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Abstract—An algorithm to compute the radiation center of
an antenna based on the Spherical wave expansion (SWE) is
presented. The method is based on the angular momentum vector
quantity that is uniquely defined for any antenna far field pattern.
The radiation center is defined as the unique point where the
magnitude of the angular momentum is minimized with respect to
active translations of the far field. This corresponds to minimizing
the phase variations in the antenna far field pattern. In addition,
the current distribution axis can be determined, corresponding
to minimization of the vertical component of angular momentum
with respect to rotations.

Index Terms—radiation center; phase center; antenna orien-
tation; angular momentum; spherical wave expansion

I. INTRODUCTION

The far field amplitude F (r̂) is defined as the limit

F (r̂) = lim
r→∞

√
4π

η0
rejkrE(r) (1)

with an underlying time convention exp(jωt), vaccuum
impedance η0 =

√
µ0/ε0, and k = 2π/λ.

The Spherical wave expansion (SWE) of the far field
amplitude F (r̂) is

F (r̂) =
∑
τlm

aτlmAτlm(r̂), (2)

Here, the summation is over τ = 1, 2 for electric and magnetic
modes, l = 1, 2, . . . ,∞, and m = −l, . . . , l, see [1]. Using the
orthonormal vector spherical harmonics Aτlm, implies that

aτlm =

∫∫
Ω

A∗τlm(r̂) · F (r̂)dΩ. (3)

Here, Ω denotes the unit sphere, and dΩ is the surface
measure.

It is well known that truncation limits for SWEs depend on
the physical size, position, and orientation of the antenna [1].
By using the relation between the vector spherical harmonics
and the angular momentum, it is natural to quantify the mode
contents in terms of angular momentum. The definitions are:


L2 =

∑
τlm

l(l + 1)|aτlm|2,

L2
z =

∑
τlm

m2|aτlm|2.
(4)

where aτlm are the mode coefficients (3).

II. METHOD

Minimizing L2 corresponds to finding the smallest sphere
that circumscribes the antenna currents. This can be achieved
by active translations of the far fields, and it leads to a lowering
of the used l and m-indices. In this sense, the phase variations
are minimized, and the origin of the minimum sphere is related
to the phase center. The origin of the minimum sphere is
denoted radiation center dRC, see Fig. 1. Note that the IEEE
definition of phase center [2] is slightly vague and only useful
for antennas with manifest main lobes.

“2.270 phase center. The location of a point associ-
ated with an antenna such that, if it is taken as the
center of a sphere whose radius extends into the far-
field, the phase of a given field component over the
surface of the radiation sphere is essentially constant,
at least over that portion of the surface where the
radiation is significant.”

However, the proposed approach is applicable for any far
field pattern. In fact, in [3] it is proven that the radiation center
is unique for any far field pattern with radiated power Prad > 0.

In the same way, L2
z is minimized by finding the smallest

cylinder that circumscribes the antenna currents. Hence, ro-
tations can be used, and the symmetry axis of the minimum
cylinder is by definition the current distribution axis.

Note that L2 is invariant under rotations [1, 3]. This implies
that the minimization of L2 by translations can be performed
first. Thereafter, a consecutive minimization of L2

z by rotations
can be performed while keeping L2 minimized.
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Fig. 1. The translation dmin that minimizes L2 defines the radiation center
dRC. A rotation, α = −φ around the z-axis followed by β = −θ around the
y axis, that minimizes L2

z , defines the current distribution axis r̂CD . The
current distribution is depicted as a grey ellipsoid.

III. RESULTS

The main results of this work is that the radiation center is a
unique point in space for any antenna radiation pattern [3]. The
only criterion is that the radiated power Prad > 0. Moreover,
an analytical method to quantify the uniqueness of the current
distribution axis is also presented, in terms of investigation of
the eigenvalues of a three-dimensional dyadic. The derivations
of these results are obtained by defining L2 and L2

z in terms
of the angular momentum operator L = −jr × ∇ acting on
the far field amplitude F (r̂) [3]. Note that L is a measure of
the variations perpendicular to r, i.e., the angular variations.
By orthogonality and completeness of the vector spherical
harmonics Aτlm, the squared angular momentum operation
can also be defined as

L2 =

∫∫
Ω

F ∗(r̂) · L2F (r̂)dΩ. (5)

The explicit form of the L2 operator in spherical coordinates
is

L2 = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
(6)

