

This is an author produced version of a paper presented at the
17th Nordic Teletraffic Seminar (NTS 17), Fornebu, Norway,

25-27 August, 2004.
This paper may not include the final

 publisher proof-corrections or pagination.

Citation for the published paper:
J. Andersson and M. Kihl, 2004,

"Load Balancing and Admission Control of
a Parlay X Application Server",

Seventeenth Nordic Teletraffic Seminar, NTS 17, Fornebu, Norway,
25-27 August 2004.

ISBN: 82-423-0595-1. Publisher: Fornebu : Telenor.

LOAD BALANCING AND ADMISSION CONTROL OF A
PARLAY X APPLICATION SERVER

JENS ANDERSSON AND MARIA KIHL
LUND UNIVERSITY, SWEDEN

DEPARTMENT OF COMMUNICATION SYSTEMS
email: {jens.andersson, maria.kihl}@telecom.lth.se

Abstract
To increase the number of services and applications in the telecommunication networks a new
service architecture has been proposed and specified. The consortia that initiated the new
service architecture is called Parlay. Since then, there has been a continued development and
3GPP the standardization group for 3G networks, is now cooperating with Parlay. 3GPP and
Parlay are together specifying the Parlay/OSA standard.

However, the aim with the new service architecture is to make the art of service
development so easy that any software developer should be a potential application developer
for telecommunication networks. It is foreseen to be a dramatic increase of new services, but
it has been shown that it is still complex to create new applications. Parlay X is a standard
which is an extension of Parlay/OSA, initiated to allow access to the telecommunication
network capabilities via web services. The Parlay X architectures include an Application
Server (AS), which translates the web service calls to Parlay/OSA commands. A typical AS is
a distributed environment sensitive to overload.

In this paper we propose and investigate an overload control mechanisms for an AS. The
methods have been implemented in a real AS to evaluate the performance. Parlay X is a
contract driven architecture, where different service providers have different constraints about
minimum number of service calls served per second and maximal delays of different services.
The methods and algorithms are designed to serve different service providers with different
contract parameters.

1. INTRODUCTION
In the telecommunication networks used today, each network operator have their own service
architecture. The service architecture is built on the Intelligent Network (IN) technology [1].
Since the IN technology was introduced it has been easier to create and introduce new
services and applications. But thorough knowledge and skills regarding the
telecommunication signalling and protocols has been a requirement for a service creator. The
limitations of the telecommunication networks have been highlighted by the explosive growth
of the Internet. One of the main reason of the growth is the large number of software
developers. In the Internet any software developer has the capability to create an application

reachable for any Internet user, a fact that has inspired the telecommunication operators to
think in new directions.

Parlay [2] and JAIN [3] are examples of groups that are developing Application Program
Interfaces (APIs) that allow applications to access network functionality. In this way the
telecom networks open up to IT developers, and development of new and innovative
applications is foreseen. As a complement to the Parlay APIs, another group started to
develop some APIs that could be used to provide access to applications on top of a Universal
Mobile Telecommunications System (UMTS) network. The group developing these APIs is
called Open Service Access (OSA) and is part of the 3GPP [4]. The Parlay/OSA APIs are
standardized, both by ETSI [5] and the 3GPP.

To reach even more IT developers the so called Parlay X web services have been
introduced, developed by the Parlay X working group within Parlay. Parlay X involves more
abstraction of the building blocks of telecom capabilities and with this architecture it is
possible for applications that reside in the Internet to reach a telecom capability by a single
command via a so called Application Server (AS). The AS is a distributed system that
performs the mapping between Parlay X commands and Parlay/OSA commands.

In the context of service architectures a common problem is overload. The congestion we
are interested of in this article occurs when there are too many applications that try to make
use of the same AS at the same time. To avoid congestion, load balancing algorithms have to
be combined with admission control. The load balancing and admission control methods are
well known concepts for congestion avoidance. Berger [6] has a discussion about different
admission control methods and Pham et al. [7] gives an example of an overload control
mechanism for IN. Dahlin [8] discusses what impact old information about the load status
should have on the decisions.

This paper gives an overall description of the Parlay/OSA and Parlay X service
architecture. It is focused to describe the Application Server and its functionality when
considering the Parlay X standard. We will also present an overload control algorithm that is
designed for a distributed Application Server with messages of different priorities. The
performance of the algorithms and methods is investigated by real measurements.

2. DESCRIPTION OF A PARLAY/OSA AND
PARLAY X ENVIRONMENT

The main advantage of introducing a Parlay/OSA environment is the increased ease of
creating new applications that may use the resources of a telecommunication network. This is
also the main reason why Parlay/OSA has been developed. Example of a network resource
can be setting up a call. Earlier, a developer was required to have great technical skills and
deep knowledge of telecommunication protocols to be able to implement an application in a
service architecture. With Parlay/OSA the network capabilities are abstracted and reached by
APIs. The API introduces so called Service Capability Features (SCFs) and each resource
provided by the network is abstracted to an SCF. So in order to use a certain network
capability, an appropriate SCF has to be called. More details about the SCFs can be found in
[10].

