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Evolutionary dynamics and a refinement of
the neutral stability criterion

Pär Torstensson∗

May 10, 2005

Abstract

We introduce two refinements of the neutral stability criterion,
namely the ascending and the eroding neutrally stable strategies (NSS).
These criteria take into account how well the NSS preform against all
pure strategies in symmetric two-player games. We also present a
dynamic model which supports the refinements.

Keywords: Evolutionary dynamics; Neutrally stable strategies; Ascending NSS;
Eroding NSS.

JEL classification: C73.

1 Introduction

Evolutionary game theory mainly focus on frequency-dependent selection,
i.e. the fitness of a strategy depends on the frequency of other strategies
in the population. Typically, individuals are repeatedly drawn at random
from a large population to play a game which they are programmed to play
a certain way, i.e. to use a particular strategy σ. Mutation are viewed as
a rare phenomena that only happens to a small fraction of the population
at a time.1 The incumbent strategy σ is said to satisfy an evolutionary
stability criteria if mutants, i.e. individuals who are programmed to use
another strategy µ, perform poorly in comparison. The key concept is the
criterion of evolutionary stability (Maynard Smith and Price, 1973); σ is a

∗Department of Economics, Lund University, Box 7082, SE-22007 Lund, Sweden. Fax:
+46 46 2224118. E-mail: par.torstensson@nek.lu.se.

1Mutations are treated as isolated events.
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evolutionarily stable strategy (ESS) if it is a best reply to itself and it is a
better reply to any alternative best reply µ than µ is to itself. Unfortunately,
many games lack ESS. To deal with mutant strategies that preform equally
good as the incumbent strategy, the weaker criterion of neutral stability
(Maynard Smith, 1982) is used; σ is a neutrally stable strategy (NSS) if it is
a best reply to itself and it is an at least as good reply to any alternative
best reply µ than µ is to itself.
These evolutionary stability criteria are robustness tests and never explain

how a strategy became the incumbent strategy in the first place. Thus, by
definition, several NSS can coexist in a population. In this paper we wish
to distinguish between the NSS and therefor subject the neutral stability
criterion to refinements. For symmetric two-player games, we distinguish
between the ascending and the eroding NSS. These criteria take into account
the performance of the NSS against all other (out-of-equilibrium) strategies
in the game.
Let σ be an NSS and let µ be another strategy such that the two strategies

are best replies to themselves and to each other. In this case, we refer to µ
as an alternative best reply to σ. If µ also happens to be an NSS, we refer to
it as a competitor to σ. Strategy σ is said to be an ascending neutrally stable
strategy (ANSS) if it is; (i) an ESS, or (ii) an NSS which weakly dominates
all of its alternative best replies. Strategy σ is said to be an eroding neutrally
stable strategy (ENSS) if it is an NSS and is weakly dominated by at least
one of its alternative best replies.
Dynamic support for evolutionary stability has mainly been sought in the

research field of population dynamics. The basic idea of population dynamics
is the same as in evolutionary game theory; when a population is subjected
to a small change in its composition, it should not drift away by the evolu-
tionary forces. Taylor and Jonker (1978) was first to study the connection
between the static concepts of evolutionary stability and the analyses of pop-
ulation dynamics.2 In their classical model of replicator dynamics, strategies
are genetically determined and individuals using high-payoff strategies have
more offsprings than competitors using low-payoff strategies. Since a popu-
lation state x = (x1, ..., xn), where xs is the relative frequency of individuals
using the pure strategy s, can be interpreted as a mixed strategy, it is easy
to check for stability. We derive one obvious result with this model. From a
population state where all types are present, including an ENSS, the replica-
tor dynamics ensures that either the population share using the ENSS or the
population share using the pure strategy that makes the ENSS worse than

2Other related studies are Thomas (1985a; 1985b) and Bomze and Weibull (1995),
among others.
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at least one of its alternative best replies (or both these population shares)
vanish in time. We cannot, however, use the classical replicator dynamics to
motivate the refinements of the neutral stability concept. It focus entirely on
the frequency-dependent selection, while the new criteria rely on the presence
of all types (strategies) in the population. One possible way is to accommo-
date for mutations. Models that include mutation have a long history in
population dynamics (e.g. see Kingman, 1978; Hines, 1982; Hofbauer and
Sigmund, 1988; Bürger, 1989b; Foster and Young, 1990; Eshel, 1991; Eshel
et al., 1997; Boylan, 1994; Bomze and Bürger, 1994; 1995).3 It is evident
from the literature that mutation can be modeled in a variety of ways (see
Boylan, 1994).4

In our model, types breed true (i.e. no mutation) and the rate of reproduc-
tion is frequency-dependent. The perturbations, normally accomplished by
mutations, is achieved by letting a fraction γ of the population emigrate and
be replaced by the same amount of immigrants. This is no isolated event,
it happens continuously. We assume that the immigrants are distributed
uniformly on the pure strategies in the game. Our replicator dynamics with
migration is then given by

