering the
sum of k binary independent variables (X1, X2, . . . , Xk), the bias ε(i)tot of the
sum is given differently depending on what definition has been used,

ε(1)tot = 2k−1εk
(1), (2.57)

ε(2)tot = εk
(2). (2.58)

(2.57) is also known as the piling-up lemma and (2.58) can be seen as a variant.
Note that we always have ε(2) = 2ε(1). We will adopt the second notation
and from here on we drop our temporary index.
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Now, consider a binary distribution, we want to determine if a random
variable X is drawn from the cipher distribution P0 with

PrP0(X = 0) = 0.5(1 + ε),
PrP0(X = 1) = 0.5(1− ε), (2.59)

or if it is from the uniform distribution P1 with PrP1(X = 0) = PrP1(X =
1) = 0.5. We have

D(P0‖P1) =
1
2
(1 + ε) log

1
2 (1 + ε)

1
2

+
1
2
(1− ε) log

1
2 (1− ε)

1
2

= 1− h(p)
(2.42)
≈ ε2

2 ln 2
. (2.60)

Combining (2.54) and (2.60) allows us to write the number of samples needed
to find one biased distribution out of 2L distributions as

N ≈ L · 2 ln 2
ε2

. (2.61)

We see that this agrees with (2.43), the lower bound of samples needed in a
correlation attack. If we put L = 1, i.e., when there are two possible initial
states, we get a very common rule of thumb, widely used in cryptanalysis.
When the two error probabilities α and β are about equal, a distinguisher
needs asymptotically

N ≈ 1
ε2

(2.62)

samples to determine if an observed distribution is the cipher distribution
or the uniform distribution. Note that asymptotically, there is no difference
if we put 1 or 2 ln 2 in the numerator. For a more rigorous treatment of
the number of samples needed in a distinguisher, the Chernoff information
should be used. Using the Chernoff information C(P0, P1), an asymptotic
expression that minimizes the overall probability of error Pe = π0α + π1β,
where πi are the a priori probabilities of the distributions, is achieved. The
asymptotic error probability can then be written as

Pe ≈ 2−nC(P0,P1), (2.63)

where

C(P0, P1) = − min
0≤λ≤1

log

(∑
x

Prλ
P0

[x]Pr1−λ
P1

[x]

)
. (2.64)

The Chernoff information between two distributions is often hard to find
since we have to minimize over λ. A common way of avoiding this is to
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pick a value of λ, e.g., λ = 0.5. This will give a lower bound for the Chernoff
information and thus an upper bound for the error probability. For more
details we refer to [CT91, Ch. 12].

We end this section on hypothesis testing by considering the error prob-
abilities when the number of samples are given by multiples of (2.62) and
(2.61). Assume that the cipher distribution P0 is given by (2.59) and let P1

be the uniform distribution. The expected values and standard deviations
are given by

EP0{X} = 1
2 (1− ε), σP0 = 1

2

√
(1− ε2)

EP1{X} = 1
2 , σP1 = 1

2 .
(2.65)

Let S =
∑N

i=1Xi denote the sum of N values. If N is large, then according
to the central limit theorem, S is normally distributed with

EP0{S} = N
2 (1− ε), σP0 = 1

2

√
N(1− ε2)

EP1{S} = N
2 , σP1 =

√
N
2 .

(2.66)

The two distributions are given in Fig. 2.7. The two error probabilities are
given by

α =

∞∫
N/2(1−ε/2)

1
σP0

√
2π
e
−

(t−EP0
{S})2

2σ2
P0 dt (2.67)

β =

N/2(1−ε/2)∫
−∞

1
σP1

√
2π
e
−

(t−EP1
{S})2

2σ2
P1 dt (2.68)

Assume that we want to determine if an observed distribution Pobs = P0 or
Pobs = P1. If the a priori probabilities are equal, π0 = π1 = 0.5, and if ε is
small, then the error probability is given by Pe = α = β. We write (2.62) as

N =
d

ε2
, (2.69)

and for different values of d we get the error probabilities given in Table 2.1.

In (2.61) we assume that we have a set of 2L sequences and only one
follows the cipher distribution P0. Assume for simplicity that each test is
independent. The error probability for each test is Pe = π0α + π1β with
π0 = 1/2L and π1 = (2L − 1)/2L. If we let π0α = π1β we get

α = (2L − 1)β. (2.70)
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N/2N/2(1− ε)

P0 P1

N/2(1− ε
2 )

αβ

Figure 2.7: The two distributions P0 and P1.

d 1 2ln 2 2 3 4 5 10 20
Pe 0.31 0.28 0.24 0.19 0.16 0.13 0.06 0.013

Table 2.1: The error probability when the number of samples is as
given in (2.69), for different choices of d.

For the 2L hypothesis tests we want to make the correct decision for all se-
quences. Hence, the total error probability is given by

Pe = 1−
(
(1− β)2

L−1 (1− α)
)
. (2.71)

We write (2.61) as

N =
d · L · 2 ln 2

ε2
. (2.72)

Using (2.70) and (2.71) gives the error probabilities in Table 2.2. Throughout
this thesis d = 1 will be used.

We can note that in cryptanalysis it is not always necessary that only the
sequence distributed according to P0 stems from P0 also in the test. It is
possible that we can allow many sequences distributed according to P1 to
appear to be distributed according to P0, i.e., several sequences are in the
region β in Fig. 2.7. Then we have a set of sequences where perhaps each
sequence corresponds to one value of the secret key. Then each of these key
candidates can be tested individually. In this case we could benefit from
decreasing α to avoid missing the correct key candidate at the expense of
more key candidates.
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Pe
d

1 2 3 4

3 0.54 0.31 0.18 0.10
5 0.55 0.24 0.10 0.04
10 0.56 0.14 0.03 2−7.8

L
20 0.57 0.05 2−9.0 2−14

50 0.59 2−8.7 2−20 2−31

100 0.61 2−15 2−37 2−60

Table 2.2: The error probability when the number of samples is as
given in (2.72), for different choices of d and L.

2.5 Summary

In this chapter, an introduction to stream ciphers has been given. We have
discussed the motivation to study stream ciphers and given a formal de-
scription of the primitive. Some of the possible design blocks have been
introduced, such as LFSRs, Boolean functions and S-boxes. An overview of
possible cryptanalysis methods has also been given, e.g., correlation attacks
and algebraic attacks. Finally, we have presented some mathematical back-
ground to hypothesis testing which will be shown to be very useful in the
following chapters.
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Correlation Attacks Using a New
Class of Weak Feedback

Polynomials

Correlation attacks and fast correlation attacks, discussed in Section 2.3.4,
have received lots of attention. The development in this area of crypt-

analysis has inspired several new designs. The fast correlation attack [MS88]
is very effective if the feedback polynomial has a special form, namely, if its
weight is very low. Due to fast correlation attacks, it is a well-known fact
that one avoids low weight feedback polynomials in the design of LFSR
based stream ciphers. This chapter identifies a new class of such weak feed-
back polynomials, namely, polynomials of the form

f(x) = g1(x) + g2(x)xM1 + . . .+ gl(x)xMl−1 , (3.1)

where g1, g2, . . . , gl are all polynomials of low degree. For such feedback
polynomials, we identify an efficient correlation attack in the form of a dis-
tinguishing attack.

This chapter is based on [EHJ04] and is outlined as follows. In Section 3.1
we give the basic preliminaries for the attack. In Section 3.2 we discuss how
a basic distinguishing attack is mounted when we have an LFSR with a
low weight feedback polynomial. This basic attack is then extended to a
general case in Section 3.3 using vectors with noise variables. Section 3.4
discusses what happens when the parameters in the attack are changed.
Section 3.5 discusses the problem of finding a multiple of the characteristic
polynomial. In Section 3.6 the new attack is compared to the basic attack
and in Section 3.7 the chapter is summarized.

39
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3.1 Preliminaries

The model used for the attack is the standard model for a correlation attack,
illustrated in Fig. 2.6. The target stream cipher is a binary additive stream ci-
pher and uses two different components, one linear and one nonlinear. The
linear part is an LFSR and the nonlinear part can be modeled as a black box.
The nonlinear function can then, through a linear approximation, be seen as
a binary symmetric channel (BSC) with crossover probability p (correlation
probability 1 − p) with p 6= 0.5. This model was previously discussed in
Section 2.3.4.

The output bits from the LFSR are denoted st, t = 0, 1, . . ., and the key-
stream bits are denoted zt, t = 0, 1, . . .. From the BSC it follows immediately
that Pr(st = zt) = 1− p 6= 0.5. Assuming a known plaintext attack, the goal
in our distinguishing attack is the following. Given the observed keystream
sequence z = z0, z1, . . . we want to distinguish the keystream from a truly
random sequence. Recalling Section 2.4, let P0 be the cipher distribution
and P1 the uniform distribution. We try to determine if the distribution Pobs

for the observed samples (zt, t = 0, 1, . . .) is more likely to be P0 than P1, or
vice versa.

3.2 A Basic Distinguishing Attack From a Low
Weight Feedback Polynomial

We start our investigation by simplifying the Meier-Staffelbach approach
and turn their original ideas into a distinguishing attack. Referring to the
assumed model (Fig. 2.6), the observed output is considered as a noisy ver-
sion of the sequence from the LFSR,

zt = st ⊕ et, (3.2)

where et, t = 0, 1, . . ., are variables representing the noise introduced by the
approximation. The noise has a biased distribution

Pr(et = 0) = 0.5(1 + ε), (3.3)

where |ε| ≤ 1 is nonzero (but usually rather small). In the following, we
assume that all noise variables et are independent. The bits st produced by
the LFSR with feedback polynomial π(x) = 1 + c1x+ . . .+ cLx

L will satisfy
the linear recurrence relation

L⊕
j=0

cjst−j = 0, t ≥ j. (3.4)
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By adding the corresponding positions in the keystream z, all st cancel out,
leaving only noise variables. In more detail, if we introduce

xt =
L⊕

j=0

cjzt−j , (3.5)

then

xt =
L⊕

j=0

cjzt−j =
L⊕

j=0

cjst−j ⊕
L⊕

j=0

cjet−j =
L⊕

j=0

cjet−j . (3.6)

Since the distribution of the noise et introduced by the BSC is nonuniform
it is possible to distinguish the sample sequence xt, t = L,L + 1, . . ., from
a truly random sequence using a hypothesis test. If we assume the binary
case (all variables are binary), the sum xt of the noise will have probability

Pr

 L⊕
j=0

cjet−j = 0

 = 0.5(1 + εw), (3.7)

where w = wt(c0, c1, . . . , cL), i.e., the weight of π(x). By (2.62), we know
that the required number of samples for a successful attack is in the order of
1/(ε2w).

Note that the ideas behind this simple attack has appeared in many at-
tack scenarios before, even if it might not have been described exactly in this
context before. We see that the weight of the feedback polynomial is directly
connected to the success of the attack.

3.3 A More General Distinguisher Using Vectors

As we have seen in the previous section, low weight polynomials should be
avoided in order to resist the attack. When the weight of π(x) grows lin-
early, the required keystream and the computational complexity in the at-
tack grows exponentially. At some point we might require more computing
power than an exhaustive key search and the attack is no longer interesting
(to apply). In this section we describe a similar attack but with a more gen-
eral approach that can be applied to another set of feedback polynomials.
However, to simplify the presentation we will use the characteristic poly-
nomial of the LFSR instead of the feedback polynomial. The characteristic
polynomial is simply the reciprocal of the feedback polynomial.

Consider a length L LFSR with characteristic polynomial

f(x) = f0 + f1x+ f2x
2 + f3x

3 + . . .+ fLx
L, (3.8)
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LFSR- -

Figure 3.1: The characteristic polynomial a(x) = g1(x)+xMg2(x) cor-
responds to an LFSR with taps concentrated to two groups.

where fi ∈ F2. We try to find a multiple, a(x), of the characteristic polyno-
mial f(x) such that a(x) can be written as

a(x) = h(x)f(x) = g1(x) + xMg2(x), (3.9)

where g1(x) and g2(x) are polynomials of some small degree ≤ k. A spe-
cial case is when h(x) = 1, i.e., when f(x) is already on the desired form.
The problem of finding a multiple of the form (3.9) will be addressed in Sec-
tion 3.5. For now, we assume that such a multiple is given. The characteristic
polynomial in (3.9) corresponds to an LFSR with taps concentrated to two
groups far away from each other as shown in Fig. 3.1. The linear recurrence
relation can then be written as the two sums istic polynomial in (3.9) cor-
responds to an LFSR with taps concentrated to two groups far away from
each other as shown in Fig. 3.1. The linear recurrence relation can then be
written as the two sums

k⊕
i=0

st+iai ⊕
k⊕

i=0

st+M+iaM+i = 0, (3.10)

where ai, i = 0, 1, . . . , L are the coefficients in the characteristic polynomial
a(x). We now consider the standard model for a correlation attack where the
output of the cipher is considered as a noisy version of the LFSR sequence
zt = st ⊕ et. The noise variables et are introduced by the approximation
of the nonlinear part of the cipher. Furthermore, the biased noise has dis-
tribution Pr(et = 0) = 0.5(1 + ε) and as before, we assume that the noise
variables are independent. Now we denote by Qt the sum

Qt =
k⊕

i=0

zt+iai ⊕
k⊕

i=0

zt+M+iaM+i =
k⊕

i=0

et+iai ⊕
k⊕

i=0

et+M+iaM+i. (3.11)
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This can also be written as

Q0 = e[0, k] · g1 ⊕ e[M,M + k] · g2,
Q1 = e[1, k + 1] · g1 ⊕ e[M + 1,M + k + 1] · g2,

...
QV−1 = e[V − 1, V + k − 1] · g1 ⊕ e[M + V − 1,M + V + k − 1] · g2,

(3.12)
by introducing e[i, j] = (ei, . . . , ej) for i ≤ j and g1 = (g1,0, g1,1, . . . , g1,k)T

where g1,j , j = 0, 1, . . . , k are the coefficients of the g1(x) polynomial. A
corresponding notation is assumed for g2.

The interesting observation here is that even though the noise variables
(et, t = 0, 1, . . .) are independent, Qi values close to each other will not
be independent in general. This is because of the fact that several Qi will
contain common noise variables. We take advantage of this fact by moving
to a vector representing the noise as follows.

We introduce the vectorial noise vector Et of length V as

Et = (QV ·t, . . . , QV (t+1)−1). (3.13)

Alternatively, Et can be expressed as

Et = (eV ·t, . . . , eV (t+1)+k−1)G1 ⊕ (eV ·t+M , . . . , eV (t+1)+M+k−1)G2, (3.14)

where G1 and G2 are the (V + k)× V matrices

G1 =



g1,0

g1,1 g1,0

...
... g1,0

g1,k g1,k−1 . . . g1,1

g1,k

...
g1,k


G2 =



g2,0

g2,1 g2,0

...
... g2,0

g2,k g2,k−1 . . . g2,1

g2,k

...
g2,k


.

To prepare the attack, we derive the distribution of the noise vectorEn given
in (3.14). This can be easily done for moderately small k and V . This dis-
tribution is the cipher distribution, denoted P0. The uniform distribution is
denoted P1. The simulation of P0 together with the search for a(x) can be
seen as the preprocessing step.

In the processing step, we collect a sample sequence

Q0, Q1, Q2, . . . , QN ′ , (3.15)

by

Qt =
k⊕

i=0

zt+iai ⊕
k⊕

i=0

zt+M+iaM+i. (3.16)
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1. Find a multiple a(x).
2. For t = 0 . . . N ′

Qt =
⊕k

i=0 zt+iai ⊕
⊕k

i=0 zt+M+iaM+i

end for.
3. For t = 0 . . . N

Et = (QV ·t, . . . , QV (t+1)−1)
end for.

4. Calculate I =
∑N

t=0

(
log2

P0(Et)
P1(Et)

)
.

If I > 0 then output cipher, else output random.

Figure 3.2: Summary of the proposed algorithm.

This sample sequence is then transformed into a vectorial sample sequence
E0, E1, . . . , EN by (3.13).

The final step is to use optimal hypothesis testing, i.e., the Neyman-
Pearson lemma, to decide whetherE0, E1, . . . , EN is most likely drawn from
P0 or P1. The proposed algorithm is summarized in Fig. 3.2. An estimate
of the number N of vectors needed in the attack is given by N = 1/ε2. We
define

ε2 = 2V
2V −1∑
i=0

ε2i (3.17)

where εi = PrP0(X = i)− 2−V . This definition of ε2 follows from an expan-
sion of D(P0||P1) similar to the expansion done in (2.60). It will satisfy the
approximation (2.60) for any value of V and can thus be seen as a general-
ization of the ε2 used in Section 2.4.

The performance of the algorithm depends on the polynomials, gi, that
are used. Fig. 3.3 shows an example of how the number of vectors required
for a successful attack depends on the vector length for a certain combina-
tion of two polynomials. In the example, we have used Pr(et = 0) = 9/16
(ε = 2−3). Moreover, we assume that M is large enough so that noise vari-
ables from g1(x) and g2(x) in the vector are independent. The case V = 1
corresponds to the basic approach described in Section 3.2 and we see that
increasing the vector length will decrease the number of vectors needed.
Note that g1(x) and g2(x) are just two examples of what the polynomials
might look like, they do not represent a multiple of any specific polynomial.

It is easy to generalize our reasoning with two groups to allow finding a
multiple with arbitrarily many groups. Thus, we search for

a(x) = h(x)f(x) = g1(x) + xM1g2(x) + . . .+ xMl−1gl(x), (3.18)
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V

lo
g 2
N

Figure 3.3: The number of vectors needed as a function of the vector
length V . In this example g1(x) = 1 + x + x5 + x6 and g2(x) =
1 + x + x7 + x8.

where gi(x) is a polynomial of some small degree≤ k andM1 < M2 < . . . <
Ml−1. It is clear that when l grows it is easier to find a(x) with the desired
properties. However, it is also clear that when l grows, the attack becomes
weaker since variables stemming from different groups will be independent
in the vector Et.

3.4 Tweaking the Parameters in the Attack

The previous section described the details of the attack algorithm. In this
section we take a closer look at the effect different parameters has on per-
formance.

3.4.1 How gi(x) Affects the Results

The attack takes advantage of the fact that the same noise variable appears
in several entries in the same vector. Exactly how the noise variables are
located in the vectors depends on the polynomials gi(x) and different poly-
nomials gives different distributions. Assume that a(x) is of the form (3.9).
We assume that the value M , i.e., the distance between the polynomials, is
large. Thus, we can treat the polynomials g1(x) and g2(x) independently.
In the preprocessing phase we can first simulate the distribution P (1)

0 using
noise variables determined by g1(x). Then we simulate P (2)

0 using variables
only determined by g2(x). The total cipher distribution P0 is then given by

P0 = P
(1)
0 + P

(2)
0 , (3.19)
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(100010001) Γ = {5} (101101011) Γ = {3} (101111001) Γ = {4}
(100111111) Γ = {2} (100100101) Γ = {∅} (110000011) Γ = {7}
(101010001) Γ = {7} (101110111) Γ = {2, 3, 4} (111110101) Γ = {2, 3, 6}
(110101111) Γ = {2, 3, 5} (111010101) Γ = {3} (110011111) Γ = {2}
(101100111) Γ = {4} (110110111) Γ = {2, 3} (101010101) Γ = {3}
(101000101) Γ = {5} (101011100) Γ = {3, 4} (100010110) Γ = {9}
(101111101) Γ = {2, 3} (111100101) Γ = {5} (111101000) Γ = {2, 4}

Table 3.1: Some examples of polynomials and corresponding set Γ.

where + is bitwise addition in F2 of the binary vectors. The distribution P0

depends not only on the individual properties of P (1)
0 and P (2)

0 , but also on
how they relate to each other in terms of tap positions in g1(x) and g2(x).
There is no simple rule to determine if two polynomials g1(x) and g2(x)
results in an efficient attack, but we highlight a few important properties
that will affect the result.

Let us start by looking at the distribution P (i)
0 determined by gi(x). The

distribution of vectors up to length 15 have been simulated for all possible
polynomials g(x) of degree k ≤ 8. In the examples given below, the polyno-
mial will be represented by a bit string as

g(x) = c0 + c1x+ c2x
2 + . . .+ c8x

8 ⇐⇒ (c0, c1, c2, . . . , c8) ci ∈ F2. (3.20)

Most polynomials have a certain vector length, denoted Vγ , at which the
bias increases significantly compared to the previous vector lengths. Some
polynomials have several such Vγ points. The set of all Vγi

is denoted Γ.
The efficiency of the attack is primarily determined by the following two
properties of g(x).

• The weight of the polynomial. The weight of g(x) equals the amount
of noise variables in each vector entry. Many noise variables usually
means smaller bias and this is of course the case for V = 1. How-
ever, as V increases this is not always the case due to the correlation
between neighbouring Qi. As an example (101100111) has higher bias
than (101100101) for V > 3 even though it has more noise variables.

• Arrangement of the terms in g(x). This is equivalent to the arrange-
ment of the taps in the LFSR. Many taps close together means that
the same noise variable occurs more frequently in the noise vector Et.
The arrangement of the taps will also influence Vγ . Table 3.1 shows
several examples of polynomials g(x) and their corresponding set Γ.

The properties of the individual distributions P (1)
0 and P

(2)
0 for increas-

ing V gives a hint about the properties of the total distribution P0 when V is
increased. However, it is not possible to predict the properties for any pair
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and it is usually necessary to simulate P0 in order to know if the attack will
succeed. Below we give a few rules of thumb for the typical behaviour when
combining two distributions.

• Combining g1(x) and g2(x) with

Γg1 ∩ Γg2 6= {∅} (3.21)

will often result in Γa = Γg1 ∩ Γg2 . Sometimes we only get Γa =
min{Γg1 ∩Γg2} and if the intersecting values are large we can get Γa =
{∅}.

• Combining g1(x) and g2(x) with

Γg1 ∩ Γg2 = {∅} (3.22)

will often result in Γa = min{Γg1 ∪ Γg2}. If the smallest value is large
it is more probable to have Γa = {∅}.

Fig. 3.4 gives several examples of the behaviour of P0 when the two distri-
butions P (1)

0 and P
(2)
0 are combined. As before, we have used Pr(et = 0) =

9/16 (ε = 2−3).

3.4.2 Increasing Vector Length

The idea of using V larger than one is that we can get correlation between
vector entries. Increasing V can never decrease the bias of the distribution
P1. This property will be proved in the cryptanalysis of Pomaranch in Chap-
ter 6. Thus the number of vectors needed in the distinguishing attack will
decrease (or remain the same) for each increase of V . However, increasing V
also increases the computational complexity for simulating the distribution
P1 and also require more memory to save the distribution. Our simulations
have showed that it is extremely rare to have a Vγ > 10 when we restrict
k ≤ 8. This suggest that V can be chosen to be in the order of k.

3.4.3 Increasing the Number of Groups l

As will be shown in Section 3.5.2, it is much easier to find a multiple a(x) if
we increase l. However, the resulting distribution

P0 =
l∑

i=1

P
(i)
0 (3.23)

will become much more uniform for increasing l, resulting in a very high
attack complexity. This is similar to the binary case in which more taps in
the multiple will result in a more uniform distribution.
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g1=(110000111), Γg1={2}
g2=(101110011), Γg2={4}

g1=(100010001), Γg1={5}
g2=(111100101), Γg2={5}

g1=(100111111), Γg1={2}
g2=(101110111), Γg2={2,3,4}

g1=(101011111), Γg1={2,3,6}
g2=(101010111), Γg2={3}

g1=(101110111), Γg1={2,3,4}
g2=(110101111), Γg2={2,3,5}

g1=(110110111), Γg1={2,3}
g2=(101011100), Γg2={3,4}

Figure 3.4: More examples of resulting distributions P0. The number
of vectors N needed in a distinguisher is given as a function of the
vector length V

.

3.5 Finding a Multiple of the Form a(x)

We have until now assumed that a multiple of the characteristic polyno-
mial has a certain form (3.18). This section considers the problem of finding
multiples of the desired form.

3.5.1 Finding Low Weight Multiples

According to the piling-up lemma, see Section 2.4, the distribution P0 be-
comes more uniform if the polynomial is of a high weight. If the feedback
polynomial is not already of low weight, the first step in the correlation at-
tack given in Section 3.2 is to find a low weight multiple. Obviously, the lin-
ear relation given by the multiple will satisfy the LFSR sequence produced
by the feedback polynomial. The number of keystream bits needed to com-
pute the first sample is given by the degree of the multiple. It turns out that
there is a tradeoff between the weight and the degree of a multiple (in the
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Mc w

2 3 4 5 6 7 8 9 10 11 12 13 14

L = 100 2100 250.5 234.2 226.1 221.4 218.2 216.0 214.4 213.2 212.2 211.4 210.7 210.2

L = 500 2500 2250 2168 2126 2101 284.9 273.2 264.4 257.6 252.2 247.8 244.1 241.0

L = 1500 21500 2750 2501 2376 2301 2252 2216 2189 2169 2152 2139 2127 2118

Table 3.2: The critical degree Mc of the multiple as a function of L and
w.

expected case). If we want to find a multiple of weight w of a polynomial
of degree L it was shown by Golić in [Gol96] that the critical degree Mc at
which multiples of weight w start to appear is

Mc = (w − 1)!
1

w−1 2
L

w−1 . (3.24)

As a reference, Table 3.2 lists the expected degree of the lowest degree weight
w multiple for L = 100, 500 and 1500.