2.1 The architecture

The service architecture can be applied to any telecommunication network, and it is not
specified in which network the users should reside to be able to use the architecture. One of
the most discussed and promising topologies is when the end user of an application is
connected to the Internet. This is the architecture that we will treat in this paper. A Parlay/
OSA architecture connected to the Internet is often referred to as a Parlay X architecture
where the network resources are abstracted to so called Parlay X Web Services, see [11].

The architecture of a typical Parlay/OSA environment connected to the Internet can be
seen in Figure 1. The main elements needed to describe the architecture are Users, Service
Providers (SPs), Application Server (AS), Parlay/OSA Gateway and a Network.

• Users: The case we investigate is when the users of the applications are connected to
the Internet.

• SP: The SPs are hosting the applications. Either the SPs own the applications or the
owner of an application hire disk space at an SP. In a Parlay X architecture the SPs can
provide the application developers the capability to make use of a network resource via
a request using Simple Object Access Protocol (SOAP) transported by Hyper Text
Transfer Protocol (HTTP).

• AS: An AS in a Parlay X environment translates the SOAP requests to Parlay/OSA
commands. This means that the AS is a gateway to a network resource from the SPs
point of view. The AS is owned by the network operator.

• Parlay/OSA gateway: The Parlay/OSA gateway is owned by the network operator and
handles all advanced non-abstracted communication with the network.

• Network: The network can be either a mobile or a fixed telecommunication network.
Any network that gains from increased ease of creating new applications can adopt the
Parlay/OSA service architecture.

A typical request for service starts with some HTTP communication between an end user
and an application (for example click to dial). SOAP is used to specify what kind of network
resource that the application aims to use. The SOAP message is sent to the AS where the
messages are converted to call the appropriate SCF in the Parlay/OSA gateway. The
processing that really takes place in and with the AS is described in a later section. A SOAP
message arriving at the AS can cause much communication between the AS and the gateway.
The Parlay/OSA gateway is directly connected with the network. The SCFs are specified by

Figure 1. Architectural picture of an AS and Parlay/OSA environment

A
pp

li
ca

ti
on

s

Service
Providers

P
ar

la
y/

O
S

A
 G

W

N
et

w
or

k

U
S

E
R

S

H
T

T
P

SO
A

P

P
ar

la
y/

O
S

A
 A

P
I

AS

Pa
rl

ay
 X

 A
PI

Parlay/OSA standards, but it depends on the underlying network what SCFs that are
supported. More about the Parlay/OSA gateway can be found in [12].

Parlay/OSA and Parlay X is not yet widely used. The operators who has shown the largest
interest so far are operators for the fixed networks. They see great opportunities in providing
application initiated calls. The ease of use and the lucidity of the applications will increase
when they are presented on a monitor and controlled by text input.

2.2 Contracts

Parlay/OSA is a contract driven architecture. There are contracts between the AS and the
Parlay/OSA gateway and between the AS and the SPs. The contracts include several
constraints and restrictions, but we are only interested in the variables concerning the
performance. Constraints are often divided into hard or soft constraints. Hard constraints
should always be fulfilled, and soft constraint is more like a guideline. An example of a hard
constraint is the defined amount of application calls from a certain SP that at least should be
accepted each time unit. The time constraint for the maximal delay is a soft constraint. A
maximal number of application calls per time unit from an SP will also be agreed. If an SP
does not fulfil the constraints this will lead to that the Load Balancer/Admission Controller
(LB/AC) do not have to fulfil its undertakings.

3. THE APPLICATION SERVER
A detailed view of an AS is shown in Figure 2. An AS is a distributed architecture where
several Parlay X to Parlay converters (PX-P converters) are active at the same time. There is
also a coexistence of several SPs, each one with their own contract and constraints that should
be fulfilled. To be able to fulfil the constraints and avoid congestion at the PX-P converters a
Load Balancing / Admission Control (LB/AC) mechanism is used. It is important to
distinguish between the LB and the AC. The aim with the load balancing is to distribute the
messages among the PX-P converters such that about the same load is reached at each PX-P
converter. The aim with the admission control part is to reject some messages when the PX-P
converters are overloaded. When an application sends a message to the AS it is received by
the LB/AC. The LB/AC decides whether the message should be rejected or accepted and to
which PX-P converter it should be forwarded if accepted. In the PX-P converter the message
is mapped to corresponding Parlay/OSA communication, to serve the SOAP message request.
The architecture of the PX-P converters is built on a Common Object Request Broker
Architecture (CORBA) platform. Internal communication between the PX-P converters is
performed using CORBA messages. An AS typically consists of 2 to 30 PX-P converters. It is
difficult to predict how many SPs an Parlay/OSA architecture will embrace, as it is dependent
of the size of each SP and the popularity of the applications.

The case we investigate is when there are messages of three different kinds and with
different priorities supported in the AS. These are

• EndCall (priority 1), ends the ongoing call

• GetCallInfo (priority 2), requests information about the connected parties etc.