ẋs (t) = [π (s, x)− π (x, x)]xs + γ (1/n− xs) for s ∈ S,

where π (s, x) is the payoff from playing strategy s against (the population)
strategy x. We are interested in the solution path, denoted ξ (x, t), to this
system of differential equations. It turns out that it for many games converge
to a state, i.e. limt→∞ ξ (x, t) = x∗. We are especially interested in the limit
state, i.e. limt→∞ ξ (x, t) = x∗ as we let γ slowly tend to zero. Unfortunately,
the conjecture that successive perturbations would shift the population from
using ENSS to using ANSS do not generally hold. By definition, the pure
ANSS will do better than a competing pure ENSS in this dynamics. Still,
the limit state can be a mixed ENSS or even a mixed strategy that is an
alternative best reply to the NSS.5

In order to support the refinements, we present a dynamics with reassess-
ment and life-support. There is no population growth and no reproduction
in the model. Instead a fraction of the population reassess their choice of
strategy continuously. Only pure strategies may be used. As long as a pure
strategy, say s, is currently performing better than the others, a fraction of

3Other related work are Zeeman (1980, 1981), Eshel (1983), Schuster and Sigmund
(1983), Rowe (1985), Bomze (1986) and Bürger (1989a) Binmore et al. (1995).

4An alternative approach is to describe the mutation-selection mechanism with a
Markov process, see e.g. Kandori et al. (1993) and Young (1993).

5Given that the limit state exists and that it home in on the set of competing NSS or
on the set of alternative best replies to an NSS.
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them using the other strategies will change to s. The proportion of the pop-
ulation using a particular strategy can, however, never fall below µ > 0. It
turns out that the limit state in this dynamics puts all weight on the strictly
or weakly dominant pure strategy, and no weight on pure strategies that are
strictly or weakly dominated by another pure strategy. Thus, the limit state
in this dynamic cannot be an ENSS.
The rest of the paper is organized as follows. Section 2 presents notation

and the evolutionary stability criteria. Section 3 consists of three parts.
In the first part, we describe the replicator dynamics, define concepts and
present some fundamental results with this dynamics. In the second part,
we derive a replicator dynamics with migration and study its effect on the
limit states. In the third part, we present a dynamics with reassessment and
life-support, which means that all pure strategies are played by a minimum
proportion of the population. We close the paper with some final comments
in Section 4.

2 Evolutionary stability criteria

Throughout the paper we make our arguments for symmetric two-player
games G = (I,S, π), where I = {1, 2} is the set of players, S = S × S is
the pure strategy space and π : S → R2 is the combined payoff function.
For the finite set of pure strategies S = {1, ..., n}, the set of mixed strate-
gies is ∆ =

©
σ ∈ Rn

+ |
P

s∈S σs = 1
ª
. Let es denote the unit vectors, e.g.

e2 = (0, 1, 0, ..., 0). Hence, {es}ns=1 is the set of vertices of ∆ which assigns
probability one to the pure strategy s ∈ S. Let C (σ) denote the support of
the (mixed) strategy σ, i.e. C (σ) ⊂ S is the set of pure strategies that is as-
signed positive probabilities by σ. The subset of completely mixed strategies
is called the interior of ∆, int(∆) = {σ ∈ ∆ | σs > 0 ∀s ∈ S}. Obviously,
C (σ) = S if σ ∈ int(∆). The subset of noninterior strategies is called the
boundary of ∆, bd(∆) = {σ ∈ ∆ | σ /∈ int(∆)}. The mixed-strategy space is
∆2 = ∆×∆.
A (strategy) profile is a vector (α, σ) ∈ ∆2 of individual strategies. Let

π (α, σ) denote the payoff from playing strategy α when the opponent is
playing strategy σ. A strategy α is said to be a best reply to strategy σ if
and only if π (α, σ) ≥ π (τ , σ) for all τ ∈ ∆. The set of best replies to any
strategy σ ∈ ∆ is denoted B (σ). A profile (α, σ) ∈ ∆2 is a Nash equilibrium
(NE) if and only if α ∈ B (σ) and σ ∈ B (α). Let ∆2

NE denote the set of
Nash equilibria in G.
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2.1 Evolutionary and neutral stability

Two of the key concepts in evolutionary game theory are the criteria of
evolutionary stability and neutral stability.

Definition 1 (Maynard Smith and Price, 1973) σ ∈ ∆ is an evolu-
tionarily stable strategy (ESS) if ∀ µ ∈ ∆ (µ 6= σ) it holds that (i) π (σ, σ) ≥
π (µ, σ), and (ii) π (σ, σ) = π (µ, σ) implies π (σ, µ) > π (µ, µ) .

Definition 2 (Maynard Smith, 1982) σ ∈ ∆ is an neutrally stable strat-
egy (NSS) if ∀ µ ∈ ∆ (µ 6= σ) it holds that (i) π (σ, σ) ≥ π (µ, σ), and (ii)
π (σ, σ) = π (µ, σ) implies π (σ, µ) ≥ π (µ, µ) .

Let∆ESS denote the (possibly empty) subset of evolutionary stable strate-
gies in∆, and let∆NSS denote the (possibly empty) subset of neutrally stable
strategies in ∆. The relationship between the criteria is ∆ESS ⊂ ∆NSS.

