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Abstract— This paper gives an overview of three different
classes of convolutional codes that are suitable for iterative
decoding. They are characterized by the type of component
codes that are used to construct the overall codes, which can
be trivial parity-check constraints, block component codes, or
convolutional component codes. Distance properties and iterative
decoding performance are considered. All three classes of codes
are asymptotically good, allow simple encoding, and can be
decoded efficiently using iterative pipeline decoding architectures.

I. INTRODUCTION

Error correcting codes defined by sparse parity-check ma-

trices in combination with iterative decoding have proved

to be very efficient in both theory and practice. The most

prominent representatives of iteratively decodable codes are

the low-density parity-check (LDPC) block codes invented

by Gallager [1] and the turbo codes introduced by Berrou,

Glavieux, and Thitimajshima [2]. Also, convolutional codes

designed for iterative decoding combine excellent bit error rate

(BER) performance with the additional advantage that their

structure allows linear time encoding based on shift-registers,

a parallel pipeline implementation of iterative decoding, and

block transmission in frames of arbitrary size, which makes

them attractive for practical implementation.

In this paper, we consider three different classes of con-

volutional codes. First, the convolutional code counterpart of

Gallager’s LDPC block codes is described in Section II. Then,

in Section III, we introduce convolutional codes with block

components, called braided block codes (BBCs). A similar

construction based on convolutional components, braided con-

volutional codes (BCCs), are considered in Section IV. The

distance properties and iterative decoding performance of the

different code classes are presented in Sections V and VI,

respectively. Section VII concludes the paper.

II. LDPC CONVOLUTIONAL CODES

We start with a brief definition of LDPC convolutional

codes. Let

u = [u0,u1, . . . ,ut, . . . ] , (1)

where ut = u
(1)
t , . . . , u

(b)
t and u

(·)
t ∈ GF(2), be the informa-

tion sequence, which is mapped by a convolutional encoder

of rate R = b/c, b < c, into the code sequence

v = [v0,v1, . . . ,vt, . . . ] , (2)

where vt = v
(1)
t , . . . , v

(c)
t and v

(·)
t ∈ GF(2). A time-

varying LDPC convolutional code can be defined as the set

of sequences v satisfying the equation vH
T = 0, where

H
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(3)

is an infinite transposed parity-check matrix, also called a

syndrome former. The elements H
T
i (t), i = 0, 1, . . . ,ms, in

(3) are binary c × (c − b) submatrices

H
T
i (t) =









h
(1,1)
i (t) · · · h

(1,c−b)
i (t)

...
...

h
(c,1)
i (t) · · · h

(c,c−b)
i (t)









, (4)

where H
T
ms

(t) 6= 0 for at least one t ∈ Z and H
T
0 (t)

has full rank for all t. We call ms the syndrome former

memory and νs = (ms +1) ·c the associated constraint length.

These parameters determine the span of the nonzero diagonal

region of H
T. Sparsity of the syndrome former is ensured by

demanding that the Hamming weights of its columns are much

smaller than νs. The code is said to be regular if its syndrome

former H
T has exactly J ones in every row and K ones in

every column, starting from the [ms · (c − b) + 1]-th column.

The other entries are zeros. We will refer to a code with these

properties as an (ms, J,K)-LDPC convolutional code.

An (ms, J,K)-LDPC convolutional code is called periodic

with period T if H
T
i (t) = H

T
i (t + T ) ∀t, i. A description

of the construction of a periodic syndrome former H
T from

the transposed parity-check matrix of an LDPC block code is

given in [3].

A. Efficient Encoding

The system of parity-check equations

vtH
T
0 (t) + vt−1H

T
1 (t) + · · · + vt−ms

H
T
ms

(t) = 0, t ∈ Z

(5)

can be used to define an encoder based on the syndrome former

H
T. A systematic encoder can be obtained if the last c−b rows

of the submatrices H
T
0 (t) are linearly independent and the

first b symbols of vt coincide with the information symbols,
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Fig. 1. Tanner graph of an R = 1/3 LDPC convolutional code and an illustration of pipeline decoding.

i.e., v
(j)
t = u

(j)
t , j = 1, . . . , b. Consider, for example, the

case where the last c − b rows of H
T
0 (t) are equal to the

(c − b) × (c − b) identity matrix. Then the code symbols at

time t are determined by

v
(j)
t = u

(j)
t , j = 1, . . . , b , (6)

v
(j)
t =

b
∑

k=1

v
(k)
t h

(k,j−b)
0 (t) (7)

+

ms
∑

i=1

c
∑

k=1

v
(k)
t−ih

(k,j−b)
i (t) , j = b + 1, . . . , c .