3.5.2 Finding Multiples With Groups

Let us first consider the problem of finding a multiple of the form

a(x) = h(x)f(x) = g1(x) + xMg2(x), (3.25)

where f(x) is the degree L characteristic polynomial of the cipher. This
can be found by polynomial division. Assume that we have a polynomial
g2(x) of degree ≤ k. This polynomial is multiplied by xi. The result is then
divided by the LFSR characteristic polynomial f(x). Thus, we can write

xig2(x)
f(x)

⇒ xig2(x) = f(x) · q(x) + r(x), (3.26)

where q(x) and r(x) are the quotient and the reminder respectively. There
are 2k ways to choose g2(x) and i can be chosen inM ways. Since deg f(x) =
L, we know that the remainder r(x) satisfies 0 ≤ deg(r(x)) < L. If deg r(x) ≤
k we have found an acceptable g1(x). The probability that deg r(x) ≤ k is
given by

Pr(deg(r(x)) ≤ k) = 2k−L. (3.27)

If we want it to be probable to find at least one such polynomial, we need

2k ·M · 2k

2L
≥ 1 ⇒ M ≥ 2L−2k. (3.28)
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M l

2 3 4 5 6

3 294 247 231 224 219

4 292 246 231 223 218

5 290 245 230 223 218

k
6 288 244 229 222 218

7 286 243 229 222 217

8 284 242 228 221 217

Table 3.3: The degree M of the multiple as a function of k and l for
L = 100.

We see that for modest values of k the length of the multiple will become
very large, comparable to (3.24). We can extend the reasoning to the case
with arbitrarily many groups, i.e., we look for a multiple of the form

a(x) = h(x)f(x) = g1(x) + xM1g2(x) + . . .+ xMl−1gl(x). (3.29)

Using the same reasoning as above we get the new expression

2k ·M1 · 2k ·M2 · . . . · 2k ·Ml−1 ·
2k

2L
≥ 1 ⇒ M ≥ 2

L−lk
l−1 , (3.30)

where we assume that M1,M2, . . . ,Ml−1 ≤ M . This gives us an upper
bound on all Mi.

Comparing (3.24) and (3.30) we see that increasing l is the most efficient
way to lower the degree of the multiple. However a larger l, as stated in
Section 3.4.3, will significantly decrease the bias. Table 3.3 lists some values
on M needed to find a multiple, for some chosen values of k and l.

3.6 Comparing the Proposed Attack With a Basic
Distinguishing Attack

The applicability of the algorithm is twofold. The first case is if the charac-
teristic polynomial is of the form f(x) = g1(x)+g2(x)xM1 + . . .+gl(x)xMl−1 .
Applying the basic algorithm given in Section 3.2 to these LFSRs without
first finding a multiple is equivalent to applying the new algorithm with
V = 1. In this case, the new algorithm is a significant improvement since
using vectors increases the bias. Of course, using the basic algorithm with-
out first finding a multiple is very naive, but if the length L of the LFSR is
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large the degree of a low weight multiple will also be large, see (3.24). Thus,
if f(x) is of high degree then our algorithm can be more effective.

Secondly, the new algorithm can be applied to arbitrary characteristic
polynomials. In this case we first find a multiple of the polynomial that is
of the form a(x) = h(x)f(x) = g1(x) + g2(x)xM1 + . . . + gl(x)xMl−1 and
then apply the algorithm. Comparing the two equations (3.24) and (3.30)
we see that it is not much harder to find a polynomial of some weight w
than it is to find a polynomial with the same number of groups. Although
our algorithm takes advantage of the fact that the taps are close together,
this is still not enough to compensate for the larger amount of noise vari-
ables. Thus, in this case the proposed attack will give improvements only
for certain specific instances of characteristic polynomials, e.g., those having
a surprisingly low degree multiple of the form a(x) but no low weight mul-
tiples where the degree is surprisingly low. This attack may be viewed as a
new design criterion. One should avoid LFSRs where multiples of the form (3.9)
are easily found.

3.7 Summary

Through a new correlation attack, we have identified a new class of weak
feedback polynomials, namely, polynomials of the form f(x) = g1(x) +
g2(x)xM1 + . . . + gl(x)xMl−1 , where g1, g2, . . . , gl are all polynomials of low
degree. The correlation attack has been described in the form of a distin-
guishing attack. This was done mainly for simplicity, since the theoretical
performance is easily calculated and we can compare with the basic attack
based on low weight polynomials.

A next possible step in this direction would be to examine the possibility
of turning these ideas into a key recovery attack. This could be done in a
similar manner as in the Meier-Staffelbach approach. For example, we could
try to derive many different relations (multiples) and apply some iterative
decoding approach in vector form. The theoretical part of such an approach
will probably be much more complicated.
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4

Two New Attacks on the
Self-Shrinking Generator

The nonlinear combiner and the nonlinear filter generator discussed in Sec-
tion 2.2.6 introduces nonlinearity into linearly generated LFSR sequences

by a nonlinear Boolean function, taking LFSR variables as inputs. Another
way to introduce nonlinearity into an LFSR sequence is to decimate the se-
quence in an irregular way. This method is used in, among others, the
shrinking generator proposed by Coppersmith, Krawczyk and Mansour
[CKM93] in 1993 and in the self-shrinking generator introduced by Meier
and Staffelbach [MS94] in 1994. Since the introduction of the shrinking
and self-shrinking generators several attacks have been proposed on both.
Though, despite the simplicity of the constructions, their security is still re-
markably high and all attacks are exponential in the size of the LFSRs.

In this chapter we introduce two new key recovery attacks on the self-
shrinking generator. One attack that requires a short keystream and one at-
tack that requires a long keystream. The previously best known attack using
short keystream has complexity O(20.6563L) [Kra02]. We show that our new
attack using short keystream has approximately the same complexity as this
attack. However, while the attack in [Kra02] needs an infeasible amount of
memory, our attack works with very small memory complexity. The second
attack uses a keystream length exponential in the length of the LFSR. The at-
tack is first described in a basic variant, considering l consecutive keystream
bits. Then the attack is extended to a more general version, considering two
or more segments simultaneously. The computational complexity for this
attack is significantly better than any previously known attack.

This chapter is based on [HJ06c] and is outlined as follows. Section 4.1
gives a brief description of the shrinking and self-shrinking generators. In

53
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Section 4.2 we describe the previous attacks on the self-shrinking genera-
tor, both those using short keystream and those requiring a longer one. In
Section 4.3 a description of the new attack that requires a short keystream
sequence is given and in Section 4.4 we describe the attack requiring long
keystream. This attack is extended to a more general version in Section 4.5.
The chapter is summarized in Section 4.6.

4.1 Description of the Self-Shrinking Generator

In this section we give a description of the shrinking generator and the self-
shrinking generator. Our attacks target the self-shrinking generator but the
idea behind this generator is based on the idea behind the shrinking gen-
erator. These two generators probably represent the simplest stream ci-
phers imaginable. Still, their security is surprisingly high. The shrinking
generator was introduced in 1993 by Coppersmith, Krawczyk and Man-
sour [CKM93]. It is based on two LFSRs, RA and RS . The sequence gen-
erated by RS is used to select which bit to output from the sequence gen-
erated by RA. If st = 1 then output at as a keystream bit, otherwise at

is discarded. If the sequence generated by RS is balanced, the rate of the
shrinking generator is 1/2, i.e., in average we need to clock the RA and RS

two times in order to produce one keystream bit. We say that the sequence
at is irregularly decimated.

The self-shrinking generator is a variant of the shrinking generator and
it is even simpler. It consists of only one LFSR R of length L and was intro-
duced in 1994 by Meier and Staffelbach [MS94]. The shift register R outputs
a sequence s = (s0, s1, s2 . . .). The bits are divided into pairs, (s2t, s2t+1) and
if s2t = 1 the generator will output s2t+1 as a keystream bit. If s2t = 0 no
output is generated. The keystream sequence is denoted z = (z0, z1, z2 . . .).
After two clockings, a keystream bit is output with probability 1/2, after
four clockings with probability 1/4 etc. Let µ be the number of clockings
needed to produce one keystream bit. The expected number of clockings,
E{µ}, needed for each keystream bit, zt, is thus

E{µ} =
∞∑

i=0

2i
1
2i

=
∞∑

i=0

i

2i−1
= 4. (4.1)

Hence, the rate of the self-shrinking generator is 1/4, half of that of the
shrinking generator. The variance of the number of clockings, V {µ}, per
keystream bit is

V {µ} =
∞∑

i=0

(2i)2
1
2i
− 42 = 8. (4.2)
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Figure 4.1: The shrinking generator (left) and the self-shrinking gen-
erator (right).

Decimation algorithm for
the shrinking generator

i = 0; j = 0;
while (1)

if (s[i] == 1)
z[j] = a[i];
j++;

i++;

Decimation algorithm for
the self-shrinking generator

i = 0; j = 0;
while (1)

if (s[i] == 1)
z[j] = s[i+1];
j++;

i += 2;

Figure 4.2: The algorithms used in the shrinking generator and the
self-shrinking generator to irregularly decimate a binary sequence.

In [MS94] it was shown that the sequence produced has period P ≥ 2bL/2c

and the linear complexity L(z) ≥ 2bL/2c−1. The self-shrinking generator
has the advantage over the shrinking generator that it only uses one LFSR,
but on the other hand it has a lower rate. The two generators are shown in
Fig. 4.1 and the algorithms to irregularly decimate the sequences are given
in Fig. 4.2. The shrinking generator and the self-shrinking generator are no
specific cipher proposals in the sense that all parameters are specified. They
are instead just proposals of how to introduce nonlinearity into a linearly
generated sequence. The length of the LFSR(s) as well as the feedback poly-
nomial(s) are left to the designer to decide. In fact, the designs can operate
on any kind of binary sequences. They do not have to be generated by an
LFSR, though this is the most common and easy way since we know that
LFSRs can produce sequences with several good statistical properties, see
Section 2.2.1. Moreover, LFSRs are very efficient in hardware. In the fol-
lowing we will assume that the sequence used as input to the self-shrinking



56 4. Two New Attacks on the Self-Shrinking Generator

algorithm is an m-sequence, generated by an LFSR with primitive feedback
polynomial.

4.2 Previous Attacks on the Self-Shrinking Gen-
erator

Almost all proposed attacks are key recovery attacks and they can be di-
vided into two categories, those that recover the key from a short known
keystream, in the order of L, and those that need a longer keystream, ex-
ponential in L, to succeed. Of course, any attack using a short keystream
sequence can be used on a long keystream sequence as well by just using a
small part of it. Consequently, the long keystream attacks are only interest-
ing if they require less computational complexity than the short keystream
attacks.

This section will provide a brief overview of the previous key recovery
attacks. The list of attacks covered might not be exhaustive, but all well-
known and significant attacks prior to the results in this chapter will be
mentioned.

4.2.1 Short Keystream Attacks

In the original paper [MS94], Meier and Staffelbach proposed an attack with
complexity 20.75L that reconstructs the internal state with only a few known
keystream bits. For each bit pair there are 3 different valid possibilities,
namely (0, 0), (0, 1) and (1, zt). The probability for (0, 0) and (0, 1) are 1/4
and the probability for (1, zt) is 1/2. Thus, the entropy of a bit pair is

H = −(1/2) log2(1/2)− 2 · (1/4) log2(1/4) = 3/2. (4.3)

The entropy per bit is 3/4 so an exhaustive search among all different cases
in the order of probability would require 20.75L time. In the same paper
attacks are also shown that have a slightly lower complexity but they only
apply if the feedback polynomial of the LFSR is of very low weight.

In 2001, Zenner, Krause and Lucks [ZKL01] showed how to determine
the initial state in time O(20.694L). The attack is based on a backtracking
approach. They build a binary search tree based on the bits s2t. Each node
will give one or two equations depending on the value of s2t. When the
number of equations are more than L − 1, the feedback polynomial is used
to represent the new equations as equations in the variables defining the
starting state. If the new equation is linearly dependent of the earlier ones
and this linear dependency leads to a contradiction that branch of the tree
is ignored and backtracking starts. Whenever a branch is found that gives
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L linearly independent equations, the system of equations is solved and a
candidate initial state is obtained.

In 2002, Krause introduced the concept of BDD-based attacks [Kra02].
Attacks on several generators were presented, including A5/1, E0 and the
self-shrinking generator. The attack on the self-shrinking generator was
shown to have complexity O(20.656L). It is shown that approximately 4.82L
free binary decision diagrams (FBDD) have to be computed. The size of an
FBDD is given as the number of vertices and for each of the FBDDs the size
is upper bounded by LO(1)20.656L. The main problem with this attack is that
the memory requirement to store one of these FBDDs is infeasible. Using
rough estimates, even if the complexity suggests that it would be feasible
to attack the self-shrinking generator with an LFSR size of about 100, the
memory requirements limits the attack to an LFSR of size only about 60.
Remark. In all attacks above only the factor exponential in L has been given.
The last two attacks also has a factor polynomial in L. The significance of
this factor will decrease as L increases and asymptotically only the expo-
nential factor is necessary. Similarly, in our attacks given in this chapter we
focus on the exponential factor, though we will also discuss the size of the
polynomial factor.

4.2.2 Long Keystream Attacks

In [Mih96] Mihaljević presented an attack that has better complexity than
the attacks given in the original paper. However, this attack requires the
attacker to know a keystream of length exponential in L. Assume that the
attacker has

N ≥ l2L/2

(
L/2
l

)−1

(4.4)

keystream bits available. Then it is possible to mount an attack with time
complexity O(2L−l). In the attack, l is chosen to be the highest number such
that (4.4) is still satisfied. Then the attacker guesses that in the current state
of the LFSR, l out of the L/2 positions corresponding to s2t are ones. Con-
sequently, the remaining L/2 − l positions corresponding to s2t are zeros.
If this is the case the current internal state will produce exactly l keystream
bits. The attacker then looks at keystream segments of size l. There are
2L/2 ways of choosing bits for the positions corresponding to s2t and l ones
can be chosen in

(
L/2

l

)
ways. Hence, the probability that the output seg-

ment of length l is generated by the internal state with l ones in positions
corresponding to s2t is 2−L/2

(
L/2

l

)
. From this it follows that the number of

keystream segments that need to be checked before we can expect to find a

segment giving us the key is given by 2L/2
(
L/2

l

)−1
. The values s2t+1 when
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s2t = 0 are unknown to the attacker so these 2L/2−l positions are exhaus-
tively searched in the attack. It is shown that the attack is successful with
high probability after 2L−l steps. Choosing l = 0.25L gives a computational
complexity of 20.75L steps and choosing l = 0.5L gives a computational
complexity of 20.5L. It is worth noting that the L bits recovered are consec-
utive and there is no polynomial factor that represents solving a system of
equations in the attack complexity.

4.3 New Attack Using Short Keystream

In this section we will give a detailed description of our first attack. This at-
tack recovers the initial state (key) of the LFSR if a short keystream sequence
is available.

Assume that we know m keystream bits,

zt, zt+1, zt+2, . . . , zt+m−1. (4.5)

Each known keystream bit will give us 2 equations since each keystream
bit has been preceded by a one in the LFSR-sequence. Hence, we have 2m
equations. However, since the sequence produced by the LFSR has been
irregularly decimated, we have no knowledge about the number of bits dis-
carded between the known keystream bits. Instead, we only know that the
observed keystream sequence (4.5) corresponds to the LFSR-sequence

1, zt, X0, 1, zt+1, X1, 1, zt+2, X2, . . . , Xm−2, 1, zt+m−1, (4.6)

where eachXi corresponds to a sequence of zero or more 2-tuples ∈ {00, 01}.
For each of these 2-tuples that we guess correct we will get one more equa-
tion since the first bit is always equal to zero. The total number of equations
available is thus 2m + k where k is the total number of 2-tuples discarded.
To get a complete system of equations in the initial state bits we require that

2m+ k ≥ L. (4.7)

Using as few keystream bits as possible allows us to write

m =
⌈
L− k

2

⌉
. (4.8)

The probability that there are no 2-tuples discarded before producing a new
keystream bit is 1/2. The probability that exactly one 2-tuple is discarded is
1/4, etc. The probability that exactly i 2-tuples are discarded is

Pr(exactly i discarded) =
1

2i+1
. (4.9)
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LFSR length Complexity kmax

128 283.3 46
256 2168.8 90
512 2340.3 178

1024 2682.7 352

Table 4.1: The complexity of the attack for some LFSR lengths.

In the algorithm we try to guess the number of discarded bits, by guess-
ing the most probable combinations first. There are m − 1 gaps to guess,
X0, X1, . . . , Xm−2. The probability that no bits are discarded in any of the
gaps is 2−m+1. The probability that one 2-tuple is discarded in a given gap is
2−m+1 · 2−1 = 2−m etc. The probability that in total k 2-tuples are discarded
is, for each possible assumption,

2−m−k+1. (4.10)

The number of ways to discard k 2-tuples in a total of m− 1 gaps is a well-
known combinatorial problem and given by

(
m−2+k

k

)
. We start by testing

the case when 0 bits are discarded, then the case when 1 bit has been dis-
carded, etc. The probability that we guess correct within

kmax∑
k=0

(
m− 2 + k

k

)
=

kmax∑
k=0

(⌈L+k
2

⌉
− 2

k

)
(4.11)

guesses is

kmax∑
k=0

(
m− 2 + k

k

)
2−m−k+1 =

kmax∑
k=0

(⌈L+k
2

⌉
− 2

k

)
2−
⌈

L+k
2

⌉
+1. (4.12)

Note that, using this algorithm, not the full probability space can be searched.
As kmax approaches L, (4.12) goes towards 2/3. We choose kmax such that
the probability of success is > 0.5 and calculate the complexity of the attack
for some different LFSR lengths. The result can be found in Table 4.1. For
these cases we get a complexity of approximately O(20.66L) which is the
same complexity as the BDD-based attack gives. The advantage of our al-
gorithm is that there is hardly any memory usage. The amount of memory
needed is limited to the memory required to solve the system of linear equa-
tions i.e., O(L2). The attack can be easily parallelized on several computers
since solving the system of equations for one guess is independent of an-
other guess. The estimated number of keystream bits required in the attack



60 4. Two New Attacks on the Self-Shrinking Generator

is L. At most L/2 bits are needed to find L equations in the initial state but
in order to verify that a candidate initial state is correct we need to compare
the candidate keystream with the real keystream. This would require ap-
proximately L keystream bits in total since the entropy of the initial state is
assumed to be L bits.

4.4 New Attack Using Long Keystream

In this section we will give a detailed description of an attack that requires
the adversary to have a keystream sequence with length exponential in the
size of the LFSR. We show that the asymptotic computational complexity
needed to find the initial state is significantly lower than in the attack by
Mihaljević when the same amount of keystream is known.

4.4.1 Main Ideas

The idea behind our attack is somewhat similar to Mihaljević’s attack. How-
ever, this attack introduces the following new ideas.

• Instead of exhaustively searching the positions s2t+1 when the posi-
tions s2t is zero, we choose to increase the size of the LFSR segment so
that we still have adequate information to recover the key.

• Instead of considering only one segment, the attack is extended to a
more general case. Several short keystream segments can be consid-
ered simultaneously.

These new ideas will result in a much more efficient attack.

4.4.2 Method for Cryptanalysis

We start by explaining the attack using a single segment. In the next section
we generalize the attack by considering several segments simultaneously.

The attack considers a keystream segment of size l. Note that the even
bits correspond to the s2t values determining whether to output s2t+1 or
not. We guess that this segment of size l is produced by an LFSR sequence
of length S. This is the same as saying that l out of the S/2 even bits are one.
This guess will be correct with probability

2−S/2

(
S/2
l

)
, (4.13)
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since there are
(
S/2

l

)
ways of choosing ones in the even positions. The num-

ber of segments that have to be tested before one that gives the correct guess

is found, is geometrically distributed with an expected value of 2S/2
(
S/2

l

)−1
.

For the segment, the number of equations in state bits that we get is
S/2 + l since the S/2 even bits are guessed and the l keystream bits will be
located in the positions s2t+1, when s2t = 1. Since L equations are needed,
the equality

S = 2(L− l) (4.14)

must be satisfied.
The attack only makes sense for l ≤ S/2, so l must be chosen such that

0 ≤ l ≤ L/2. The amount of keystream, denoted N , needed in the attack is
l times the number of non-overlapping keystream segments that we expect
to try before a solution is found. This is given by

N = 2L−l

(
L− l
l

)−1

l. (4.15)

For each keystream segment,
(
S/2

l

)
=
(
L−l

l

)
combinations need to be tested,

noting that (4.14) implies S/2 = L− l. Additionally, for each combination a
system of linear equations needs to be solved. This system of equations can
be solved in time O(Lω). In theory ω ≤ 2.376, see [CW90], but the constant
factor in this algorithm is expected to be very large. The fastest practical
algorithm is Strassen’s algorithm [Str69], which requires about O(Llog2 7) ≈
L2.8 operations. Often, for simplicity, the value O(L3) is used for the com-
plexity of solving a system of L linear equations in L variables. Thus, the
total computational complexity, denoted C, of the attack is

C = L32L−l. (4.16)

For each candidate state that we recover, we need to clock the self-shrinking
generator and produce approximately L candidate keystream bits and com-
pare to real keystream. If the candidate keystream matches the real key-
stream we have found the correct state.

We will mainly focus on the asymptotic complexity, i.e., the complexity
when L is large and only the factors exponential in L are considered. This
case is thoroughly examined in the next subsection. However, before we
move on to the asymptotic case we take a closer look at the non-asymptotic
case. In the attack by Mihaljević the positions s2t+1 when the positions s2t

are zero are exhaustively searched. This has the advantage that a system of
linear equations does not have to be solved. All recovered bits are consec-
utive. In our attack the recovered bits are not consecutive and when L is
small the complexity of solving a system of equations will have noticeable
impact on the computational complexity.
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It is not possible to give an explicit value on L which determines when
our attack becomes better than Mihaljević’s attack since it will also depend
on the amount of known keystream. As an example we can consider the
case when L = 512, using the complexity L2.8 for solving the system of lin-
ear equations. If the amount of known keystream is less than approximately
256 = 20.11L our attack will give a better computational complexity, whereas
if the amount of known keystream exceeds this bound, the attack by Mihal-
jević will give a better complexity. Increasing L will result in the behaviour
that our attack will achieve better complexity for a wider interval of known
keystream.

4.4.3 Asymptotic Complexity

Now we derive an asymptotic expression for the number of keystream bits
needed and the complexity of the attack. Several previous attacks on the
self-shrinking generator ignore the polynomial terms in the complexity and
concentrate only on the exponential terms since these are dominant as the
length of the LFSR increases. Taking only the exponential terms we can
write the amount of keystreamN needed and the computational complexity
C as

N = 2L−l

(
L− l
l

)−1

, (4.17)

C = 2L−l. (4.18)

Since l must be chosen such that 0 ≤ l ≤ L/2, we write l = βL/2, 0 ≤ β ≤ 1.
Then the expressions for the keystream and complexity can be rewritten as

N = 2(1−β/2)L

(
L(1− β/2)
L(β/2)

)−1

, (4.19)

C = 2(1−β/2)L. (4.20)

The following theorem is a standard bound for the binomial coefficient.

Theorem 4.1: For 0 < λ < 1 and µ = 1− λ, we have

1√
8nλµ

2nh(λ) <

(
n

λn

)
<

1√
2πnλµ

2nh(λ), (4.21)

where h(λ) is the binary entropy function, i.e.,

h(λ) = −λ log2 λ − (1− λ) log2 (1− λ). (4.22)
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For a proof we refer to [Rom92]. For large n we can write
(

n
λn

)
≈ 2nh(λ).

Theorem 4.1 allows us to write the asymptotic keystream length as

N = 2(1−β/2−(1−β/2)h( β
2−β ))L. (4.23)

Similar asymptotic expressions can be found for the attack proposed by
Mihaljević. They are

NM = 2L/2
(
L/2

l

)−1
= 2(1/2−h(β)/2)L, (4.24)

CM = 2L−l = 2(1−β/2)L. (4.25)

In this case, L/4 ≤ l ≤ L/2, so we write again l = βL/2. Hence, β must be
chosen such that 1/2 ≤ β ≤ 1. In Fig. 4.3 the complexity and the amount of
keystream required is plotted for both attacks by varying the value of β.

lo
g 2

(C
)/
L

log2(N)/L

Mihaljević’s attack

New attack

β = 0.8

β = 0.9

β = 0.95

Figure 4.3: The attack complexity as a function of the keystream
length. Comparison between the new attack and the attack by Mi-
haljević.

It is clear that the new attack has better asymptotic complexity. Though,
as the amount of known keystream approaches 20.5L both attack complexi-
ties converge to 20.5L.
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Figure 4.4: We consider several segments, each of l bits.

4.5 Improving the Attack

In the previous section only one block was considered. It is possible to ex-
tend the attack, looking at several sections at a time, to achieve better com-
plexity for specific values of known keystream. In this section we examine
the asymptotic behaviour of the complexity when the number of blocks is
more than one.

In Section 4.1, we showed that the expected number of clockings E{µ}
and the variance of the number of clockings V {µ} to generate a keystream
bit are 4 and 8, respectively.

