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Abstract—We derive explicit density evolution equations for
protograph-based generalized LDPC codes on the binary erasure
channel. They are obtained from an analysis of multi-dimensional
input/output transfer functions of the component decoders. Belief
propagation decoding with optimal component APP decoders is
considered. Based on the resulting transfer functions, a threshold
analysis is performed for some protograph examples.

I. INTRODUCTION

The binary erasure channel (BEC) is often used as a model

for theoretical analysis of iterative decoding. In fact, the notion

of irregular LDPC code ensembles, which nowadays is widely

used in the design of capacity approaching codes, has been

first introduced for the BEC [1] [2]. For this channel model,

the density evolution equations for LDPC code ensembles can

be described analytically, both for random irregular ensembles

[2] and structured protograph ensembles [3].

Protographs with identical degree distributions can have dif-

ferent thresholds, and a careful protograph selection can lead

to better thresholds compared to corresponding unstructured

random ensembles. An example where structure, imposed

in a controlled way, can improve performance are graphs

containing variable nodes of degree one [4]. In an unstructured

ensemble such nodes usually affect the decoder convergence.

Another example are protograph-based terminated LDPC con-

volutional codes [5], which can have thresholds close to

capacity with degree distributions approaching those of regular

LDPC codes. An additional advantage of protographs is that

they are well suited for the design of quasi-cyclic codes.

Also generalized LDPC (GLDPC) codes based on protographs,

where the check equations are replaced by stronger block code

constraints [6], have been considered in the literature [7] [8].

In this paper, we analyze iterative decoding of protograph

GLDPC codes and conceptually describe the corresponding

density evolution equations for the BEC, which can be applied

for determining the asymptotic convergence thresholds. These

density evolution equations rely on explicit multi-dimensional

input/output transfer functions of the a posteriori probability

(APP) decoders that are applied within belief propagation (BP)

to the component codes associated with the constraint nodes

of the graph. Our main contribution is an analysis of these

decoders, which results in a method to compute exact analytic

expressions for the density evolution equations of protograph

GLDPC codes. For demonstration purposes, we have applied
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Fig. 1. Example of a protograph with Mc = 3 constraint nodes and Nv = 4

variable nodes.

these equations to some examples of protograph ensembles

and present the corresponding thresholds.

II. DENSITY EVOLUTION ON PROTOGRAPHS

A protograph [3] is a bipartite graph consisting of a set

of variable nodes Vn with degree Jn, n = 1, . . . , Nv , a set

of constraint nodes Cm with degree Km, m = 1, . . . ,Mc

and a set E of edges that connect them. The edges connected

to a variable node Vn or a constraint node Cm are labeled

by ev
n,j or ec

m,k, respectively, where j = 1, . . . , Jn and

k = 1, . . . ,Km. The j-th edge of Vn is connected to the k-th

node of Cm if ev
n,j = ec

m,k. This way of labeling takes into

account the order of edges connected to a node and allows to

distinguish multiple edges between a pair of nodes.

While a protograph is formally equivalent to a Tanner

graph [6], it actually represents a family of codes of different

lengths whose individual Tanner graphs are obtained from

the protograph by a copy-and-permute operation [3]. Then a

size T permutation matrix is associated with each edge in the

protograph and each node is replicated T times, resulting in

a derived graph that defines a code of length TNv . By this

procedure, the edges are permuted among these replica in such

a way that the structure of the original graph is preserved. As

a consequence, a density evolution analysis for the resulting

codes can be performed within the protograph.

In protograph-based GLDPC codes [7] [8], each constraint

node Cm can represent an arbitrary block code Cm of length

Km. We assume that belief propagation is used for the decod-

ing, after transmission over a BEC with erasure probability ε.

