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ABSTRACT 

Over the last decades or so, artificial neural networks (ANNs) have become one of the most 
promising tools for modelling hydrological processes such as rainfall-runoff processes. In 
most studies, ANNs have been demonstrated to show superior result compared to the 
traditional modelling approaches. They are able to map underlying relationships between 
input and output data without detailed knowledge of the processes under investigation, by 
finding an optimum set of network parameters through the learning or training process. This 
thesis considers two types of ANNs, namely, self-organizing map (SOM) and feed-forward 
multilayer perceptron (MLP). 

The thesis starts with the issue of understanding of a trained ANN model by using neural 
interpretation diagram (NID), Garson’s algorithm and a randomization approach. Then the 
applicability of the SOM algorithm within water resources applications is reviewed and 
compared to the well-known feed-forward MLP. Moreover, the thesis deals with the problem 
of missing values in the context of a monthly precipitation database. This part deals with the 
problem of missing values by using SOM and feed-forward MLP models along with 
inclusion of regionalization properties obtained from the SOM. The problem of filling in of 
missing data in a daily precipitation-runoff database is also considered. This study deals with 
the filling in of missing values using SOM and feed-forward MLP along with multivariate 
nearest neighbour (MNN), regularized expectation-maximization algorithm (REGEM) and 
multiple imputation (MI). Finally, once a complete database was obtained, SOM and feed-
forward MLP models were developed in order to forecast one-month ahead runoff. Some 
issues such as the applicability of the SOM algorithm for modularization and the effect of 
the number of modules in modelling performance were investigated. 

It was found that it is indeed possible to make an ANN reveal some information about the 
mechanisms governing rainfall-runoff processes. The literature review showed that SOMs 
are becoming increasingly popular but that there are hardly any reviews of SOM 
applications. In the case of imputation of missing values in the monthly precipitation, the 
results indicated the importance of the inclusion of regionalization properties of SOM prior 
to the application of SOM and feed-forward MLP models. In the case of gap-filling of the 
daily precipitation-runoff database, the results showed that most of the methods yield similar 
results. However, the SOM and MNN tended to give the most robust results. REGEM and 
MI hold the assumption of multivariate normality, which does not seem to fit the data at 
hand. The feed-forward MLP is sensitive to the location of missing values in the database 
and did not perform very well. Based on the one-month ahead forecasting, it was found that 
although the idea of modularization based on SOM is highly persuasive, the results indicated 
a need for more principled procedures to modularize the processes. Moreover, the modelling 
results indicated that a supervised SOM model can be considered as a viable alternative 
approach to the well-known feed-forward MLP model.  
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Chapter 1. Introduction 
 

Chapter 1. INTRODUCTION 

1.1. Background 

Relating rainfall (or more generally speaking, precipitation) to runoff, i.e. rainfall-runoff 
modelling, is, arguably, a fundamental activity of hydrological modelling. This relationship 
is believed to be highly non-linear and complex, since generating runoff from a watershed 
not only depends on various meteorological and watershed characteristic variables but also 
changes in both spatial and temporal scales. Generally three types of models, including 
deterministic (physical) models, conceptual models and empirical/systems theoretic/black-
box models, are being used by hydrologists in order to model this relationship. The 
deterministic (physical) models describe the relationship using physical laws of mass and 
energy transfer (Dawson & Wilby, 2001). In contrast, in conceptual models instead of using 
physical laws of mass and energy transfer, a simplified, but a plausible or reliable conceptual 
representation of the underlying physics is adopted (Jain & Srinivasulu, 2006).  

An alternative modelling approach for hydrological processes such as rainfall-runoff process 
is the empirical/systems theoretic/black-box models, which try to find a relationship between 
historical inputs and outputs (ASCE Task Committee, 2000a) without detailed understanding 
of the physics involved in the process under investigation, such as artificial neural networks 
(ANNs). According to ASCE Task Committee (2000a; b), an ANN is a massively parallel-
distributed information processing system resembling biological neural networks of the 
human brain and capable of solving large-scale complex problems such as pattern 
recognition, non-linear modelling, classification, association and control. Due to the 
superiority of their performance compared to the alternative counterparts, ANN models have 
been widely used by hydrologists particularly in modelling of the rainfall-runoff process 
(e.g. Hsu et al., 1995; Lorrai & Sechi, 1995; Minns & Hall, 1996; Dawson & Wilby, 1998; 
Tokar & Johnson, 1999; Rajurkar et al., 2002; Wilby et al., 2003; Giustolisi & Laucelli, 
2005; Jain & Srinivasulu, 2006). This thesis adopts two types of ANN models, namely, feed-
forward multi-layer perceptron (MLP) which is the most commonly used ANN in 
hydrological applications and self-organizing map (SOM) (Kohonen, 2001). A 
comprehensive review of ANNs along with their applications in hydrology can be found in 
Maier & Dandy (2000), ASCE Task Committee (2000a; b), Dawson & Wilby (2001) and 
Kalteh et al. (2007). 

 

1.2. The objectives of study 

The general objective of the present thesis is to contribute to modelling rainfall-runoff 
processes using feed-forward MLP and SOM ANN types for efficient planning and 
management of water resources such as flood control and management. The thesis is based 
upon the following research questions, as prior to each question (s) an introduction is given: 

i. ANNs have been known as black-box models due to their problem in providing 
insight into the modelled relationship. Is it possible to get any explanation about the 
built ANN model? 

ii. The feed-forward MLP is the most commonly used ANN type in hydrological 
applications. Did SOM get enough attention among hydrologists? 

 
 

1 
 



Rainfall-runoff modelling: Using artificial neural networks (ANNs) 
 

iii. In general, the problem of missing values is a common obstacle in time series 
analysis and specifically in the context of a precipitation-runoff process modelling 
where it is essential to have serially complete data. How can the problem of missing 
values be dealt with using the feed-forward MLP and SOM? 

iv. Over the last decades or so, ANNs have become one of the most promising tools for 
modelling hydrological processes such as rainfall runoff processes. Does a single 
model seem to be an appropriate approach for modelling such a complex, non-linear, 
and discontinuous process that varies in space and time?  Is the SOM suitable for 
decomposition (segmentation)? What is the effect of the number of clusters 
(segments) based on SOM in modelling performance? Can SOM models be applied 
for building functional relationships between input and output data of the system 
under investigation?  

 

1.3. The appended papers 

The five appended papers in the thesis attempt to provide answers to the above research 
questions. Figure 1.1 demonstrates the main topics and interactions among the papers. To 
clarify, a brief summary for each paper is given in the following paragraphs. 

Regarding the first question, Paper I – this will be referred to as P1 in this thesis – addresses 
three approaches for understanding of ANN models based on an ANN rainfall-runoff model 
example. It describes three different approaches, including Neural Interpretation Diagram, 
Garson’s algorithm, and randomization approach, for understanding of the relationship 
learned by the ANN model. The results indicate that ANNs are promising tools not only in 
accurate modelling of the complex process but also in providing insight from the learned 
relationship which would assist the modeller in understanding the process under 
investigation as well as in evaluation of the model.  

Addressing the second question, Paper II – this will be referred to as P2 in this thesis – the 
SOM algorithm is reviewed in water resources. The paper attempts firstly to explain the 
algorithm and secondly, to review published applications with main emphasis on water 
resources problems in order to get a good picture of how well SOM can be used to solve a 
particular problem. It was concluded that SOM is a promising technique suitable to apply in 
many types of water resources processes.  

In response to the third question, Paper III – this will be referred to as P3 in this thesis – 
deals with the missing values problem in a precipitation database using feed-forward MLP 
and SOM models in northern Iran. The paper uses SOM both for regionalization (using 
component plane visualization technique) and for estimating monthly precipitation for 
stations with missing data for 1-, 2-, 5-, and 10-year periods using a jack-knife procedure to 
obtain objective results. According to the results, the SOM is able both to find regions with 
similar precipitation mechanisms and to estimate with accuracy. The results indicate that 
precipitation estimation will improve considerably by taking into account the regionalization 
properties in the SOM modelling. Furthermore, the SOM results were compared with those 
from a well-known feed-forward MLP. Our findings suggest that without regionalization 
feed-forward MLP is generally better than SOM. However, when regionalization is included 
SOM performs better than MLP.  
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In response to the third question, Paper IV – this will be referred to as P4 in this thesis – also 
deals with missing values problem, but in a precipitation-runoff process database and by 
using SOM, feed-forward MLP, multivariate nearest neighbour (MNN), regularized 
expectation-maximization algorithm (REGEM) and multiple imputation (MI) in northern 
Iran. The paper also argues the pros and cons of these methods. It was found that the SOM 
and MNN tend to give similar and robust results. REGEM and MI build on the assumption 
of multivariate normal data, which we don’t seem to have in one of our cases. MLP tends to 
produce inferior results because it fragments the data into 68 different models. Therefore, it 
was concluded that it makes most sense to use either the computationally simple MNN 
method or the more demanding SOM.  