Let L2(d) be L2 for the antenna far field translated by the
length vector d, i.e., the field

F ′(r̂) = F (r̂)ejkr̂·d. (7)

Applying (5) leads to the quadratic form

L2(d) = L2(0)− 2ka1 · d+ k2d ·A2 · d. (8)

with coefficients [3]

a0 = L2(F (r̂),0) =

∫∫
Ω

F ∗(r̂) · L2F (r̂)dΩ,

a1 =

∫∫
Ω

Im
[
Fθ∇ΩF

∗
θ + Fφ∇ΩF

∗
φ

]
dΩ

− 2

∫∫
Ω

cot θIm(FθF
∗
φ )φ̂dΩ,

A2 =

∫∫
Ω

F ∗(r̂) · F (r̂)[θ̂θ̂ + φ̂φ̂]dΩ.

(9)

Here, the transverse nabla operator

∇Ω = θ̂
∂

∂θ
+ φ̂

1

sin θ

∂

∂φ
(10)

is used. Note that a1 is a real-valued vector. Moreover, A2 is
a real-valued symmetric dyadic that is positive definite if

Prad =

∫∫
Ω

F ∗ · FdΩ > 0.

This guarantees a unique minimum at

dmin = A−1
2 · a1/k = −dRC (11)

which implicitly defines the radiation center dRC, see Fig. 1.

A. Translation of the radiation center — additivity

Consider a far field F (r̂) with a given radiation center.
Hence, by (11)

a1(F ) = −kA2(F ) · dRC.

Now consider the translated farfield F ′, see (7). To calculate
a1(F ′) note that

Fθe
jkr̂·d∇Ω(F ∗θ e−jkr̂·d)

= Fθ∇Ω(F ∗θ )− FθF ∗θ jk∇Ω(r̂ · d)

= Fθ∇Ω(F ∗θ )− FθF ∗θ jk(∇Ωr̂) · d
= Fθ∇Ω(F ∗θ )− FθF ∗θ jk(θ̂θ̂ + φ̂φ̂) · d,

(12)

and similarly for the φ component. Here,

∇Ωr̂ = θ̂θ̂ + φ̂φ̂

is used [4]. Note also that A2 and FθF ∗φ are invariant under
translations. By plugging (7) into (9), and using (12), it follows
that

a1(F ′) = a1(F )− k

∫∫
Ω

F ∗ · F (θ̂θ̂ + φ̂φ̂)dΩ

 · d
= −kA2 · dRC − kA2 · d = −kA2 · (dRC + d).

Hence, by (11) the new radiation center d′RC = dRC + d as
expected.
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IV. RESULTS BASED ON MEASURED PATTERNS

An algorithm employing the mode amplitudes aτlm of the
SWE together with efficient Fast Fourier transform (FFT)
based translation and rotation algorithms, have been used to
calculate the radiation center dRC, and the current distribution
axis r̂CD.

The first step of the algorithm is to find dRC by minimizing
L2(d). In this step L2 is calculated for seven translations
using (4), and the coefficients of L2(d) are calculated by
using (8). Thereafter, the minimum is found by using (11).

In a second step, the far field is translated to dmin, see Fig. 1.
Thereafter, the current distribution axis is found by minimizing
L2
z with respect to arbitrary rotations. In all cases reported

here, a unique minimum was found.
The axial ratio of the current distribution is defined as

AR =
√

minL2/minL2
z,

which is used in the plots to indicate the current distributions
axes. The geometrical objects shown in the figures have been
constructed from drawings of the antennas, and in some cases
from direct length measurements.

Fig. 2. Photo of a cellular phone mock-up with four antennas.

Fig. 3. Radiation centers and current distributions axes for four antennas
on a cellular phone. The axial ratio of the ellipses indicate the ellipticity
of the current distribution. The rather small axial ratio (AR) of the current
distributions is typical for electrically small antennas.

A. Antennas on a cellular phone

In a first example antennas on a cellular phone are investi-
gated, see Fig 2. Embedded far field patterns were measured
in an unechoic chamber. The radiations centers are located
slightly inside the antennas on the ground plane, see Fig 3.
This indicates that the antenna currents flow partly on the
antennas and partly on the ground plane.