In every iteration, first all constraint nodes and then all variable



nodes are updated. The messages that are passed between the

nodes represent either an erasure or the correct symbol values

0 or 1. Let q(i)(ec
m,k) denote the probability that the constraint

to variable node message which is sent along edge ec
m,k in

decoding iteration i is an erasure. In case of BP decoding,

this message is equal to the k-th extrinsic output generated by

an APP decoder of the constraint code Cm. Then

q(i)(ec
m,k) = fCm

k

(

p(i−1)(ec
m,k′), k′ 6= k

)

, (1)

is a function of the probabilities p(i−1)(ec
m,k′) that the incom-

ing messages computed in the previous iteration are erasures,

where k, k′ ∈ {1, . . . ,Km}.

The variable to constraint node message sent along edge

ev
n,j is an erasure if all incoming messages from the channel

and from the other neighboring constraint nodes are erasures.

Thus we have

p(i)(ev
n,j) = ε

∏

j′ 6=j

q(i)(ev
n,j′) , (2)

where j, j′ ∈ {1, . . . , Jn}.

In a conventional protograph LDPC code, where all con-

straint nodes represent a single parity-check (SPC) equation,

the constraint to variable node message is an erasure if at

least one of the incoming messages from the other neighboring

nodes is erased. In this case (1) becomes

q(i)(ec
m,k) = 1 −

∏

k′ 6=k

(

1 − p(i−1)(ec
m,k′)

)

. (3)

Equations (3) and (2) are the well-known density evolution

equations for the BEC [1] [2], applied to protograph LDPC

codes [3]. For the random irregular code ensembles analyzed

in [2], the degrees of constraint nodes and variable nodes

are random variables and density evolution tracks the average

message distributions over all codes in an ensemble, which are

equal along all edges in the graph. A protograph, on the other

hand, imposes a deterministic structure on the neighborhood

of each node so that the message distributions in (3) and (2)

behave differently and have to be tracked separately for each

edge of the protograph.

A corresponding threshold analysis for protograph GLDPC

codes can be performed by means of the density evolution

equations (1) and (2). Note that, in general, fCm

k can be

different for each k ∈ {1, . . . ,Km} so that the order of

edges connected to node Cm can affect the performance of the

ensemble. In the following section we present a simple method

for computing explicit expressions for the APP decoder output

distributions that can be used in (1).

III. EXTRINSIC OUTPUT ERASURE PROBABILITIES OF

APP DECODED LINEAR BLOCK CODES

It has been observed in [9] that on the BEC the EXIT

functions of a block code can be related to its support weights

and information functions [10]. A refinement of these, the

split information functions, which have been introduced in [9]

for an EXIT chart analysis of GLDPC ensembles, allow the
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Fig. 2. The output probabilities of a (7,4) Hamming code and its shortened
(5,2) code (see Example 1).

partition of the code into groups of symbols with different

input erasure probabilities. The split information functions

have also been used in [11] to derive a stability condition for

random irregular doubly generalized LDPC ensembles. On the

BEC there is a one-to-one correspondence between the APP

decoder output erasure probabilities and the EXIT functions,

namely IE(p) = 1 − q(p) and IA = 1 − p. However, in the

context of [9] and [11], in order to arrive at a one-dimensional

chart, the average input and output erasure probabilities are

considered. In a protograph analysis, on the other hand, the

distinct message distributions of the different input and output

symbols have to be considered, as they appear in (1) and

(2). This means that multi-dimensional EXIT functions are

required, which are difficult to visualize in a chart.

Example 1: The extrinsic output probabilities qn of a (7,4)