Finally, Paper V– this will be referred to as P5 in this thesis – aims to respond to the 
questions raised in the fourth research question. Generally, the paper is about one-month 
ahead runoff forecasting. It aims at decomposing the process into different clusters or 
segments based on SOM ANN approach, and thereafter modelling different clusters into 
corresponding outputs using separate feed-forward MLP and supervised self-organizing map 
(SSOM) ANN models. Specifically, three different SOM models have been employed in 
order to cluster the input patterns into two, three, and four clusters respectively so that each 
cluster in each model corresponds to certain physics of the process under investigation and 
thereafter modelling of the input patterns in each cluster into corresponding outputs using 
feed-forward MLP and SSOM ANN models. The employed models were developed on two 
different watersheds, one Iranian and one Canadian. It was found that although the idea of 
decomposition based on SOM is highly persuasive, our results indicate that there is a need 
for more principled procedure in order to decompose the process. Moreover, according to the 
modelling results the SSOM can be considered as an alternative approach to the feed-
forward MLP.  
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 An ANN rainfall-runoff model is 
developed in order to understand the 
mechanisms modelled by ANNs.   

 

Paper V 
Monthly runoff forecasting by means of 

artificial neural networks (ANNs) 
(Hydrological Sciences Journal, 2007, 

submitted) 

 

Paper IV 
Imputation of missing values in a 

precipitation-runoff process database 
(Nordic Hydrology, 2007, submitted) 

Paper III 
Interpolating monthly precipitation by   

self-organizing map (SOM) and 
multilayer perceptron (MLP) 

(Hydrological Sciences Journal, 2007, 
52(2), 305-317) 

Paper II 
Review of self-organizing map (SOM) in 
water resources: analysis, modelling, and 

application 
(Environmental Modelling & Software, 

2007, submitted) 

Paper I 
Rainfall-runoff modelling using artificial 
neural networks (ANNs): modelling and 

understanding (manuscript)  

 The SOM algorithm is 
comprehensively reviewed in water 
resources in order to get a picture of 
the state of the art of its application. 

 Missing values problem is addressed 
by using SOM and feed-forward 
MLP in a monthly precipitation data, 

 The SOM application for 
regionalization (input determination) 
is introduced. 

   Missing values problem is 
addressed by using SOM, feed-
forward MLP, multivariate nearest 
neighbour (MNN), regularized 
expectation-maximization algorithm 
(REGEM) and multiple imputation 
(MI) in a daily precipitation-runoff 
data, 

 The pros and cons of these methods 
are discussed. 

 The SOM and feed-forward MLP are 
applied for modelling rainfall-runoff, 

 The suitability of SOM for 
decomposition is investigated. 

 

Figure 1.1. Overview of the appended papers 
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Chapter 2.  MISSING VALUES 

In general, the problem of missing values is a common obstacle in time series analysis and 
specifically in the context of a precipitation-runoff process modelling where it is essential to 
have serially complete data. 

There may be various reasons for missing values, for instance equipment failure, errors in 
measurements or faults in data acquisition and natural hazards such as landslides. Whatever 
the reasons, missing values produce a significant problem for water resources applications, 
which generally require continuous database (e.g. Zoppou et al., 2000; Junninen et al., 2004; 
Ramirez et al., 2005). Consequently, finding efficient and principled methods to deal with 
the problem of missing values is an important issue in most hydrological analyses. However, 
hydrological modellers commonly discard the observations with missing values and only use 
the observations with complete information hence this means that a lot of the information 
contained in the data set is lost. Furthermore, the method is inadequate for analyses that 
require serially complete data. As an alternative to this listwise deletion procedure (“or 
complete-case analysis”), the modellers may impute (“or fill in”) a value for the missing 
values by using e.g. the mean of the observed variables. Such a procedure may, however, 
seriously distort statistical properties like standard deviation, correlations, or percentiles.  

During the last twenty years, statisticians have tried to introduce model-based methods such 
as maximum likelihood using the expectation-maximization (EM) algorithm and multiple 
imputation (MI), arguing that they provide sounder and more promising solutions for a wider 
range of situations. However it is worth to mention that each of the above methods for 
handling missing values carries assumptions about the missing data mechanisms. According 
to Little & Rubin (2002) missing data mechanisms can be divided into three classes that 
consist of missing completely at random (MCAR), missing at random (MAR), and not 
missing at random (NMAR). MCAR occurs when the probability of an observation having a 
missing value for a component does not depend on either the available values or the missing 
values. MAR occurs when the probability of an observation having a missing value for a 
component may depend on the available values, but not on the missing values itself. And 
finally, NMAR occurs when the probability of an observation having a missing value for a 
component could depend on the value of that component. 

According to Little & Rubin (2002), there are different methods for dealing with missing 
values and they can be divided into three categories such that they will be shortly reviewed 
in the following subsections. 

 

2.1. Listwise /pairwise deletion 

In the listwise deletion strategy (or “complete-case analysis”), all of the cases (observations) 
with missing values are discarded from the analysis. This strategy is easy to carry out and it 
is the one most commonly practised and it is the default option in most statistical software 
packages. However, it should be mentioned that this strategy may be satisfactory when small 
fraction of database are missing and the missing data mechanism is MCAR (Little & Rubin, 
2002). Pairwise deletion (or “available-case analysis”) uses different sets of sample 
observations for each statistic. This strategy preserves more information compared to 
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listwise deletion. However, the reliability of its estimates depends not only on the MCAR 
assumption about missing data mechanism but also on existing correlations among the 
variables in the database (Pigott, 2001; Little & Rubin, 2002; Tsikriktsis, 2005).  

 

2.2. Imputation-based procedures 

In imputation-based procedures, observations with missing values are imputed with plausible 
values rather than deleting observations entirely. Imputation has several advantages such as 
its efficiency and precision if compared with complete-case analysis because no observations 
are discarded. However, it suffers from implementation difficulties, especially in a 
multivariate database. Moreover, some techniques can falsify data relationships and 
distributions (Schafer & Graham, 2002). Many different missing data imputation procedures 
have been applied and among them the mean, regression and hot deck methods are the most 
commonly used ones. In mean imputation procedure, means from sets of recorded values are 
substituted. The regression imputation procedure can be summarized as two-step approach as 
follows (Frane, 1976):  

• First, the relationships among variables are estimated, 
• And second the regression coefficients are used to estimate missing value. It requires 

MAR data.  

The hot deck imputation procedure uses values from similar observations to impute. 

 

2.3. Model-based procedures 

Two model-based procedures, including maximum likelihood using the expectation-
maximization (EM) algorithm and multiple imputation (MI), are briefly illustrated in this 
subsection. Maximum likelihood procedures are used to estimate the parameters of a model 
defined for the complete data. A general method for maximum likelihood in missing data 
problems was described by Dempster et al. (1977) on their seminal paper on the EM 
algorithm. Maximum likelihood procedures for missing multivariate normal data can be 
parameterized based on the mean vector and the covariance matrix. In every iteration of the 
EM algorithm, estimates of the mean and the covariance matrix are adjusted in three stages. 
First, based on estimated parameters ( the mean and the covariance matrix), parameters of 
the model such as regression coefficients for the variables with missing values are computed 
based on the variables with available values. Second, missing values are filled in with their 
conditional expectation values which are the product of the available values and the 
estimated model parameters such as regression coefficients. Third, the parameters of the 
mean and the covariance matrix are re-estimated. Then, the EM algorithm process cycles 
back and forth until the imputed values and the estimates of the mean and the covariance 
matrix parameters do not change substantially.  

In MI, a researcher specifies an appropriate imputation model, imputes several complete 
databases (usually 3-5 times), performs desired statistical analysis on each database 
separately by using standard complete-data methods, and thereafter combines results 
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(Allison, 1998; Patrician, 2002). The MI procedure conducted for this thesis (P4) will be 
discussed in the section corresponding to missing values in Chapter 3. Both maximum 
likelihood using the EM algorithm and MI require the assumptions of multivariate normality 
and MAR.  
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Chapter 3.  METHODOLOGY 

3.1. Understanding of ANNs 

ANNs are often criticized for their black-box nature, as they are unable to reveal any 
explanation regarding how the model was built. As the ASCE Task Committee (2000b) 
stated: “For ANNs to gain wider acceptability, it is increasingly important that they have 
some explanation capability after training has been completed. Most ANN applications have 
been unable to explain in a comprehensibly meaningful way the basic process by which 
ANNs arrive at a decision. It is highly desirable that ANNs be capable of imparting an 
explanation, even if only a partial one, as an integral part of its function.” In this thesis, in 
order to obtain some explanation from a trained feed-forward MLP ANN, the following 
approaches have been used: 

3.1.1. Neural interpretation diagram (NID) 

The NID was proposed by Özesmi & Özesmi (1999) and was used for interpretation of the 
connection weights obtained from an ANN model based on their magnitude and direction in 
order to visually depict the relationship between input output data as well as interactions 
among the input variables. Positive effect of an input variable on the output variable is 
depicted if the connection weight from a neuron in the input layer to a neuron in the hidden 
layer and the connection weight from the neuron in the hidden layer to a neuron in the output 
layer are both positive or both negative, whereas negative effect of an input variable on the 
output variable is depicted if these connection weights are of opposite signs. And finally, 
input variables can be identified as interacting if the connection weights entering the same 
hidden neuron are of opposite signs.  