Remark 1 Obviously, there exist other criteria besides the two presented
above. Bomze and Pötscher (1989) calls an ESS “uninvadable” if it has a uni-
form invasion barrier against all other strategies. Other examples are “weakly
evolutionarily stable strategies” by Thomas (1985b), “robustness against equi-
librium entrants” by Swinkel (1992), “continuously stable strategy” by Eshel
and Motro (1981), “neighborhood invader strategy” by Apaloo (1997) and
“evolutionary robustness” by Oechssler and Riedel (2002), to name a few.
Measures to strengthen the criterion of neutral stability has also been taken
before this paper. Bomze and Weibull (1995) calls an NSS “unbeatable” if it
has a uniform invasion barrier against all other strategies.6 Another example
is the criterion of “modified evolutionary stability”, introduced by Binmore
and Samuelson (1992), in which complexity considerations are taken if the
strategies are alternative best replies to each other.

2.2 Ascending and eroding neutrally stable strategies

Let µ ∈ ∆ be such that π (σ, σ) = π (µ, σ) and π (σ, µ) = π (µ, µ) when
σ ∈ ∆NSS in some game G. We refer to µ as an alternative best reply
to σ. If, and only if, µ ∈ ∆NSS we also refer to µ as a competitor to σ.
The refinements of the neutral stability criterion we suggest are defined as
follows.7

6They also defines “strongly unbeatable strategies”.
7The idea behind these refinements resembles the idea behind a concept by Hofbauer

and Sigmund (1988, p.288) called weak evolutionarily stable strategy, which incorporates
the effect of trembles for asymmetric normal form games.
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Definition 3 σ ∈ ∆NSS is an ascending NSS if it weakly dominates all of
its alternative best replies (if such strategies exist). That is, if there exists
µ ∈ ∆ (µ 6= σ) such that π (σ, σ) = π (µ, σ) and π (σ, µ) = π (µ, µ), then
π (σ, γ) ≥ π (µ, γ) for all γ ∈ ∆ and ∃α ∈ ∆ (α 6= σ, µ) such that π (σ, α) >
π (µ, α) .

Definition 4 σ ∈ ∆NSS is an eroding NSS if it is weakly dominated by at
least one of its alternative best replies , i.e. there exists µ ∈ ∆ (µ 6= σ), such
that π (σ, σ) = π (µ, σ) and π (σ, µ) = π (µ, µ), where π (σ, γ) ≤ π (µ, γ) for
all γ ∈ ∆ and ∃α ∈ ∆ (α 6= σ, µ) such that π (σ, α) < π (µ, α).

Let ∆ANSS and ∆ENSS denote the (possibly empty) subsets of ascending
and eroding NSS in ∆NSS. The relationship between the criteria are ∆ESS ⊂
∆ANSS ⊂ ∆NSS and ∆ENSS ⊂ ∆NSS. Let σ ∈ ∆NSS such that σ /∈ ∆ANSS

and σ /∈ ∆ENSS be called a firm NSS.
Notice that the mixed strategy α in Definitions 3 and 4 can be replaced by

a pure strategy. As a consequence, σ is better (worse) than µ against at least
all α ∈ int(∆) in Definition 3 (Definition 4). Clearly, weak dominance ensures
that π (σ, s) ≥ π (µ, s) for all s ∈ S in Definition 3. Since σ is better than
µ against α, there exists at least one s ∈ S for which π (σ, s) > π (µ, s). Let
D ⊂ S be the set of these pure strategies. We have that π (σ, α) > π (µ, α)
for all α ∈ {α ∈ ∆ | C(α) ⊂ D} in Definition 3. Obviously, the opposite is
true in Definition 4.

Example 1 Consider the symmetric two-player game G1 with payoff matrix

A =

⎛⎝ a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞⎠ =

⎛⎝ 2 2 1
2 2 0
0 0 1

⎞⎠ , (1)

where axy ∈ A is interpreted as the payoff from playing strategy x ∈ S when
the opponent is playing strategy y ∈ S, S = {1, 2, 3}. It is easy to verify that
∆NSS 6= ∅ and ∆ESS = ∅. The set of neutrally stable strategies is also large,
∆NSS = {σ ∈ ∆ | σ3 = 0}.8
Obviously, for any α ∈ B (e1) = {α ∈ ∆ | α3 = 0} we have π(α, α) =

π (e1, α) = π(α, e1) = π(e1, e1) = 2. Let α ∈ ∆NSS (α 6= e1). For any
τ = {τ ∈ ∆ | τ 3 > 0}, we have π (α, τ) 6= π (e1, τ). The exact payoffs are

π (α, τ) = α1 (2τ 1 + 2τ 2 + τ 3) + α2 (2τ 1 + 2τ 2) , (2)

8Strategy 1 (which can also be expressed by e1) can invade every mixed strategy whose
support contains strategy 3.
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π (e1, τ) = 2τ 1 + 2τ 2 + τ 3. (3)

So π (α, τ) < π (e1, τ) if α1 < 1, which is the case for all α ∈ B (e1) besides
e1 itself. Thus, e1 will earn more against all τ ∈ ∆ \ ∆NSS compared to
α ∈ ∆NSS (α 6= e1). Hence, ∆ANSS = {e1} and ∆ENSS = ∆NSS \ {e1}.

3 Evolutionary dynamics

This section consists of three parts. In the first part, we present the classic
“replicator dynamics” developed by Taylor and Jonker (1978). In the second
part, we derive a model in which a proportion of the population emigrates
and are replaced by an equal number of immigrants. In the third and final
part, we presents a dynamic model which supports our refinement of the
neutral stability criterion.