Consider B blocks, each block consisting of l keystream bits, see Fig. 4.4.
Guess that the keystream bits in each block stem from an LFSR subsequence
of length S. As before, this is the same as saying that l out of the S/2 even
positions are ones. This guess will be correct for all segments simultane-
ously with probability(

2−S/2

(
S/2
l

))B

= 2−BS/2

(
S/2
l

)B

. (4.26)

The expected number of segment combinations that have to be tried be-
fore a combination is found that gives the correct guess, is

2BS/2

(
S/2
l

)−B

. (4.27)

For each segment, we get S/2 + l equations so L = BS/2 +Bl, implying
that S = 2(L/B−l). Since l ≤ S/2, l must be chosen such that 0 ≤ l ≤ L/2B.
Now we make the following approximations:

• In the observed keystream z of lengthN , for large L, there are approx-
imately NB ways of selecting segment combinations for the B blocks.

• The distance between two blocks will be approximately N .
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Using the first approximation, the number of keystream bits needed to

get 2BS/2
(
S/2

l

)−B
segment combinations, each of l bits, is

N = 2L/B−l

(
L/B − l

l

)−1

. (4.28)

The problem with using several keystream segments is that we do not
know the number of clocks between the blocks since only keystream bits
are available. Consequently, this number has to be guessed. In order to
guess the number of clocks we use the central limit theorem, which states
that the sum of random variables is approximately normally distributed.
More specifically, and applied to our case, the number of clocks µN needed
to produce N keystream bits is normally distributed with expected value,
E{µN}, and standard deviation, σµN

,

E{µN} = E{µ} ·N = 4 · 2L/B−l

(
L/B − l

l

)−1

, (4.29)

σµN
= σµ ·

√
N =

√
8 · 2L/2B−l/2

(
L/B − l

l

)− 1
2

. (4.30)

Assuming that the correct number of clockings will be within one stan-

dard deviation, we have to check
(
S/2

l

)B
σB−1

µN
different systems of equations

for each of the 2BS/2
(
S/2

l

)−B
combinations we expect that we need. Hence,

the total complexity of the attack will be

C = L32L−Bl2
B−1

2 (L/B−l)

(
L/B − l

l

)−B−1
2 √

8
B−1

. (4.31)

4.5.1 Asymptotic Complexity

In order to get an asymptotic expression for (4.31), only the terms exponen-
tial in L are considered. Moreover, since l ≤ L/2B, we can write

l =
βL

2B
(4.32)

and let 0 ≤ β ≤ 1. Then we can write the amount of keystream needed and
the complexity as

N = 2( 1
B− β

2B )(1−h( β
2−β ))L, (4.33)

C = 2(1− β
2 + B−1

2 ( 1
B− β

2B )(1−h( β
2−β )))L. (4.34)
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C N M P

20.50L 20.50L — —
20.52L 20.32L — —
20.54L 20.21L 20.52L 20.79L

20.56L 20.14L 20.58L 20.86L

20.58L 20.09L 20.62L 20.91L

20.60L 20.05L 20.65L 20.95L

Table 4.2: Our attack compared to a generic time-memory-data trade-
off attack.

These can be viewed as more general expressions for the keystream length
and the computational complexity in the proposed attack. Indeed, letting
B = 1 will result in (4.20) and (4.23). The complexity and the amount of
keystream needed for different number of segments can be seen in Fig. 4.5.
We see that for some small intervals of known keystream it is favourable to
consider more that one segment.

4.5.2 Comparison to Time-Memory-Data Tradeoff Attacks

We have shown that our new attack compares favourably to the attack pro-
posed by Mihaljević. Now we will compare our attack to the generic time-
memory-data tradeoff attack on stream ciphers as given in section 2.3.3. Us-
ing the notation in this chapter, we have the tradeoff curve

CM2N2 = L2, for any N2 ≤ C ≤ L, (4.35)

where C is the time complexity in the real time phase, M the amount of
memory needed, N the amount of keystream needed and L is the search
space (the length of the shift register). The preprocessing time in the attack
is given by P = L/N . To show that our attack is significantly better than
this time-memory-data tradeoff attack we pick a few points on our curve
and give the amount of memory and preprocessing time needed in order to
have a better attack. This is given in Table 4.2. Also note that the first two
points given in the table do not satisfy the condition N2 ≤ C ≤ L.
From the table it is clear that using the same time complexity and amount

of keystream the generic time-memory-data tradeoff attack requires an in-
feasible amount of memory and precomputation. A typical point on the
curve, mentioned in [BS00], is P = C = 20.66L and M = N = 20.33L. This
point will give more realistic values, and comparing it to our attack we see
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Figure 4.5: The attack complexity as a function of the keystream
length. Comparison between the new attack and the attack by Mi-
haljević.
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that it uses both more data and more computation than a typical point on
our curve.

4.6 Summary

Since the introduction of the self-shrinking generator in 1994 several attacks
have been proposed, some requiring only a small known keystream while
others need longer sequence to succeed. In this chapter we presented two
new attacks on the self-shrinking generator, one using a short keystream
and one requiring a longer keystream. In the first attack, operating on a
very short known keystream, we showed that the complexity is approxi-
mately the same as the best previously known attack (the BDD-based at-
tack). However, our attack needs almost no memory whereas the BDD-
based attack is unpractical due to the large memory required. In the sec-
ond attack we assumed a longer known keystream. It was shown that the
asymptotic computational complexity for this attack is significantly lower
than in the previously best attack, for any amount of known keystream of
length 2αL when 0 < α < 0.5.



5

Some Attacks on the Bit-Search
Generator

In the previous chapter we considered the self-shrinking generator, an al-
gorithm that decimated a pseudo random sequence in an irregular way.

The bit-search generator (BSG) is a keystream generator intended to be used
as a stream cipher, or perhaps as a part of a stream cipher. It was introduced
in 2004 by Gouget and Sibert [GS04] and the idea behind the construction is
similar to the self-shrinking generator. The output of the BSG is produced
by a simple algorithm, taking a pseudo random sequence as input.

In this chapter we investigate some possible attacks on the bit-search
generator. Similar to the self-shrinking generator, we will assume that the
pseudo random sequence is an m-sequence, generated by an LFSR with
primitive feedback polynomial and that the feedback polynomial is known
to the attacker.

This chapter is based on [HJ05] and is outlined as follows. In Section 5.1
we describe the BSG and we compare the construction with similar gener-
ators. Then, in Section 5.2 we present an attack that reconstructs the input
sequence to the BSG algorithm. By doing this we can recover the initial state
of the LFSR. Section 5.3 gives the framework for a possible distinguishing
attack and in Section 5.4 we discuss some related work and proposed im-
provements of the generator. In Section 5.5 we give our conclusions.

69
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LFSR- - -Selection
Logic

st zj

Figure 5.1: Block model of the bit-search generator.

5.1 Description of the Bit-Search Generator

In this section we describe the bit-search generator in two different but
equivalent ways. First we give the original description that uses a sequence
s as input, as presented in [GS04]. Then we give an alternative description
that uses the differential sequence d of s as input. We also compare the
construction to similar keystream generators.

The principle of the BSG is very simple. It consists only of an LFSR and
some small selection logic, see Fig. 5.1. Consider a binary sequence s =
(s0, s1, s2 . . .) generated by the LFSR. The output sequence, or keystream,
z = (z0, z1, z2 . . .) is constructed from s by first letting b = s0 be the first bit
to search for. If the search ends immediately, i.e. s1 = b = s0 we output 0,
otherwise we continue to search the sequence s until the bit we search for is
found. When the correct bit is found we output 1 and we let the following
bit be the next to search for. An output bit is produced after 2 input bits
with probability 1/2, after 3 input bits with probability 1/4 etc. In general,
an output bit is produced after i + 1 input bits with probability 2−i so the
average number of input bits needed to produce one output bit is

∞∑
i=0

(i+ 1) · 2−i = 3. (5.1)

This shows that the rate of the BSG is asymptotically 1/3.
To motivate why this generator is interesting we compare it to some

other well-known generators based on the idea of only using LFSRs and
some selection logic. We base the comparison on the number of LFSRs used
and the rate of the cipher. As we can see in Table 5.1 the BSG has lower rate
than the alternating step generator [Gün88] and the shrinking generator but
it uses only one LFSR. The self-shrinking generator has also only one LFSR
but it has lower rate.

We now consider the differential sequence d of s. The differential se-
quence d = (d0, d1, d2 . . .) is defined as

dt = st ⊕ st+1. (5.2)

If the sequence s is generated by an LFSR it is well known, see e.g. [McE87],
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Generator Number of LFSRs needed Rate
Alternating Step 3 1
Shrinking 2 1/2
Self-Shrinking 1 1/4
BSG 1 1/3

Table 5.1: Comparison between the BSG and some well-known gen-
erators.

that the differential sequence can be generated by the same LFSR. The two
sequences differ only by some shift. When reconstructing s from d we need
to guess the first bit in s, then the remaining bits are uniquely determined
from d.

The output of the BSG can be uniquely described by knowledge of the
differential sequence. Hence, if we can reconstruct the differential sequence
we can predict the future outputs uniquely and we can also recover the key
used to initialize the LFSR. The BSG operates on the differential sequence
in the following way. If dt = 1 we know that st 6= st+1 so we will output
1. Then we search the sequence d until we find the next dj = 1. If instead
dt = 0 we know that we have two consecutive bits which are the same,
hence we output 0. In both cases we now know that we have found the
bit we search for in the original BSG and we skip the next bit since it does
not matter which value it has. It is clear that the output of the BSG can be
generated from either the original LFSR sequence or from the differential
sequence. The following is an example of a sequence s and the correspond-
ing differential sequence d. Applying the algorithms, we can see that they
produce the same output.

s = 010100100111011101011010 . . . ⇒ z = 110010101 . . .
d = 11110110100110011110111 . . . ⇒ z = 110010101 . . . (5.3)

A summary of the two algorithms can be found in Fig. 5.2.

5.2 Reconstructing the Input Sequence

In this section we will describe a known plaintext attack that tries to recon-
struct the differential sequence from the output sequence. In our attack we
assume that we have an LFSR generating the pseudo random sequence and
that the feedback polynomial of the LFSR is known to the attacker. If we
have an LFSR of length L we need to guess L bits to be able to find a candi-
date initial state of the LFSR. Each bit can be written as a linear function of
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Output generated from s

i = 0; j = 0;
while (1)

b = s[i];
i++;
if (s[i] == b) z[j] = 0;
else z[j] = 1;
while (s[i] ! = b) i++;
i++; j++;

Output generated from d

i = 0; j = 0;
while (1)

z[j] = d[i];
if (d[i] == 1)

i++;
while (d[i] == 0) i++;

i += 2;
j++;

Figure 5.2: The original BSG algorithm and an equivalent algorithm
using the differential sequence d of s as input.

the initial state bits and by clocking the LFSR with a candidate initial state
we can see if the candidate output equals the given output.

The attack in this section is very similar to the short keystream attack
on the self-shrinking generator given in Chapter 4. It follows from the al-
gorithm given in Fig. 5.2 that zt = 0 corresponds to a 0 followed by an
unknown value in the differential sequence. It is also clear that zt = 1 cor-
responds to a 1 followed by j ≥ 0 zeros followed by a single 1 and an un-
known value. In short,

zt = 0 ⇒ (0,−)
zt = 1 ⇒ (1, 0j , 1,−) (5.4)

The probability of having j zeros is 2−j−1, i.e. zt = 1 corresponds to (1,1,–)
with probability 1/2, (1,0,1,–) with probability 1/4, (1,0,0,1,–) with probabil-
ity 1/8 etc. The expected number of inserted zeros is

∞∑
i=0

i · 2−i−1 = 1. (5.5)

In the following we will denote by a the number of ones that we ob-
serve in an keystream sequence, b is the number of zeros in the keystream
sequence and k is the number of zeros that are inserted in the candidate
differential sequence, stemming from a set of a ones in the keystream se-
quence.

Now, assume that we have a set of a ones. There is one way to insert
a total of k = 0 zeros and this happens with probability 2−a. The number
of ways to insert a total of k = 1 zero is

(
a
1

)
and each has a probability

of 2−a+1 · 2−2 = 2−a−1. The number of ways to insert k zeros into a set
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Search algorithm

Pick a part z′ of z s.t. 2a+b=L;
k=0;
while (k <= kmax)

Try all ways to insert k zeros in z′;
Delete last bit in z′;
if (Deleted bit == 0) k = k + 1;
else k = k + 2;

Figure 5.3: The algorithm used to find the correct differential se-
quence.

consisting of a ones is given by
(
a−1+k

k

)
. Hence, the probability of having a

total of k zeros inserted will be(
a− 1 + k

k

)
2−a−k. (5.6)

We construct a simple search algorithm based on these observations. The
easiest way to find the correct differential sequence is to just guess the num-
ber of inserted zeros.

When we try to insert k zeros we need to look at an output sequence
that satisfies 2a+ b+ k = L. This is clear since every one in the output will
give us two known bits and every zero will give us one known bit in the
differential sequence. If we insert k extra zeros we will have a total of L bits
which is enough to find the initial state. This leads us immediately to the
algorithm in Fig. 5.3.

We start by just picking a part z′ of the output sequence such that the
bits of z′ satisfies 2a + b = L. Then we insert k = 0 zeros. If this candi-
date is not the correct differential sequence, we delete the last bit in z′. If a
zero is deleted we try k = 1 next time since b ← b − 1 and we still require
2a+ b+ k = L to hold. For the same reason, if a one is deleted we try k = 2
next time. Every time k ← k + 2 we will miss some possible combinations
and, hence, not the full space will be searched.

5.2.1 Analysis of the Algorithm

The complexity of the algorithm and the probability of success will depend
on two factors.
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• The ratio between the number of zeros and the number of ones in the
sequence. If we have found a z′ which has many more zeros than ones,
the complexity will be lower. This will also give us a higher success
probability since we will delete a 0 more often than we will delete a 1.

• The maximum number of zeros we will try to insert into the sequence
before we give up. This is the value kmax in the algorithm in Fig. 5.3.
Choosing a high value for kmax will increase the success probability
but it will also increase the complexity.

We consider the case when we choose a sequence z′ at random. We expect
the number of zeros in the sequence to be equal to the number of ones. We
also expect that the deleted bit is 1 every second time. Moreover, when z′ is
of odd length, we consider the pessimistic case when a = b+1. We have the
following equations

2a+ b+ k = L
a = b

}
⇒ a =

⌈
L− k

3

⌉
(5.7)

The probability of success will be

kmax∑
k=0

(⌈L−k
3

⌉
− 1 + k

k

)
2−
⌈

L−k
3

⌉
−k (5.8)

and we have a total complexity of

kmax∑
k=0

(⌈L−k
3

⌉
− 1 + k

k

)
. (5.9)

Similar equations can easily be found also if a 6= b. We choose kmax as the
smallest integer such that the probability of success is > 0.5. Focusing on
the expected case when a = b, we summarize the complexity of an attack in
Table 5.2 with respect to the length of the LFSR (keylength). It is clear that
the complexity of the attack is very close to 20.5L tests for all cases.

Assuming that the entropy of the internal state is L bits, we can be con-
fident that a candidate initial state is the correct state after comparing the
produced sequence with about L keystream bits. Thus the amount of key-
stream needed in the attack is O(L).

5.2.2 A Data-Time Tradeoff

As mentioned in the previous section, it is clear that the complexity of the
attack depends on the number of ones that we observe in the keystream.
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Keylength kmax Complexity
64 19 231.74

96 27 247.50

128 36 263.96

160 44 279.82

192 52 295.71

224 61 2112.37

256 69 2128.29

Table 5.2: The attack complexity when the number of zeros equals the
number of ones in z′.

With a large amount of keystream we can find sequences with few ones
and, hence, the attack complexity is decreased. This provides a data-time
tradeoff in the attack. Assume that we want to find a part z′ of z that con-
tains at most a ones and at least b zeros, where b > a. Looking at a random
sequence of a + b bits, the probability that we find a sequence with at most
a ones is given by the binomial distribution,

Pr(#ones ≤ a) =
∑a

i=0

(
a+b

i

)
2a+b

, (5.10)

using the approximation that sequences are independent. The number of
tries needed before a desired sequence is found is geometrically distributed
with an expected value of

2a+b∑a
i=0

(
a+b

i

) =
2L−a∑a

i=0

(
L−a

i

) . (5.11)

In the equality we use 2a + b = L. Table 5.3 demonstrates this data/time
tradeoff for the case when L = 128, i.e., the keylength is 128 bits. Simula-
tions show that the time complexity and the amount of keystream needed
intersect at around 20.27L for all L between 64 and 1024 bits.

The complexities in Table 5.2 and Table 5.3 are given as the number of
tests. To test if a candidate sequence is correct, a constant time is needed.
This time can be divided into two parts. First we need to find the initial
state of the LFSR by solving a system of L unknowns and L equations. For
simplicity we write the time complexity for this step as L3. We also need
to clock the LFSR a sufficient number of times to compare our candidate
output sequence with the observed output sequence. This second constant
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Number of zeros (b)
and ones (a) in z′ kmax Complexity Keystream

b = 2a 29 251.09 210.46

b = 3a 24 242.21 221.59

b = 4a 21 236.31 231.32

b = 5a 19 232.14 239.75

b = 6a 17 228.46 248.70

Table 5.3: The data/time tradeoff based on the number of ones and
zeros in z′ using a 128 bit key.

would also be needed in an exhaustive key search. Thus, the total time com-
plexity for our key recovery attack is O(L320.5L) knowing O(L) keystream
bits. With the data/time tradeoff the complexity of the attack is O(L320.27L)
if we know O(20.27L) bits of the keystream. Note that these complexities are
not formally derived but simulations show that they are valid (at least) up
to LFSR lengths of 1024 bits. The memory complexity of the attack is limited
to the memory needed to solve the system of linear equations, O(L2).

5.3 Distinguishing Attack

In this section we describe a possible distinguishing attack on the BSG. In
the attack we assume that we have found a multiple of the feedback poly-
nomial that is of weight w and degree M . Any multiple of a feedback poly-
nomial will produce the same output sequence as the original polynomial.
Recalling (3.24) we know that that the expected degreeM when polynomial
multiples of weight w start to appear is

M = (w − 1)!1/(w−1)2L/(w−1), (5.12)

where L is the degree of the polynomial. Hence, a feedback polynomial
of degree L is expected to have a multiple of weight w that is of degree
approximately M = 2

L
w−1 . Now, assume that we have found a multiple of

weight w that is of degree M .
The linear recurrence of the LFSR can be written as

0 = dt ⊕ dt+τ1 ⊕ dt+τ2 ⊕ . . .⊕ dt+τw−1 , (5.13)

where τw−1 = M and τj < τk, j < k. A zero in the output sequence z
corresponds to a zero in the differential sequence and a one in the output
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corresponds to a one in the differential sequence. Since the BSG has rate 1/3
we can consider the following sums of symbols from the output sequence

Bt = zt ⊕ zt+
τ1
3
⊕ zt+

τ2
3
⊕ . . .⊕ zt+

τw−1
3
. (5.14)

We know that Bt = 0 if we have the correct synchronization (dt+τ1 ap-
pears as zt+

τ1
3

, dt+τ2 appears as zt+
τ2
3

etc.) in the positions. We give an
approximate value of the probability that we have synchronization in one
position. With a multiple of low weight and high degree M the distance be-
tween zt and any z

t+
τj
3

is in the order of M . Using the central limit theorem
we say that the total number of inserted zeros after M outputs is normally
distributed with standard deviation σ ·

√
M , where σ is the standard devi-

ation for the number of inserted zeros after one output. Now, we approxi-
mate the probability that we have the correct synchronization as M− 1

2 .
Hence, the probability that z

t+
τj
3
, 1 ≤ j ≤ w− 1 is synchronized with zt

is approximately M− 1
2 . The probability that all w− 1 positions are synchro-

nized, denoted Pr(sync), is

Pr(sync) = (M− 1
2 )w−1 = M−w−1

2 (5.15)

and the probability that Bt = 0 can be calculated as

Pr(Bt = 0) = Pr(Bt = 0 | sync) · Pr(sync)
+ Pr(Bt = 0 | no sync) · Pr(no sync)

= 1 ·M−w−1
2 + 1/2 · (1−M−w−1

2 )

= 1/2 + 1/2 ·M−w−1
2 . (5.16)

With a bias of M−w−1
2 we will need, according to (2.62), about N =

Mw−1 samples of the output sequence to distinguish it from random. The
complexity of the distinguishing attack depends on the degree of the mul-
tiple and if the degree is the expected degree, M = 2

L
w−1 , our distinguisher

needs about N = 2L samples. However, if the feedback polynomial is not
carefully chosen and we instead can find a multiple of low weight that is of
much lower degree than expected, then the attack can be very efficient.

We can consider a feedback polynomial with M � 2
L

w−1 as being a
weak polynomial and the BSG using a weak polynomial can be efficiently
attacked.

The values in the previous attack are approximated but for large M they
are quite accurate. In the case where the feedback polynomial itself is of
low weight, the values are not very accurate. We now describe how this
attack can be mounted if the LFSR uses a feedback polynomial of some low
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weight w. Equation (5.13) will always hold for the differential sequence. To
find the optimum guess for z

t+
τj
3
, 1 ≤ j ≤ w−1 in (5.14) we use the generat-

ing function for the probability of the number of clockings after λ outputs.
Recall that the BSG will produce a keystream bit after two clockings with
probability 1/2, after 3 clockings with probability 1/4 etc. The generating
function can be written as ( ∞∑

n=1

1
2n
zn+1

)λ

. (5.17)

The coefficient of zn is the probability that the LFSR has been clocked n
times when the BSG has generated λ keystream bits.

By choosing the λj for which the coefficient of zτj is highest we can de-
termine which guess will give us the best probability of synchronization
and we will also get the exact probability of a correct guess. We denote the
probability that we guess λj correctly by pλj

. If pλj
, 1 ≤ j ≤ w − 1 are

independent the probability that Bt = 0 can be written, similarly to (5.16),
as

Pr(Bt = 0) = 1 ·
w−1∏
j=1

pλj
+ 1/2 · (1−

w−1∏
j=1

pλj
)

= 1/2 + 1/2 ·
w−1∏
j=1

pλj
. (5.18)

With a bias of
∏w−1

j=1 pλj
we need about

N =
1∏w−1

j=1 p
2
λj

(5.19)

samples for a successful distinguishing attack. We end this section with a
small numerical example showing the performance of this distinguisher on
a low weight feedback polynomial.

EXAMPLE 5.1: Consider the weight 5 primitive feedback polynomial 1 +
x29+x66+x95+x128. Write the linear recurrence in the differential sequence
as

0 = dt ⊕ dt+29 ⊕ dt+66 ⊕ dt+95 ⊕ dt+128. (5.20)

Using (5.17) we find that the highest coefficient for z29, z66, z95 and z128 is
achieved when we have λ1 = 10, λ2 = 22, λ3 = 32 and λ4 = 43 respectively.
The best possible approximation of (5.14) is then Bt = zt + zt+10 + zt+22 +
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zt+32+zt+43. The probability that each of these terms are synchronized with
zt is the coefficient for each term in (5.17), i.e.,

pλ1 = 2−3.43, pλ2 = 2−4.06, pλ3 = 2−4.31, pλ4 = 2−4.53. (5.21)

This gives us a total bias of
∏w−1

j=1 pλj = 2−16.33 and, hence, our distinguisher
needs approximately 232.66 bits to succeed.

This shows that low weight feedback polynomials can be easily and effi-
ciently attacked.

5.4 Related Work

The paper [GSB+05] independently presented cryptanalysis of the bit-search
generator. Differently from the attacks in this chapter that paper instead as-
sumed that each one in the keystream corresponded to the sequence (b, b, b).
By picking a keystream window of size 2L/3 and assuming the expected
case that there is L/3 zeros and L/3 ones the probability that the assumption
holds is 2−L/3. Thus, doing this for 2L/3 windows we expect to have found
a window for which the assumption is true. Since each try involves solv-
ing a system of linear equations the computational complexity is O(L32L/3)
and the required amount of keystream isO(L2L/3). This approach was then
improved by looking at pairs of windows of size l with w ones each. The
assumption that every one in a window stems from the sequence (b, b, b)
holds with probability 2−w. By considering all pairs of 2w windows and for
each pair guessing the distance between the windows it is shown that the
internal state can be recovered with computational complexity L32L/4 and
2L/4 keystream bits.

The security of the BSG is based on the uncertainty about the number of
input bits needed to output a one. However, there is no uncertainty when
a zero is output. In [GSB+05], the authors also proposed two new vari-
ants of the BSG, namely the MBSG and the ABSG. In these variants, there
is uncertainty about the number of input bits no matter whether a zero or
a one is produced as keystream bit. The algorithms for the MBSG and the
ABSG are given in Fig. 5.4. Both these two new algorithms have a rate of
1/3 bits/clock. The security of these two algorithms was also investigated
in [GSB+05]. The best attack has computational complexity O(2L/2) and
requires O(L2L/2) keystream bits. It was also deduced that FBDD-based
cryptanalysis will succeed with computational and memory complexity of
aboutO(20.53L). Thus, in the case of cryptanalysis using few keystream bits,
the MBSG and the ABSG seems weaker than the self-shrinking generator.
On the other hand, they have a higher rate.
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MBSG Algorithm

i = 0; j = 0;
while (1)

z[j] = s[i];
i++;
while (s[i] == 0) i++;
i++; j++

ABSG Algorithm

i = 0; j = 0;
while (1)

b = s[i], z[j] = s[i+1];
i++;
while (s[i] ! = b) i++;
i++; j++;

Figure 5.4: The MBSG and the ABSG algorithms, two variants of the
BSG algorithm.