3.1.2. Garson’s algorithm 

Garson (1991) introduced a method which determines the relative contribution of each input 
variable used in modelling the output based on the products of the input-hidden and hidden 
output connection weights. Although this algorithm provides the contribution of each input 
variable on the output quantitatively, as it will be explained later it uses absolute values of 
connection weights (i.e. without considering the direction of the relationship) which would 
lead to misinterpretation of the importance of input variables in modelling the output of the 
system. However, the algorithm can be summarized , referring to Figure 3.1, as follows. 

i. Preparation of the input-hidden-output neuron connection weights obtained from the 
ANN model. 

ii. Calculation of contribution of each input neuron to the output via each hidden 
neuron. For example, the contribution of the input neuron 1 via hidden neuron A is 
computed as follows: 

1 1CA A OW W= × A                                                                                                                      (1) 

iii. Calculation of the relative contribution of each input neuron to the outgoing signal of 
each hidden neuron, for example:  
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1
1

1 2

A
A

A A A

C
r

C C C
=

+ + 3

1

                                                                                                        (2) 

And sum of input neuron contributions, for example:  

1 1A BS r r= +                                                                                                                           (3) 

The same must be done for and . 2S 3S

iv. And finally, calculation of relative importance of each input variable, for example: 

1
1

1 2 3

100
( )

SRI
S S S

=
+ +

×                                                                                                      (4) 

 
Input Layer                        Hidden Layer                         Output Layer 
 

 
 

Figure 3.1. An ANN structure for the illustration of Garson’s algorithm 
 

3.1.3. Randomization approach 

This approach was proposed by Olden & Jakson (2002) who used an additional measure to 
investigate the importance of the input variables, i.e. the overall connection weight as 
defined below. In this thesis, this approach was carried out as follows:  

i. Construct a number of ANN models using the original input output data with randomly 
generated initial weights; 

ii. Select the ANN model with the best performance and calculate and record: 

a) input-hidden-output connection weights: the product of input-hidden and hidden-
output connection weights, for instance 1AC  : see Garson’s algorithm, step 2; 

b) overall connection weight: the sum of the products of the input-hidden and hidden-
output connection weight for each input variable, for instance 1 1 1A BC C ; C= +

iii. Randomly permute the original output data; 
iv. Construct an ANN using randomized outputs; 
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v. Repeat steps 2,3 and 4 a large number of times.      

In this thesis, the overall connection weights were used in order to assess the importance of 
the input variables on the output in such a way that if the overall connection weight of an 
input variable is greater than 95% of the randomized overall connection weights for the same 
input variable, then the input variable can be considered to be significant with a 95% 
confidence level. 

 

3.2. Missing values 

In P4, the following methods have been applied to impute missing values in a daily 
precipitation-runoff database in a watershed located in northern Iran as follows. 

3.2.1. Self-organizing map (SOM) 

In P4, a batch learning algorithm was used for constructing the SOM, because the batch 
SOM is faster and eliminates the specification of learning rate; hence avoids convergence 
problems (Kohonen, 2001). The batch training of the SOM is similar to the sequential 
training algorithm, which is commonly used, in the sense that both are iterative, but in the 
batch algorithm the whole database is presented to the map before any updates are made, that 
is, in each training iteration, the batch algorithm lists input vectors one by one under the best 
matching units and updates the neurons according to the whole database. The procedure can 
be summarized as follows. At the outset of the training, a weight vector  must be 
initialized to each neuron and thanks to an unsupervised or self-organization procedure the 
input vectors (  ) are compared with the SOM neurons to find the closest match which is 
called best matching units (BMUs). The most commonly used criterion for comparison is the 
Euclidean distance. Thus, the new weight vectors are calculated using the following rule: 

jw
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where   is the neighbourhood function (Gaussian in this study) of the best matching 

neurons at iteration t . Finally,  is the total number of the input vectors (  ). The 
Gaussian neighbourhood function, which is commonly used, is as follows. 
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where  jj rr −*  is the distance between neurons  and •j j and  δ )(t   is the neighbourhood 

radius at iteration t . 
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These procedures must be iterated several times until the results can be considered as steady. 

In P4, missing values were ignored during training. Once the SOM was trained, the BMUs 
for the incomplete data vectors were found and the missing values were filled in by copying 
the corresponding values of the BMUs (weight vectors). 

3.2.2. Feed-forward MLP 

The most widely used ANN in water resources and hydrological applications is the feed-
forward MLP. The structure and training of feed-forward MLP model will be explained later 
in the rainfall-runoff modelling section. 

In P4, several MLP models were separately trained, one per missing variables combination. 
The number of input neurons was equal to the number of available values and the number of 
output neurons was equal to the number of missing values at each missing variables 
combination. The number of hidden neurons was determined by using the following formula 
which was adopted by Junninen et al. (2004) in their application on air quality data sets. 

 = ( ) + 1, inH inN×2
 = ( ) + 1, outH outN×2
if < , then = , else  = ,                                                           (7) outH inH MLPH inH MLPH outH

where and : the number of hidden neurons determined by the number of input and 
output neurons (  and ), respectively. In P4, the above formula was used to determine 
the number of neurons in the hidden layer of each MLP model per missing variables 
combination. 

inH outH

inN outN

3.2.3. Multivariate nearest-neighbour (MNN) 

As described in Dixon (1979), this approach means that the missing values of a vector are 
filled in by determining what vector that is most similar to the vector of interest and 
replacing the missing values by corresponding values from the that vector. This similarity 
was computed by a distance function which was Euclidean in P4. The procedure can be 
summarized as follows: 

i. Divide the data set into two parts: one that contains vectors in which at least one of 
the components is missing while the remaining part will form the data in which the 
complete vectors, i.e. without any missing values in any components, are located. 

ii. For each vector in the data matrix with missing values find the nearest neighbour from 
the complete data matrix. In distance calculation, use only components that are not 
missing. 

3.2.4. Regularized expectation-maximization (REGEM) algorithm 

In P4, missing values are also filled in with the regularized EM algorithm. In an iteration, 
estimates of the mean and covariance matrix are revised in three steps. First, for each 
incomplete observation, the regression parameters of the variables are computed from the 
estimates of the mean and the covariance matrix. Second, the missing values are filled in 
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with conditional expectation values given the available values and mean and covariance 
matrix estimates, the conditional expectation values being the product of the available values 
and the estimated regression coefficients. Third, re-estimate the mean and the covariance 
matrix, the mean as the sample mean of the completed database and the covariance matrix as 
the sum of the sample covariance matrix of the completed database and an estimate of the 
conditional covariance matrix of the error of the imputed values (Schneider, 2001).  

3.2.5. Multiple imputation (MI) 

In P4, Schafer’s (1999) NORM program was used in order to generate 5 possible values for 
each missing observation using a data augmentation algorithm. NORM refers to the 
multivariate normal distribution, the model used to generate the imputations. The data 
augmentation algorithm treats parameters and missing data as random variables and 
simulates random values of parameters and missing data from their conditional distribution. 
The procedure of simulating parameters and missing data generates a chain that for a 
sufficient number of iterations converges to the Bayesian posterior distribution. Prior to the 
run of the data augmentation algorithm the EM algorithm was run, in order to obtain initial 
values to the data augmentation algorithm and to assess the number of iterations needed to 
create statistically independent imputations. By specifying 50 iterations as sufficient to 
ensure statistically independent values, the augmented databases at iterations 50; 100; 150; 
200 and 250 were saved, hence generating 5 completed databases. As stated in Chapter 2, 
each completed database can be analyzed by using standard statistical methods separately 
and thereafter the obtained estimates can be combined by averaging over estimates, in order 
to obtain a single estimate. As stated by Rubin (1996), the main objective of MI is to get 
valid statistical inference about the database with missing values rather than optimal point 
prediction.  