3.1 The replicator dynamics

The replicator dynamics considers a population whose members are playing
a symmetric two-player game G = (I,S, π) with random match. In contrast
to evolutionary game theory, the (classic) replicator dynamics presumes that
individuals only can play pure strategies.9 This does not exclude mixed
strategies from the model. A mixed strategy σ ∈ ∆ corresponds to the
(polymorphic) population strategy, whose weights σs are represented by the
population shares programmed to use the pure strategy s ∈ S. The fitness
of a strategy is given by its (relative) payoff and measured by the number of
replicators it produces.
Formally, let a nonempty subset of the set of pure strategies be called

a repertoire, denoted R ⊂ S. The strategies s ∈ R are also referred to as
types currently present in the population. At any point of time, the relative
frequency of type s ∈ R in the population is denoted by xs (t) ≥ 0. The
population state is represented by the vector x (t) = (xs (t) , ..., xv (t)), where
s, v ∈ R. Since x (t) is a point in the simplex ∆, it corresponds to the mean
strategy of the population. For a population state x (t), the expected payoff
to player type s ∈ R with random match is denoted π (es, x (t)). The average
payoff in the population is π (x (t) , x (t)) =

P
s∈R xs (t)π (es, x (t)).

9Replicator dynamics with mixed strategies have been investigated by Weissing (1990)
and Cressman (1990), but the repertoire of types (i.e. mixed strategies) in the population
is still limited to a finite subset of the simplex ∆ (see Hammarstein and Selten, 1994, p.
950). An exception is the model by Bomze and Bürger (1994; 1995).
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The replicator dynamics is given by10

ẋs (t) = [π (es, x (t))− π (x (t) , x (t))]xs (t) for s ∈ R. (4)

Hence, all types present in the population that are associated with a better-
than-average payoff grows at the expense of those types associated with a
lower-than-average payoff. There is no population growth and no mutations
(i.e. types breed true). The repertoire only contains the types that were
present in the initial population, so by default only their relative frequency
xs (t) may change.
It can be proved that the system of differential equations (4) defines a

continuous solution mapping ξ : ∆×R→∆, which to each initial population
state xo ∈ ∆ assigns as the population state ξ (xo, t) at time t.11 The system
(4) can be expressed in vector form, i.e.

ẋ = ϕ (x) , (5)

where ϕ : ∆→ Rn (∆ ⊂ Rn). The function ϕ is a vector field and it defines,
at each state x ∈ ∆, the direction and velocity of the change of the state.
For each component xs of the state x, ϕs (x) is its time derivative (s ∈ S).
A solution to (5) is a function ξ : ∆×R→∆ such that

d

dt
ξ (x, t) = ϕ [ξ (x, t)] for all x ∈ ∆ and t ∈ R. (6)

If the vector field is sufficiently smooth, i.e. satisfy Lipschitz continuity,
the existence and uniqueness of a solution is guaranteed. The vector field
is Lipschitz continuous on a domain ∆∗ if there exists a nonnegative real
number L (the Lipschitz constant) such that kϕ (x)− ϕ (y)k ≤ L kx− yk for
all x, y ∈ ∆∗. The right hand side of (5) is Lipschitz-continuous since it is
a polynomial in the population shares.12 The existence and uniqueness of a
solution is then ensured by the following theorem.13

Theorem 1 (The Picard-Lindelöf Theorem) If ϕ is Lipschitz continu-
ous on an open domain ∆∗ containing ∆, then the system (5) has a unique
solution where ξ (xo, 0) = xo and ξ (xo, ·) : ∆ × R→∆ through every state
xo ∈ ∆. Moreover ξ (x, t) is continuous in xo and t.

10See Weibull (1995, pp. 72-73, 124-125) or Samuelson (1997, pp. 64-66).
11xo denotes the state of origin in the analysis.
12See Samuelson (1997, p. 67) or Weibull (1995, p. 74 and p. 232).
13For proof, see Hirsch and Small (1974, Chapter 8) or Hale (1969). For more on

Lipschitz continuity, see Weibull (1995, Chapter 6).
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Next we present some useful concepts. The (solution) trajectory (or path)
passing through xo is the graph of how the state evolves over time,

τ (xo) = {(x, t) ∈ ∆× R | x = ξ (xo, t)} . (7)

The (solution) orbit passing through xo is the graph of which states are
reached (but it does not say when), ω (xo) = {x ∈ ∆ | x = ξ (xo, t) for t ∈ R}.
The forward orbit is ω+ (xo) = {x ∈ ∆ | x = ξ (xo, t) for t ≥ 0}. A set ∆
is invariant if ω (xo) ⊂ ∆ for all xo ∈ ∆ and it is forward invariant if
ω+ (xo) ⊂ ∆ for all xo ∈ ∆.
It is easy to see that the simplex∆ is invariant in the replicator dynamics,

and so is bd(∆) and int(∆). By definition,
P

s∈R xs (t) = 1 and xs (t) > 0.
This implies two things. First, the growth rate of all types are finite, i.e.P

s∈R ẋs = 0. Secondly, the relative frequency of a type in the population
can get very small but never reach zero. Hence, an interior orbit can only
converge to the boundary as time goes to infinity, i.e. ω (xo) ∈ int(∆) if xo ∈
int(∆). Since strategies excluded from the repertoire cannot be introduced
later on, a orbit starting from the boundary of the simplex can never leave
it, i.e. ω (xo) ∈ bd(∆) if xo ∈ bd(∆).
The standard concepts of stable population states are defined as follows.