Finally we mention the stream cipher DECIM [BBC+05]. It is a stream
cipher in the eSTREAM project and at the time of writing it has advanced
to the third and last phase of the project. DECIM incorporates the ABSG
algorithm as part of the construction.

5.5 Summary

The bit-search generator, proposed by Gouget and Sibert has been consid-
ered and an equivalent description based on the differential of the input
sequence has been given. We propose an efficient attack that recovers the
differential sequence, and hence, the key. The BSG is very similar to the self-
shrinking generator and we find that the key recovery attacks presented
here are more efficient than any known key recovery attack on the self-
shrinking generator. The basis for a distinguishing attack is also described
and we show that if the feedback polynomial is not carefully chosen, the
BSG may be prone to efficient distinguishing attacks.
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Cryptanalysis of the Pomaranch
Family of Stream Ciphers

Pomaranch is one of the candidates in the eSTREAM [ECR] project. It
is designed to be efficient both in hardware and software. The cipher

is an interesting construction since it introduces a new approach to the de-
sign of LFSR based stream ciphers. The self-shrinking generator and the
bit-search generator covered in chapters 4 and 5 introduce nonlinearity into
a linearly generated sequence by applying an algorithm to the output of an
LFSR. This results in an irregular decimation of the LFSR sequence for the
self-shrinking generator and an irregular decimation of the differential of
the LFSR sequence for the bit-search generator. In both cases, the number of
bits discarded between consecutive output bits is unknown to an attacker.
Another way to decimate the LFSR sequence is to clock the register irreg-
ularly. However, these approaches will introduce some problems. First,
an output buffer is needed in hardware if the keystream has to be regu-
larly produced. Second, the construction is likely to be vulnerable to timing
and power attacks. The Pomaranch stream ciphers use a novel technique to
avoid these problems. The registers are based on a new idea, called jump
registers. In each update of the registers, the next state is one of two pos-
sible states. Which one it jumps to is key dependent and thus unknown to
the attacker. The main advantage is that the update of the ciphers behaves
like irregular clocking but the problems involved in irregular clocking are
avoided.

There are 3 different versions of Pomaranch. Version 2 was designed in
response to the attack on Version 1 and Version 3 was designed as a response
to the attack on Version 2. This chapter is based on the two papers [HJ06b]
and [EHJ06] and includes key recovery and distinguishing attacks on Ver-
sions 1 and 2. It also includes distinguishing attacks on Version 3.

81



82 6. Cryptanalysis of the Pomaranch Family of Stream Ciphers

The chapter is outlined as follows. Section 6.1 gives a theoretical back-
ground to the concept of jump registers. Section 6.2 describes the details
of Pomaranch Version 1. This is followed by an attack on Version 1 in Sec-
tion 6.3. Section 6.4 introduces Version 2 which is immune to the attack
on Version 1. In Section 6.5 we give a new algorithm that shows how to
easily find a biased linear approximation under certain circumstances. This
algorithm is applied to Pomaranch Version 2 in Section 6.6. The details of
Pomaranch Version 3 is given in Section 6.7. In Section 6.8 we give a dis-
tinguishing attack that can be mounted on all versions and variants of the
cipher. The attack is described in a general way in order to provide theorems
that can be used when designing future versions of the cipher. Section 6.9
describes another attack, using a special attack scenario, that can be applied
to any stream cipher. It is shown to be successful on all versions and vari-
ants of Pomaranch. The chapter is summarized in Section 6.10.

6.1 Jump Registers

In this section, we will give an overview of the theory behind jump registers.
These are the central building blocks in all Pomaranch stream ciphers. In
order to describe the jump registers we need some background theory on
matrices. Only the theory that is interesting for the jump registers is covered
here. To every square matrix we can associate a characteristic polynomial.

Definition 6.1: Assume that we have an n×n matrix A over the finite field
Fp. The characteristic polynomial of A, denoted pA(x), is the polynomial

pA(x) = det(xI −A), (6.1)

where I is the n× n identity matrix. ut

The Cayley-Hamilton theorem states that pA(A) = 0. Further, the transpose
of A has the same characteristic polynomial as A itself.

Definition 6.2: Two n × n matrices A and B are similar if there exists an
invertible matrix M such that

A = M−1BM. (6.2)

ut

Similar matrices share many properties, e.g., determinant, eigenvalues, trace,
rank and characteristic polynomial.
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Definition 6.3: The companion matrix C(f) to the degree n monic polyno-
mial f(x) = c0 + c1x+ . . .+ cn−1x

n−1 + xn is the n× n matrix

C(f) =



0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . 1
−c0 −c1 −c2 −c3 . . . −cn−1


. (6.3)

ut
The characteristic polynomial of C(f) is f(x). If f(x) is a primitive polyno-
mial over the finite field Fp, then the companion matrix is a generator to an
extension field isomorphic to Fpn . This follows from the Cayley-Hamilton
theorem. We now tie Definition 6.1, 6.2 and 6.3 together with the following
important fact. If the characteristic polynomial of a matrix A is irreducible
over the finite field Fp, then A is similar to the companion matrix of the
characteristic polynomial of A

C(pA(x)) = M−1AM. (6.4)

This is a special case of writing A in its rational canonical form, also known
as the Frobenius canonical form. Now, let A be the transition matrix for a
linear finite state machine (LFSM) of size L, not necessarily an LFSR and let
s(t) = (sL(t), sL−1(t), . . . , s1(t)) be the state at time t. Then

s(t) = Ats(0) = MC(pA(x))tM−1s(0)⇒M−1s(t) = C(pA(x))tM−1s(0).
(6.5)

Thus, the LFSM defined by A is the same as the LFSR specified by the char-
acteristic polynomial pA(x) except for a linear transformation. It is well
known that an LFSR with primitive characteristic polynomial will produce
a maximum length sequence. Thus, any transition matrix with primitive
characteristic polynomial will make the state s(t) go through all non-zero
states before returning to the initial state.

We are now ready to discuss jump registers. For simplicity, we restrict
ourselves to the field F2. The linear transformation matrix A used for jump
registers is of the form

A =



dL 1 0 0 . . . 0
0 dL−1 1 0 . . . 0
0 0 dL−2 1 . . . ...
...

...
. . . . . . . . . 0

0 0 . . . 0 d2 1
1 tL−1 . . . . . . t2 d1 + t1


. (6.6)
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Feedback cell Shift cell

Figure 6.1: F-cell and S-cell used in jump registers.

The idea is to, at each time instance, multiply the state vector with one of
two possible transition matrices. For jump registers, the state s(t) is multi-
plied by either A or A+ I . The integer J satisfying AJ = A+ I is called the
jump index. Clearly, multiplying by AJ and A + I is equivalent and corre-
sponds to jumping J steps in the state space. Moreover, if the characteristic
polynomial pA(x) of A is primitive, there always exists an integer J such
that AJ = A + I . We refer to [Jan05] for further mathematical background
on jump registers.

Any matrix of the form (6.6) has characteristic polynomial

pA(x) = 1 +
L−1∑
i=0

ti

L∏
j=i+1

(dj + x). (6.7)

An important advantage of implementing the transition matrix in this way
is the simplicity of implementation. Since only the diagonal elements are
changed when going fromA toA+I , and the rest of the matrix is equivalent
to an LFSR update, it is very easy to implement the update of this LFSM in
hardware. Each of the L state elements can be implemented in one of two
ways, as a feedback cell (F-cell) or as a shift cell (S-cell), see Fig. 6.1. The
values of di in (6.6) determines if a cell is currently implemented as an F-cell
or an S-cell. When multiplying the state with A + I instead of A, all F-cells
are turned into S-cells and vice versa.

6.2 Pomaranch Version 1

The first version of Pomaranch was initially called Cascade Jump Controlled
Sequence Generator (CJCSG). This name reflects the design principle in that
it uses a cascade of 9 jump registers, R1, . . . , R9, see Fig. 6.2. Pomaranch
Version 1 supports a key size of 128 bits and an IV in the range of 64 to
112 bits. Each jump register has a length of L = 14 bits. All jump registers
are identical, i.e., the state transition matrix A is chosen to be the same for
all registers. The characteristic polynomial of the LFSM defined by A is
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R9 R8 R3 R2 R1
JC1JC2JC3JC8JC9

Figure 6.2: Overview of the Pomaranch design principle.
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Figure 6.3: The jump register used in Pomaranch Version 1.

primitive. At all times, half of the register cells are S-cells and half are F-
cells, see Fig. 6.3. The current implementation of each cell (S-cell or F-cell)
is determined by a Jump Control bit, JC. If JC = 0, the state is updated
corresponding to multiplication byA and if JC = 1, the update corresponds
to multiplication by A + I . The state of the registers R1 to R8 are filtered
through a nonlinear key dependent function, fKi

producing output bits c1
to c8. The 128-bit key is divided into 8 parts of 16 bits each and part i is used
in fKi

The jump control bit for register i, denoted JCi, is then calculated as

JCi = c1 ⊕ . . .⊕ ci−1, (i = 2, . . . , 9), (6.8)

as seen in Fig. 6.2. The jump control for the first register, JC1, is always set
to 0. The keystream at time t, denoted z(t), is taken as the binary xor of all 9
bits at position 13, denoted ri(t), in the registers.

The initialization of the cipher will not affect our analysis. All attacks
will be on the keystream generation phase. Instead, we refer to the design
documents for a detailed description of the initialization.

6.3 Biased Linear Relations in Jump Register Out-
puts

The size of the registers is only 14. This suggests that it might be possi-
ble to mount a divide-and-conquer kind of attack on the cipher. Since the
registers are updated linearly each new output bit will be linearly depen-
dent on the initial state bits. Hence, for any given JC-sequence of length 14
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there will be a linear relation in 15 output bits that will always hold, i.e.,
there is an array ` = (`0, `1, . . . , `14), `i ∈ {0, 1} such that

⊕14
i=0 `ir(t + i) =

0. Considering all possible JC-sequences, the possible values for ` may
not be evenly distributed and thus, there might be linear relations that are
more probable than others. This is the idea behind the attack on the key-
stream generation phase of Pomaranch Version 1. That attack was described
in [Kha05] and the results in this section are taken from that paper. Before
continuing we introduce the notation a

p
= b meaning that a and b are equal

with probability p. By exhaustively searching all 214 possible values for
JC(t), JC(t+ 1), . . . , JC(t+ 13) it can be seen that the two linear relations

ri(t)⊕ ri(t+ 8)⊕ ri(t+ 14)
p
= 0, (6.9)

ri(t)⊕ ri(t+ 8)⊕ ri(t+ 13)⊕ ri(t+ 14)
p
= 0, (6.10)

holds with probability p = 1/2(1 + 840/214). Thus, the bias is ε = 840/214 =
2−4.286. These biased relations will hold for the output of registers Ri for
2 ≤ i ≤ 9. Using (6.9) we can, according to (2.58), write

9⊕
i=2

ri(t)⊕ ri(t+ 8)⊕ ri(t+ 14)
p′

= 0 (6.11)

which holds with probability p′ = 1/2(1 + εtot) with εtot = (840/214)8 =
2−34.286. Since z(t) =

⊕9
i=1 ri(t) we have

z(t)⊕ z(t+ 8)⊕ z(t+ 14)
p′

= r1(t)⊕ r1(t+ 8)⊕ r1(t+ 14). (6.12)

Exhaustively searching the state of register R1 we can, according to (2.61),
distinguish the correct state using about

N =
14 · 2 ln 2
ε2tot

= 272.9 (6.13)

samples. Using both (6.9) and (6.10) we now have a distinguishing attack1

requiring 271.9 keystream bits and computational complexity 214272.9 = 286.9.
When the state of R1 has been recovered we guess the state of R2 to-

gether with the 16 key bits used in fK1 . Similarly as before we have

9⊕
i=3

ri(t)⊕ ri(t+ 8)⊕ ri(t+ 14)
p′′

= 0 (6.14)

1The fact that we already here have a distinguishing attack is not mentioned in [Kha05].
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Attack Complexities

Type of Amount of Computational
Attack Keystream Needed Complexity

Distinguishing Attack 271.9 286.9

Key recovery Attack 271.9 295.4

Table 6.1: Attack complexities for Pomaranch Version 1.

with p′′ = 1/2(1 + εtot) with εtot = (840/214)7 = 2−30.000. With R1 known
we need

N =
30 · 2 ln 2
ε2tot

= 265.4 (6.15)

samples and a computational complexity of 230265.4 = 295.4 in order to de-
termine R2 and the 16 bits of the key. After this the rest of the key can be
recovered in the same way. It is easy to see that the following steps are
computationally easier than the first two steps. The attack complexities are
summarized in table 6.1.

6.4 Pomaranch Version 2 - Improving Jump Reg-
ister Parameters

In [CGJ06], the authors presented an attack on Pomaranch targeting a weak-
ness in the initialization procedure, not all IV bits are diffused into the whole
state. This attack together with the attack in [Kha05] showed that the con-
struction had to be improved.

In [JHK06] a theoretical analysis was done based on the attack in [Kha05].
Let C(x) be the characteristic polynomial of A. Then for a given jump con-
trol sequence we have the equality

L∑
i=0

`ix
i−ki(x+ 1)ki = C(x), (6.16)

where ki is the binary weight of the vector (JC(t), . . . , JC(t+ i− 1)). Note
that the coefficients in (6.16) are in F2. Using (6.16) a straightforward O(L)
approach to find the values of `i was described, giving the linear relation
for this particular jump control sequence. Hence the most common linear
relation among the 2L sequences was found in O(L2L). Based on this, the
parameters of the jump registers were tweaked such that there were no lin-
ear relations of length L + 1 that gave a bias large enough to mount the
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Figure 6.4: The jump register used in Pomaranch Version 2.

attack in Section 6.3 with complexity lower than exhaustive key search. The
new jump registers were implemented as shown in Fig. 6.4. A variant of
Pomaranch Version 2 that supports a key size of 80 bits was also introduced.
The only difference between the 128-bit variant and the 80-bit variant is that
the number of jump registers is reduced to 6 instead. Everything else in the
design is left unchanged.

6.5 A New Algorithm That Can Find Linear Rela-
tions

Before we move on to the cryptanalysis of Pomaranch Version 2 we intro-
duce a new algorithm that turns out to be helpful in our analysis. The idea
is to not look at binary linear relations and their distance to the random
distribution, but instead to consider vectors.

6.5.1 Vectorial Representation of a Linear Approximation

In this section we consider the advantage of representing a biased linear re-
lation as a vector instead of as a binary relation. We give two propositions,
which will lead us to a simple algorithm that helps us to find biased lin-
ear relations. Both propositions follow from basic information theory, see
e.g., [CT91].

Proposition 6.1: Let zt1 , zt2 , . . . , ztm be binary random variables and let the
vector (zt1 , zt2 , . . . , ztm

) follow the size 2m distribution P0. Let the sum of
the variables z = zt1 ⊕ zt2 ⊕ . . .⊕ ztm

follow the distribution P ′
0. Then

D (P0‖P1) ≥ D (P ′
0‖P ′

1) (6.17)

for any size 2m distribution P1 with corresponding distribution P ′
1 being the

sum of the variables.

Proof: Denote by a(e)
i (0 ≤ i < 2m−1) the probabilities of the vectors in P0

with even Hamming weight and correspondingly by a(o)
i (0 ≤ i < 2m−1) the
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probabilities of the vectors with odd Hamming weight. Similarly, the prob-
abilities of the vectors in distribution P1 will be denoted b

(e)
i and b

(o)
i (0 ≤

i < 2m−1) respectively. Hence, we want to show that
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Let E{·} denote the expected value. Jensen’s inequality states that for a
convex function f and random variable X it holds that

E{f(X)} ≥ f(E{X}). (6.19)

If f is strictly convex, the equality in (6.19) implies that X is a constant.
We use the fact that t log t is a strictly convex function and introduce αi =
Pr(ti log ti). If we consider only the first term on the left hand side and right
hand side of (6.18) and putting ti = a

(e)
i /b

(e)
i we can write
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This will hold for any choice of αi as long as αi ≥ 0 and
∑

i αi = 1. Hence
we can put αi = b

(e)
i /

∑
i b
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i and it follows that
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Doing the same thing for the second terms in (6.18) will end the proof. �

Proposition 6.1 implies that we can never lose anything by considering a
linear approximation as a binary vector. Moreover, if the distribution of the
vectors is such that for all vectors with even Hamming weight the probabil-
ity is the same and for all vectors with odd Hamming weight the probability
is the same, then there is no additional gain in using vectorial representa-
tion. We continue the analysis of vectorial representation with the following
proposition.

Proposition 6.2: Assume that we have a binary vectorial distribution of
size 2m denoted P0 and the size 2m uniform distribution P1. Adding a vari-
able to the length m vector that is statistically independent with all other
variables will not affect the relative entropy between two distributions. Fur-
thermore, adding a variable that is correlated with other variables will in-
crease the relative entropy.
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Proof: Let X = (X0, X1, . . . , Xm−1). Using the chain rule for relative entropy
we write

D (P0[x, xm] ‖ P1[x, xm]) =

D (P0[x] ‖ P1[x]) +D (P0[xm|x] ‖ P1[xm|x])
(6.22)

where the last term is zero if and only if PrP0 [xm|x] = 1/2, xm ∈ {0, 1}. �

In the next section we show how these results can be used to find biased
linear approximations of nonlinear blocks.

6.5.2 Finding a Biased Linear Approximation

In this section the theory developed in Section 6.5.1 is used to find biased
linear approximations. If we have a linear approximation xt1⊕xt2⊕. . .⊕xtµ

and add a variable, xtµ+1 , that is uniformly distributed and statistically in-
dependent with the other variables, the distribution of the resulting ap-
proximation is uniform and the approximation is useless. It can not be
used in a distinguisher. If we instead write the approximation as a vector,
(xt1 , xt2 , . . . , xtµ

), then, according to Proposition 6.2, it does not matter how
many uniformly distributed and independent variables we add to the vec-
tor. As long as all variables from the approximation are present, the relative
entropy will never decrease and the vector can be used in a distinguisher.

Consider a cipher containing a relatively small building block B. If the
distribution of the output bits, or the distribution of a linear equation of
some output bits, can be found, then it is easy to search through all lin-
ear relations in order to determine which is most biased. However, as the
amount of output bits to be considered increases, the number of possible
equations increases exponentially. Considering m consecutive output bits
there are 2m possible equations. If no biased equation is found among these
equations, one more output bit has to be considered and an additional 2m

equations has to be checked. If checking one equation requires 2k compu-
tation steps, checking all equations involving m bits will require a compu-
tational complexity of 2k+m. Instead, by considering the output bits as a
vector, the computational complexity will be limited to 2k. On the other
hand, the memory complexity will be 2m since the distribution of a length
m vector needs to be kept in memory. Assume that the building blockB has
a biased linear relation involving some of the output bits x0, x1, . . . , xm−1

with a significantly larger bias than any linear relation involving less than
m consecutive output bits. Let xm = (x0, x1, . . . , xm−1). Then

D (P0[xm] ‖ P1[xm])� D (P0[xm−1] ‖ P1[xm−1]) , (6.23)

where P0 is the cipher distribution and P1 is the uniform distribution.
Hence, we can start with the vector x1 = (x0) and add one extra variable at
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a time. If, at step m, considering the vector xm = (x0, x1, . . . , xm−1), the rel-
ative entropy between the distribution of xm and the uniform distribution
increases significantly, there might be a biased linear relation involving the
variables x0 and xm−1 and zero or more variables xi (1 ≤ i ≤ m − 2). In
order to find the other variables in the biased linear relation we consider the
vector x(i)

m which we define as the vector xm with the variable xi removed.
If

D
(
P0[x(i)

m ] ‖ P1[x(i)
m ]
)
≈ D (P0[xm] ‖ P1[xm]) (6.24)

then the variable xi is not present in the linear approximation. Note that
we do not use equality in (6.24) since the variable i can be present in some
biased linear relation but still not in the most biased relation. We are only
interested in the most biased relation and if the variable xi is present in this
relation the decrease in relative entropy will be significant, not just approxi-
mate. Of course we can continue increasing the length of the vector, hoping
to find even better linear approximations. Perhaps the algorithm is best ex-
plained using a concrete example and Pomaranch Version 2 turns out to be
very suitable.

6.6 Algorithm Applied to Pomaranch Version 2

In this section we show how we can use the algorithm described in Sec-
tion 6.5.2 to find a heavily biased linear relation in the stream cipher Po-
maranch Version 2. We also show that the existence of this linear relation
makes it possible to mount both distinguishing and key recovery attacks on
the cipher.

6.6.1 New Attack on Pomaranch Version 2

In this section we show that it is still possible, using our proposed algorithm,
to find linear relations in the output bits that can be used in an attack. The
problem with the theoretical analysis in [JHK06], using (6.16), is that it only
considers relations of length L + 1. The same analysis is not applicable to
relations involving bits further apart since the characteristic polynomial ofA
is of degree L. Consequently, the design parameters for Pomaranch Version
2 are optimized for the cipher to resist correlation attacks based on relations
of length L+ 1 and it successfully does so.

Unfortunately it is not enough to only consider these relations. It is pos-
sible that there are relations involving bits further apart that are more biased
than any relation involving only bits L + 1 positions apart. The algorithm
proposed in Section 6.5.2 is very suitable for Pomaranch. The shift registers
are of length 14 which is easy to search exhaustively. Moreover, all registers
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for all 214 − 1 initial states
for all 2i−1 possible JC-sequences

clock the jump register i−1 times;
P0[(z0, . . . , zi−1)] + +;

end for
end for

Figure 6.5: Algorithm to find the distribution for i consecutive output
bits. The actual implementation can be recursive to make it faster.

are identical. Register R1 will have JC1(t) = 0, ∀t and will thus behave
like a regularly clocked shift register with primitive feedback polynomial.
Hence, the register R1 will not be considered using our algorithm. Instead,
it will be exhaustively searched. Registers Ri (2 ≤ i ≤ 9) will have JCi

determined by a key dependent function. Since these registers are identi-
cal, finding a biased linear approximation in the output bits of one register
means that all other registers (except R1) will have this biased approxima-
tion. In order to find a good approximation, we look at vectors of consec-
utive output bits. When calculating the bias of these vectors, the following
three assumptions will be used:

(i) All states of the registers will have the same probability, except the
all-zero state, which has probability 0.

(ii) All JC-sequences will have the same probability.

(iii) All jump sequences, JCi (2 ≤ i ≤ 9), are independent.

Since the shift registers are of length 14, the first vector length we check is
15. The algorithm used to find the distribution for i consecutive output bits
is given in Fig. 6.5. The output (keystream) of Pomaranch is given as the xor
of the output bits of the registers. Hence, we need to find the bias of the xor
of all 8 distributions. For k distributions, this can easily be done in O(k22n)
time, where n is the size in bits for each random variable. This can be a
bottleneck if the vectors are very large. A much more efficient algorithm for
finding the distribution of a sum of random variables was given in [MJ05].
They show that the distribution for Pr(X1 ⊕X2 ⊕ . . .⊕Xk) can be found in
O(kn2n) time where all Xi are n-bit random variables. This algorithm was
adopted in our implementation. The relative entropies between the vectors
of length 15 to 23 and the random distribution have been given in Table 6.2.

We see that D(P0‖P1) increases significantly when the vector reaches
length 19. The fact that D(P0‖P1) is much higher for xi (i ≥ 19) tells
us that there might exist a heavily biased linear approximation involving
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Vector Length D(P0‖P1)

15 2−111.914

16 2−108.603

17 2−107.671

18 2−107.108

19 2−75.849

20 2−74.849

21 2−74.264

22 2−73.849

23 2−73.527

Table 6.2: Relative entropy between output vectors and the random
distribution.

i x(i)
19 i x(i)

19

1 2−75.851 10 2−75.849

2 2−105.383 11 2−75.849

3 2−75.849 12 2−75.849

4 2−75.849 13 2−75.849

5 2−76.077 14 2−75.849

6 2−105.264 15 2−75.849

7 2−75.849 16 2−75.849

8 2−75.849 17 2−76.849

9 2−75.849

Table 6.3: Relative entropy when bit i is excluded from the vector x19.

the bits x0, x18 and zero or more bits xi (1 ≤ i ≤ 17). To find the par-
ticular linear approximation that allows us to attack the cipher we look at
D
(
P0[x

(i)
19] ‖ P1[x

(i)
19]
)

, as suggested by our proposed algorithm. The result
is given in Table 6.3.