 

3.3. Rainfall-runoff modelling 

In P5, SOM and feed-forward MLP ANN models were used in order to forecast monthly 
runoff in one Iranian and one Canadian watershed. However, it may be mentioned that in P1 
a feed-forward MLP model was developed in order to model the rainfall-runoff relationship 
as well as understanding the mechanisms modelled by ANNs. The SOM and feed-forward 
MLP models will be discussed as follows. 

3.3.1. Self-organizing Map (SOM) 

The self-organizing map (SOM) is an unsupervised learning algorithm within the family of 
artificial neural networks (ANNs), which was initially proposed by Kohonen (1982a; b). The 
SOM is a fascinating neural network method that has found increasing interest in water 
resources applications such as classification of satellite imagery data and rainfall estimation 
(e.g. Murao et al., 1993) and rainfall-runoff modelling and analysis (e.g. Hsu et al., 2002).  
Typically SOM networks learn to cluster groups of similar input patterns from high 
dimensional input space in a non-linear fashion onto a low dimensional (most commonly 
two dimensional) discrete lattice of neurons in a Kohonen layer or output layer (Kohonen, 
2001). This is done in such a way that neurons physically located close to each other in the 
output layer of the SOM respond to similar input patterns (combining clustering and 
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ordering processes in SOM). Output layers of higher dimensions are also possible, but they 
will not be so convenient for visualization purposes and consequently they are not so 
common (Vesanto, 1999). Discrete lattice of neurons can be arranged to be either hexagonal 
or rectangular but hexagonal is preferred because of being effective for visualization and/or 
more convenient to the eye (Vesanto, 1999; Kohonen, 2001). The main advantages of this 
algorithm are that it is non-linear and has an ability to preserve the topological structure of 
the data (Corne et al., 1999; ASCE Task Committee, 2000a). In general, a SOM clusters the 
samples or patterns into predefined (i.e. the number of neurons is selected by the modeller) 
classes (clustering property) and also orders the classes into meaningful maps (topology 
preservation or ordering property). The typical structure of a SOM consists of two layers: an 
input layer and a Kohonen layer or output layer (Figure 3.2). The input layer contains one 
neuron for each variable (e.g. precipitation, temperature, etc.) in the data set. In the Kohonen 
layer all neurons, most commonly in a two-dimensional array, are connected to every neuron 
in the input layer through adjustable weights or network parameters or connection weights. 
The weight vectors in the Kohonen layer give a representation of the distribution of the input 
vectors in an ordered fashion.  

To illustrate how the algorithm performs, a conceptual framework which summarizes the 
successive procedures needed in a typical water resources application, e.g. analysis and 
modelling, is shown in Figure 3.3. The conceptual framework can be divided into three 
categories, namely:  

i. Data gathering and normalization 

This category considers the issues of the data matrix preparation and normalization 
procedures which are required before the application of the SOM algorithm. In order to use 
the SOM Toolbox (available at: http://www.cis.hut.fi/projects/somtoolbox), the data matrix 
must be organized as shown in Table 3.1, in which and is the number of variables and 
patterns, respectively. After preparation of the data matrix, the next step is to normalize the 
data. As it will be explained in the training category, the distance measure that is mostly used 
in SOM applications is the Euclidean metric. Thereafter, the most important part in 
normalizing is to prevent the formation of a map with variables that have higher impact as 
compared to other variables. Consequently, normalization ensures that all variables have 
equal importance in the formation of the SOM. In this thesis, the normalization is carried out 
either by subtracting the mean and dividing by the standard deviation or by subtracting the 
minimum and dividing by the difference between maximum and minimum observation.                                 

m p
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Figure 3.2. (a) A one-dimensional self-organizing map (SOM) with 4 neurons in the Kohonen layer, 
(b) a two-dimensional self-organizing map (SOM) with 2×  2 neurons in the Kohonen layer 

 
 
 
 
 
 
 

 

Figure 3.3. A framework of self-organizing map (SOM) application in water resources 
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Table 3.1.    The data matrix for SOM’s application in water resources 
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ii. Training 

After data preparation and normalization, an input vector from the data matrix is introduced 
to the iterative training procedure to form a SOM. The unsupervised or competitive training 
of connection weights in SOM can be summarized as follows (Haykin, 1999): 

• Initialize randomly the weights for each SOM connection weight: 
Njmiwij ,...,1,...,1, ==                                                                                                      (8) 

where  denotes the number of input variables, denotes the number of neurons in the 
Kohonen layer. 

m N

• Calculate the best matching unit (BMU) at each training step t , using the 
minimum-distance Euclidean criterion, of input pattern  from the 
training data as follows: 
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• Update the weights of the winner or BMU and its neighbours, using the 
following rule: 

( ) ( ) )),()()((1 twtxttwtw ijiijij −+=+ ε if )(tHj c∈          
)()1( twtw ijij =+                                     if )(tHj c∉                                                          (10) 

where )(tε is the learning rate and ( )tH c  is the size of a neighbourhood around the BMU at 
iteration t . After the weights have been updated, the next input pattern from the training data 
is presented to the network and the process continues until convergence.  

c

Although the SOM is usually used in applications with the above objective i.e. clustering or 
grouping of similar input patterns, we also used it in a supervised manner in order to build 
functional relationships between input and output data. However the supervised SOM 
(SSOM) is similar to SOM and the difference lies in a minor modification needed during 
training of the network so that finding the BMU in the SSOM is based on the input portion 
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of data presented to the network while updating applies to all input-output data. The 
supervised SOM was used in P3 and P5. 

 

iii. Extracting information from the trained SOM 

 To summarize, after data gathering and normalization, a SOM is trained. Once the training 
of the SOM was accomplished the resulting map could be post processed based on 
visualization, clustering and local modelling purposes. This category has been 
comprehensively investigated by Vesanto (2002) hence the interested reader is referred to 
this reference. From the water resources engineer and hydrologist point of view, the trained 
SOM map is a valuable tool for visualization of relatively large amounts of data and for 
providing insight into the system under investigation such as precipitation processes (e.g. 
Kalteh & Berndtsson, 2007) rainfall-runoff processes (e.g. Hsu et al., 2002). The former 
authors used a SOM component plane visualization technique (see P3) for correlation 
hunting in order to regionalize precipitation stations in a large watershed, while in the latter 
application; the authors used the SOM output to characterize a rainfall-runoff process. The 
applications of SOM in water resources and hydrology have been comprehensively reviewed 
in P2. As mentioned above, the SOM is an unsupervised clustering algorithm and in most 
applications reviewed in P2, it is used for this purpose. In P5, the SOM was used to cluster 
or group input patterns prior to modelling the input-output relationship. Thereafter, separate 
models were developed for each group of input patterns, corresponding to different physics 
of the processes in the watershed. 

To illustrate the information which is available from a trained SOM, the data matrix of 34-
year monthly precipitation data, the same as those in P3, were used as input to the SOM. 
According to Table 3.1, the variables 1 through  (here  = 24) are precipitation data at 24 
rain gauge stations and the observations or patterns from 1 through  (here  = 408) are 
the observational patterns of each variable corresponding to monthly precipitation. In the 
following paragraphs the results obtained by training a SOM with 11×10 neurons in the 
output layer using the above data are illustrated. 

m m
p p

For instance, Figure 3.4 shows clustering results of the SOM in our illustration example. As 
mentioned previously, in most applications the SOM is used for this purpose. The number in 
each neuron indicates the number of projected patterns to that particular neuron. Thus, the 
SOM maps similar patterns onto the same neuron. In P5, the SOM was used to cluster or 
group input patterns prior to modelling the input-output relationship. Thereafter, separate 
models were developed for each group of input patterns situated in a neuron, corresponding 
to different physics of the processes in the watershed. However, as mentioned previously, the 
SOM output preserves the topology so that the neurons that are physically close are more 
similar than those located further away from each other. Therefore, an interesting idea would 
be to cluster the output of a SOM by using other clustering algorithms such as the k-means 
clustering algorithm. This issue was clarified in P2.  

The SOM algorithm can, however, also be used for visualization of the contribution of each 
variable for all mapped neurons via the component plane visualization technique. In order to 
illustrate the applicability of this technique in hydrology, we applied to the correlation 
between the variables in our illustration example. To do so, we used the above technique of 
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SOM in which each component plane shows the values at a single precipitation station for all 
mapped neurons. This is done using color-coding as shown in Figure 3.5. In the component 
planes, each cell corresponds to each mapped neuron or data pattern. As seen from Figure 
3.5, the colors of mapped neurons have been chosen so that the red color indicates high 
values. By looking at the component planes pattern similarity between the precipitation 
stations is visualized. Human eyes are impressive in this sense. For example, station 16009, 
16025, and 16029 show similarity and consequently have high correlation in terms of 
precipitation. This finding can be used for regionalization (“input determination”) as carried 
out in P3.  