Hamming code with equal input probabilities pi = p, i =
1, . . . , 7 is given by qn = 3p2 + 4p3 − 15p4 + 12p5 − 3p6 for

all n = 1, . . . , 7. A plot of this function is shown in Fig. 2. If

the code is shortened to length five by removing the first two

symbols from each codeword, it turns out that (the derivation

will follow below)

q1 =p3p5 − p3p4p5p2 + p2p3p4

q2 =p4p5 − p3p4p5p1 + p1p3p4

q3 =p1p5 − p1p4p5p2 + p1p2p4 (4)

q4 =p2p5 − p2p3p5p1 + p1p2p3

q5 =p2p4 − p1p2p3p4 + p1p3

Equivalently, we could use the corresponding functions of the

(7,4) Hamming code and set the first two input probabilities

to zero (infinite reliability). If we now consider equal input

probabilities p, then we obtain the probabilities

qi =p2 + p3 − p4 , i = 1, . . . , 4

q5 =2p2 − p4 ,

which are also shown in Fig. 2. This illustrates that even



for averaged input probabilities the output probabilities, in

general, need not be identical for different code symbols.

We can also see that code shortening reduces the output

erasure probabilities, like it is the case for single parity-check

equations. �

For the derivation of the multi-dimensional transfer function

of the APP decoder, instead of redefining the support weights

and information functions for multiple edge types, we use

in this paper a trellis representation of block codes and

perform a Markov chain analysis of the decoder metrics. For

convolutional codes, this approach has been introduced for

the analysis of Viterbi decoding on the BSC [12] [13]. A

generalization to the analysis of APP decoding on the BEC

has been presented in [14]. For the analysis of block codes,

we consider the Johansson-Zigangirov (JZ) APP algorithm

[15], which performs a single forward recursion through the

syndrome trellis of the code.

A. Forward APP Decoding with the JZ Algorithm

Consider the decoding of some linear binary block code

C of length N . Assume that a codeword v ∈ C has been

transmitted and some soft information is available in terms

of the likelihood ratio vector Λ. If v is transmitted over a

memoryless channel, the elements of Λ can be written as

Λn =
p(rn|vn = 0)

p(rn|vn = 1)
·
p(vn = 0)

p(vn = 1)
(5)

for n ∈ N = {1, . . . , N}, where r is a vector containing

the received channel output values. The second term in (5)

corresponds to a-priori information that may be available

for the individual code symbols. In the considered iterative

GLDPC decoder, the values Λn are given by the variable to

constraint node messages.

An optimal APP decoder computes the extrinsic likelihood

ratios

Λe
n =

∑

v∈C0
n

∏

i∈N\n

γi(vi)
∑

v∈C1
n

∏

i∈N\n

γi(vi)
, γn(vn) = Λ1/2−vn

n (6)

which can be combined with Λn to the a-posteriori likelihood

ratios

Λn · Λe
n =

P (vn = 0|Λ,v ∈ C)

P (vn = 1|Λ,v ∈ C)
. (7)

In (6) we have partitioned the code into the sets C0
n and C1

n

consisting of all codewords for which vn is fixed to zero and

one, respectively. In the set N\n , position n is excluded, i.e.,

N\n = {1, . . . , N} \ n.

Consider now the coset C(n) = {vn|vn = v + ǫn,v ∈ C},

where ǫn = (0, . . . , 0, 1, 0, . . . , 0) is a vector with a one at the

n–th position and zeros elsewhere. We introduce the values

µ0 =
∑

v∈C

∏

i∈N

γi(vi) (8)

µn =
∑

v∈C(n)

∏

i∈N

γi(vi) , n ∈ N . (9)

It can be shown [15] [16] that the decoder outputs given in

(6) can be expressed as

Λe
n =

µ0 · Λn − µn

µn · Λn − µ0
. (10)

The JZ algorithm makes use of the fact that µ0 and µn can be

computed efficiently in a single forward recursion through the

unexpurgated syndrome trellis of the code. Let µ(s, n) denote

the metric of node s ∈ F
N−K
2 at level n ∈ N of the trellis.

For a given state s at level n−1 and code symbol vn, the state

s′ at level n is equal to s′ = s + vn · hn, where hn denotes

the n-th column of a given parity-check matrix H defining C.

This leads to the recursion

µ(0, 0) = 1 , µ(s, 0) = 0 , ∀s 6= 0

µ(s, n) = µ(s, n − 1) · γn(vn = 0) (11)

+ µ(s + hn, n − 1) · γn(vn = 1) .