Definition 5 The state x ∈ ∆ is stationary if ξ (x, t) = x for all t ∈
R. The state x is Lyapunov stable if it is a stationary state with the
property that for any neighborhood U of x, there exists another neighborhood
V contained in U such that if xo ∈ V then ξ (xo, t) ∈ U for all t > 0, i.e. any
state path which starts in V remains in U . The state x is asymptotically
stable if it is Lyapunov stable and there exists a neighborhood W of x such
that limt→∞ ξ (xo, t) = x if xo ∈ W , i.e. any state path which starts in W
converges to x.

Figure 1 informally describes orbits, stable states and unstable states in
the simplex of game G1 (described in Example 1). A stationary state x
coincides with the null vectors (ϕ (x) = 0) and there are several stationary
states in G1. Three of them (x, y and z) are indicated in Figure 1, but all the
NSS located along the base of the simplex are also stationary states.14 The
other two stationary states, y = (0, 0, 1) and z = (0, 1/3, 2/3), are unstable.
State y is vulnerable to any perturbation which includes strategy 1, and z is
vulnerable to any perturbation.

14Strategies 1 and 2 are best replies to themselves and to each other, so the vector field
are null for any mixed population (e.g. x) of the two types.
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Figure 1: Orbits and stationary states in G1.

All forward orbits starting from nonstationary states, except for

v = {v ∈ bd (∆) | v3 ∈ (2/3, 1) and v1 = 0} , (8)

approach the (base) boundary {σ ∈ ∆ | σ3 = 0} in time. Consider the for-
ward orbit from state x (0), where an equal share of the population use
strategies 1 and 2 while the residual use strategy 3. It illustrates how strat-
egy 1 (the ANSS) preforms much better than strategy 2 (the pure ENSS) in
the presence of strategy 3. As strategy 3 is asymptotically eliminated this
advantage diminish and the end result is a decrease of the relative frequency
of strategy 2 (not elimination) and an increase of the relative frequency of
strategy 1. Notice that even though the orbit converges to state x, this point
is never reached and consequently the relative frequency of strategy 3 never
reach zero. Hence, if the system starts from a nonstationary state it will
never reach such a state. However, an interesting result is that if the or-
bit converges to a state, then this state must be stationary (Weibull, 1995,
Proposition 6.3).
Notice that the system does not have to converge to a state in order to

be Lyapunov stable. Definition 5 does not require that the forward orbit
ω+(z) return the population to state x, but more importantly, that it does
not stray too far from x.
A straightforward result is:

10



Proposition 1 Every x ∈ ∆ANSS and x ∈ ∆ENSS for a symmetric two-
player game G are Lyapunov stable in replicator dynamics (4). Every x ∈
∆ANSS, such that x ∈ ∆ESS , for a symmetric two-player game G is asymp-
totically stable in replicator dynamics (4).

Proof. Taylor and Jonker (1978) established that every x ∈ ∆ESS for a
symmetric two-player game G is asymptotically stable in replicator dynamics
(4). Thomas (1985a) and Bomze and Weibull (1995) established that every
x ∈ ∆NSS for a symmetric two-player gameG is Lyapunov stable in replicator
dynamics (4). By definition, ∆ANSS,∆ENSS ⊂ ∆NSS and an ESS also is an
ANSS so our claim is true.

In Figure 1, x is a state in which strategies 1 and 2, but not strategy 3,
are represented in the repertoire. A small perturbation to a nearby state is
accomplished by letting a small proportion of both types switch to strategy 3.
This perturbation disturbs the dynamic equilibrium. The replicator dynam-
ics will asymptotically eliminate type 3 (the mutant), decrease the relative
frequency of type 2 (the pure ENSS) and increase the relative frequency of
type 1 (the ANSS). In fact, since all ENSS are weakly dominated can we use
a result by Weibull (1995, p. 83, Proposition 3.2) and claim:

Proposition 2 Let µ ∈ ∆ENSS, then for some v ∈ C (µ) there exists σ ∈ ∆
(σ 6= v) such that π (σ, s) ≥ π (v, s) for all s ∈ S and strict inequality for
some s0 ∈ S, and consequently ξv (x

o, t)t→∞ → 0 or ξs0 (x
o, t)t→∞ → 0 (or

both) for any xo ∈ int(∆).

Proof. From the definition of an ENSS we know that µ is weakly dominated
by at least one of its alternative best replies σ. The effect, ξv (x

o, t)t→∞ → 0
or ξs0 (x

o, t)t→∞ → 0 (or both) for any xo ∈ int(∆), is given by Proposition
3.2 in Weibull (1995, p. 83).

This result coincide with another result by Samuelson (1997, Proposition
4.5.1, p. 122); the dynamic process cannot converge from an interior initial
state to an outcome that places all of the probability on a pure strategy
weakly dominated by another pure strategy. Both these results are promis-
ing, since they suggests that successive perturbations might push the pop-
ulation from an ENSS to an ANSS.15 Next, we accommodate for successive
perturbation in the replicator dynamics to investigate this conjecture.