An interesting feature of the SOM algorithm which can be used in modelling is that the 
SOM output array provides graphical visualization of the distribution function as depicted in 
Figure 3.6. Taking precipitation stations in our illustration example, i.e. the input vectors to 
the SOM are time series of precipitation, weight vectors in the SOM neurons approximate 
mean precipitation fields of the projected patterns to that particular neuron. This 
characteristic can be used for filling in the gaps in time series as in P3 and P4 as well as 
input-output mapping as in P5.  

 

 

 

 

Figure 3.4. Two-dimensional Kohonen map obtained by a network of 11×10 neurons 
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Figure 3.5. Component planes for example precipitation stations 
 
 

 
 

Figure 3.6. Weight vectors of the precipitation fields stored in 11×10 neurons 
 
3.3.2. Feed-forward MLP 

The most commonly used ANN is the feed-forward MLP as shown in Figure 3.7. The figure 
shows a three-layer feed-forward MLP that consists of an input layer, a hidden layer, and an 
output layer. Each neuron is represented by a circle and each connection weight by a line so 
that each neuron in a layer is connected to all the neurons of the next layer while the neurons 
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in one layer are not connected among themselves. Each individual neuron multiplies every 
input by its connection weight, sums the product, and then passes the sum through a non-
linear function called the activation function in order to compute its output. The number of 
input and output layer neurons depends upon the problem at hand so that the number of 
neurons in the input layer is equal to the number of input variables (denoted with ) and the 
number of neurons in the output layer is equal to the number of output variables while the 
number of neurons in the hidden layer is usually selected via a trial-and-error procedure. 
Determination of connection weights is called training process. In this thesis, a back-
propagation algorithm was used for training the feed-forward MLPs. In a feed-forward MLP, 
patterns from the inputs presented to the neurons in an input layer are propagated through the 
network from the input layer to the output layer, i.e. in a forward direction and the outputs 
from the network are compared with the target values in order to compute the error. 
Thereafter the calculated error is back-propagated through the network and the connection 
weights are updated (ASCE Task Committee, 2000a). The training process is repeated until 
an acceptable convergence is achieved. Subsequently, the network is able to compute outputs 
given inputs that have not been seen by the network before. 

m

 
 
 

1x

mx

Runoff 

 
 

Figure 3.7. Three-layer feed-forward multilayer perceptron (MLP) 
 
 

3.4. Model performance 

In most of studies in this thesis, the correlation coefficient ( r ), coefficient of determination 
( 2R ), and root mean square error ( RMSE ) were used as performance criteria to evaluate the 
various ANN models. These criteria were calculated using equations (11), (12), and (13), 
respectively as follows: 
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where )(ˆ kQ are the p forecasted (estimated) runoff values, )(kQ are the p observed runoff 
values, Q is the mean of the observed runoff values, and Q~ is the mean of the forecasted 
(estimated) runoff values. 
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Chapter 4.  STUDY AREA AND DATA 

4.1. Caspian Sea watershed 

In this work a part of the Iranian Caspian Sea watershed bordering Astara in the western 
Gilan province, to Neka, in the eastern Mazandaran province extending from the Alborz 
mountains northward to the sea was considered as study area, as shown in Figure 4.1. The 
Caspian Sea watershed is situated between 35o45' and 38o25´N latitude, and 48o35´ and 
54o00´E longitude. This large watershed is divided in terms of topography into two parts: a 
coastal plain and a mountainous part. Minimum and maximum elevation is -28 m for the 
Caspian Sea and 5671 m for the Damavand summit (Arabkhedri, 1989; Kalteh, 2002). The 
Alborz mountains protect the southern parts of Iran from the influence of the Caspian Sea 
and create special climatic conditions to the study region, as compared to the remaining part 
of the country. The precipitation along the coastal plain is abundant and approximately 
homogeneous, with some decrease of annual totals in the plains from west to east. Although 
most researchers may picture Iran as a desert with mounds of sand, arid climate and no 
water, northern Iran near the Caspian Sea, has thick forests, green valleys, and mountains 
such as Alborz that extend east to west in northern Iran. 

4.1.1. Relationship between precipitation and altitude in northern Iran 

The stations used for this study are shown in Figure 4.1. Monthly total precipitation data 
were collected from the 24 rain gauge stations with 34-year records. The code of the rain 
gauge stations, distance from the sea (m), altitude (m) and mean annual precipitation (mm) 
of the rain gauge stations used for this study are shown in Table 4.1. 

Table 4.1. Code of stations, Distance from the sea, Altitude and Mean annual rainfall for 24 rain 
gauge stations in northern Iran  

Code of the stations Distance from the sea (m) Altitude (m) Mean annual precipitation (mm) 
13-006 3288 -10 690 
13-029 11533 0 689 
13-014 86318 1740 858 
13-010 87690 2014 562 
13-025 50694 200 764 
14-001 52055 270 988 
15-009 54388 2500 409 
13-019 63465 400 592 
15-021 3036 0 1009 
14-025 5583 0 751 
16-009 222 -10 1375 
16-029                                 391 0 1498 
16-025 861 0 1167 
16-035 1532 0 1525 
16-049 8371 110 1115 
17-057 17671 -10 1192 
17-082 23600 -3 1299 
17-060 72222 1750 479 
17-029 94332 1000 318 
17-526 133768 1800 375 
17-007 252143 1650 268 
18-031 12958 100 1064 
18-017 18787 20 974 
18-007 23353 1 1096 
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Figure 4.1. Map of Iran, location of precipitation stations in the study area along with topography (m), 
and mean annual precipitation isolines (mm) 

 

The relationship between precipitation and altitude in northern Iran using the above data is 
shown in Figure 4.2. The equation in Figure 4.2 indicates that for each 100 meter increase of 
the altitude, the precipitation decreases 31 mm. This is the inverse of the law of precipitation 
increasing with altitude.  
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Figure 4.2. Rainfall versus altitude in northern Iran 

4.1.2. The data used from Caspian Sea watershed 

In P3 monthly precipitation time series, follow hydrological years (October to September) 
and span the period from 1966-67 to 1999-2000 (34 years), were used to study the 
precipitation stations regionalization as well as precipitation estimation. The data were 
published by the Ministry of Energy of Iran. In total, 24 well distributed (not so good in 
southern and southwestern region) precipitation stations were used as summarized in Table 1 
in P3 and shown in Figure 4.1. All precipitation time series were standardized (in order to 
ensure that they receive equal importance) prior of use by subtracting the mean and dividing 
by the standard deviation. To summarize, the stations used in P3 are the same as those used 
in studying the relationship between precipitation and altitude. 

The study area in P1, P4 and P5 is situated in the eastern part of the watershed (Neka) 
shown in Figure 4.1. The data used as input and the output variables have been illustrated in 
each paper. Some description of the rain gauge stations situated in this watershed are shown 
in Table 4.2. As both precipitation and runoff variables are recorded in some stations, 
“precipitation” and “runoff” were added within parenthesis in order to clarify. 

Table 4.2. Description of the stations situated in the study area of P1, P4 and P5 

Stations Latitude(m) Longitude(m) Elevation(m) Min Max 
13001(precipitation) 1311576.1 4092853 1392 0 81 
13004(precipitation) 1275860.5 4087657.2 1038 0 96 
13005(precipitation) 1297143 4085876.5 1092 0 110 
13005(runoff) 1297143 4085876.5 1092 0 44.5 
13007(precipitation) 1371789 4095050.7 3376 0 79 
13013(precipitation) 1244301.2 4086715.7 134 0 92 
13013(runoff) 1244301.2 4086715.7 134 0 1523.80 
 

Moreover, in order to provide seasonality information to the ANN models, two time series 
represented by a sine and a cosine curve were introduced as auxiliary input variable. Figures 
4.3 and 4.4 represent the annual cycle for daily and monthly data, respectively.  
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Figure 4.3. Two time series representing the annual cycle for daily data 
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Figure 4.4. Two time series representing the annual cycle for monthly data 
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4.2. Canadian watershed 

In P5, monthly runoff values derived from a watershed situated in Canada were used in order 
to develop ANN models. Parasuraman et al. (2006) used this data in their study for runoff 
estimation and found good estimation results. These data are available at: 
http://www.wsc.ec.gc.ca/. 
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Chapter 5.  RESULTS  

5.1. Understanding of ANNs 

5.1.1. Monthly runoff estimation 

In P1 a feed-forward MLP model was developed in order to estimate monthly runoff in a 
watershed in northern Iran. The scatter diagrams of observed versus estimated monthly 
runoff for the training and validation periods along with their r and are shown in 
Figures 3 and 4 in P1, respectively. It can be noticed that monthly runoff is reasonably well 
simulated by the feed-forward MLP model.  