Since all vectors in a coset C(n) have syndrome hn, it follows

from the definition of the syndrome former trellis that

µ0 = µ(0, N)

µn = µ(hn, N) , n ∈ N ,

and the extrinsic decoder outputs can be obtained from (10).

B. Computation of the Output Distributions

At each level n = 0, . . . , N in the trellis there are

at most S = 2N−K nodes that correspond to reach-

able states s. We introduce the metric vectors µn =
(µ(s1, n), µ(s2, n), . . . , µ(sS , n)), where si, i = 1, . . . , S
denote the different possible trellis states. The values µ(si, n)
depend on the parity-check matrix H and on the decoder input

Λ. Let Mn = {σ
(1)
n ,σ

(2)
n , . . . } denote the set of possible

metric vectors µn corresponding to all the different input

vectors Λ. In case of the BEC, we have Λn = ∞ and Λn = 0
if the input message is equal to zero and one, respectively, and

Λn = 1 if the input message is an erasure. Due to linearity

of the code, we can assume in the analysis that the all-zero

codeword has been transmitted. Since the nonzero elements of

a metric vector µn are always equal, we can normalize these

entries to 1.

Example 2: Consider a length five shortened Hamming

code defined by

H =





1 0 1 0 0
0 1 0 1 0
1 1 0 0 1



 (12)

The decoder starts in the state s0 and can reach the states s0

and s5, from which it then additionally can reach states s3

and s6. The possible metric vectors at levels one and two are

given by

µ1 ∈ {(1, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 1, 0, 0)}

µ2 ∈ {(1, 0, 0, 0, 0, 0, 0, 0), (1, 0, 0, 1, 0, 0, 0, 0),

(1, 0, 0, 0, 0, 1, 0, 0), (1, 0, 0, 1, 0, 1, 1, 0)}

At levels three, four, and five there exist 8, 12, and 13 different

metric vectors, respectively. �



Our analysis of the decoder is based on two key properties:

1) the number of different metric vectors |Mn| at each

level n ∈ N is finite

2) the set Mn is independent of the distribution P (Λ) of

the decoder input

The first property allows us to recursively calculate the

distributions P (µn) of the metric vectors at the different

levels of the trellis for a given input distribution. This is

also possible for other discrete channels, e.g., the BSC. The

second property is specific for the BEC and allows us to derive

explicit formulas for P (µn) as function of the input erasure

probabilities pi = P (Λi = 1), i = 1, . . . , n.

The sequence µ0,µ1, . . . ,µN of metric vectors forms a

Markov chain with varying transition matrices Mn of di-

mension |Mn−1| × |Mn|. The first vector µ0 is unique, i.e.,

|M0| = 1, since decoding starts in the all-zero state s = 0

with fixed metric µ(0, 0) = 1. The element in row j and

column k of Mn is equal to the probability to come from

state µn−1 = σ
(j)
n−1 to state µn = σ

(k)
n , which depends on

the input erasure probability pn. The distribution P (µN ) of

the metric vector µN at the last trellis level can be computed

by

[

P (µN = σ
(1)
N ) P (µN = σ

(2)
N ) · · ·

]

=

N
∏

n=1

Mn . (13)

Our goal is to compute the extrinsic output erasure prob-

abilities qn = P (Λe
n = 1). From (10) we see that Λe

n = 1
is satisfied for all values of Λn when µ0 is equal to µn. It

follows that

qn =
∑

σ∈Me
n

P (µN = σ|pn = 0) (14)

where Me
n = {µN : µ(hn, N) = µ(0, N)}. Since we are

interested in the extrinsic probabilities, the terms in (14) are

conditioned on the event pn = 0. They follow from (13) by

substitution.

Example 3: For the code considered in Example 2, the first

two transition matrices are given by

M1 =
[

1 − p1 p1

]

,

M2 =

[

1 − p2 p2 0 0

0 0 1 − p2 p2

]

.