This encoder can be implemented by a length cms + b shift

register with time-varying tap-weights corresponding to the

matrix entries h
(k,j)
i (t) [3]. The encoder realization requires

c · ms + b memory units and the encoding complexity per

bit is proportional to the associated column weight of H
T

(i.e., K for regular codes), independent of the codeword length

and the syndrome former memory ms. A realization based on

partial syndromes, requiring only (c − b) · ms memory units,

has been proposed in [4]. It also provides a convenient way for

the computation of termination bits for LDPC convolutional

codes.

B. Pipeline Decoding

Although the Tanner graph corresponding to H
T has an

infinite number of nodes, the distance between two variable

nodes that are connected to the same check node is limited

by the syndrome former memory of the code. This allows

continuous decoding that operates on a finite window sliding

along the received sequence. The decoding of two variable

nodes that are at least (ms + 1) time units apart can be

performed independently, since the corresponding bits cannot

participate in the same parity-check equation. This allows

the parallelization of the I iterations by employing I in-

dependent identical processors working on different regions

of the Tanner graph simultaneously. Alternatively, since the

processors implemented in the decoder hardware are identical,

a single “looping processor” that runs on different regions of

the decoder memory successively can also be employed. Based

on these ideas, a pipeline decoding architecture, which outputs

a continuous stream of decoded data once an initial decoding

delay has elapsed, was introduced in [3]. The operation of this

decoder on the Tanner graph for a simple rate R = 1/3 LDPC

convolutional code with ms = 2 is shown in Fig. 1.

III. BRAIDED BLOCK CODES

A. Tightly Braided Block Codes

Tightly braided block codes (TBBCs) are convolutional

codes that are composed of block component codes and can be

described by means of an infinite array. Every symbol stored

in the array is protected by a horizontal code Ch and a vertical

code Cv. The symbols in each row of the array form a code

word of Ch, the symbols in each column a code word of Cv.

The array representation of a TBBC based on (7, 4) Hamming

component codes is illustrated in Fig. 2.

C
v

C
h

bits

bits

bits

bit
already

known

information

C
v

C
h parity

parity

Fig. 2. Array representation of tightly braided block codes with (7,4)
Hamming component codes.

At each time t an information symbol enters the main

diagonal of the array. The shaded area to the left and above

that symbol corresponds to symbols that have already been

encoded. The component encoders use the shaded symbols

of row t and column t together with the current information
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Fig. 3. Array representation of sparsely braided codes.

symbol to produce the parity check symbols of row t and

column t, respectively.

B. Sparsely Braided Block Codes

In general, the cells within the array of TBBCs can be

divided into three ribbons, corresponding to vertical parity

symbols, information symbols, and horizontal parity symbols,

respectively. In a sparsely braided block code (SBBC) the

symbols within these ribbons are not adjacent but spread apart

from each other. The number of symbols per row and column

of each ribbon are preserved but the array is sparse. The

positions of the symbols in the ribbons can be described by

multiple convolutional permutors [P(2)]T, P
(0), and P

(1) [5],

as illustrated in Fig. 3.

The idea of generalizing LDPC codes to non-trivial com-

ponent block codes goes back to Tanner [6]. SBBCs can

be interpreted as generalized LDPC convolutional codes, the

convolutional version of generalized LDPC (GLDPC) codes.

Their encoding can be implemented either directly from the

array representation, similar to the description above for

TBBCs, or by means of a partial syndrome realization [5].

Iterative decoding of SBBCs can be performed with a pipeline

architecture, analogous to that of LDPC convolutional codes

[5]. The messages from constraint nodes to variable nodes are

defined by the outputs of two a posteriori probability (APP)

component decoders, as in the decoding of GLDPC codes [7].

As shown in [8], the asymptotic bit error probability converges

to zero at least double exponentially with the number of

iterations if the condition (dmin−1)(J−1) > 1 is satisfied. This

illustrates that the number of component codes per symbol can

be traded against their strength and shows that a generalization

of the array to more than two dimensions is not required (see

also Section V).