We see that when x2 or x6 are removed, the relative entropy is almost
as when x18 was considered. This implies that the heavily biased linear
relation is

z(t)⊕ z(t+ 2)⊕ z(t+ 6)⊕ z(t+ 18) = 0. (6.25)
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It is possible that the figures in Table 6.3 stems from the fact that the vector
(z(t), z(t+2), z(t+6), z(t+18)) is heavily biased but the xor of the variables
has a much smaller bias or even no bias at all. However, checking the rel-
ative entropy between (6.25) and random, which is 2−77.080, confirms that
the figures in Table 6.3 stems from the biased linear relation. In any cipher,
constructed using jump registers together with some other function, this re-
lation would have been an important part of linear cryptanalysis. In the
specific case of Pomaranch, which uses the output bits from the jump regis-
ters immediately in the output function it is even better to consider the total
vector of as many bits as possible, since this will give us more information.
Though, most of this information stems immediately from this relation. The
discovery of the biased linear relation given by our algorithm may help the
designers to get additional theoretical knowledge about the design principle
of the Pomaranch family of stream ciphers.

6.6.2 Distinguishing and Key Recovery Attacks

In this section we give the details and complexities of the attacks on Po-
maranch Version 2. Using output vectors of length 23, which is the largest
vectors we were able to find the distribution for, we get the relative entropy

D(P0[x23]‖P1[x23]) = 2−73.527. (6.26)

From here, the attack follows the same steps as the attack on Pomaranch Ver-
sion 1 given in Section 6.3. For the 128-bit variant, the amount of keystream
needed in order to recover the state of R1 is, according to (2.61), about

N =
14

D(P0[x23]‖P1[x23])
= 277.33. (6.27)

The computational complexity is then 214277.33 = 291.33. As with Pomaranch
Version 1, this distinguisher can be extended to a key recovery attack by
guessing R2 and the 16 key bits in fK1 .

The sum of the stream generated by R3, . . . , R9 has relative entropy
2−63.897 compared to the random distribution. The corresponding distin-
guisher needs

N =
30

2−63.897
= 268.80 (6.28)

samples. The computational complexity for finding 16 bits of the key will
then be 268.80230 = 298.80. Finding the remaining bits of the key will now
be a relatively fast procedure. The 80-bit hardware oriented variant of Po-
maranch Version 2 has the same structure as the 128-bit variant with the ex-
ception that only 6 registers are used. The relative entropy using 5 and 4 reg-
isters is 2−44.59 and 2−34.88 respectively. The corresponding distinguishing
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Attack Complexities

Type of Variant Amount of Computational
Attack keystream needed Complexity

Distinguishing 80 bits 248.39 262.39

Attack 128 bits 277.33 291.33

Key recovery 80 bits 248.39 269.79

Attack 128 bits 277.33 298.80

Table 6.4: Complexities of the attacks proposed on Pomaranch Ver-
sion 2.

attack on the 80-bit version will require 248.39 samples and a computational
complexity of 262.39. The key recovery attack will require 248.39 keystream
bits and has a computational complexity of 269.79. Table 6.4 summarizes all
proposed attacks on Pomaranch Version 2 and the corresponding complex-
ities.

6.6.3 Simulation Results

When the distribution for the output vectors was theoretically calculated,
we assumed that the initial states had the same probability, that all jump
control sequences had the same probability and that all jump control se-
quences JCi (2 ≤ i ≤ 9) were independent. To verify these assumptions,
the real distribution was simulated for scaled down variants of the cipher.
An interesting question here is the amount of samples that is needed in the
simulation. Let the simulated distribution of the output from the jump reg-
isters be denoted P ∗

0 . As before, the theoretical distribution using the as-
sumptions above is denoted P0 and the uniform distribution is denoted P1.
The size of the distributions is denoted |X |. We use the following theorem
taken from [CT91].

Theorem 6.3: Let X1, X2, . . . , Xn be independent and identically distrib-
uted according to P0. Then

Pr (D(P ∗
0 ‖P0) > ε) ≤ 2−n(ε−|X| log(n+1)

n ). (6.29)

If D(P0‖P1) = µ, then ε ≤ µ/2. To reach the amount of samples where the
error probability in (6.29) is less than or equal to 1, n should satisfy

n

(
µ/2− |X | log(n+ 1)

n

)
≥ 0⇒ n

log(n+ 1)
≥ 2|X |

µ
. (6.30)
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Jump Registers D(P0‖P1)
Used Theoretical Simulated

1 2−10.05 2−9.82

2 2−19.62 2−19.36

3 2−29.20 2−29.27

Table 6.5: Simulated values for the distributions.

It is clear that the amount of samples needed increases exponentially with
the vector length and in order to be able to simulate more than one register,
we chose to simulate the distribution for the linear relation (6.25) instead
of vectors. (Note that in the hypothesis test used in the cryptanalysis, this
is not the case. The amount of samples needed then is still in the order of
1/D(P0‖P1). Stein’s lemma is still applicable.) We found the distribution
for 1, 2 and 3 registers. Using a random key, register R1 was fed with the
all zero JC-sequence. The output was taken as the xor of the output of the
other registers, i.e. R2, R2 ⊕ R3 and R2 ⊕ R3 ⊕ R4 respectively. In all cases,
the amount of samples used was 239 which, according to (6.30), should be
enough. The simulated values for the relative entropy can be found in Ta-
ble 6.5. From the simulated values, we conclude that the assumptions made
in the calculation of the theoretical distributions are valid at least up to 3
registers. From this it should be safe to assume that the theoretical distribu-
tions are valid also up to 8 registers. Thus, the theoretical distributions can
be used in the hypothesis test.

6.7 Pomaranch Version 3 - New Jump Registers

Following the attack given in Section 6.6, it is clear that Pomaranch has to be
changed again. The new jump registers must not only resist attacks based
on linear relations of size L + 1 bits, they also need to resist attacks when
other linear relations are considered. A new design approach that made the
attacks on Version 1 and Version 2 infeasible was to have 2 different kinds
of jump registers, type 1 and type 2. A linear relation that has a high bias
in jump registers of type 1 has probably a very low bias in jump registers of
type 2. In addition, the jump registers used in Pomaranch Version 3 have
L = 18. The new registers are given in Fig. 6.6. All odd numbered jump
registers use type 1 registers and all even numbered registers are of type 2.
Similar to Version 2, Version 3 also supports a variant with 80-bit key. As
before, the reduced variant only uses 6 jump registers. Additionally, the out-
put functions, from now on denotedH , of the 128-bit and the 80-bit variants
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Type 2
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

6 6 6
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Type 1
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

6 6 6

e e e- - -

�
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F S F F F S F F F F S S S S S F S S

Figure 6.6: The jump registers used in Pomaranch Version 3.

are different. The output function for the 128-bit variant is a simple xor of
the bit in position 17 of the jump registers, similar to the output function for
the earlier versions. In the following, linear output function means an output
function which is the xor of the output bits from all registers. For the 80-bit
variant the output is given as

z(t) = G(r1(t), . . . , r5(t))⊕ r6(t), (6.31)

where

G(r1(t), . . . , r5(t)) = r1⊕r2⊕r5⊕r1r3⊕r2r4⊕r1r3r4⊕r2r3r4⊕r3r4r5 (6.32)

is a 1-resilient degree 3 Boolean function with nonlinearity 12. A keystream
limitation has also been introduced in Version 3. The maximum number of
keystream bits that can be produced for one key/IV pair is limited to 264

bits.

6.8 General Distinguising Attacks on All Versions

In this section we propose another way of attacking Pomaranch. In addition
to linear approximations, the relatively short period produced by some reg-
isters will be used. It turns out that this attack will succeed on all versions
and variants of Pomaranch. Because of this, the cryptanalysis method will
be given in a form as general as possible. We hope that the general theo-
rems for attack complexities will be helpful in the design of future versions
of the cipher. The attack given in this section is a distinguishing attack and
is thus less powerful than the key recovery attacks on Version 1 and Version
2 given in previous sections.
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6.8.1 Period of Registers

We start by looking at the period of the sequence produced by each register.
The first jump register, denoted R1 in Fig. 6.2, is during keystream genera-
tion mode fed by the jump sequence only containing zeros. The period of
this register is denoted by T1, hence r1(t) = r1(t+ T1) with T1 = 2L − 1.

From R1 a jump control sequence is calculated which controls the jump-
ing ofR2. Assume that after T1 clocks ofR1, registerR2 has jumpedC steps.
Then after T 2

1 clocks R2 has jumped CT1 steps, a multiple of T1 and is thus
back to its initial state. Using the same arguments, after T 3

1 clocksR3 is back
in its initial state. In general, if primitive characteristic polynomials are used
for the registers, the period Ti for register Ri is

Ti = T i
1, (6.33)

and hence
ri(t) = ri(t+ T i

1). (6.34)

Consequently, at time t and t+ T p
1 , the output function H has p inputs with

exactly the same value, namely the contribution from registers R1, . . . , Rp.
This observation will be used in our attack.

6.8.2 Output Function

The output function used in Pomaranch can be a nonlinear Boolean function
or just the linear xor of the output bits of each jump register. Our attack can
be applied to both variants. The keystream bit at time t, denoted by z(t),
can be described as

z(t) = H
(
r1(t), . . . , rn(t)

)
. (6.35)

Using the results from Section 6.8.1 and taking our samples as z(t)+z(t+T p
1 )

we can write the expression for the samples as

z(t)⊕z(t+T p
1 ) = H

(
r1(t), . . . , rn(t)

)
⊕H

(
r1(t+T

p
1 ), . . . , rn(t+T p

1 )
)
. (6.36)

6.8.2.1 Linear Output Function

When the output function H is linear, i.e., H(r1, . . . , rn) =
⊕n

i=1 ri, and our
samples are taken as z(t) ⊕ z(t + T p

1 ), we know from Section 6.8.1 that p
inputs to the output function are the same. Hence we can rewrite (6.36) as

z(t)⊕ z(t+ T p
1 ) =

n⊕
i=p+1

ri(t)⊕ ri(t+ T p
1 ). (6.37)
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6.8.2.2 Nonlinear Output Function

When the output function H is nonlinear, ri(t) and ri(t+T p
1 ) will not cancel

out in the keystream with probability one, as in Section 6.8.2.1. But, the
input to H at time t and t+ T p

1 have p inputs r1, . . . , rp with the exact same
value. This might lead to a biased distribution,

Pr
(
H
(
r1(t), . . . , rn(t)

)
⊕H

(
r1(t+ T p

1 ), . . . , rn(t+ T p
1 )
)

= 0
)

=

Pr (z(t)⊕ z(t+ T p
i ) = 0) =

1
2
(1 + ε), (6.38)

where ε denotes the bias and 0 < |ε| ≤ 1.

6.8.3 Linear Approximations of Jump Registers

In the attack, we need to find a linear approximation for the output bits of
the jump registers that holds with probability different from one half. This
is the same property as was used in the attacks on Pomaranch Version 1 and
Version 2. In the search for good linear approximations we use the same
assumptions as before regarding the states and the jump sequences. We
search for a set A of size w such that

Pr

(⊕
i∈A

r(t+ i) = 0

)
=

1
2
(1 + ε), 0 < |ε| ≤ 1, (6.39)

i.e., the weight of the approximation is w and the terms are given by the set
A. For our attack to work it is important that the bias of this approximation
is sufficiently high.

Since jump register R1 will always have the all zero jump control se-
quence, the linear approximation will never apply for this register.

Recall that Pomaranch Version 3 uses two types of registers. In this case
we are not interested in the most biased linear approximation of single reg-
isters. Instead we have to search for a linear approximation that has a good
bias for both types of registers at the same time. This is much harder to find
than a single approximation for one register. In the general case there can of
course be even more types of registers.

6.8.4 Attacking Different Versions of Pomaranch

In general, a Pomaranch stream cipher can be designed using one or sev-
eral types of jump registers. It can also use a linear or a nonlinear output
function. In this section we recall the different design possibilities that has
been used and give an expression for the number of samples needed in a
distinguisher for each possibility.
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The general expressions for the amount of keystream needed in an attack
can be seen as a new design criterion for Pomaranch-like stream ciphers.

6.8.4.1 One Type of Registers with Linear Output Function

In this family of Pomaranch stream ciphers we assume that all jump register
sections use the same type of register and that the output function H is
linear, i.e., H(r1, . . . , rn) =

⊕n
i=1 ri. Pomaranch Version 1 and Pomaranch

Version 2 are both included in this family.
Assume that we have found a linear approximation, as described in Sec-

tion 6.8.3, of weight w of the register used. We consider samples at time t
and t + T p

1 such that p positions into H are the same according to Section
6.8.1. Our samples will be taken as

⊕
i∈A

z(t+ i) +
⊕
i∈A

z(t+ i+ T p
1 ) =

n⊕
j=p+1

⊕
i∈A

(
rj(t+ i) + rj(t+ i+ T p

1 )
)
.

(6.40)
Since the bias of

∑
i∈A ri(t + i) is ε and we have 2(n − p) such relations

the total bias of the samples is given by

εtot = ε2(n−p). (6.41)

We use the approximation (2.62) and write the number of samples needed
in our distinguishing attack as

N =
1
ε2tot

. (6.42)

This gives us the following theorem.

Theorem 6.4: The computational complexity and the number N of key-
stream bits needed to reliably distinguish the Pomaranch family of stream
ciphers using a linear output function and n jump registers of the same type
is upper bounded by

N ≤ T p
1 +

1
ε4(n−p)

, p > 0, (6.43)

where ε is the bias of the best linear approximation of the jump register.

6.8.4.2 Different Registers with Linear Output Function

In this family of generators different types of jump registers are used and
the output function is assumed to be H(r1, . . . , rn) =

⊕n
i=1 ri.
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This case is very similar to the case when all registers are of the same
type. The difference is that, in this case, we are not looking for the best
linear approximation of the registers separately. Instead, we have to find a
linear approximation that have a bias for all the registers Rp+1, . . . , Rn. This
can be difficult if there are several types of registers. Approximations with a
large bias for one type might have a very small bias for other types. Anyway,
assume that we have found such a linear approximation. Our samples will
still be taken as in (6.40). If we denote the bias for the approximation of
register i by εi, then the total bias will be given as

εtot =
n∏

i=p+1

ε2i . (6.44)

according to (2.58). Note that there are two approximations from each reg-
ister.

Theorem 6.5: Assuming there is a linear relation that is biased in all reg-
isters. The computational complexity and the number N of keystream bits
needed to reliably distinguish the Pomaranch family of stream ciphers us-
ing a linear output function and n jump registers of different types is upper
bounded by

N ≤ T p
1 +

1
n∏

i=p+1

ε4i

, p > 0, (6.45)

where εi is the bias of jump register Ri.

The 128-bit variant of Pomaranch Version 3 belongs to a special subclass
of this family, namely all registers in odd positions are of type 1 and registers
in even positions are of type 2. In this case we only have to search for a linear
approximation that is biased for type 1 and type 2 registers at the same time.
The bias of

⊕
i∈A ri(t + i) is denoted εtype 1 and εtype 2 respectively for the

different registers. In total we have 2dn−p
2 e type 1 relations and 2bn−p

2 c type
2 relations when n is odd. Hence, the total bias of the samples is given by

εtot = ε
2dn−p

2 e
type 1 ε

2bn−p
2 c

type 2 . (6.46)

If we apply Theorem 6.5 to the 128-bit variant of Pomaranch Version 3, the
number of samples in the distinguisher is given by

N = T p
1 +

1

ε
4dn−p

2 e
type 1 ε

4bn−p
2 c

type 2

. (6.47)
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6.8.4.3 Nonlinear Output Function

Now we consider the case when the output function is nonlinear. We restrict
ourselves to the case when the output functionH can be written on the form

H(r1, . . . , rn) = G(r1, . . . , rn−1)⊕ rn. (6.48)

The attack can easily be extended to output functions with more (or less)
linear terms but to simplify the presentation, and the fact that the 80-bit
variant of Pomaranch Version 3 is on this form, we only consider this special
case here.

Our attacks on this family uses a biased linear approximation of Rn, see
Section 6.8.3, together with the fact that the input to G at time t and t + T p

1

have p inputs in common and hence in some cases a biased distribution, see
Section 6.8.2.2.

Let ε denote the bias ofG
(
r1(t), . . . , rn−1(t)

)
⊕G

(
r1(t+T

p
1 ), . . . , rn−1(t+

T p
i ), and ε the bias of our linear approximation forRn, which is

⊕
i∈A rn(t+

i). The samples are taken as⊕
i∈A

z(t+i)⊕
⊕
i∈A

z(t+i+T p
1 ) =

⊕
i∈A

rn(t+i)⊕
⊕
i∈A

rn(t+i+T p
1 )

⊕
⊕
i∈A

(
G
(
r1(t+i), . . . , rn−1(t+i)

)
⊕G(r1(t+i+T

p
1 ), . . . , rn−1(t+i+T

p
1 )
))
,

(6.49)
and the bias of the samples is given by

εtot = ε2εw. (6.50)

This relation tells us that we need to keep the weight of the linear approxi-
mation ofRn as low as possible, i.e., the most biased relation may not be the
most suitable.

Theorem 6.6: The computational complexity and the number N of key-
stream bits needed to reliably distinguish the Pomaranch family of stream
ciphers using an output function of the form (6.48) is upper bounded by

N ≤ T p
1 +

1
(ε2εw)2

. (6.51)

where ε is the a biased approximation of weight w of registerRn and ε is the
bias of G

(
r1(t), . . . , rn−1(t)

)
⊕G

(
r1(t+ T p

1 ), . . . , rn−1(t+ T p
1 )
)
.

Note that in this presentation it does not matter if all registers are of the
same type or if they are of different types. Since only register Rn is com-
pletely linear in the output function H , we only need to have an approxi-
mation of this register.
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p 1 2 3 4 5 6 7
N 2137.15 2120.01 2102.86 285.72 270.46 284.00 298.00

Table 6.6: Number of samples and computational complexity needed
to distinguish Pomaranch Version 1 from random.

6.8.5 Attack Complexities for the Existing Versions of the Pomaranch
Family

In this section, we look at the existing versions and variants of Pomaranch
that have been proposed so far. These are Pomaranch Version 1, the 80-bit
and 128-bit variants of Pomaranch Version 2 and the 80-and 128-bit variants
of Pomaranch Version 3. Applying the distinguishing attack proposed in
this section, we show that we can find distinguishers with better complexity
than previously known for all 5 ciphers.

6.8.5.1 Pomaranch Version 1

In Pomaranch Version 1 all registers are the same, so the attack will be ac-
cording to Section 6.8.4.1. The bias of the best known linear approximation
for this register, as given in Section 6.3 and originally in [Kha05], is

ε = |2 Pr(r(t) + r(t+ 8) + r(t+ 14) = 0)− 1| = 2−4.286. (6.52)

Using Theorem 6.4 for different values of p we get Table 6.6. We see that
the best attack is achieved when p = 5. The computational complexity and
the amount of keystream needed is then 270.46. It is interesting to note that
the amount of keystream needed is basically the same as the one given in
Table 6.1. The difference is that in the first attack we multiply by a factor
14 · 2 ln 2 since there are 214 candidate sequences. Moreover, in the first at-
tack we do not have the term T 5

1 . In Table 6.1 we also counted the fact that
we have two relations with the same bias reducing the amount of keystream
by a factor 2. That can of course also be done in this case. However, it should
be noted that the distance between the first and the last keystream bit in each
sample is T 5

1 ≈ 270 so this will still be a lower bound for the attack. Using
vector representation can also help reduce the amount of keystream needed,
but we still have a lower bound given by T 5

1 . Using vector representation
and p = 4 does not give enough information to have better complexity than
p = 5 either. The bias will be too small. Finally, we see that the computa-
tional complexity of this distinguishing attack is far smaller than the attack
given in Table 6.1 since we do not have to exhaustively search R1.
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p 1 2 3 4 5 6
N (80-bit) 295.76 276.61 257.46 256.00 270.00 284.00

N (128-bit) 2153.22 2134.06 2114.91 295.76 276.62 284.00

Table 6.7: Number of samples needed to distinguish Pomaranch Ver-
sion 2 according to Theorem 6.4.

6.8.5.2 Pomaranch Version 2

Similarly as in Pomaranch Version 1, in Pomaranch Version 2 all registers
are the same and the attack will be performed according to Section 6.8.4.1.
The bias of the best linear approximation for the register used is given by

ε = |2 Pr(r(t) + r(t+ 2) + r(t+ 6) + r(t+ 18) = 0)− 1| = 2−4.788. (6.53)

Using Theorem 6.4 for different values of p gives Table 6.7. For the 80-bit
variant the computational complexity and the number of keystream bits
needed is 256.00. This is determined by T 4

1 since the number of samples
needed in the distinguisher is only about 238. Comparing with Table 6.4 we
see that we need more keystream bits in this attack. The attack in Table 6.4
combines 5 registers and exhaustively searches R6. In this attack we do not
have the possibility to combine 5 registers. Choosing p = 4 combines 4 reg-
isters2 and choosing p = 3 combines 6 registers3. It is possible to slightly
reduce the complexity of this attack by choosing p = 3 and use a vector
representation as in Section 6.6. For the 128-bit variant the computational
complexity and the number of keystream bits needed is 276.62 when p = 5.
As suggested by Table 6.2 the complexity of this attack can also be slightly
reduced by considering vectors.

6.8.5.3 Pomaranch Version 3

There is a significant difference between the 80-bit and the 128-bit variants
of Pomaranch Version 3, so this section will be divided into two parts.

80-bit Variant. The 80-bit variant of Pomaranch Version 3 uses a non-
linear output function, the attack will hence follow the procedure described
in Section 6.8.4.3. The bias of

G
(
r1(t), . . . , r5(t)

)
⊕G

(
r1(t+ T p

1 ), . . . , r5(t+ T p
1 )
)
. (6.54)

was first estimated for different choices of p. The results are summarized in
Table 6.8 The keystream per IV/key pair of Pomaranch Version 3 is limited

2R5 and R6 at two different time instances.
3R4, R5 and R6 at two different time instances.
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p 1 2 3 4 5
ε 0 2−4 2−3 2−2 1

Table 6.8: The bias of G
�
r1(t), . . . , r5(t)

�
⊕ G

�
r1(t + T p

1 ), . . . , r5(t +
T p

1 )
�

in the 80 bit variant of Pomaranch Version 3 for different values
of p.

to 264. Because of this we limit p to p ∈ {1, 2, 3}, otherwise T p
1 > 264. We

looked for a linear relation of R6 that, together with a value of p ∈ {1, 2, 3},
minimizes the amount of keystream needed as given by Theorem 6.6. The
best approximation found was

r6(t)⊕ r6(t+ 5)⊕ r6(t+ 7)⊕ r6(t+ 9)⊕ r6(t+ 12)⊕ r6(t+ 18) (6.55)

which has weight w = 6 and bias ε = 2−8.774. Using p = 3, the total bias of
our samples using (6.55) is

εtot = (2−8.774)2 · (2−3)6 = 2−35.548 (6.56)

according to (6.50). The samples used in the attack are taken according to⊕
i∈A

z(t+ i)⊕
⊕
i∈A

z(t+ i+ T 3
1 ), (6.57)

where A = {0, 5, 7, 9, 12, 18}. According to Theorem 6.6, the amount of key-
stream needed is 254 + 271.096 = 271.096. This is also the computational com-
plexity of the attack. In the specification of Pomaranch Version 3 the frame
length (keystream per IV/key pair) is limited to 264. This does not prevent
our attack since all samples will have this bias regardless of the key and
IV used. We only need to consider 264 keystream bits from d27.096e = 137
different key/IV pairs.

Using vectors in this case does not seem useful. The attack uses one bias
ε that stems from bits very far apart in the sequence produced by the reg-
isters. It also uses another bias ε stemming from a linear approximation in
the output of one register. Thus, the bits in a vector are likely to be (almost)
independent.

128-bit Variant. In Pomaranch Version 3 two different registers are used,
so we start by searching for a linear approximation that is good for both
types of registers. The best approximation we found was

r(t)⊕r(t+1)⊕r(t+2)⊕r(t+5)⊕r(t+7)⊕r(t+11)⊕r(t+12)⊕r(t+15)⊕r(t+21),
(6.58)
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p 1 2 3 4 5 6 7 8
N 2349.89 2306.15 2262.42 2218.68 2174.94 2131.21 2126.00 2144.00

Table 6.9: Number of samples needed to distinguish the 128-bit vari-
ant of Pomaranch Version 3 according to (6.47).

which has the same bias for both types of registers, namely

εeven = εodd = 2−10.934. (6.59)

Using (6.47) for different values of p we get Table 6.9. Our best distin-
guishing attack needs 2126.00 keystream bits. This figure is determined by
T 7

1 = 2126.00 so it is not possible to look at different key/IV pairs in this
case since the distance between the bits in each sample has to be 2126.00. If
the frame length is limited to 264 it will not be possible to get any biased
samples at all with p = 7.

We do not exclude the possibility to get a better attack by taking p = 6
and using a vector representation. However, our simulations show that the
additional gain is very small when considering vectors. With p = 6 and
vectors of length 23 we need 2128.40 keystream bits in an attack.

Nevertheless, a distinguishing attack requiring 2126 keystream bits sug-
gests that the 128-bit variant offers less security than many other 128-bit
ciphers that has not been successfully cryptanalyzed and that do not restrict
the keystream length.