B. Antennas on a laptop

In a second example, a laptop mock-up with four antennas
on the lid is considered, see Fig. 4. These antennas were
designed for low correlation and broad band operation. The
measured far field data was used as input to the algorithm,
and the radiation center and the current distribution axis were
calculated for all ports at 750 MHz frequency. For the first
three antennas, the radiation centers are in the plane of the
lid, whereas for the rightmost antenna the radiation center is
located slightly off the lid. The explanation for this could
be radiation from the connecting cables or a measurement
impairment such as turn table blocking, or reflections in the
laptop keyboard. Note also the almost perpendicular current
distributions for the two top antennas, designed for low
correlation.

Fig. 4. Photo of the laptop computer equipped with four antennas (left) and
radiation centers with current distributions axes (right).

C. Columns of a base station antenna

A base station antenna consists of four horizontally dis-
tributed columns each equipped with doubly polarized ele-
ments with 45 degree slanted co-polarizations, see Fig. 5. This
antenna was purchased and investigated for beam forming and
MIMO capacity. The zig-zag pattern between the radiation
centers of the antenna columns, see Fig. 6, were later con-
firmed by dis-mounting the antenna radome.

As expected, a large axial ratio (AR) is found for the
elongated antenna columns, see Fig 6. Note that the current
distribution for each port consists of the total current on
all antenna elements in a vertical antenna column. Another
interesting note is that the axial ratio is slightly lower for the
outer columns.
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z-axis

z-axis

Fig. 5. A base station antenna with radome (upper) and without radome
(lower), Courtesy of Tongyu Communication Inc. The antenna is equipped
with eight antenna ports for the four columns of dual polarized antenna
elements. The ninth port is used for electrical tilt control. In the lower photo
it can be seen that the neighboring columns are shifted in a zig-zag pattern.

Fig. 6. Radiation centers and current distributions axes for the eight antenna
ports of the base station antenna. For each antenna port, a column of 10
antenna elements, of either +45◦ or −45◦ slanted linear polarization, are
fed.

D. Elements of a cylindrical array antenna

z-axis

Fig. 7. Photo of the cylindrical array antenna, with 64 dual-polarized antenna
patch elements on a faceted ground plane, mounted on the turn table ina roll
over azimuth setup. A top view of the antenna, in its orientation of operation,
is indicated with an arrow.

In a final example, we show a 64 element cylindrical array
antenna with dual polarized vertical/horizontal elements, and
designed for the band 2.5-2.6 GHz. The antenna element is a
dual stacked patch, and the element separation is 58 mm, i.e.,
λ/2 mm at 2.6 GHz, both in the vertical and the horizontal
direction. Embedded far field patterns at 2.5 GHz for all the
128 antenna ports were used as input to the algorithm. The
array antenna is depicted in Fig. 7. The radiation centers for
both polarizations and all 64 elements are depicted in Figs 8a
and b. Measurement impairments can be identified for at least
two elements in the bottom row, i.e. the row closest to the turn
table, see Fig. 8. The results for the vertical and horizontal
antenna polarizations are quite similar. Therfore, only results
for the vertical polarization are shown.

(a) 3D view

Deviating
elements

(b) Top view, see Fig. 7

Fig. 8. Radiation centers for the 64 element cylindrical array for the
vertically polarized antenna ports. The radiation centers are depicted as three-
dimensional crosses. A pair of stacked patches, for each antenna element, are
depicted as gray squares. The outer patch is slightly larger than the inner. In
the top view the antenna is viewed from the positive z-axis, see Fig. 7. For
two elements in the bottom row the radiation centers deviate from the general
trend which could be due to measurement impairments, e.g. reflections in the
turn table, see Fig. 7.
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V. CONCLUSION

The benefits of defining a radiation center using angular
momentum compared to the standard definition of phase
center [2] are: uniqueness is guaranteed; the numerical al-
gorithm is robust and fast if only translations and rotations
are efficiently implemented. Moreover, the method applies for
any radiation pattern. In addition, the orientation, ellipticity,
and electrical size of the antenna currents can be retrieved.

A numerical algorithm has been implemented and tested
on measured far field pattern data for a number of different
antenna types. The results show good agreement with mechan-
ical drawings of the antennas. Deviations from the mechanical
positions have reasonable explanations, e.g. currents on the
ground plane or measurement impairments. This method can
be used to detect the position of the antenna currents and to
detect measurement impairments. The exact physical meaning
of the radiation center is a task of future work.
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