RMSE

5.1.2. Understanding of the mechanisms modelled by the feed-forward MLP 

As mentioned above, the model developed performs satisfactorily for estimation of monthly 
runoff. However, there is no idea about how the model came up with this output. In order to 
get some explanations concerning how the model works, three approaches i.e. the NID, 
Garson’s algorithm and randomization approach were investigated and the results obtained 
are explained as follows. 

Figure 5.1 represents the NID for the feed-forward MLP ANN rainfall-runoff model, in 
order to depict the influence of each input variable on the output. As can be noticed from the 
figure, this approach depicts qualitatively the contribution of each input variable via hidden 
neurons on the output variable. For instance, the temperature variable has positive effects on 
all neurons in the hidden layer except the second neuron. The outgoing signals from the fifth 
and sixth hidden neurons have the most positive and negative effects on the output variable, 
respectively. Moreover, it is possible to depict the interactions among the input variables 
(described before). For instance, the effect of temperature and runoff variables on the sixth 
neuron in the hidden layer is opposite. As mentioned earlier, this approach is qualitatively 
depicts the connection weights of the feed-forward MLP ANN rainfall-runoff model.  

However, in order to obtain a quantitative estimate of the contribution of each input variable 
on the output, the Garson’s algorithm was used. Figure 6 in P1 shows the results obtained 
from Garson’s algorithm. As can be noticed, the input variable contributions ranged from 
4.12% to 19.73 %. The highest contribution belongs to the temperature variable measured at 
station 13005 and the lowest contribution belongs to the rainfall variable measured at station 
13009. It does not seem to be appropriate to compare the NID and Garson’s algorithm, 
because the former represents visually the connection weights flowing from input variables 
via hidden neurons to the output neuron while the latter provides the relative importance of 
each input variable on the output without consideration of the direction of the connection 
weights.  

It is also interesting to get information about significant input variable (s) on the output. To 
do so, a randomization approach (by following the procedures mentioned before) was used 
and it was found that the runoff input variable was the only significant input variable on the 
output. Considering that the NID involves the visualization of all connection weights 
flowing from the input to the output layer, it seems that this visualization will be problematic 
when the number of input variables is many. Therefore, the randomization approach would 
be able to assist the modeller by reducing the number of input variables and keeping only 
those variables that are significant on the output variable. 
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Figure 5.1. Neural Interpretation Diagram (NID) for artificial neural network (ANN) rainfall-runoff 
modelling. The line thickness represents the magnitude of the connection weights and the format of 

the lines as dotted ( negative effect) and solid  (positive effect) represents the direction of the 
connection weights. 

 
 
 
 
5.2. Missing values 

5.2.1. Regionalization 

The application of the SOM algorithm for regionalization purpose (“input determination”) 
was introduced in P3, in which the component planes visualization technique was used in 
order to depict visually the correlation among precipitation stations (Figure 4 in P3). Each 
component plane represents the values of one variable in each map neuron. Consequently, 
the similarity of variables may be revealed by similar patterns in identical locations on the 
component planes. Although the human eye has a fascinating capability to identify similarity 
among various objects, the paper argues that the re-organization of the component planes 
facilitates the interpretation. For this purpose, a SOM was used in which the location of each 
projected component plane corresponds to its best matching neuron [Figure 5(a) in P3], so 
that highly similar precipitation stations are mapped near each other. The map is divided into 
three homogenous sub-areas, so that stations in the upper right corner of the map are located 
in the southern and southwestern parts of the study area, stations to the left on the map are 
mainly located in the eastern part of the study area and stations located in the lower right 
corner of the map are located along the coastal line of the study area (Figure 1 in P3 or 
Figure 4.1). The grouping results obtained were also validated using hierarchical cluster 
analysis with the Ward algorithm and a Euclidean distance measure in order to cluster 
variables (precipitation stations).  
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5.2.2. Estimation of monthly precipitation 

After finding homogenous groups of stations using the SOM, one representative station from 
each homogeneous group was selected for presentation of the estimation results based on the 
SOM and MLP models. To obtain objective results, the SOM and MLP networks were 
trained by repeatedly eliminating one-year, two-year, five-year, and finally, ten-year 
precipitation data from each of the stations used for estimation. Consequently, all data were 
used for training and all data were used for validating in a so-called jack-knifing procedure. 
To clarify the jack-knifing procedure; e.g. in the case of 1-year, the whole time series was 
divided into consecutive 1-year periods so that the 1-year periods were consecutively 
excluded from the training and used for validation, hence all data not removed was used for 
the training and the excluded part was used for validation. The same way was also conducted 
for 2-, 5-, and 10-year precipitation periods.   

Figure 5.2 presents an example of observed and estimated monthly precipitation based on a 
SOM model for a representative station (13006). As can be noticed from Figure 5.2, the 
estimation performs well for small and intermediate monthly precipitation while for extreme 
values, precipitation is often underestimated. However, the paper takes into account the 
regionalization results by training the SOM using only homogeneous data which indeed 
improves the estimation results as shown in Figure 5.3. As can be noticed, the estimation 
obtained from the SOM model after regionalization, shows a closer tracking of the 
precipitation data on all portions.  

A summary of the results for all excluded periods is shown in Table 2 in P3. It indicates that 
the use of regionalized data generally improves estimation results.  A notable improvement 
of the estimation results can be seen for station 17526. This station is part of the sparse 
network for the large south and southwestern regions. Here, the regionalization improves the 
results greatly. The SOM appears to be able to efficiently capture the overall pattern 
particular for this region (using regionalized data as input) and also to interpolate missing 
data with quality. 
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Figure 5.2. Observed and estimated validated 1-year precipitation for station 13006 without 
regionalization 
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Figure 5.3. Observed and estimated validated 1-year precipitation for station 13006 with 
regionalization 

 

The paper also compares the SOM estimation results with those from a well-known MLP 
model. A summary of results for all excluded periods for the MLP is shown in Table 3 in P3. 
It indicates that for non-regionalized data input, the performance of the MLP is somewhat 
better than that achieved by the SOM. With increasing length of excluded data, however, the 
SOM results approach those of the MLP. For regionalized data, however, the SOM is 
superior for all stations and most of the excluded time periods. The MLP can not improve 
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estimation results much for station 17526 using regionalized data. However, as mentioned 
above, for this station, the SOM results were greatly improved for regionalized data input.  

5.2.3. Imputation of missing values in a daily precipitation-runoff database 

In P4, the SOM, MLP, MNN, REGEM and the MI methods were used in order to fill in 
(impute) the gaps in a daily precipitation-runoff database. The standard deviation and mean 
of the variables under investigation before and after filling-in the gaps along with the change 
(%) of these parameters after filling-in the gaps were used in order to evaluate the models 
(see Table 3 in P4).   

It can be noticed from the table that all statistics were severely violated on the runoff 
variable of station 13013. This indicates the importance of the quality of data and the 
amounts of missing values in gap filling-in methods. The results obtained in P4 show that 
multivariate methods are also dependent on the variable under investigation, since Junninen 
et al. (2004) concluded that univariate methods are dependent on the gap length as well as 
variable under study. Moreover, the results indicate that there is a substantial difference 
between two ANN methods used in P4, the SOM and the MLP, in terms of handling missing 
value problem particularly this difference is significant with regard to the data quality of the 
variables under investigation. In addition, a single SOM model is able to handle all missing 
data patterns together hence, there is no need to develop separate models for each missing 
data pattern. Moreover, the SOM model provides more information about the variables under 
investigation via e.g. component plane visualization technique. This technique was used for 
regionalization (“input determination”) in P3, as explained before in this chapter. 

One can also notice from the table that the MNN performs almost as well as other used 
methods which may indicate that such a simple method is very important, especially it has 
some advantages such as being computationally inexpensive as well as using existing values 
in the database to impute missing values hence it does not generate new values.  

As stated previously, the most important aspect of MI is that with the statistical analyses of 
imputed databases and thereafter combining them one can obtain statistically valid inference 
about the database with missing values, hence point prediction of the missing values is not 
the main goal. Rather, it is to prepare the complete database for the needs of the ultimate 
user’s in order to obtain statistically valid inference of particular importance. In P4, Table 4 
shows the univariate statistical inferences of 5 imputed databases. By using MI technique, 
we have created 5 versions from the original incomplete precipitation-runoff process 
database; thereafter the hydrologist can conduct the preferred analyses of each database 
separately and then combine the results by averaging over the 5 analyses in order to obtain a 
single inference from the original incomplete precipitation-runoff database which reflects the 
uncertainty attached to the missing data. These final single inferences, obtained by averaging 
of the results are shown in Table 4 in P4, and MI results are shown in Table 3 in P4. 