6.9 A Resynchronization Collision Attack

In this section we will give an attack that works for all currently existing
Pomaranch ciphers. The size of the state in Pomaranch is always larger
than twice the key size, e.g., the 128-bit variant of Pomaranch Version 3 has
a state size of 290 bits. Thus, the generic time-memory tradeoff attacks will
not be applicable in general. The attack in this section is a variant of the
time-memory tradeoff attack and is generic for all stream ciphers. Let us
divide the internal state of the cipher into two parts,

State = (StateK , StateK,IV ), (6.60)

where StateK is a part of the state that statically holds the key and StateK,IV

is a part of the state that is updated, depending on both the key and the IV .
If the key size |K| > |StateK,IV |/2, then the attack will always succeed with
complexity below exhaustive key search. In Pomaranch, StateK will consist
of the |K| key bits and StateK,IV will consist of the register cells.
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The attack scenario and the goal of the attack is somewhat different from
usual. The scenario is given as follows. We assume that the key is fixed and
that the cipher is initialized with many different IVs. Further, we assume
that we have access to one long keystream sequence produced from one of
the IVs, denoted IV0. We intercept the ciphertext corresponding to many
other IVs and we know the first l plaintext bits corresponding to every ci-
phertext. Our goal is to recover the rest of the plaintext for one of the mes-
sages.

We apply this attack scenario to Pomaranch. The key map used to pro-
duce the jump control bits is key dependent but independent of the IV.
Hence, a fixed key will define a state graph of size (2L − 1)n ≈ 2nL states,
where L is the register length and n the number of registers. Let a sample,
SIVi(t), generated from IVi at time t, be a sequence of l consecutive key-
stream bits, i.e., S(t) =

(
z(t), z(t+ 1), . . . , z(t+ l− 1)

)
. We first store a large

amount of samples from IV0 in a table. We would like to find another IV,
denoted IVc, that results in a sample such that

SIVc(tc) = SIV0(t0). (6.61)

If a collision is found, then with high probability the following keystream of
IV0 and IVc will also be identical. That means that if we just know the first l
keystream bits generated by IVc, we can predict future keystream bits from
IVc. The attack is visualized in Figure 6.7.

cc
c

c c c

c

tSIV0 Samples saved
in tableSIVc

Figure 6.7: State graph for a fixed key, a sample is visualized by a
small ring.

Assume that 2βnL (0 < β < 1) samples of length l from a keystream
sequence of 2βnL+l bits, originating from IV0 and keyK, is saved in a table.
The table is then sorted with complexity O(βnL · 2βnL). This table covers a
fraction of 2−(1−β)nL of the entire cycle. The number of samples (IVs with
l known keystream bits) we need to test to find a collision is geometrically
distributed with expected value 2(1−β)nL. For each sample, a logarithmic
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search with complexity O(βnL) in the table is performed to see if there is a
collision. To be sure that a collision in the table actually means that we have
found a collision in the state cycle, l must be l ≈ nL. The attack complexities
are then given by

2βnL + nL, from one IV andKeystream :
nL, from 2(1−β)nL IVs,

Time : βnL2βnL + βnL2(1−β)nL,

Memory : nL2βnL,

where 0 < β < 1. By decreasing β it is possible to achieve smaller memory
complexity at the expense of more IVs and higher time complexity. We can
also see that the best time complexity is achieved when β = 0.5 for large nL.

6.9.1 Attack Complexities for Pomaranch

In this section we will look at the existing versions of Pomaranch and show
that the resynchronization collision attack can be mounted with complexity
significantly less than exhaustive key search. We assume β = 0.5 so the
time complexity and the memory complexity in bits are equal. The 128-bit
variants of Pomaranch Version 1 and Version 2 can be attacked using a table
of size 267.0 bytes together with keystream from 263.0 different IVs. The 80-
bit variant of Pomaranch Version 2 can be attacked using a table of 245.4

bytes and 242.0 different IVs. Pomaranch Version 3 uses larger registers, and
the complexity of the attack on the 80-bit variant is a table of size 257.8 bytes
and 254.0 IVs. The 128-bit variant needs a table of 285.3 bytes and 281 IVs.
However, if we respect the maximum frame length of 264 bits, we need to
choose β = 0.395. Then we need a table of 271.3 bytes and 298 IVs. The time
complexity is in this case 2104.

The success probability of the attack has been simulated on a reduced
version of the 128-bit variant of Pomaranch Version 3, using two registers.
Choosing β = 0.5 implies that we know 218 keystream bits from IV0, we
store all samples of length nL = 36 in a table, and that we need samples
from 218 different IVs in order to find a collision. The simulation results
are summarized in Table 6.10. We also verified the attack using 3 registers.
The attack given in this section suggests a new design criterion for the Po-
maranch family of stream ciphers, namely that the total register length must
be twice the keysize.
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Number of IVs
Success Rate

217 218 219 220 221

Table size
217 28 45 64 87 98
218 38 67 91 98 100
219 71 86 98 100 100

Table 6.10: Simulation results using 2 register Pomaranch Version 3
with linear output function, the table summarizes how many times the
attack succeeds out of 100 attacks for a specific table size and number
of IVs.

6.10 Summary

In this chapter we have seen several attacks on the stream cipher Pomaranch.
The first attacks use linear approximations of the output sequences from the
jump registers. Pomaranch Version 3 was designed such that there were no
approximations that could be used in an attack. However, by also using the
fact that the first few registers have a relatively short period, it was possi-
ble to eliminate the influence of these registers on the considered output.
This made it possible to mount distinguishing attacks also on Pomaranch
Version 3 by considering linear approximations.

Using more different registers is the most obvious way to increase the
strength of the cipher. If all registers are unique it seems very unlikely that
there is an approximation that is highly biased in all registers. The cipher
description will not be as simple but the size in hardware and speed in soft-
ware will remain more or less the same.

To resist the resynchronization collision attack the part of the state that
is updated needs to be increased. This can be done in one of two ways.

• Update the part of the state that holds the key and is used in the filter
function that determines the jump sequence.

• Increase the size of the registers.

Both alternatives seem to increase the hardware complexity of the algorithm
and slow it down in software. It can be noted that the resynchronization
collision attack may not be seen as a devastating weakness. Any block ci-
pher in OFB mode would also be vulnerable to this attack if the size of the
key is larger than half the block size. More discussion on this can be found
in [EHJ07].
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7

Cryptanalysis of the Achterbahn
Family of Stream Ciphers

Like Pomaranch, the Achterbahn stream cipher was submitted to the eS-
TREAM [ECR] project. It is to be considered as a hardware efficient

cipher, using a key size of 80 bits. However, the latest version of the cipher,
Achterbahn-128/80 supports both 80 and 128 bit keys. There is a number of
different versions and variants of the Achterbahn family and an exhaustive
treatment of all variants and attacks will not be given here. This is moti-
vated by the fact that the design was not considered secure enough to move
to the third phase of eSTREAM. We focus on the latest version, Achterbahn-
128/80, and the attack given in [HJ07]. This attack is an improved version
of the previous attacks on older versions and variants and can also be used
to break these. This chapter is outlined as follows. Section 7.1 will give the
history of the Achterbahn cipher prior to the results in this chapter. In Sec-
tion 7.2 we give a description of the cipher and in Section 7.3 we give an
analysis showing how the construction can be cryptanalyzed. Section 7.4
will discuss the fact that not all variables used will be independent, result-
ing in important consequences for the attack complexity. Sections 7.5 and 7.6
show how the attack can be applied to Achterbahn-80 and Achterbahn-128
respectively and in Section 7.7 we show how the full key can be recovered.
Further improvements and observations by other researchers are given in
Section 7.8 and the history following our results are given in Section 7.9.
The Chapter is summarized in Section 7.10.
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7.1 History of Achterbahn, Part I

The reader not familiar with all the steps in the evolution of the Achter-
bahn family of stream ciphers might get confused when reading the papers
concerning this family. Different names are mixed with different keystream
limitations. The aim of this section is to clear this confusion. In this first
part, the history prior to the result in this chapter will be given. The history
following these results will be covered in Part II in Section 7.9.

The Achterbahn stream cipher [GGK05a] was submitted to the eSTREAM
project in April 2005. The first cryptanalysis result was given in [JMM05],
a paper submitted to the eSTREAM webpage in Sept 2005. A few weeks
later, the designers submitted a note [GGK05b] in which they gave two new
variants of the Boolean combining function which would both counter the
attack. On the Achterbahn web page [Gam07] it was stated that Achter-
bahn using one of these two new Boolean functions was denoted Version
21. When the original attack was published in FSE 2006 [JMM06], the paper
included also attacks on the two new Boolean functions, denoting these by
Achterbahn-v2 and Achterbahn-v3 respectively. Here, Achterbahn-v2 was
the same as Version 2 as given on the web page. In [GGK06b], presented
at SASC 2006, a new version of Achterbahn was introduced using more
shift registers. This version is denoted Achterbahn-Version 2 by the design-
ers (obviously, at this point the web page was changed). To avoid attacks,
the amount of keystream used in the encryption process was limited to 263

bits, also denoted the maximum frame length. An attack on Achterbahn-
Version 2 was presented at SAC 2006 [HJ06a]. As a response to this attack,
the latest version Achterbahn-128/80 was introduced for the second phase
of eSTREAM to which Achterbahn qualified. The amount of keystream was
now limited to 264 bits. This chapter presents cryptanalysis of Achterbahn-
128/80 and is based on [HJ07].

7.2 Description of Achterbahn-128/80

Despite the existence of previous versions, we will only explicitly describe
the latest version, denoted Achterbahn-128/80. However, some differences
between the current and previous versions will be mentioned to highlight
the measures taken to resist attacks.

Achterbahn-128/80 is based on the idea behind the nonlinear combiner
discussed in Section 2.2.6. The security, or insecurity, of this construction is
quite well understood by now, see e.g., [BL05] and the references in that pa-
per. Many attacks on nonlinear combiners use the fact that the registers have

1This version of the web page has been removed and the fact that it ever existed will prob-
ably be denied by the designers. However, a mirror is available from the author.
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Figure 7.1: Overview of the Achterbahn design idea.

linear feedback. In order to protect against these attacks, the Achterbahn
stream ciphers use nonlinear feedback shift registers (NFSRs), see Fig. 7.1.
Thus, the ciphers consist only of a set of shift registers and a nonlinear
Boolean output function. This makes it very simple and also very small
in hardware.

7.2.1 Notation

The number of shift registers used is denoted n, shift register i will be de-
noted by Ri and the size of register i is denoted Li. All registers are primi-
tive, which in this context means that the period of register Ri is 2Li −1. We
denote this period by Ti. Hence,

Ti = 2Li − 1. (7.1)

The input bit to the Boolean function F (or G) from register Ri at time t will
be denoted xi(t) and if the time instance t is fixed the simplified notation xi

will sometimes be used. The keystream is denoted z(t) and the number of
keystream bits that we need in an attack is denoted N . We will distinguish
between the two variants by the names Achterbahn-80 and Achterbahn-128
though Achterbahn-80 is just a substructure of Achterbahn-128. Sometimes
we also use Achterbahn as a collecting name for all Achterbahn ciphers.

7.2.2 Design Parameters

The design of Achterbahn-128/80 makes it possible to use either a 80-bit key
or a 128-bit key. The number of registers used in Achterbahn-128 is n = 13
and their sizes are all numbers between 21 and 33 i.e.,

Li = 21 + i, 0 ≤ i ≤ 12. (7.2)
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The nonlinear feedback functions used in the registers are not used in our
cryptanalysis and will not be given. All registers are autonomously driven
and it suffices to say that all feedback functions are chosen such that the
registers will enter all possible nonzero states before returning to the initial
state. At each time instance t, the output Boolean function takes one bit xi

from each register, Ri (0 ≤ i ≤ 12) as input and outputs the keystream bit z
as z = F (x0, x1, . . . , x12) with

F (x0, x1, . . . , x12) = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ x9 ⊕ x11 ⊕ x12 ⊕ x0x5 ⊕ x2x10
⊕x2x11 ⊕ x4x8 ⊕ x4x12 ⊕ x5x6 ⊕ x6x8 ⊕ x6x10 ⊕ x6x11 ⊕ x6x12
⊕x7x8 ⊕ x7x12 ⊕ x8x9 ⊕ x8x10 ⊕ x9x10 ⊕ x9x11 ⊕ x9x12 ⊕ x10x12
⊕x0x5x8 ⊕ x0x5x10 ⊕ x0x5x11 ⊕ x0x5x12 ⊕ x1x2x8 ⊕ x1x2x12
⊕x1x4x10 ⊕ x1x4x11 ⊕ x1x8x9 ⊕ x1x9x10 ⊕ x1x9x11 ⊕ x1x9x12
⊕x2x3x8 ⊕ x2x3x12 ⊕ x2x4x8 ⊕ x2x4x10 ⊕ x2x4x11 ⊕ x2x4x12
⊕x2x7x8 ⊕ x2x7x12 ⊕ x2x8x10 ⊕ x2x8x11 ⊕ x2x9x10 ⊕ x2x9x11
⊕x2x10x12 ⊕ x2x11x12 ⊕ x3x4x8 ⊕ x3x4x12 ⊕ x3x8x9 ⊕ x3x9x12
⊕x4x7x8 ⊕ x4x7x12 ⊕ x4x8x9 ⊕ x4x9x12 ⊕ x5x6x8 ⊕ x5x6x10
⊕x5x6x11 ⊕ x5x6x12 ⊕ x6x8x10 ⊕ x6x8x11 ⊕ x6x10x12 ⊕ x6x11x12
⊕x7x8x9 ⊕ x7x9x12 ⊕ x8x9x10 ⊕ x8x9x11 ⊕ x9x10x12 ⊕ x9x11x12
⊕x0x5x8x10 ⊕ x0x5x8x11 ⊕ x0x5x10x12 ⊕ x0x5x11x12 ⊕ x1x2x3x8
⊕x1x2x3x12 ⊕ x1x2x7x8 ⊕ x1x2x7x12 ⊕ x1x3x5x8 ⊕ x1x3x5x12
⊕x1x3x8x9 ⊕ x1x3x9x12 ⊕ x1x4x8x10 ⊕ x1x4x8x11 ⊕ x1x4x10x12
⊕x1x4x11x12 ⊕ x1x5x7x8 ⊕ x1x5x7x12 ⊕ x1x7x8x9 ⊕ x1x7x9x12
⊕x1x8x9x10 ⊕ x1x8x9x11 ⊕ x1x9x10x12 ⊕ x1x9x11x12 ⊕ x2x3x4x8
⊕x2x3x4x12 ⊕ x2x3x5x8 ⊕ x2x3x5x12 ⊕ x2x4x7x8 ⊕ x2x4x7x12
⊕x2x4x8x10 ⊕ x2x4x8x11 ⊕ x2x4x10x12 ⊕ x2x4x11x12 ⊕ x2x5x7x8
⊕x2x5x7x12 ⊕ x2x8x9x10 ⊕ x2x8x9x11 ⊕ x2x9x10x12 ⊕ x2x9x11x12
⊕x3x4x8x9 ⊕ x3x4x9x12 ⊕ x4x7x8x9 ⊕ x4x7x9x12 ⊕ x5x6x8x10
⊕x5x6x8x11 ⊕ x5x6x10x12 ⊕ x5x6x11x12.

The Boolean function F has the following properties [GGK06a]:

• It is balanced.

• Algebraic degree deg(F ) = 4.

• Correlation immune of order m = 8 (8-resilient).

• Nonlinearity nl(F ) = 3584.

• Algebraic immunity AI(F ) = 4.

It is also claimed that F can be implemented with gate count 68, which can
be considered as quite small considering the large ANF. Achterbahn-80 can
be constructed by removing the registers R0 and R12 i.e., letting x0 = 0 and
x12 = 0 at all time instances. Thus, it consists of n = 11 registers. The
keystream bit z for Achterbahn-80 is given by the Boolean function

z = G(x1, . . . , x11) = F (0, x1, . . . , x11, 0), (7.3)
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which has ANF

G(x1, . . . , x11) = x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ x9 ⊕ x11 ⊕ x2x10 ⊕ x2x11 ⊕ x4x8
⊕x5x6 ⊕ x6x8 ⊕ x6x10 ⊕ x6x11 ⊕ x7x8 ⊕ x8x9 ⊕ x8x10 ⊕ x9x10
⊕x9x11 ⊕ x1x2x8 ⊕ x1x4x10 ⊕ x1x4x11 ⊕ x1x8x9 ⊕ x1x9x10
⊕x1x9x11 ⊕ x2x3x8 ⊕ x2x4x8 ⊕ x2x4x10 ⊕ x2x4x11 ⊕ x2x7x8
⊕x2x8x10 ⊕ x2x8x11 ⊕ x2x9x10 ⊕ x2x9x11 ⊕ x3x4x8 ⊕ x3x8x9
⊕x4x7x8 ⊕ x4x8x9 ⊕ x5x6x8 ⊕ x5x6x10 ⊕ x5x6x11 ⊕ x6x8x10
⊕x6x8x11 ⊕ x7x8x9 ⊕ x8x9x10 ⊕ x8x9x11 ⊕ x1x2x3x8 ⊕ x1x2x7x8
⊕x1x3x5x8 ⊕ x1x3x8x9 ⊕ x1x4x8x10 ⊕ x1x4x8x11 ⊕ x1x5x7x8
⊕x1x7x8x9 ⊕ x1x8x9x10 ⊕ x1x8x9x11 ⊕ x2x3x4x8 ⊕ x2x3x5x8
⊕x2x4x7x8 ⊕ x2x4x8x10 ⊕ x2x4x8x11 ⊕ x2x5x7x8 ⊕ x2x8x9x10
⊕x2x8x9x11 ⊕ x3x4x8x9 ⊕ x4x7x8x9 ⊕ x5x6x8x10 ⊕ x5x6x8x11.

The Boolean function G has the following properties [GGK06a]:

• It is balanced.

• Algebraic degree deg(G) = 4.

• Correlation immune of order m = 6 (6-resilient).

• Nonlinearity nl(G) = 896.

• Algebraic immunity AI(G) = 4.

The first two versions of Achterbahn came in one full and one reduced
variant. In the reduced variant the inputs to the Boolean combining func-
tion were taken simply as the value of the rightmost cell in Fig. 7.1. In the
full variant the input was a key dependent linear combination of a few shift
register cells. In Achterbahn-128/80, the method used in the previous re-
duced variants has been adopted. The input to the Boolean function is just
taken from a fixed shift register cell. However, the bit xi taken from register
Ri is not taken from the rightmost cell. Instead it is taken from position 16.

7.2.3 Initialization

The initialization of Achterbahn has been slightly changed in Achterbahn-
128/80 compared to the previous two versions. Only the new initialization
procedure will be explained here. Let K denote the key, |K| the key size in
bits and k0 . . . k|K|−1 be the individual bits in the key. Also, let IV denote
the initialization vector and |IV | its size in bits. The initialization is divided
into 6 steps as follows.

(i) Each register Ri is loaded in parallel with the first Li bits of the key,
i.e., k0 . . . kLi−1.

(ii) Each register Ri is updated |K|−Li times, xoring the remaining |K|−
Li key bits with the feedback bit to the register.
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(iii) Each register Ri is updated |IV | times, xoring the |IV | bits of the IV
with the feedback bit to the register.

(iv) The output of the registers are compressed into one bit by the Boolean
combining function and this bit is fed back and xored with the feed-
back bit to each register. This is done 32 times.

(v) The least significant bit of each NFSR is set to 1. This prevents the
NFSRs to be initialized with all zeros.

(vi) Warm up phase. The registers are clocked 64 times.

Because of step (v) above, the entropy of the content of register Ri at the
beginning of step (vi) is only Li − 1. No unknowns (key bits) are used in
phase (vi) and thus, exhaustively searching register Ri requires 2Li−1 tries.
We now move on to an analysis of the Achterbahn design.

7.3 Analysis of Achterbahn

This section will give an analysis of the security of the Achterbahn stream
cipher. We show several ideas how to cryptanalyze the construction. The
analysis does not use the fact that the shift registers have nonlinear feed-
back. The main property that is used in the analysis is the fact that all
registers are very short and thus, have a very short period. This will be
shown to be the most serious weakness of the construction. Consequently,
the analysis given here will be valid also for a nonlinear combiner using
short registers with linear feedback.

The proposed attacks on Achterbahn consists of two steps, namely

(i) Recover the state of a subset of the NFSRs. This step is equivalent to a
distinguishing attack.

(ii) Recover the key K. For Achterbahn, the complexity of this step is, for
all known attacks, much smaller than the complexity of the first step.

7.3.1 Attacking the Achterbahn Family of Stream Ciphers

A possible approach to attack Achterbahn is to consider correlations be-
tween input and output bits in the Boolean combining function. Recalling
Section 2.3.4, let the resiliency of the Boolean function be m. Then there is
a linear relation between at least m + 1 input bits and the output bit that is
unbalanced, i.e.,

Pr

(⊕
i∈A

xi(t) = z(t)

)
=

1
2

(1 + ε) 0 < |ε| ≤ 1, (7.4)
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for some subsetA, of size |A| > m, of registers. If we can find a parity check
equation for the sequence produced by

⊕
i∈A xi(t), then, according to (2.62)

we can distinguish the keystream from random considering about

N ≈ 1
ε2tot

(7.5)

keystream bits, where εtot will depend on ε and the number of terms in the
parity check equation. Since the shift registers Ri used in Achterbahn are
small it is very easy to find parity check equations. The sequence generated
by register Ri has characteristic polynomial 1 − xTi resulting in the parity
check equation

xi(t) = xi(t+ Ti). (7.6)

More generally, the sequence produced by
⊕

i∈A xi(t) has characteristic poly-
nomial ∏

i∈A

(
1− xTi

)
. (7.7)

Clearly, the number of terms in the corresponding parity check equation
is 2|A|. Assuming that all variables in the parity check equation are inde-
pendent we can use the piling-up lemma (2.58) and write the total bias as

εtot = ε2
|A|

(7.8)

and the number of samples needed in the distinguisher is about

N ≈ 1
ε2(|A|+1) . (7.9)

The distance between the first and the last keystream bit in each sample is∑
i∈A Ti, i.e., the largest exponent in (7.7).
The resiliency of the Boolean combining function has increased for every

new version of Achterbahn, since the attacks have showed that the resiliency
has not been enough. If the resiliency m of the function increases, it is clear
that the number of required samples increases since |A| > m. To compen-
sate for this, we present three approaches.

• Guess the state of one or several registers. This will automatically give
one or several internal states and the attack is not just a distinguish-
ing attack, it will give the attacker the possibility to recover the key.
Guessing λ registers will decrease the number of factors in the prod-
uct (7.7) by λ. Thus, the number of terms in the parity check equation
will decrease by a factor 2λ. Now we are left with only 2|A|−λ terms in
the parity check equation and according to (2.58) the total bias is

εtot = ε2
|A|−λ

(7.10)
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if the variables are independent. On the other hand, since we are
guessing the internal state of one or several registers, we have to find
the biased sequence among a set of approximately 2

P
i∈Γ(Li−1) se-

quences, where Γ is the set of registers which internal state is guessed.
The number of samples needed in the distinguisher is now, according
to (2.61), given by

N ≈
∑

i∈Γ(Li − 1) · 2 ln 2
ε2tot

. (7.11)

• Consider nonlinear approximations of the combining function. The char-
acteristic polynomial of the sequence produced by xixj is given as
1− xTiTj and the characteristic polynomial of the sequence produced
by xixjxk is 1 − xTiTjTk . Using a quadratic or cubic approximation
will reduce the amount of required samples since the number of terms
in the parity check equation will be reduced. On the other hand, the
distance between the first and the last keystream bit in each sample
will increase and give an upper limit on the degree of the nonlinear
approximation.

• Jump Ti steps for each new sample. A third approach to compensate for
high resiliency is to not consider samples given by consecutive key-
stream bits. Instead, to remove the dependency of the linear term xi

in the approximation, we can jump forward Ti steps every time we
take a new sample. The contribution to the Boolean combining func-
tion from register Ri will then be constant, though we do not know if
this constant is 0 or 1. This will double the error probability. However,
it is not crucial for our attack that only the correct guess will report a
detected bias. It is possible to have a few probable initial states and
recover the corresponding key from each state and then decide which
key is correct. This will not influence the attack complexity. Taking
every Tith sample will increase the amount of keystream needed in
the attack but it will decrease the computational complexity since the
state of register Ri does not have to be guessed.

The attacks on Achterbahn-128/80 given in this chapter will use all three
approaches given above.