15Given that such strategies exists in a game.
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3.2 A replicator dynamics with migration

In order to accommodate for successive perturbations in the replicator dy-
namics we add migration as a factor in the model. Let Ns (t) be the number
of people playing strategy s ∈ S and let N (t) be the total number of people
in the population at time t. Then, as before, xs(t) = Ns (t) /N (t) is the
proportion of type s in the population and x (t) the vector of proportions
describing the population state. Let x (t) ∈ ∆ also be interpreted as the
population strategy. In each period of time of length τ , a fraction of the
population reproduce asexually. Types breed true and a reproducing indi-
vidual of type s produce π (s, x (t)) replicators of type s (nothing more, less
or different). During the same length of time, a fraction γ of the population
emigrates and are replaced by the same amount of immigrants. The types
of the immigrants is assumed to be independent across individuals and time.
We assume that each strategy is equally likely to be adopted by an immi-
grant. Thus the probability for a particular strategy to be adopted by an
immigrant is 1/n. In order to get continuous population shares we implicitly
assumes that the population size N →∞, so even for a very small γ the law
of large numbers suggests that 1/n of the immigrants adopt strategy s ∈ S.
The number of people playing strategy s at time t+ τ is then given by

Ns(t+ τ) = Ns · [1 + τπ (s, x)] (1− γτ) +
γτ

n

X
i∈S

Ni · [1 + τπ (i, x)] (9)

and the total population by

N(t+ τ) =
X
i∈S

Ni · [1 + τπ (i, x)] . (10)

Notice that the time indexes on the right-hand side has been dropped, but
they are always t (i.e. Ns(t) and x(t) instead of Ns and x). From now on we
write πs instead of π (s, x). By dividing (9) with (10) we obtain

xs(t+ τ) =
Ns · [1 + τπs] (1− γτ) + 1

n
γτ
P

i∈S Ni · [1 + τπi]P
i∈S Ni · [1 + τπi]

. (11)

Next, we divide both the numerator and the denominator on the right-hand
side of (11) by N (t) and obtain

xs(t+ τ) =
xs [1 + τπs] (1− γτ) + 1

n
γτ
P

i∈S xi [1 + τπi]P
i∈S xi [1 + τπi]

. (12)

Since the average payoff in the population is given by πx = π (x, x) =P
i∈S xiπ (i, x) and

P
i∈S xi = 1 by definition, (12) can be expressed

xs(t+ τ) =
xs [1 + τπs] (1− γτ) + 1

n
γτ [1 + τπx]

1 + τπx
. (13)
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Subtracting xs(t) from both side of (13) and simplification yields

xs(t+ τ)− xs(t) =
xs [τπs − γτ − γτ 2πs] +

1
n
γτ [1 + τπx]− xsτπx

1 + τπx
. (14)

Finally we divide both sides of (14) by τ and take the limit as τ → 0, i.e.

ẋs(t) = lim
τ→0

xs [πs − γ − γτπs] +
1
n
γ [1 + τπx]− xsπx

1 + τπx
. (15)

Thus implying that the replicator dynamics with migration is

ẋs (t) = [πs − πx]xs + γ (1/n− xs) for s ∈ S. (16)

The dynamic model describes a situation in which the population evolve
partly according to the the usual selection process and partly by the pertur-
bations which favors strategies used by small parts of the population at the
expense of strategies used by large parts of the population.

Remark 2 We could introduce mutations, instead of migration, by assuming
the replication process to be error-prone. In this case, the number of people
playing strategy s at time t+ τ is given by

Ns(t+ τ) = Ns(t) [1 + (1− γ) τπ (s, x)] +
1

n

X
i∈S

γNi (t) τπ (i, x) , (17)

where γ is the mutation rate. Then the replicator dynamics becomes

ẋs (t) = [(1− γ)π (s, x)− π (x, x)]xs +
γ

n
π (x, x) for s ∈ S. (18)

Another common dynamics is

ẋs (t) = (1− γ) [π (s, x)− π (x, x)]xs + γ

µ
1

n
− xs

¶
, (19)

e.g. see Samuelson (1997, p. 127). A similar dynamics is used by Hofbauer
and Sigmund (1988), Foster and Young (1990), Boylan (1994) and Bomze
and Bürger (1994; 1995).

The introduction of migration affect the dynamics drastically. The con-
tinuous vector field ϕ (x), given by the system (16), is always directed inwards
on the boundary of the simplex ∆, i.e. ϕs (x) > 0 if xs > 0. From (16) it
is clear that the vector field is the sum of two vectors. The first vector is
the same as in the replicator dynamics without migration, in which case the
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boundary of the simplex ∆ was invariant. Hence, it always points within the
boundary. The second vector, caused by migration, is always inward-pointing
so the sum of the two vectors must be inward-pointing. As a consequent, the
null vectors are replaced with vectors which all have the same velocity and
all are directed towards the uniform mixed state x’ = (1/n, 1/n, ..., 1/n).
In Figure 2, this vector field is illustrated at three states by ϕ (x), ϕ (y)

and ϕ (z) for game G1.

ϕ(y)

y

ϕ(x’)

x’

z

x

ϕ(x)

ϕ(z)

3

21

Figure 2: The vector field with migration in G1.