IV. BRAIDED CONVOLUTIONAL CODES

The concept of braided codes can also be applied to

convolutional component codes. The resulting BCCs can again

be described by an infinite array consisting of three ribbons, as

shown in Fig. 3. The implementation of a rate R = 1/3 BCC

encoder, consisting of two rate Rcc = 2/3 recursive systematic

component encoders, is illustrated in Fig. 4. The information

symbols ut enter the first input of Encoder 1 directly, and the

permuted information symbol ũt at the output of convolutional

permutor P
(0) enters the first input of Encoder 2. Encoders 1

and 2 generate the parity symbols v̂
(1)
t and v̂

(2)
t , respectively.

The permuted parity symbol ṽ
(1)
t at the output of convolutional

permutor P
(1) is fed back to the second input of Encoder

2, and the permuted parity symbol ṽ
(2)
t at the output of

convolutional permutor P
(2) is fed back to the second input

of Encoder 1.

A special property of BCCs is that both information and

parity bits are connected to each of the component codes in a

symmetric manner. This feature makes them more similar to

(G)LDPC codes than other turbo-like constructions.

The decoding of BCCs is comparable to continuous turbo

decoding. In a pipeline implementation of the decoder [9], the

component codes are decoded using a parallel bank of 2I APP

processors based on a windowed BCJR algorithm [10]. APP

values are calculated for all the code symbols, not only for

the information symbols.

It is also possible to perform encoding and decoding in

a block-wise manner. In this case, information and parity

symbols are collected in vectors of size N , and P
(0), P

(1),

and P
(2) now denote block permutors of size N rather than

convolutional permutors. The component encoders are then

rate R = 2/3 tail-biting convolutional encoders that start from

and end in the same state. Windowed decoding is no longer

required, and the processing of each block is similar to that

of a conventional turbo code.

Another approach to constructing braided convolutional

codes from block permutations has been proposed in [11].

Here the ones in the syndrome former of a tightly braided base

code are replaced by permutation matrices. These codes can

be interpreted as convolutional variants of protograph-based

LDPC codes [12] and decoded either like Gallager’s LDPC

codes using belief propagation or with a turbo-like algorithm

as described above.

En
oder 1Rate 2/3

En
oder 2Rate 2/3
P(1)
P(2)P(0)

MUXut vt
~ut

v̂(1)t
v̂(2)t

~v(1)t
~v(2)t

Fig. 4. Encoder for a rate R = 1/3 braided convolutional code.

V. DISTANCE PROPERTIES

Gallager showed that random regular LDPC block codes

with J > 2 are asymptotically good, i.e., the minimum

distance dmin of randomly chosen codes grows linearly with

block length [1]. For GLDPC block codes, this is also true
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block code on the AWGN channel [4].

for the case of J = 2 component codes per symbol [13].

For (multiple) turbo codes, on the other hand, dmin grows less

than linearly with block length, even if J > 2 component

codes are used [14]. Results on the distance properties of

the convolutional code classes considered in this paper are

summarized in the following.

A. Markov Permutor Ensembles

A technique to derive the average distance spectrum of

LDPC convolutional codes has been introduced in [15]. It

can be applied to all codes described by (multiple) convolu-

tional permutors. A random ensemble is defined by replacing

the convolutional permutors by a stochastic device called a

Markov permutor. From the average distance spectrum it is

possible to compute lower bounds on the free distance dfree

of codes from an ensemble as a function of their constraint

length νs.

The distance growth rates observed for regular LDPC

convolutional codes [15] and BBCs [5] are comparable to

their block code variants: dfree grows linearly with νs and the

distance ratios dfree/νs are typically worse than the Costello

bound for random convolutional codes [16] but better than the

ratio dmin/N of the corresponding block codes of length N .

Remarkable is the fact that linear growth for dfree can also

be observed for BCCs [9], which distinguishes them from

other turbo-like constructions. For the self-concatenated con-

volutional codes considered in [15], which are closely related

to multiple turbo codes, dfree grows less than linearly with

constraint length. The superior asymptotic distance behavior

of BCCs may be related to their similarity to GLDPC codes.