7.3.2 Summary of Attack Procedure

An example of the procedure is given as follows. Assume that we have a
biased relation in Achterbahn-80 of the form

Q(x1, . . . , x11) = xa ⊕ xb ⊕ xc ⊕ xdxe ⊕ xfxg. (7.12)
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Instead of using a parity check equation for all 5 terms, we only use the
parity check equation for the terms xdxe ⊕ xfxg . Thus, we know that

0 = xd(t)xe(t)⊕ xd(t+TdTe)xe(t+TdTe)⊕ xd(t+TfTg)xe(t+TfTg)
⊕ xd(t+ TdTe+TfTg)xe(t+TdTe+TfTg)
⊕ xf (t)xg(t)⊕ xf (t+TdTe)xg(t+TdTe)⊕ xf (t+TfTg)xg(t+TfTg)
⊕ xf (t+ TdTe+TfTg)xg(t+TdTe+TfTg), (7.13)

and we can write

xa(t)⊕ xa(t+TdTe)⊕ xa(t+TfTg)⊕ xa(t+ TdTe+TfTg)
⊕ xb(t)⊕ xb(t+TdTe)⊕ xb(t+TfTg)⊕ xb(t+ TdTe+TfTg)
⊕ xc(t)⊕ xc(t+TdTe)⊕ xc(t+TfTg)⊕ xc(t+ TdTe+TfTg)
p
= z(t)⊕ z(t+TdTe)⊕ z(t+TfTg)⊕ z(t+TdTe+TfTg), (7.14)

with p = 0.5(1 + εtot). The distance between the first and the last keystream
bit in each sample is TdTe + TfTg . When the correct initial states of Ra, Rb

andRc are guessed we detect the bias. Instead of exhaustively searching the
states of all registers we jump Tc steps for each new sample. Then we can
write

xa(tTc)⊕ xa(tTc+TdTe)⊕ xa(tTc+TfTg)⊕ xa(tTc + TdTe+TfTg)
⊕ xb(tTc)⊕ xb(tTc+TdTe)⊕ xb(tTc+TfTg)⊕ xb(tTc + TdTe+TfTg)
⊕ γ(t)
p
= z(tTc)⊕ z(tTc+TdTe)⊕ z(tTc+TfTg)⊕ z(tTc+TdTe+TfTg), (7.15)

where

γ(t) = xc(tTc)⊕xc(tTc+TdTe)⊕xc(tTc+TfTg)⊕xc(tTc +TdTe+TfTg) (7.16)

is constant ∀t and γ(t) ∈ {0, 1}.

7.4 The Sum of Dependent Variables

When the piling-up lemma was used in the previous section it was assumed
that all variables are independent. However, if the variables are dependent
the piling-up lemma is not applicable2. This is demonstrated by the two
examples given in Fig. 7.2. In linear cryptanalysis, dependency between
variables is often assumed to be small and the piling-up lemma is used.

2The author would like to acknowledge Lennart Brynielsson for pointing out an error in a
previous version of this section.
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X1 X2 Pr(X1, X2)
0 0 1/2
0 1 1/4
1 0 1/4
1 1 0

Pr(X1 = 0) = 0.5(1 + 0.5) (ε = 0.5)
Pr(X2 = 0) = 0.5(1 + 0.5) (ε = 0.5)

Pr(X1 ⊕ X2 = 0) = 0.5(1 + 0) (ε = 0)

X1 X2 Pr(X1, X2)
0 0 1/2
0 1 1/4
1 0 0
1 1 1/4

Pr(X1 = 0) = 0.5(1 + 0.5) (ε = 0.5)
Pr(X2 = 0) = 0.5(1 + 0) (ε = 0)

Pr(X1 ⊕ X2 = 0) = 0.5(1 + 0.5) (ε = 0.5)

Figure 7.2: Examples showing that the piling-up lemma is not ap-
plicable if the variables are dependent.

We now move on to determine the real bias of the samples used in the
cryptanalysis of Achterbahn-128/80. In Achterbahn-80, if we consider a
quadratic approximation of the form

Q(x1, . . . , x11) = xa ⊕ xb ⊕ xc ⊕ xdxe ⊕ xfxg. (7.17)

This approximation has bias ε = 2−5 (or ε = 0 but this case is not interesting
here). According to the piling-up lemma, the bias of (7.15) is εtot = (2−5)4 =
2−20. However, it is easy to see that the variables are quite dependent, e.g.,
for the first two terms, the variables xd and xe will always be the same.
Instead of 4n = 44 variables, there is only 11 + 9 + 9 + 7 = 36 different
variables used in (7.15). Computing the exact bias by exhaustively searching
all 236 possibilities we can see that it will not be εtot = 2−20 but instead
εtot = 2−12. This difference has a huge effect on the attack complexities.
Instead of 240 samples we only need about 224 samples to detect this bias.

Looking at cubic approximations of Achterbahn-128 of the form

C(x0, . . . , x12) = xa ⊕ xb ⊕ xc ⊕ xd ⊕ xexf ⊕ xgxhxi, (7.18)

this will hold with bias ε = 2−6 (or ε = 0). The sequence generated by the
nonlinear terms will have a parity check equation given by

z(t)⊕ z(t+ TeTf )⊕ z(t+ TgThTi)⊕ z(t+ TeTf + TgThTi). (7.19)

Using the piling-up lemma, the total bias will be εtot = (2−6)4 = 2−24.
However, the real bias is also in this case 2−12 because of the dependency be-
tween variables. For quadratic approximations of Achterbahn-128 the cor-
responding bias is εtot = 2−12, the same as for the 80-bit variant, instead of
εtot = 2−20 as given by the piling-up lemma.

7.5 Attack on Achterbahn-80

The Boolean combining function used in Achterbahn-80 has resiliency 6 so
every biased approximation must consider at least 7 variables. In this sec-
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tion, the attack parameters for a successful attack on Achterbahn-80 will be
given.

7.5.1 Generalization of the Attack Using Quadratic Approximations

The quadratic approximations used in the attack on Achterbahn-80 have the
form

Q(x1, . . . , x11) = xa ⊕ xb ⊕ xc ⊕ xdxe ⊕ xfxg, (7.20)

where all indices are distinct. Assume that, in the attack, the initial states of
registers Ra and Rb are guessed, i.e., we perform an exhaustive search over
all possible initial states of these two registers. Further, every Tcth sample
is taken. This corresponds to the procedure given in Section 7.3.2. The total
amount of keystream needed is then

TdTe + TfTg +
(La + Lb − 2) · 2 ln 2

ε2tot

Tc. (7.21)

The computational complexity of the attack is given as

2La+Lb−2 · (La + Lb − 2) · 2 ln 2
ε2tot

. (7.22)

For all approximations of the form (7.20) that we use, we have |εtot| = 2−12.

7.5.2 Attack Complexities for Achterbahn-80

We search through all approximations of the form (7.20). Table 7.1 shows
the amount of keystream needed and the corresponding time complexity of
an attack using a certain approximation. The best time complexity, 272.90,
is achieved if 258.24 keystream bits are available. The attack also allows a
tradeoff between the amount of required keystream and the time complex-
ity. Having less keystream bits results in higher complexity. In the table, we
only consider approximations resulting in lower computational complexity
than 279.

7.6 Attack on Achterbahn-128

The Boolean combining function used in Achterbahn-128 has resiliency 8
so every biased approximation must consider at least 9 variables. In this
section we give the attacks on Achterbahn-128 using quadratic and cubic
approximations.
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Approximation Keystream Time
x1 ⊕ x2 ⊕ x7 ⊕ x3x10 ⊕ x4x9 258.24 272.90

x1 ⊕ x3 ⊕ x5 ⊕ x4x10 ⊕ x6x7 257.29 273.93

x1 ⊕ x4 ⊕ x5 ⊕ x3x10 ⊕ x6x7 256.98 274.96

x1 ⊕ x5 ⊕ x4 ⊕ x3x10 ⊕ x6x7 256.58 275.99

x1 ⊕ x6 ⊕ x4 ⊕ x3x10 ⊕ x5x7 256.33 277.03

x1 ⊕ x6 ⊕ x3 ⊕ x2x10 ⊕ x4x9 256.01 278.06

Table 7.1: Attack complexities for Achterbahn-80.

7.6.1 Generalization of the Attack Using Quadratic Approximations

The quadratic approximation used in cryptanalysis of Achterbahn-128 can
be written as

Q(x0, . . . , x12) = xa ⊕ xb ⊕ xc ⊕ xd ⊕ xe ⊕ xfxg ⊕ xhxi. (7.23)

Exhaustively searching registers Ra, Rb, Rc and Rd and taking every Teth
sample will result in an attack requiring

TfTg + ThTi +
(La + Lb + Lc + Ld − 4) · 2 ln 2

ε2tot

Te (7.24)

keystream bits and the computational complexity is

2La+Lb+Lc+Ld−4 · (La + Lb + Lc + Ld − 4) · 2 ln 2
ε2tot

, (7.25)

with |εtot| = 2−12.

7.6.2 Generalization of the Attack Using Cubic Approximations

For Achterbahn-128 it is possible, not only to look at quadratic approxima-
tions, but also to consider cubic approximations. The cubic approximations
in our attack will have the form

C(x0, . . . , x12) = xa ⊕ xb ⊕ xc ⊕ xd ⊕ xexf ⊕ xgxhxi. (7.26)

It is not possible to find a product of the periods of 3 registers in Achterbahn-
128 less than the maximum frame length, 264. However, since periods of all
registers are not relatively prime, it is possible to find 3 registers for which
the least common multiple (lcm) of the periods is less than 264. This will
happen for
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lcm(T0, T1, T3) = 262.60

lcm(T0, T1, T7) = 262.42

lcm(T0, T1, T12) = 262.19

lcm(T1, T3, T12) = 263.60.

Hence, for the attack to be successful the cubic term in the approximation
must be one of x0x1x3, x0x1x7, x0x1x12 and x1x3x12. In the attack, the reg-
isters Ra, Rb and Rc are exhaustively searched and we take every Tdth sam-
ple. The amount of keystream needed in the attack is

TeTf + lcm(Tg, Th, Ti) +
(La + Lb + Lc − 3) · 2 ln 2

ε2tot

Td (7.27)

keystream bits and the computational complexity is

2La+Lb+Lc−3 · (La + Lb + Lc − 3) · 2 ln 2
ε2tot

, (7.28)

with |εtot| = 2−12.

7.6.3 Attack Complexities for Achterbahn-128

In Table 7.2 the attack complexities we have found for Achterbahn-128 is
shown. The best computational complexity is achieved using the cubic ap-
proximations, but if less keystream is available, the quadratic approxima-
tions can be used as well.

7.7 Recovering the Key

The figures given in Tables 7.1 and 7.2 are the complexities for recovering
a subset of the states of the NFSRs. This would be equivalent to a distin-
guishing attack on the cipher. In this section we show that the key also can
be recovered and the complexity for this step is smaller than for the dis-
tinguishing attack. Thus, the figures in the tables are valid also for a key
recovery attack. Because of the introduction of step (iv) in the initialization
process, it is not possible to recover the key without knowing the state of
all registers. In the attacks described in Section 7.5 and 7.6 we only recover
a subset of the states. The output bit of each register is taken as a bit in
the middle of the register and not the last bit. This makes the initialization
process invertible and if we know all initial states it will be easy to recover
the key. After recovering a subset of the states in the first step, it is possible,
in a second step, to recover all other states with much less keystream and
complexity than in the first step. As an example, when the approximation

x1 ⊕ x2 ⊕ x7 ⊕ x3x10 ⊕ x4x9 (7.29)
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Approximation Keystream Time
x0 ⊕ x2 ⊕ x4 ⊕ x9 ⊕ x7x10 ⊕ x1x3x12 263.81 296.52

x2 ⊕ x3 ⊕ x4 ⊕ x9 ⊕ x7x10 ⊕ x0x1x12 262.71 299.58

x3 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ x6x10 ⊕ x0x1x12 262.38 2102.64

x3 ⊕ x4 ⊕ x6 ⊕ x7 ⊕ x5x10 ⊕ x0x1x12 262.35 2103.66

x3 ⊕ x4 ⊕ x7 ⊕ x6 ⊕ x5x10 ⊕ x0x1x12 262.29 2104.68

x3 ⊕ x5 ⊕ x7 ⊕ x6 ⊕ x4x10 ⊕ x0x1x12 262.27 2105.70

...
...

...
x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x7 ⊕ x4x10 ⊕ x8x9 260.04 2116.90

x0 ⊕ x1 ⊕ x2 ⊕ x4 ⊕ x7 ⊕ x3x10 ⊕ x8x9 260.00 2117.91

x0 ⊕ x1 ⊕ x3 ⊕ x4 ⊕ x6 ⊕ x5x10 ⊕ x7x8 258.97 2118.93

x0 ⊕ x1 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x4x10 ⊕ x7x8 258.78 2119.95

x0 ⊕ x1 ⊕ x3 ⊕ x6 ⊕ x5 ⊕ x4x10 ⊕ x7x8 258.31 2120.96

x0 ⊕ x1 ⊕ x3 ⊕ x7 ⊕ x5 ⊕ x4x10 ⊕ x6x8 257.99 2121.98

x0 ⊕ x1 ⊕ x4 ⊕ x7 ⊕ x5 ⊕ x3x10 ⊕ x6x8 257.80 2122.99

Table 7.2: Attack complexities for Achterbahn-128.

is used for Achterbahn-80, x1 and x2 are recovered in the first step. When
these are known it is easy to recover x7 by just guessing the state of this. In
the next step we can use the linear approximation

x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x9 ⊕ x10. (7.30)

This approximation has bias ε = 2−3 and we can use a characteristic polyno-
mial for two of the 4 unknown variables, decimate the sequence for one un-
known and guess the last. Doing this for all 4 unknowns will give us in total
7 recovered registers. The last 4 can be found using other linear approxima-
tions. A similar method can be used to recover all states of Achterbahn-128.

When the initial states of all registers are recovered, they are clocked
backwards until the beginning of step 3 in the initialization step. To make it
simple, the last 80− L1 bits of the key are guessed. All registers are clocked
backwards according to the guessed key bits until the beginning of step 2 of
the initialization is reached. When the first L1 bits of the states are the same
for all registers, the correct key has been found. This last step has computa-
tional complexity 258 and is thus not a bottleneck. For the 128-bit variant we
can use the time-memory tradeoff. Divide the key into two partsK1 andK2
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with sizes |K1| and |K2| = 128 − |K1|. Do step (i) and (ii) in the initializa-
tion process using the first |K1| bits and save the resulting states in memory.
Then, do step (ii) backwards for the last |K2| bits. When the resulting state
collides with a saved state, the correct key has been found. This will require
2|K1| in memory and 2|K1|+2|K2| in time complexity. Picking e.g., |K1| = 40
and |K2| = 88 will make this complexity faster than recovering the initial
states.

7.8 Further Improvements

In [NP07a], further improvements and considerations regarding the crypt-
analysis ideas given in Section 7.3.1 was presented. It was observed that
the parity check equations used in order to remove the dependency of in-
put variables did not exactly have to correspond to the approximation of
the nonlinear function. In Achterbahn-80, when considering samples of the
form

z(t)⊕ z(t+ TdTe)⊕ z(t+ TfTg)⊕ z(t+ TdTe + TfTg) (7.31)

we eliminate the dependency of xd, xe, xf and xg . These variables can then
occur in any form in the approximation. In [CT00] it was shown that the
highest bias is achieved by a linear approximation. Thus it is possible to
instead look at approximations of the form

L(x1, . . . , x11) = xa ⊕ xb ⊕ xc ⊕ xd ⊕ xe ⊕ xf ⊕ xg, (7.32)

which will give a higher bias than any of the quadratic approximations used
in Section 7.5. In [GG07, Theorem 1], it was shown that the piling-up lemma
can be used if the approximations are affine and if the number of terms is
m+ 1. Thus, the bias achieved in Section 7.4 and in [NP07a] are the same.

The paper [NP07a] also improved the computational complexity of the
attacks by presenting a faster algorithm to exhaustively search a subset of
the registers. This algorithm will not be given here and we refer to [NP07a]
for details. The improved algorithm reduced the time complexity of the
attack to 255 for Achterbahn-80 and 280.58 for Achterbahn-128.

7.9 History of Achterbahn, Part II

In an effort to save Achterbahn, the designers proposed new keystream
limitations to Achterbahn-128/80. At SASC 2007 the new keystream lim-
itations was defined to be 252 and 256 for Achterbahn-80 and Achterbahn-
128 respectively. The cipher using these new limitations was broken on the
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rump session of the same workshop. These results are also given in [NP07a]
and [NP07b]. Again, the designers changed the keystream limitation. This
was done in [GG07] and the new limit is 244 for both variants.

7.10 Summary

This chapter showed a key recovery attack on the stream cipher Achterbahn-
128/80. Both the 80-bit and the 128-bit variants of the cipher are vulnerable
to the attack. The attack takes advantage of the short periods of the non-
linear feedback shift registers used in the cipher. Using the short periods,
several nontrivial and novel techniques are combined in order to decrease
the time complexity and the amount of keystream needed in order to re-
cover a subset of the initial states of the NFSRs. Knowing these states it was
relatively easy to recover the secret key used in the cipher. The Achterbahn
stream cipher reached the second phase of eSTREAM. Due to the findings
given in this section together with the attacks presented in [NP07a], the ci-
pher was not considered interesting or secure enough to qualify for the third
phase of eSTREAM. At the time of writing there is no attack on Achterbahn
respecting the latest keystream restriction 244 bits. However, a cipher re-
quiring such a low limitation should not be considered for usage in any
environment unless it has other very important advantages. Though, this
does not seem to be the case for Achterbahn.
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The Grain Family of Stream
Ciphers

The previous five chapters have considered cryptanalysis of stream ci-
phers. This chapter will describe a new stream cipher primitive. When

designing a cryptographic primitive there are many different properties that
have to be addressed. These include e.g., speed and security. Comparing
several ciphers, it is likely that one is faster on a 32-bit processor, another is
faster on an 8 bit processor and yet another one is faster in hardware. The
simplicity of the design is another factor that has to be taken into account.
While the software implementation can be very simple, the hardware im-
plementation might be quite complex.

There is a need for cryptographic primitives that have very low hard-
ware complexity. A radio-frequency identification (RFID) tag is a typical
example of a product where the amount of memory and power is very lim-
ited. These are microchips capable of transmitting an identifying sequence
upon a request from a reader. Forging an RFID tag can have devastating
consequences if the tag is used e.g., in electronic payments and hence, there
is a need for cryptographic primitives implemented in these tags. Today, a
hardware implementation of e.g., AES on an RFID tag is not feasible due
to the large number of gates needed. The Grain family of stream ciphers,
introduced in this chapter, is a stream cipher family that is designed to be
very easy and small to implement in hardware.

Several recent LFSR based stream cipher proposals, see e.g., [EJ02,HR03]
and their predecessors, are based on word oriented LFSRs. This allows them
to be efficiently implemented in software but it also allows them to increase
the throughput since words instead of bits are output. In hardware, a word
oriented cipher is likely to be more complex than a bit oriented one. In
the Grain ciphers, this issue has been addressed by basing the design on

127
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bit oriented shift registers with the extra feature of allowing an increase in
speed at the expense of more hardware. The user can decide the speed of
the cipher depending on the amount of hardware available. This property
is not explicitly found in most other stream ciphers.

The proposed designs, denoted Grain and Grain-128, are bit oriented
synchronous stream ciphers. The designs are based on two shift registers,
one with linear feedback (LFSR) and one with nonlinear feedback (NFSR).
The LFSR guarantees a minimum period for the keystream and it also pro-
vides balancedness in the output. The NFSR, together with a nonlinear out-
put function introduces nonlinearity to the cipher. The input to the NFSR
is masked with the output of the LFSR so that the state of the NFSR is bal-
anced. Hence, we use the notation NFSR even though this is actually a filter.
What is known about cycle structures of nonlinear feedback shift registers
cannot immediately be applied here.

Grain is, like Pomaranch discussed in Chapter 6 and Achterbahn dis-
cussed in Chapter 7, a stream cipher submitted to the eSTREAM project
[ECR]. The first, unpublished, version of the cipher is denoted version 0.
This version was cryptanalyzed in [Max06, BGM06, KHK05]. The design of
version 0 will not be given in this chapter but the attack will be discussed
in Section 8.3.1. The two variants of Grain given in this chapter are denoted
Grain Version 1 (or Grain V1) and Grain-128.

The chapter is based on [HJM06] and [HJMM06] and is organized as
follows. Section 8.1 provides a detailed description of the Grain and Grain-
128 designs. The possibility to easily increase the throughput is discussed
in Section 8.2. The security of Grain is discussed in Section 8.3 together
with a motivation for the different design parameters. In Section 8.4 the
hardware performance of the cipher is considered. Section 8.5 summarizes
the chapter.

8.1 Design specifications

This section specifies the details of the designs of both Grain and Grain-
128. Both ciphers follow the same design principle. They consist of three
main building blocks, namely an LFSR, an NFSR and an output function.
The contents of the two shift registers represent the state of the cipher and
their sizes are |K| bits each, where K is the key. The content of the LFSR is
denoted St = st, st+1, . . . , st+|K|−1 and the content of the NFSR is denoted
Bt = bt, bt+1, . . . , bt+|K|−1. The output function, denoted H(Bt, St) consists
of two parts. A nonlinear Boolean function h(x) and a set of linear terms
added to h(x). The output of H(Bt, St) is the keystream bit zt. A general
overview of the design is given in Fig. 8.1.
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8.1.1 Grain - Design Parameters

The keysize of Grain is |K| = 80 bits and the cipher supports an IV of size
|IV | = 64 bits. The feedback polynomial of the LFSR, denoted f(x) is a
primitive polynomial of degree 80. It is defined as

f(x) = 1 + x18 + x29 + x42 + x57 + x67 + x80. (8.1)

To remove any possible ambiguity we also define the update function of the
LFSR as

st+80 = st+62 ⊕ st+51 ⊕ st+38 ⊕ st+23 ⊕ st+13 ⊕ st. (8.2)

The feedback polynomial of the NFSR, g(x), is defined as

g(x) = 1 + x18 + x20 + x28 + x35 + x43 + x47 + x52 + x59 + x66+
+x71 + x80 + x17x20 + x43x47 + x65x71 + x20x28x35+
+x47x52x59 + x17x35x52x71 + x20x28x43x47 + x17x20x59x65+
+x17x20x28x35x43 + x47x52x59x65x71 + x28x35x43x47x52x59.

(8.3)
Again, to remove any possible ambiguity we also write the update function
of the NFSR. Note that the bit st which is masked with the input is included
in the update function below.

bt+80 = st ⊕ bt+62 ⊕ bt+60 ⊕ bt+52 ⊕ bt+45 ⊕ bt+37 ⊕ bt+33 ⊕ bt+28⊕
⊕bt+21 ⊕ bt+14 ⊕ bt+9 ⊕ bt ⊕ bt+63bt+60 ⊕ bt+37bt+33⊕
⊕bt+15bt+9 ⊕ bt+60bt+52bt+45 ⊕ bt+33bt+28bt+21⊕
⊕bt+63bt+45bt+28bt+9 ⊕ bt+60bt+52bt+37bt+33⊕
⊕bt+63bt+60bt+21bt+15 ⊕ bt+63bt+60bt+52bt+45bt+37⊕
⊕bt+33bt+28bt+21bt+15bt+9 ⊕ bt+52bt+45bt+37bt+33bt+28bt+21.

(8.4)
From the two registers, 5 variables are taken as input to a Boolean function,
h(x). This filter function is chosen to be balanced, correlation immune of
the first order and has algebraic degree 3. The nonlinearity is the highest
possible for these functions, namely 12. The function is defined as

h(x) = h(x0, x1, . . . , x4) =

=x1⊕x4⊕x0x3⊕x2x3⊕x3x4⊕x0x1x2⊕x0x2x3⊕x0x2x4⊕x1x2x4⊕x2x3x4

(8.5)
where the variables x0, x1, x2, x3 and x4 correspond to the tap positions st+3,
st+25, st+46, st+64 and bt+63 respectively. The output function H(Bt, St) is
given by

zt = H(Bt, St) =
⊕
j∈A

bt+j ⊕ h(st+3, st+25, st+46, st+64, bt+63) (8.6)
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Figure 8.1: Overview of the different design blocks in the Grain family
of stream ciphers.

where A = {1, 2, 4, 10, 31, 43, 56}.

Cipher Initialization Before any keystream is generated the cipher must be
initialized with the key and the IV. Let the bits of the key, K, be denoted
ki, 0 ≤ i ≤ 79 and the bits of the IV be denoted IVi, 0 ≤ i ≤ 63. The
initialization of the key is done as follows. First the NFSR and LFSR are
loaded with key and IV bits as{

bi = ki, 0 ≤ i ≤ 79

si = IVi, 0 ≤ i ≤ 63
(8.7)

The remaining bits of the LFSR are filled with ones, si = 1, 64 ≤ i ≤ 79.
Then the cipher is clocked 160 times without producing any keystream. In-
stead the output function is fed back and xored with the input, both to the
LFSR and to the NFSR, see Fig. 8.2.

8.1.2 Grain-128 - Design Parameters

Grain-128 supports a key size of |K| = 128 bits, as suggested by the name.
The size of the IV is specified to be |IV | = 96 bits. The feedback polynomial
of the LFSR, f(x), is a primitive polynomial of degree 128. It is defined as

f(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128. (8.8)
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g(x) f(x)

NFSR LFSR

h(x)

Figure 8.2: Overview of the key initialization.

To remove any possible ambiguity we also give the corresponding update
function of the LFSR as

st+128 = st ⊕ st+7 ⊕ st+38 ⊕ st+70 ⊕ st+81 ⊕ st+96. (8.9)

The nonlinear feedback polynomial of the NFSR, g(x), is the sum of one
linear and one bent function. It is defined as

g(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60 + x61x125 + x63x67+
+x69x101 + x80x88 + x110x111 + x115x117.

(8.10)
Again, to remove any possible ambiguity we also write the corresponding
update function of the NFSR. In the update function below, note that the bit
st which is masked with the input to the NFSR is included, while omitted
in the feedback polynomial.

bt+128 = st ⊕ bt ⊕ bt+26 ⊕ bt+56 ⊕ bt+91 ⊕ bt+96 ⊕ bt+3bt+67⊕
⊕bt+11bt+13 ⊕ bt+17bt+18 ⊕ bt+27bt+59⊕
⊕bt+40bt+48 ⊕ bt+61bt+65 ⊕ bt+68bt+84.