This is the migration effect γ/n given by the last term in (16). The vector
field at other states, except for x’, is the sum of both terms in (16). The
vector field at the uniform mixed state ϕ (x’) is only given by the first term
in (16) since the emigration and immigration cancel each other out in this
state (x’ = 1/n for all s ∈ S). The existence of a stationary point x∗ in the
interior of the simplex is now guaranteed by the inward-pointing vector field
theorem (see Magill and Quinzee, 1996, Theorem 7.5, p. 59). This theorem
does not ensure uniqueness or that the system converges to the stationary
state(s). The forward orbit can get stuck in a cycle or in a complex pattern
with many stationary states. Both existence and uniqueness of a solution is
guaranteed by the Picard-Lindelöf theorem if the right-hand side of (16) is
Lipschitz continuous. It is easy too see that this condition is satisfied. Let
ϕo (x) be the vector field given by (4), then the right-hand side of (16) can
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be expressed

kϕ (x)− ϕ (y)k = kϕo (x)− ϕo (y) + γ(y − x)k for all x, y ∈ ∆∗. (20)

Clearly, we can still find a L ∈ R satisfying Lipschitz continuity.

Example 2 Consider the forward orbits in game G1, illustrated in Figure 3.

1

3

2

y

x*

z

Figure 3: Forward orbits to the stationary state x∗ in G1.

For a small migration factor γ = 0.000001, corresponding to a migration of
1000 people in a population of a billion, the system converges to the state x∗ =
(0.5633, 0.4367, 0). Somewhat surprisingly, strategy 2 (the pure ENSS) is not
wiped out. The reason for this is dual effect migration has on a population.
Immigration ensures that some tiny fraction always plays strategy 3, thus
enforcing selection pressure from strategy 2 towards strategy 1. At the same
time, migration is responsible for replacing more of the individuals playing
strategy 1 with individuals playing strategies 2 and 3, than it is replacing
individuals playing strategy 2 for the same purpose. The migration effect is
direct, while the selection effect is diminishing the closer the population gets
to the ANSS. Eventually the higher net loss of individuals from strategy 1 will
halt the erosion of strategy 2 and the system converges to the mixed ENSS
x∗.

Finally, we study the limit states, i.e. limt→∞ ξ (x, t) → x∗, as we let γ
slowly tend to zero.
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Proposition 3 Let x∗ be the limit state of (16) for a symmetric two-player
game G. Then,
(i) x∗s > x∗v if strategy s weakly dominates strategy v,
(ii) x∗s = 0 if strategy s is strictly dominated by another pure strategy,
(iii) x∗s = 0 if strategy s is iteratively strictly dominated by another pure

strategy,
(iv) x∗s = x∗v if s and v has identical payoffs against all other strategies.

Proof. Result (ii) has been shown by Akin (1980) and result (iii) by Samuel-
son and Zhang (1992) for x ∈ int(∆). Migration will introduce all pure
strategies into the population, so it will be true also when x ∈ ∆. Result
(i) follows from the fact that π (s, x) > π (v, x) for all x ∈ int(∆) and the
migration effect will only work against strategy s when there are more people
using it compared to there are people using strategy v. Result (iv) follows
from the fact that migration will eventually even out the population shares,
i.e. ẋs − ẋv = γ (xv − xs) = 0 when xv = xs.

In the dynamics above, the negative effect from the lesser payoff can be
compensated by the positive effect from the successive perturbations. The
ENSS survives in the population because eventually more people of this type
immigrates than emigrates and this compensates the loss inflicted by the rela-
tively low reproduction rate. The ANSS does not take over in the population
because eventually more people of this type emigrates than immigrates and
this offsets the gain caused by the relatively high reproduction rate. The same
is true when migration is substituted by mutations; for the ENSS (ANSS)
more (less) people mutates into its type than is lost (gained) in the same
phenomenon.

3.3 A dynamics with reassessment and life-support

In order to support the refinements of the neutral stability criterion, we
introduce a dynamics in which people continuously reassess their choice of
strategy in the game but where strategies are protected from extinction by a
life-support mechanism. There is no population growth and no reproduction
in the model. In each period of time of length τ , a fraction of the population
reassess their choice of strategy.
The number of people using strategy s ∈ S in period t+ τ is given by

Ns(t+ τ) = max

½
N̂,

∙
1− τ

π (s, x(t))

π (i, x(t))

¸
Ns(t)

¾
(21)

if π (s, x(t)) < π (i, x(t)) for some i ∈ S. That is, a fraction of the people
using strategy s will switch to strategy i ∈ S if i is a best pure reply to the
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population strategy x(t) while s is not. A strategy i ∈ S is a best pure reply
to population strategy x(t) if π (i, x(t)) ≥ π (s, x(t)) for all s ∈ S. The worse
of a reply s is to x(t) compared to i, the more people switch to i. There is,
however, a limit to how low the number of people playing strategy s ∈ S can
become, which is denoted N̂ . If s ∈ S is the best pure reply to the population
strategy x(t), then

Ns(t+ τ) = Ns(t) +
τ

n+ 1

X
p∈S∗

π (p, x(t))

π (s, x(t))
Np(t) (22)

where S∗ ⊂ S is the set of strategies such that π (s, x(t)) > π (p, x(t)) for p ∈
S∗ and n is the number of pure strategies for which π (s, x(t)) = π (i, x(t)) .
Notice that Ns(t + τ) can be smaller than the expression in (22) if some p
reach its lowest number of users. Dividing both sides with N yields16

xs(t+ τ) = max

½
µ,

∙
1− τ

π (s, x(t))

π (i, x(t))

¸
xs(t)

¾
, (23)

and

xs(t+ τ) = xs(t) +
τ

n+ 1

X
p∈S∗

π (p, x(t))

π (s, x(t))
xp(t). (24)

There is a subset of mixed strategies which becomes the evolutionary
playground, i.e.