The bivariate correlation coefficients between the runoff variable at station 13013 and other 
variables are shown in Table 5 in P4. Since the station 13013 is located at the outlet of the 
watershed, the correlation coefficients of this variable with others were calculated. As can be 
noticed from the table, the correlation coefficients have decreased for all the methods, except 
at 13005(R) for REGEM and MI, compared to the complete-case (CC) analysis. Increasing 
correlation coefficients at 13005(R) by REGEM and MI can be explained by the fact that 
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these methods carry the assumption of multivariate normality. With reference to Table 3 in 
P4, it can be noticed that changes of the standard deviation after filling-in the gaps for this 
variable with these methods are very high compared to other methods. Unsurprisingly, the 
MLP method provides the poorest performance compared to others which is consistent with 
the results obtained from the univariate statistics from the former analysis. Even though the 
correlation coefficients are not very high, the point that different methods, except MLP, 
provide approximately similar results may give confidence about the applicability of the 
methods in the context of precipitation-runoff process missing data filling-in. As indicated 
previously as well as in P4, the missing data problem in our database is very complicated 
such that the fractions of missing values in most of the variables are great hence it would 
certainly affect the performance of the methods.  

To summarize, it was not the main objective of the study in P4 to make a detailed 
comparison of the methods. Rather the study aimed to illustrate the applicability of various 
gap filling-in methods on the real missing values in precipitation-runoff process database 
which is required to hydrologists for further studies such as runoff prediction.  

All the methods used have advantages and disadvantages hence the objective was not to 
introduce a single method to fill in missing values in hydrological applications. However, in 
P4, the SOM and MNN methods seem to be better compared to the others. Another 
important objective in P4 was that, according to the authors’ knowledge, it was the first time 
that the MI method for imputing missing values in hydrological application was practised. 

  

5.3. Rainfall-runoff modelling  

In P5, the completed database obtained by means of SOM (in P4) was used to model 
rainfall-runoff relationship in northern Iran. Moreover, a Canadian watershed database was 
also used to model runoff (see Chapter 4). 

5.3.1. Decomposition of input patterns 

According to the literature review in P5, it seems that clustering or grouping or segmentation 
or decomposition of the modelling domain leads to improved modelling performance. 
Consequently, SOM models were used to group of input patterns prior to the development of 
input-output mappings. In P5, three different one-dimensional SOM models were developed 
for both an Iranian and a Canadian watershed. They were used to explore the possibility of 
decomposition of the input patterns into different number of clusters as follows: the first 
model, with two neurons in the Kohonen layer or SOM(2), was developed in order to study 
the possibility of decomposition of the input patterns into two clusters, the second model, 
with three neurons in the Kohonen layer or SOM(3), was developed in order to study the 
possibility of decomposition of the input patterns into three clusters, and finally the third 
model, with four neurons in the Kohonen layer or SOM(4), was developed in order to study 
the possibility of decomposition of the input patterns into four clusters. The plots of each 
SOM model for both the Iranian and the Canadian watershed are shown in Figures 3(a) and 
(b) in P5, respectively. The results obtained by grouping (decomposition) of input patterns 
using SOM for both watersheds along with their interpretation [Figures 3(a) and (b) in P5] 
are summarized in the following paragraphs. 
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The results of the clustering for the Iranian watershed was that the SOM (2) clustered the 
training input patterns (240 patterns) into two clusters consisting of 119 and 121 patterns, 
respectively. The first cluster corresponds to lower mean values compared to the second 
cluster hence the former will probably be associated with low runoff values and the latter 
with high runoff values. To examine, the mean and standard deviation of the corresponding 
output patterns for the first were calculated and found to be 4.41 and 5.76 respectively. The 
corresponding values for the second cluster were found to be 6.44 and 3.62. It was found that 
the first and second cluster correspond to low and high runoff values, respectively. The SOM 
(3) clustered the training input patterns into three clusters consisting of 99, 41, and 100 
patterns, respectively. The first cluster corresponds to lower mean values and the third 
cluster to higher mean values while the second lies in between. To examine, the mean and 
standard deviation of the corresponding output patterns for the first, second, and third cluster 
were calculated and 2.90, 4.70;  7.74, 5.55; and 7.00, 3.54; were obtained, respectively. In 
terms of these statistics the first, second and third cluster correspond to low, high and 
medium runoff values, respectively. One can notice that these results are physically unusual 
as the third cluster with higher mean values exhibits medium runoff magnitude while the 
second cluster which lay between the other two clusters exhibits high runoff magnitude. 
Finally, the SOM (4) clustered the training input patterns into four clusters consisting of 79, 
41, 40, and 80 patterns, respectively. The first cluster corresponds to lower mean values and 
the fourth cluster corresponds to higher mean values while the second and third clusters lie 
in between. To examine, the mean and standard deviation of the corresponding output 
patterns for the first, second, third, and fourth cluster were calculated and 3.05, 5.20; 3.08, 
2.33; 5.41, 2.74; and 9.02, 4.23; were obtained, respectively. The first, second, third and 
fourth cluster correspond to low, medium, medium and high runoff values, respectively 
which is physically plausible. It may be mentioned that for the above SOM clusters, 
judgment of the different runoff magnitudes were based on their mean values. In order to 
make a comparison with the descriptive statistics (the mean and standard deviation) above, it 
must be mentioned that these statistics for the training output patterns without such a 
clustering or decomposition are 5.44, and 4.90, respectively. 

In P5 the same numbers of SOM models were developed for the Canadian watershed, in 
order to explore the possibility of decomposition of the input patterns into different number 
of clusters from two to four segments or clusters and to compare the results obtained with the 
Iranian watershed. The results of this clustering can be summarized as follows: the SOM (2) 
clustered the training input patterns (240 patterns) into two clusters consisting of 119 and 
121 patterns, respectively. The first cluster corresponds to lower mean values compared to 
the second cluster hence the former will probably be associated with low runoff values while 
the latter with high runoff values. To check, the mean and standard deviation of the 
corresponding output patterns for the first and second cluster were calculated and 93.82, 
55.40; and 177.10, 98.56; were obtained, respectively. It was seen that the first and second 
cluster correspond to low and high runoff values, respectively. The SOM (3) clustered the 
training input patterns into three clusters consisting of 112, 26, and 102 patterns, 
respectively. The first cluster corresponds to lower mean values and the third cluster to 
higher mean values while the second lies in between. To validate, the mean and standard 
deviation of the corresponding output patterns for the first, second, and third cluster were 
calculated and 91.11, 55.89; 117.82, 55.85; and 189.47, 99.17; were obtained, respectively. 
The first, second and third cluster correspond to low, medium and high runoff values, 
respectively which is physically plausible. Finally, the SOM (4) clustered the training input 
patterns into four clusters consisting of 80, 39, 40, and 81 patterns, respectively. The first 
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cluster corresponds to lower mean values and the fourth cluster corresponds to higher mean 
values while the second and third clusters lie in between. To check, the mean and standard 
deviation of the corresponding output patterns for the first, second, third, and fourth cluster 
were calculated and 96.98, 63.59; 87.32, 32.56; 116.17, 61.25; and 207.19, 99.84; were 
obtained, respectively. The first, second, third and fourth cluster correspond to medium, low, 
medium and high runoff values, respectively. The results for the third and fourth cluster are 
physically plausible but the results for cluster one and two are not. However, it must be 
mentioned that these statistics for the training output patterns without such a clustering or 
decomposition are 135.81, and 90.19, respectively. It is worthy to mention that although it 
was possible to characterize the SOM results somehow, it is not always easy to interpret the 
results due to the fact that ANNs, and among them SOMs, are black-box models. 

5.3.2. Monthly runoff forecasting 

Once the clustering of the input patterns was achieved using SOM, the next step was 
mapping of the input patterns in each cluster or group to the corresponding outputs, 
corresponding to different physics in the watersheds, using feed-forward MLP and SSOM 
models. In other words, separate feed-forward MLP and SSOM models were developed in 
order to map input patterns of each cluster or group to the corresponding outputs. The results 
obtained by doing so, for both the Iranian and the Canadian watershed are summarized in the 
following paragraphs. 