B. Permutation Matrix Based Ensembles

For the Markov permutor ensembles, a bound on dfree

is evaluated for different constraint lengths to estimate the

asymptotic distance ratios. An explicit lower bound on the

asymptotic free distance of LDPC convolutional codes has

been presented in [17]. The codes in the considered ensem-

ble are defined by syndrome formers that are composed of
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Threshold, R=21/31

Fig. 6. Simulation results for continuous SBBCs on the AWGN channel [5].

permutation matrices, like in protograph-based LDPC codes

[12]. The technique from [17] has also been applied in [18]

to compute distance ratios for the protograph-based BCCs

considered in [11]. It can also be used for tail-biting variants

of LDPC convolutional codes [19] and BCCs [18].

VI. ITERATIVE DECODING PERFORMANCE

A. LDPC Convolutional Codes

Simulated BERs of a rate R = 1/2, (2048, 3, 6)-LDPC

convolutional code with I = 50 iterations on an AWGN

channel are shown in Fig. 5. Also shown is the performance

of two J = 3, K = 6 LDPC block codes with a maximum

of 50 iterations. The block lengths were chosen so that in one

case the decoders have the same processor complexity, i.e.,

N = νs, and in the other case the same memory requirements,

i.e., N = νs · I [4]. For the same processor complexity,

the convolutional code outperforms the block code by about

0.6 dB at a bit error rate of 10−5. For the same memory

requirements, the convolutional and block code performance

is nearly identical.

The vertical dashed line corresponds to the convergence

threshold of the block codes. From the graph structure of

LDPC convolutional codes it follows that they also can achieve

this threshold. Actually, it can be shown [20] that terminated

LDPC convolutional codes have better thresholds than the

block codes they are derived from, since the symbols close

to the start and end of the block have stronger protection.

B. Braided Block Codes

Simulation results of continuous SBBCs after I = 50
iterations are shown in Fig. 6. The BERs are shown for rate

R = 7/15, 16/32, and 21/31 SBBCs based on Hamming

component codes of length 15, 31, and 32. The curves indicate

a waterfall effect very close to the convergence thresholds

of the respective GLDPC block codes. For the codes with

(15, 11) component codes, the BERs of two rate R = 1/2
GLDPC block codes with block lengths N = 3840 and

N = 30720 are shown for comparison [7].
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Fig. 7-a) shows the results for ideally terminated blockwise

BBCs using (15, 11)-Hamming component codes. The length

of the block is 292m, including a tail of 8m information

symbols. The effective code rates in all cases are R = 0.45.

Fig. 7-b) shows the average number of iterations performed

before the decoder converged to a valid code word. From these

curves, we see that the convergence threshold for GLDPC

block codes is surpassed at a BER level of 10−5 for m ≥ 448.

This suggests that blockwise BBCs also have better thresholds

than their GLDPC block code counterparts.

C. Braided Convolutional Codes

The BER performance of rate R = 1/3 blockwise BCCs

is shown in Figure 8 for permutor sizes N = 100 to 8000.

The tail-biting versions of rate Rcc = 2/3 component encoders

with polynomial parity-check matrix H(D) = [1, 1 + D2, 1 +
D + D2] were employed and the three block permutors used

in the encoder were chosen randomly. The transmission of 50
information blocks was terminated with 2 all-zero blocks. The

blockwise BCCs are compared to a rate R = 1/3 turbo code

with 4-state [1, 5/7] (octal format) component encoders and

permutor size N = 8192. In contrast to the turbo code, no

error floor can be observed for any of the blockwise BCCs,

which indicates their superior distance properties.

VII. CONCLUSIONS

In this paper we have presented three different classes of

convolutional codes for iterative decoding based on various

component codes. LDPC convolutional codes and braided

block codes are counterparts of Gallager’s LDPC block codes

and Tanner’s generalization to arbitrary component codes.

Braided convolutional codes, like turbo codes, are based on

convolutional component codes, but their construction is more

similar to (G)LDPC codes than other turbo-like codes. All

the presented codes are asymptotically good, resulting in low

error floors, and their convergence thresholds under iterative

Fig. 8. Error performance of rate R = 1/3 blockwise BCCs and turbo codes
on the AWGN channel [9].

decoding are at least as good as those of the block codes they

are derived from.
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