(8.11)

From the state, nine variables are taken as input to a Boolean function,
h(x). Two inputs to h(x) are taken from the NFSR and seven are taken from
the LFSR. This function is of degree deg(h(x)) = 3 and very simple. It is
defined as

h(x) = h(x0, x1, . . . , x8) = x0x1 ⊕ x2x3 ⊕ x4x5 ⊕ x6x7 ⊕ x0x4x8 (8.12)
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where the variables x0, x1, x2, x3, x4, x5, x6, x7 and x8 correspond to the tap
positions bt+12, st+8, st+13, st+20, bt+95, st+42, st+60, st+79 and st+95 respec-
tively. The output H(Bt, St) function is defined as

zt = H(Bt, St) =
⊕
j∈A

bt+j ⊕ h(x)⊕ st+93, (8.13)

where A = {2, 15, 36, 45, 64, 73, 89}.

Cipher Initialization The initialization is very similar to the initialization
of the 80-bit variant of the cipher. The bits of the key K, denoted ki, 0 ≤
i ≤ 127, and the bits of the IV, denoted IVi, 0 ≤ i ≤ 95, are loaded into the
NFSR and LFSR respectively as{

bi = ki, 0 ≤ i ≤ 127

si = IVi, 0 ≤ i ≤ 95
(8.14)

The last 32 bits of the LFSR are filled with ones, si = 1, 96 ≤ i ≤ 127. After
loading key and IV bits, the cipher is clocked 256 times without producing
any keystream. The output function is fed back and xored with the input,
both to the LFSR and to the NFSR.

8.2 Throughput Rate

Both the LFSR and the NFSR are clocked regularly. Thus, in its simplest im-
plementation, 1 bit/clock is output. This can be compared to the shrinking
generator, self-shrinking generator, alternating step generator and the bit-
search generator discussed in chapters 4 and 5, which all outputs less than
1 bit/clock. If the keystream needs to be regularly produced these construc-
tions require an output buffer.

In addition, it is possible to increase the throughput rate of the Grain ci-
phers by adding some additional hardware. This is an important feature of
the Grain family of stream ciphers compared to many other stream ciphers.
Increasing the speed can very easily be done by just implementing the feed-
back functions, f(x) and g(x), and the output function several times. In or-
der to simplify this implementation, the last 15 bits in Grain and the last 31
bits in Grain-128 of the shift registers are not used in the feedback functions
or in the input to the output function. I.e., si, 65 ≤ i ≤ 79 and bi, 65 ≤ i ≤ 79
in Grain and si, 97 ≤ i ≤ 127 and bi, 97 ≤ i ≤ 127 in Grain-128 are not used
in the three functions. This allows the speed to be easily multiplied by up
to 16 for Grain and 32 for Grain-128 if a sufficient amount of hardware is
available. An overview of the implementation when the speed is doubled
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Figure 8.3: Implementation of Grain which outputs 2 bits/clock.

can be seen in Fig. 8.3. Naturally, the shift registers also need to be imple-
mented such that each bit is shifted δ steps instead of one when the speed is
increased by a factor δ. Since, in the key initialization, the cipher is clocked
160 times (Grain) or 256 times (Grain-128), the possibilities to increase the
speed is limited to factors that are divisors of 160 or 256 respectively. The
number of clockings needed in the key initialization phase is then 160/δ or
256/δ. Since the output and feedback functions are small, it is quite feasible
to increase the throughput in this way.

8.3 Security and Design Choices

In this section we give a security analysis of the construction and motivate
the different design choices.

8.3.1 Linear Approximations

Attacking Grain using linear approximations of the two nonlinear functions
turned out to be successful on the first version of Grain, denoted version
0. This attack was discovered by several independent researchers and the
details can be found in [Max06, BGM06, KHK05]. The design choices in the
current versions are influenced by this attack. In this subsection, we tem-
porarily switch to the notation s(t) instead of st as previously used to denote
a value at time t.
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With a slight abuse of notation, let us rewrite the update function of the
NFSR as

0 = g(Bt)⊕ s(t). (8.15)

Let the weight of a binary linear function `, denoted w(`), be the number of
variables in the function. I.e., let `(t) =

⊕n
i=0 cix(t+ i), then

w(`) = |{i ∈ 0..n : ci = 1}| . (8.16)

Here, ` uses variables s(t) and b(t) and w(`) is thus the number of shift
register taps used in `. Further, let wN (`) and wL(`) be the number of terms
from the NFSR and from the LFSR respectively. Assume that we have found
a linear approximation `g(t) of (8.15) i.e.,

`g(t) =
w(`g)−1⊕

i=0

b(t+ φi)⊕ s(t) (8.17)

where φ0, φ1, . . . , φw(`g)−1 denote the positions in the NFSR that are present
in the linear approximation. The bias of `g(t) is denoted εg , i.e.,

Pr(`g(t) = 0) =
1
2
(1 + εg), 0 < |εg| ≤ 1. (8.18)

Similarly, a linear approximation `H(t) of the output function H(Bt, St) can
be written as

`H(t) =
wN (`H)−1⊕

i=0

b(t+ ξi)⊕
wL(`H)−1⊕

i=0

s(t+ ψi) (8.19)

where ξ0, ξ1, . . . , ξwN (`H)−1 and ψ0, ψ1, . . . , ψwL(`H)−1 determines the loca-
tion of the taps in the NFSR and LSFR used in the linear approximation.
The bias of (8.19) is denoted εH , i.e.,

Pr(`H(t) = z(t)) =
1
2
(1 + εH), 0 < |εH | ≤ 1. (8.20)

Now, sum up the keystream bits determined by φi in (8.17),

z(t+ φ0)⊕ z(t+ φ1)⊕ . . .⊕ z(t+ φw(`g)−1)
p
=

`H(t+ φ0)⊕ `H(t+ φ1)⊕ . . .⊕ `H(t+ φw(`g)−1).
(8.21)

Using the piling-up lemma (2.58), the relation (8.21) holds with probability
p = 1/2(1+ ε

w(`g)
H ). The terms on the right hand side of (8.21) will consist of

wN (`H)·w(`g) terms from the NFSR andwL(`H)·w(`g) terms from the LFSR.
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All terms from the NFSR can now be approximated using (8.17) resulting in
a relation involving only keystream bits and LFSR bits as

w(`g)−1⊕
i=0

z(t+ φi)
p′

=
w(`g)−1⊕

i=0

wL(`H)−1⊕
j=0

s(t+ φi + ψj)⊕
wN (`H)−1⊕

i=0

s(t+ ξi), (8.22)

which holds with probability p′ = 1/2(1 + εtot) with

εtot = εwN (`H)
g · εw(`g)

H . (8.23)

From this point there are several possibilities for attacks. By finding a mul-
tiple of the LFSR feedback polynomial of weight 3, a distinguishing attack
can be mounted. The expected degree of this multiple would be around
2|K|/2. Combining the keystream bits given by the multiple and using the
approximation that 1/ε2 samples are needed in the distinguisher (see (2.62)),
about

N = 2|K|/2 +
1
ε6tot

(8.24)

keystream bits are required in the attack.
Another approach is to try to recover the state of the LFSR. An obvious

way of doing this is to exhaustively search the state and determine which
state gives the bias in (8.23). In this case, only about

N =
|K| · 2 ln 2

ε2tot

(8.25)

keystream bits are needed according to (2.61). Since the size of the LFSR
is the same as the key size, this method is obviously more expensive than
exhaustive key search. A faster algorithm was given in [BGM06], where
they generate more equations of the form (8.22). By only using the most
favourable equations, and by using the Fast Walsh Transform, the attack
complexity could be made significantly lower. We refer to [BGM06] for more
details on this attack.

Due to this attack, the parameters of Grain Version 0 were changed.
A higher resiliency was added to the NFSR feedback function, increasing
w(`g) and several linear terms from the NFSR was added to the output
function, increasing wN (`H). The result was Grain Version 1, referred to
as Grain, in this thesis.

The design of Grain-128 is inspired by the analysis in this section. Thus,
the NFSR feedback function should satisfy the following three criteria

• High resiliency ⇒ many terms in linear approximation (high w(`g)).
This can be achieved by adding several linear terms to the function.
Each linear term will increase the resiliency by one.
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• High nonlinearity ⇒ small bias of linear approximations (small εg).
This can be achieved by using a bent function, i.e., a function with
maximum nonlinearity.

• Small hardware implementation ⇒ attractive in low-cost implemen-
tations.

A well-known n-variable bent function is the function x1x2 ⊕ x3x4 ⊕ . . . ⊕
xn−1xn. This function is also very small in hardware. Using n = 14 and
adding 5 linear terms gives a 4-resilient Boolean function with nonlinearity
260096. The best linear approximations have bias εg = 2−7 and w(`g) ≥ 5.

The output function has the same design criteria as the NFSR feedback
function. However, to increase the algebraic degree it has a term of degree
3. It has nonlinearity 61440 and resiliency 7. The best linear approximations
have bias εH = 2−4 and wN (`H) ≥ 7.

8.3.2 Time-Memory Tradeoff Attacks

In the review of time-memory tradeoff attacks in Section 2.3.3 it was con-
cluded that the state must be at least twice the key size in order to prevent
these attacks. Both the LFSR and NFSR are of size |K| bits, and thus the
state is exactly twice the key size. Since Grain is designed to be as small as
possible in hardware, no extra state bits are added to the design. The state
is relatively expensive to implement in hardware and it is important to keep
it as small as possible. In [HS05] it was noted that the initialization process
of a stream cipher could be seen as a one-way function i.e., the function
taking the key K and the IV IV as input and outputs the first |K| + |IV |
bits of the keystream. In this case the search space is 2|K|+|IV | and new
data is generated by repeated initializations of the cipher. If we allow a pre-
processing time P that is higher than exhaustive key search 2|K|, then it is
possible to have an attack with real time complexity lower than exhaustive
key search. Table 8.1 gives attack complexities for Grain and Grain-128 in
the time-memory tradeoff setting of [HS05]. If |IV | < 1

2 |K| then it is possi-
ble to have the preprocessing time also smaller than exhaustive key search.
In this case we need to initialize with several different keys and we will
only retrieve one of these keys in the real time phase. In the Grain ciphers
|IV | > 1

2 |K| so this is not applicable here.

8.3.3 Algebraic Attacks

As mentioned in Section 2.3.5, algebraic attacks can be very successful on
nonlinear filter generators. Especially if the output function is of very low
degree. Grain is very similar to a nonlinear combiner. However, the intro-
duction of the NFSR in the design will defeat all algebraic attacks known
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Attack Complexities

T D M P

Grain
280 240 264 2104

272 236 272 2108

Grain-128
2128 264 296 2160

2112 256 2112 2168

Table 8.1: Time-Memory tradeoff attack with real time complexity T ,
D initializations, M memory words and preprocessing time P .

today. Since the update function of the NFSR is nonlinear, the later state bits
of the NFSR as a function of the initial state bits will have varying but large
algebraic degree. As the output function has several inputs from the NFSR,
the algebraic degree of the keystream bits expressed as functions of key bits
will be large in general. This will defeat algebraic attacks.

8.3.4 Chosen-IV Attacks

A necessary condition for defeating differential-like or statistical chosen-IV
attacks is that the initial states for any two chosen IV’s (or sets of IV’s) are
algebraically and statistically unrelated. The number of cycles in key initial-
ization has been chosen so that the Hamming weight of the differences in
the full initial 160-bit state for two IV’s after initialization is close to random.
This should prevent chosen-IV attacks.

It may be tempting to improve the efficiency of the key initialization by
just decreasing the number of initial clockings. Considering the 80-bit vari-
ant of Grain, after only 80 clocks, all bits in the state will depend on both
the key and the IV. However, in a chosen-IV attack it is possible to reini-
tialize the cipher with the same key but with an IV that differs in only one
position from the previous IV. Consider the case when the number of initial
clockings is 80 and the last bit of the IV is flipped i.e., s63 is flipped. This
is the event that occurs if the IV is chosen as a sequence number. Looking
at the difference of the states after initialization it is clear that several posi-
tions will be predictable. The bit s63 is not used in the feedback or in the
filter function, hence, the first register update will be the same in both cases.
Consequently, the bit s0 will be the same in both initializations. In the next
update, the flipped bit will be in position s62. This position is used in the
linear feedback of the LFSR, and consequently the bit s1 will always be dif-
ferent for the two initializations. Similar arguments can be used to show
that the difference in the state will be deterministic in more than half of the
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160 state bits. This deterministic difference in the state can be exploited in
a distinguishing attack. Let x be the input variables to the output function,
H , after the first initialization and let x∆ be the input variables to the out-
put function after the second initialization. Now, compute the distribution
of Pr(x,x∆). If this distribution is biased, it is possible1 that the distribution
of the difference in the first output bit,

Pr(H(x)⊕H(x∆)), (8.26)

is biased. Assume that

Pr(H(x)⊕H(x∆) = 0) = 1/2(1 + ε), 0 < |ε| ≤ 1. (8.27)

then the number of initializations we need will be in the order of 1/ε2. This
attack can be optimized by calculating which output bit will give the highest
bias since it is not necessarily the bits in the registers corresponding to the
input bits of H(x) that have deterministic difference after the initializations.
This attack shows that it is preferred that the probability that any state bit
is the same after initialization with two different IVs should be close to 0.5.
As with the case of 80 initialization clocks, it is easy to show that after 96,
112 and 128 there are also state bits that will always be the same or that will
always differ.

It is possible to reduce the required number of initial clockings by load-
ing the NFSR and LFSR differently. If each entry of the registers is loaded
with the xor of a few key and IV bits and each key and IV bit influences
the loading of several entries, differences in the IV will propagate faster.
The reason for not doing this is mainly that all the extra xors needed would
make the cipher larger in hardware.

8.3.5 Fault Attacks

Amongst the strongest attacks conceivable on any cipher, are fault attacks.
Fault attacks against stream ciphers have been initiated in [HS04], and have
shown to be efficient against many known constructions of stream ciphers.
This suggests that it is hard to completely defeat fault attacks on stream
ciphers. In the scenario in [HS04] it is assumed that the attacker can ap-
ply some bit flipping faults to one of the two feedback registers at his will.
However he has only partial control over their number, location, and exact
timing, and similarly on what concerns his knowledge. A stronger assump-
tion one can make, is that he is able to flip a single bit (at a time instance, and
thus at a location, he does not know exactly). In addition, he can reset the

1It is possible, but maybe not very likely. One unbiased linear variable is enough to make
the output unbiased.
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device to its original state and then apply another randomly chosen fault to
the device. We adapt the methods in [HS04] to the present cipher. Thereby,
we make the strongest possible assumption (which may not be realistic) that
an attacker can induce a single bit fault in the LFSR, and that he is somehow
able to determine the exact position of the fault. The aim is to study input-
output properties forH(Bt, St), and to derive information on the inputs. As
long as the difference induced by the fault in the LFSR does not propagate
to position bt+63 in Grain or bt+95 in Grain-128, the difference observed in
the output of the cipher is coming from inputs of H(Bt, St) from the LFSR
alone. If an attacker is able to reset the device and to induce a single bit fault
many times and at different positions that he can correctly guess from the
output difference, we cannot preclude that he will get information about
a subset of the state bits in the LFSR. Such an attack seems more difficult
under the (more realistic) assumption that the fault induced affects several
state bits at (partially) unknown positions, since in this case it is more diffi-
cult to determine the induced difference from output differences.

Likewise, one can consider faults induced in the NFSR alone. These
faults do not influence the contents of the LFSR. However, faults in the
NFSR propagate nonlinearly and their evolution will be harder to predict.
Thus, a fault attack on the NFSR seems more difficult.

8.4 Hardware Performance

The Grain family of stream ciphers is designed to be very small in hardware.
In this section we give an estimate of the gate count resulting from a hard-
ware implementation of the cipher. We also give performance results from
independent implementers in order to show how Grain compares to other
stream ciphers in eSTREAM.

The gate count is an important property that indicates how large and
expensive the construction is. The size of a gate depends on the type of
gate that is used and the gate count is a normalized number indicating the
number of gates, equivalent to 2 input nand gates, that are required in a
construction. A 2 input nand gate can be constructed using 4 transistors
while an xor gate needs 10 transistors. Adding extra inputs to the nand gate
require 2 transistors per extra input. A D-flipflop can be implemented in
several ways depending on the functionality. A gate count of 8 is adequate
in our application. With this as background, the gate count for the build-
ing blocks used in the Grain ciphers are listed in Table 8.2. However, these
should not be seen as natural constants since they will depend on the im-
plementation in an actual chip. Based on these numbers, we estimate the
number of gates needed in an implementation. The gate count for Grain
can be found in Table 8.3 and for Grain-128 in Table 8.4.
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Function Gate Count
D-flipflop 8
NAND2 1
NAND3 1.5
NAND4 2
NAND5 2.5
NAND6 3
XOR2 2.5

Table 8.2: The gate count used for different functions.

Grain Speed Increase
Building Block 1x 2x 4x 8x 16x

LFSR 640 640 640 640 640
NFSR 640 640 640 640 640
f(·) 12.5 25 50 100 200
g(·) 75 150 300 600 1200
H(·) 50.5 101 202 404 808
Total 1418 1556 1832 2384 3488

Table 8.3: The estimated gate count in an actual implementation of
Grain.

Note that these numbers are just estimates, e.g., the multiplexers needed
in order to switch between key/IV loading, initialization and keystream
generation are not included in the count. Also, two extra xors are needed in
key initialization mode. The exact number of gates needed for each function
will depend on the implementation anyway, and thus, the numbers in the
tables should be seen as ballpark figures.

The hardware performance of a cipher can be measured with several dif-
ferent metrics in mind e.g., area, throughput and power. The importance of
the different metrics will depend on the application. Being candidates in the
eSTREAM project, Grain and Grain-128 has been implemented in hardware
by several independent researchers. The ciphers have also been compared
to some of the other candidates in eSTREAM. In [GB07], ASIC implementa-
tions in 0.13µm Standard Cell CMOS of several eSTREAM candidates were
conducted and compared with respect to different metrics. Three situations
were considered

(i) Maximum clock frequency. The implementation running at the fastest
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Grain-128 Speed Increase
Building Block 1x 2x 4x 8x 16x 32x

LFSR 1024 1024 1024 1024 1024 1024
NFSR 1024 1024 1024 1024 1024 1024
f(·) 12.5 25 50 100 200 400
g(·) 37 74 148 296 592 1184
H(·) 35.5 71 142 284 568 1136
Total 2133 2218 2388 2728 3408 4768

Table 8.4: The estimated gate count in an actual implementation of
Grain-128.

possible speed, maximizing the throughput.

(ii) Output rate of 10Mbps. This corresponds to an implementation tar-
geting an environment with a fixed throughput of 10Mbps e.g., WLAN.

(iii) Clock frequency of 100kHz. This corresponds to an implementation
targeting environments with a fixed clock frequency of 100kHz. An
example is RFID applications.

In [GB07] there are many different metrics considered and in Table 8.5 we
give, in addition to the gate count, two different metrics.

• Energy/bit. The total power consumption divided by the throughput.

• Throughput/Area. The throughput divided by the area of the design.
This is often used as a measure of the design efficiency.

The original paper additionally considers metrics such as initialization cy-
cles, maximum clock frequency, maximum throughput, leakage power, total
power and area-time product.

At the time of writing, Grain has advanced to the third phase in the
hardware profile of eSTREAM together with 7 other candidates. Apart from
the 4 ciphers given in Table 8.5, Pomaranch Version 3, Edon80 [GMKG05],
DECIMv2 [BBC+06] and Moustique [DK07] are also in the hardware cate-
gory of phase 3. In [KKLRP06] the authors demonstrated an implementa-
tion of Edon80 with a gate count of approximately 3000. Without going into
details, Edon80 consists of 80 stages, each state being updated by a qua-
sigroup transformation. The implementation in [KKLRP06] goes through
the stages one by one and is thus very slow. A faster implementation can
update all stages in one clock cycle but will require approximately a gate
count of 7500. To the best of our knowledge, there are no implementa-
tions of DECIMv2 and Pomaranch Version 3 giving hardware performance.
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Grain 80 1294 10.73 108.00 10.95 1.490 33.0 0.0149
Grain 4x 80 1678 3.08 319.33 3.41 1.150 11.2 0.0460
Grain 8x 80 2191 1.83 445.78 2.29 0.880 7.6 0.0704

Grain 16x 80 3239 1.21 588.27 1.95 0.596 5.8 0.0953
Trivium 80 2599 17.74 26.61 18.12 0.742 56.1 0.0074

Trivium 4x 80 2660 4.52 119.88 4.92 0.725 14.6 0.0290
Trivium 8x 80 2801 2.44 198.16 2.88 0.689 8.0 0.0551

Trivium 16x 80 3185 1.41 395.57 1.99 0.606 5.1 0.0969
Trivium 32x 80 3787 0.86 571.88 1.61 0.509 3.2 0.1630
Trivium 64x 80 4921 0.57 874.14 1.64 0.392 2.2 0.2509
F-FCSR-H 80 4760 3.27 127.13 4.06 0.405 13.2 0.0324

Grain-128 128 1857 16.51 96.20 16.77 1.039 43.5 0.0104
Grain-128 4x 128 2129 4.49 211.98 4.87 0.906 14.0 0.0362
Grain-128 8x 128 2489 2.50 360.52 2.99 0.775 8.6 0.0620

Grain-128 16x 128 3189 1.55 523.10 2.24 0.605 5.8 0.0968
Grain-128 32x 128 4617 1.04 604.92 2.19 0.418 4.6 0.1337

Mickey-128 128 5039 30.28 15.82 31.07 0.383 111.7 0.0038

Table 8.5: Performance results of a few eSTREAM candidates in
0.13µm CMOS Standard Cell. Note that the basic implementations
of Grain and Trivium as well as Mickey128 outputs 1 bit/clock while
F-FCSR-H outputs 8 bits/clock.

Though, in [BBC+06] the authors of DECIMv2 indicate that it can be imple-
mented with gate count of about 2500. In [JHK07] the authors of Pomaranch
Version 3 claims that the 128-bit variant and the 80-bit variant can be imple-
mented with a gate count of 3400 and 2200 respectively. Moustique is a self-
synchronizing stream cipher and is thus fundamentally different from the
other designs, which are all synchronous. In [GCB06] a hardware imple-
mentation of Mosquito (the predecessor of Moustique) was done and the
gate count was about 6800 for a fast pipelined variant and 4200 for a slower
variant. These figures should be quite similar for Moustique.

These figures indicate that Grain is undoubtedly the smallest stream ci-
pher in eSTREAM and if area is the most important feature Grain should be
the first choice. It also provides flexibility in that the speed can be increased
very easily. However, if speed is very important then the fastest version of
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Trivium seems to be the most attractive choice.

8.5 Summary

In this chapter we introduced a new family of stream ciphers, Grain. Two
different versions, denoted Grain and Grain-128, have been specified. The
designs target hardware environments where small area is of high impor-
tance. The basic implementation is very small but outputs only one bit/clock.
An important feature in the Grain ciphers is the possibility to easily increase
the throughput by adding some extra hardware. This is done by simply
implementing the relatively small feedback and output functions several
times. This flexibility makes the Grain ciphers attractive for a wide range of
applications spanning from the most demanding in terms of small hardware
area to applications requiring a very high throughput.

Together with Trivium, which is also both small and flexible, the Grain
ciphers seem to currently provide the most attractive confidentiality solu-
tions for constrained hardware environments. However, it should be noted
that security is still the most important feature and cryptanalysis results
may render a stream cipher useless overnight. New primitives need several
years of public security evaluations before they can be recommended for
use in widespread applications.
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9

Concluding Remarks

This thesis has presented cryptanalysis results on stream ciphers, both
on a general construction and on specific designs. A new class of weak

feedback polynomials for linear feedback shift registers has been defined.
Also, different methods to recover the initial state of the shift register have
been shown for two algorithms that irregularly decimates the output se-
quence of the shift register. Further, we have given cryptanalytic results
for two stream ciphers in the eSTREAM project. Most attacks given in the
thesis are not possible to mount in practice since they require data, mem-
ory and/or computational complexity that is beyond the ability of today’s
computers. However, additional observations may improve the complex-
ities significantly. Finally, a new design is proposed. It is designed to be
extremely small and simple to implement in hardware.

The goal of eSTREAM is, according to the web page, to identify new
stream ciphers that might become suitable for widespread adoption. This is
done by allowing researchers to propose an algorithm and then let the cryp-
tographic community analyze the algorithms. If an algorithm, after several
years, is still considered secure, efficient and attractive, then eSTREAM can
consider it in its final portfolio of algorithms. The opposite approach is for
developers to construct their own algorithm and, hoping it is secure, imple-
ment it in a product. Widespread algorithms such as E0 in Bluetooth and
A5/1 in GSM are examples of this approach. These two stream ciphers have
been shown to be very insecure and there are many attacks proposed on
them, each new attack improving on the previous. Hopefully, the efforts in
eSTREAM can help avoiding mistakes such as E0 and A5/1 in the future.
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