∆EP = {σ ∈ ∆ | xs(t) ≥ µ ∀s ∈ S} . (25)

Let int(∆EP ) be the interior of ∆EP , i.e.

int(∆EP ) = {σ ∈ ∆EP | σs > µ ∀s ∈ S} . (26)

The subset of noninterior strategies is called the boundary of ∆EP ,

bd(∆EP ) = {σ ∈ ∆EP | σ /∈ int(∆EP )} . (27)

The dynamics is;

ẋs(t) = −π(s,x(t))
π(i,x(t))

· xs(t) if xs(t) > µ

ẋs(t) = 0 if xs(t) = µ
(28)

if π (s, x(t)) < π (i, x(t)) for i ∈ S, and

ẋs(t) =
1

n+ 1

X
p∈S∗

π (p, x(t))

π (s, x(t))
· xp(t) (29)

16In order to get continuous population shares we implicitly assumes that the population
size N →∞. Also, let N̂/N = µ.
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if π (s, x(t)) > π (p, x(t)) for p ∈ S such that xp(t) > µ. (Again n is the
number of pure strategies for which π (s, x(t)) = π (i, x(t)).)
We study the limit states, i.e. limt→∞ ξ (xo, t) → x∗, as we let µ slowly

tend to zero.

Proposition 4 Let x∗ be the limit state of (28)-(29) for a symmetric two-
player game G. Then, for any xo ∈ ∆EP :
(i) x∗s = 1 if strategy s is a strictly or weakly dominant strategy,
(ii) x∗s = 0 if strategy s is strictly or weakly dominated by another pure

strategy.

Proof. We show that the result in (i) is true when s is a weakly dominant
strategy, it must then also be true when s is a strictly dominant strategy.
v is weakly dominated by s if π (s, p) ≥ π (v, p) for all p ∈ S with strict
inequality for at least one p ∈ S. It follows that π (s, x) > π (v, x) for all
v ∈ S, since ω(xo) ⊂ ∆EP . Thus, limt→∞ xv (t) = µ for all v ∈ S \ {s} and
[limt→∞ xv (t)]µ→0 = 0.
We show that the result in (ii) is true when s is weakly dominated, it

must then also be true when s is strictly dominated by another strategy. Let
s be weakly dominated by p. Then π (s, x) < π (p, x) for all x ∈ ∆EP . If
x∗p > 0, then x∗s = 0 since people would change from s to p (and to all v ∈ S
such that x∗v > 0). If x

∗
p = 0, then x∗s = 0 because if limt→∞ xp (t) = µ then

limt→∞ xs (t) = µ.

Proposition 5 The limit state x∗ of (28)-(29) for a symmetric two-player
game G cannot be an ENSS, i.e. x∗ /∈ ∆ENSS.

Proof. First, let x∗ = s ∈ S be a pure ENSS. By definition, s is weakly
dominated and thus x∗s = 0 according to Proposition 4, which is a contradic-
tion. Second, let x∗ = σ ∈ ∆ be a mixed ENSS. According to Proposition
4, x∗v = 0 if there exists s ∈ S such that π(s, x) > π(v, x) for x ∈ ∆EP ,
i.e. s weakly dominates v. By definition, σ is an ENSS if and only if there
exists v ∈ C(σ) and s ∈ S such that s weakly dominates v. Again we have
a contradiction.

18



 

1 

3 

2 

x(0) 

Figure 4: The evolutionary playground in G1.

In Figure 4 we see how people using strategy 2 and 3 switch to strategy
1. Eventually, the people using strategy 3 reach the critical number and the
life-support kicks in, keeping the proportion of the population using strategy
3 at µ. The people using strategy 2 is still getting lesser payoff than the
people using strategy 1, thus people are changing to strategy 1 from strategy
2. We have limt→∞ (x1(t), x2(t), x3(t)) = (1− 2µ, µ, µ).

4 Final comments

The conjecture that successive perturbations would shift the population to
using an ANSS does not generally hold in the replicator dynamics with migra-
tion. The refinement is better supported in the dynamics with reassessment
and life-support. This dynamics is, in comparison, less plausible and needs
to be motivated.
The reassessment part is closely related to learning and imitation, thus

it is the life-support mechanism that is hard to motivate. One can think
of a social game in which everybody wants to be accepted but also to be
special. A real-life example is youth subcultures. The desire to be accepted
causes uniformity up to a point. When almost all players are using the same
strategy (e.g. likes the same music or have the same look), each individual
is to some extent prepared to switch to a less profitable strategy (e.g. listen
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to alternative music or switch to a less common look) given that it is special
enough. The limitation of the dynamics and the corresponding interpretation
imply that the criteria of ANSS and ENSS cannot be used as general as the
ESS and NSS criteria.
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