The other matrices follow analogously. Suppose we want to

compute q1. At the last level, five of the 13 metric vectors

in MN are members of the set Me
1, and two of them have

nonzero probability P (µN |pn = 0), namely

(1 − p2)p3(1 − p4)p5

and (1 − p2)p3p4p5 + p2p3(1 − p4)p5 + p2p3p4 ,

which we sum up to

q1 = p3p5 − p3p4p5p2 + p2p3p4

according to (14). Repeating this for all output symbols we

obtain (4). �

Hamming(7,4) Hamming(7,4)

Fig. 3. Ensemble I: Regular protograph of rate R = 1/7.

C1

C2

C3

Shortened
Hamming(6,3)

Fig. 4. Ensemble II: Hamming-doped protograph of rate R = 1/6.

The reader may also verify that we arrive at the LDPC code

density evolution equation (3) by choosing as H an all-one

row vector of length Km.

IV. APPLICATION TO SOME PROTOGRAPH EXAMPLES

As our first example, we consider an M = 2, N = 7
regular protograph with (7,4) Hamming codes at all constraint

nodes, as shown in Fig. 3. All variable nodes have degree

two and the rate is equal to R = 1/7. We have computed

the threshold ε∗ = 0.7564 for this code ensemble (Ensemble

I) by recursively applying (1) and (2) for different channel

parameters ε. The Shannon limit for this code rate is equal to

1−R = 0.8571. Due to the regular structure of the graph, an

unstructured ensemble with the same degree distributions will

have the same threshold. This result can also be obtained by

a conventional one-dimensional EXIT chart analysis.

For Ensemble II we choose a ”Hamming-doped” protograph

from [7], which is depicted in Fig. 4. Starting point for the de-

sign of this code was an accumulate-repeat-accumulate (ARA)

code. One check node of the protograph of this code was then

”doped” by associating a shortened (6,3) Hamming code to

it. Depending on whether the dashed edge is excluded from

the graph or not, the threshold is equal to ε∗ = 0.8122 (Type

I) or ε∗ = 0.8026 (Type II), respectively (1 − R = 0.833).

Although it has been observed in [8] that codes in Ensemble

II asymptotically do not exhibit a linear growth of stopping set

number or minimum distance, very good performance has been

observed for practical code lengths [7]. For the unstructured

ensemble corresponding to Ensemble II, decoding convergence

is prevented by the variable nodes of degree one.

Another example of a protograph with a mixture of SPC

and Hamming constraints is given by Ensemble III, shown
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Fig. 5. Ensemble III: Protograph of rate R = 2/7.
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Fig. 6. Convergence behavior: Erasure probabilities pn as function of the
decoding iteration for an ε close to the threshold.

in Fig. 5, with a threshold at ε∗ = 0.6561, which can be

compared to 1−R = 0.7143. Interestingly, as shown in Fig. 6,

the convergence behavior of Ensemble II (shown for Type

II) at low output erasure probabilities looks different from

that of Ensemble III. This could be related to the inferior

asymptotic distance properties. Actually, Ensemble III is very

similar to the codes considered in Example 3 in [8], which

asymptotically have linear growth of minimum distance and

stopping set number. Interestingly, the unstructured ensemble

with same degree distributions as Ensemble III has a better

threshold at ε∗ = 0.6801. This suggests that there should

exist other protographs with better thresholds and we can

conclude that in general a careful selection of the particular

graph structure is required for best performance.

V. CONCLUSION

We have proposed a method for calculating analytic expres-

sions for the multi-dimensional input/output transfer functions

of APP decoded block codes on the BEC. These can be easily

converted to corresponding symbol-wise or averaged EXIT

functions for block codes. The computed transfer functions

can be used to obtain explicit density evolution equations for

protograph GLDPC codes, which can serve as a valuable tool

for the design and analysis of efficient code ensembles.
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