The results of the various MLP and SSOM models, based on the model performance criteria 
in Chapter 3, in forecasting monthly runoff for the Iranian and Canadian watersheds are 
presented in Tables 5.1 and 5.2, respectively. It can be noticed from Table 5.1 that in the 
case of MLP models, the best performance was achieved by the two and four cluster MLP 
models with the two cluster models doing somewhat better. It is worthy to mention that 
although the four cluster MLP models performed better during training compared to the two 
cluster MLP models, the four cluster MLP models were not able to generalize better during 
validation which may indicate the importance of more principled procedures for 
determination of the number of neurons for decomposition. However, all of the modular 
MLP models outperform the single MLP model during validation which indicates that the 
process under investigation is not homogenous hence the importance of decomposition of the 
process. In the case of SSOM models for the Iranian watershed, Table 5.1, the best 
performance was achieved by the four cluster SSOM models. It is worthy to mention that 
although the single SSOM model performed slightly better than the four cluster SSOM 
models during training the four cluster SSOM models outperformed it during validation 
hence again indicating the importance of decomposition of the process. As can be noticed 
from Table 5.1, the performance of the SSOM models during training was better than that 
for the MLP models both before decomposition and after decomposition while after 
decomposition during validation period the MLP models outperform the SSOM models. 
However, it can also be noticed from Table 5.1 that the performance of the single SSOM 
model is better than that of the single MLP model for both the training and the validation 
period. Considering these results, in the selection of best model between the single MLP and 
single SSOM model the latter was selected while in terms of decomposition results the two 
cluster MLP models is considered to be the best model for forecasting monthly runoff for the 
Iranian watershed. The performance of these selected models during validation period is 
shown in Figure 5.4(a) and (b), respectively. 
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In the case of the Canadian watershed (Table 5.2) the models for forecasting monthly runoff 
performed differently compared to the Iranian watershed results. For instance, although the 
decomposition procedure improved the modelling performance during training for MLP 
models, it could not improve the generalization ability of the models as the performance of 
the single MLP model is slightly better than that of the two cluster MLP model and 
substantially better than those of the three and four cluster MLP models. However, in the 
case of the SSOM models, the decomposition procedure improved the performance of the 
models so that there are improvements in forecasting performance by using the two, three, 
and four cluster SSOM models compared to the single SSOM model. One can notice from 
Table 5.2 that the performance of the SSOM models is mostly better than those of MLP 
models after decomposition for both training and validation. However, the performance of 
the single MLP and single SSOM models is almost similar with a small advantage for the 
single MLP. By considering these results, the single MLP and four cluster SSOM models are 
considered to be the best models for forecasting monthly runoff in the Canadian watershed. 
The performance of these models during validation is shown in Figure 5.5(a) and (b), 
respectively. 
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Table 5.1. The performance of models in forecasting monthly runoff for the Iranian watershed 
 
 
 Training Validation 
Model r R 2  RMSE r R 2  RMSE 
MLP models       
Single MLP 0.652 0.426 3.706 0.383 0.132 6.469 
Two MLPs 0.630 0.395 3.803 0.441 0.193 6.237 
Three MLPs 0.642 0.412 3.748 0.401 0.160 6.362 
Four MLPs 0.671 0.450 3.627 0.447 0.192 6.241 
SSOM models       
Single SSOM 0.733 0.534 3.337 0.403 0.159 6.366 
Two SSOMs 0.723 0.516 3.402 0.378 0.138 6.448 
Three SSOMs 0.709 0.499 3.460 0.394 0.152 6.395 
Four SSOMs 0.722 0.520 3.387 0.406 0.163 6.353 

 
 
 
 

Table 5.2. The performance of models in forecasting monthly runoff for the Canadian watershed 
 
 
  Training Validation 
Model r R 2  RMSE r R 2  RMSE 
MLP models       
Single MLP 0.850 0.718 47.773 0.800 0.615 47.658 
Two MLPs 0.864 0.743 45.553 0.805 0.612 47.886 
Three MLPs 0.867 0.752 44.776 0.797 0.583 49.639 
Four MLPs 0.873 0.758 44.208 0.772 0.559 51.033 
SSOM models       
Single SSOM 0.909 0.794 37.696 0.824 0.604 48.363 
Two SSOMs 0.904 0.815 38.693 0.799 0.605 48.298 
Three SSOMs 0.914 0.833 36.678 0.808 0.631 46.654 
Four SSOMs 0.919 0.842 35.748 0.815 0.635 46.445 
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Figure 5.4. Observed and predicted runoff for the Iranian watershed from (a) single cluster SSOM 
model, and (b) two cluster MLP model   

 

Figure 5.5. Observed and predicted runoff for the Canadian watershed from (a) single cluster MLP 
model, and (b) four cluster SSOM model 
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Chapter 6.  CONCLUSIONS 

Based on P1, it can be concluded that ANN models, which are normally considered as black-
box models, are powerful not only in modelling of hydrological processes reasonably well 
but they are also able to reveal some information concerning how they end up with this 
output. Therefore, this property would help them in obtaining even wider acceptability 
among hydrologists who are usually interested in gaining information from the model.  

P2 indicated that applications of SOM algorithm in analysis, estimation and prediction of 
hydrological processes have increased tremendously over the last decade. This is due to the 
ability of the SOM in clustering large amounts of data as well as to preserve their topological 
structure. Therefore, the SOM algorithm can be considered as an alternative approach to 
well-known feed-forward MLP. 

The successful application of SOM and feed-forward MLP ANN models in estimation of 
missing values in the context of monthly precipitation and daily precipitation-runoff 
databases in P3 and P4, respectively, indicated their suitability in solving such problems. 
However, the SOM and the feed-forward MLP differ in handling missing values or in an 
estimation problem as below:  

The SOM works best for homogenous data (after regionalization with SOM), thus, it is 
important to test the data for homogeneity and if necessary perform a regionalization prior to 
the use of SOM.  

For non-regionalized data (before applying SOM for the regionalization) the MLP appears to 
give slightly better results. However, for homogeneous data, the SOM clearly gives the best 
results. 

Although the MLP performs better for the non-homogenous data, the SOM can be used to 
homogenize the data prior to application and thus has the overall advantage. 

As mentioned in P4, the MLP needs to train separate models for different combinations of 
missing variables which may lead to incoherence between filled-in values while a single 
SOM model is able to handle missing values regardless of their location. 

Moreover, our study in P4 indicated that there is a substantial difference between the SOM 
and MLP in filling-in the gaps, particularly for a variable that contains extreme values.  

In addition to the above, the SOM has the advantage of providing information via e.g. 
component plane visualization technique from the trained network parameters. For instance, 
in P3 the technique was used for regionalization (“input determination”) of the precipitation 
stations. 

However, the comparison of the above ANN models with those of MNN, REGEM and MI 
methods in estimating missing values in a daily precipitation-runoff database reveal that the 
results obtained from five methods, i.e. the SOM, MLP, MNN, REGEM and MI, show that 
most of the methods yield similar results. Interestingly, the MNN which is an easy method 
for implementation and computationally cheap, performs as well as the other methods used 
in P4 for filling-in the gaps even for the variable of which contains extreme values. It uses 
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existing values in the database in order to fill in missing values. Consequently, the MNN 
does not generate new values. 

Although most studies tend to result in the conclusion that there is no method that is superior 
in all applications, there seems to be an agreement that one should use statistically principled 
methods. This speaks in favour of REGEM and MI. MI has the great advantage of giving an 
estimate of the uncertainties involved in the imputation. However this comes at a cost. Both 
REGEM and MI build on the assumption that the data are multivariate normal. The results 
indicate that there may significant bias if this assumption is violated. Thus it seems safer to 
rely on either SOM or MNN. 

Although most studies conclude that there is no imputation methodology that can be 
characterized as superior to others, it can be suggested that for a rainfall runoff database, the 
SOM and MNN provide the most robust and reliable results. 

The results obtained from the investigation of whether the modelling performance 
concerning forecasting monthly runoff can be improved by means of decomposition of ANN 
models, where the decomposition of the process under investigation was achieved by means 
of SOM algorithm, indicated improvements, but they were rather small.  

Although the idea that a modular model would be better at responding to the different 
physical processes at different stages of the hydrograph is highly impressive, the results 
obtained indicated that there is a need for more principled procedures in order to decompose 
the models. As the results obtained by using different number of segments varied, it indicates 
the importance of the number of neurons (segments) which are usually selected in the SOM 
algorithm via a trial-and-error procedure. It was shown that the division of the process under 
investigation into further divisions may not produce better performance but the optimum 
number of divisions is of prime importance in order to model the process successfully. 
Therefore, finding an appropriate approach to dividing the processes under investigation into 
an optimum number of segments is a general need in this regard. 

Concerning the comparison between the performance of feed-forward MLP and SSOM 
models on forecasting monthly runoff, the results indicated that the SSOMs consistently 
performed better during training while during validation there were small differences in 
performance which may indicate the application of the SSOM model as an alternative to the 
feed-forward MLP model. However, it may be mentioned that the SSOM and generally 
SOM model produce the output results based on more network parameters than the feed-
forward MLP. Both SOM and feed-forward MLP model include trial-and-error procedures. 
It is worthy to mention that the visualization ability of SOM is a fascinating feature that 
helps the modeller to further investigate the processes.     
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