• MakeACall (priority 3), request to create a new call

 In the considered architecture the application calls are session based. This means that the
same PX-P converter must take care of the GetCallInfo messages and EndCall message
corresponding to the same application call. Therefore the call-id is the same for all messages
belonging to the same call. The call-id for an application call is assigned by the PX-P
converter at the arrival of a MakeACall request. The calls can either be ended by an EndCall
message or from the network side (e.g. the parties hang up), without noticing the AS.

3.1 Load Control Mechanism

The load control mechanism can be described by Figure 3. The LB/AC consists of a gate/
controller and a monitor. The monitor performs the measurements of the load at the PX-P
converters. Each time a message (request) is sent from the LB/AC to any of the PX-P
converters a thread is used. The same thread is later used for the response of the request, see
section 3.3. Exactly one thread is used for each request and therefore it is feasible to measure
the time between request and response to get an estimate of the current load. It must be
observed that the measured time does not give a precise measure of the current load condition.
Instead we get information about the load when the served message was sent. It is in the gate/
controller the algorithms for the load balancing and admission control are implemented.
Based on the information the gate/controller gets from the monitor it decides whether or not
the gate/controller should reject a new message of a certain kind. More about the algorithms

implemented in the gate/controller in a later section.

Application

Application

Application

Application

Application

Service Providers

LB/AC 1

PX - P
converter

PX - P
converter

PX - P
converter

Pa
rl

ay
/O

SA
 G

W

SP 1

SP 2
LB/AC 2

Application Server

Figure 2. Detailed view of the AS

Parlay X to
Parlay converter

Parlay X to
Parlay converter

Parlay X to
Parlay converterGate /

Monitor

LB/AC

Rejected messages

Figure 3. The load control mechanism

ne
w

 m
es

sa
ge

s

Controller

3.2 Objectives of this paper

The objectives are to investigate how an overload control algorithm can be implemented to
maximize the throughput and to get a robust system at the same time as the constraints are
considered. Each SP should have a guaranteed amount of accepted MakeACall messages each
time unit. There are possibilities that the PX-P converters will contain a database or other
software that require processor capacity and thereby may cause transients of load when the
converter is occupied by other processes. The algorithm is implementation in a real
environment and real measurements of the proposed mechanism should be compared with a
traditional overload control mechanism.

3.3 Example of a MakeACall Request

In Figure 4 the sequence diagram for a MakeACall message is shown. The first message (1)
is a makeACall. When the LB/AC receives the MakeACall message it decides whether to
accept or reject the new call. If the call is accepted a MakeACall message (2) is sent to PX-P
converter. The message is unwrapped and the converter sends a message (3) to inform the LB/
AC that the request now is processed. The LB/AC forwards the message (5) to the SP. When
this message is received the SP might at any time send GetCallInfo and EndCall messages
with the same call-id. The processing in the PGW (4) involves different amount of
communication dependent of how many participants the SOAP message attend to connect by
the MakeACall message. The messages sent between the PX-P converter and the PGW are
CORBA messages. Typically it takes 5 CORBA messages to connect two parties. The
communication with the PGW consists of calling appropriate Service Capability Features
(SCFs).

The sequence diagram for a GetCallInfo message is almost the same as shown in Figure 4
excluding message (4). An EndCall message has a sequence diagram identical to Figure 4,
where (4) correspond to 1 CORBA message.

SP LB/AC PX-P PGW

(1)

(2)

(4)(3)

(5)

SP: Service Provider
LB/AC: Load Balancer / Admission Control
PX-P: Parlay X to Parlay converter
PGW: Parlay Gateway

Figure 4. Sequence diagram of MakeCall

4. OVERLOAD CONTROL
In this section we will propose an overload control mechanism for robust protection of an AS.
We define overload as when the waiting times for the users are too long. The waiting time for
a user is defined as the time between message (1) and (5) in Figure 4. The time constraint for
the applications is denoted . The load control mechanism must also consider that each SP k

has a guaranteed rate of MakeACall messages per second. To explain the complete load

control mechanism, four stages are used, see Figure 5.

4.1 Rough Admission Control (Stage 1)

To protect the LB/AC node from overload a rough admission controller is used. The stage 1
mechanism rejects messages without treating them if the arrival rate is too high. LB/AC i only
agrees to have simultaneous threads to the SP. If the SP tries to establish an additional

thread the establishment is rejected without noticing the SP. In the contracts a maximal
number of messages sent per second, denoted will be agreed for the SP. If this number is

exceeded, correct treatment of priorities and notification of rejecting cannot be guaranteed. As
the time constraint for a message was set to we can assume that this is the maximal time a

thread is connected between the LB/AC and the SP. If the LB/AC shall treat messages per
time unit the number of threads needed can be calculated as follows

(EQ 1)
Stage 1 simply consist of an active counter of number of established threads.

L
oa

d
ba

la
nc

er

Protect LB/AC

If number of
established threads
exceeds new

establishments are
rejected

Ai

Fulfil guarantees

If the message is
a MakeACall
and bucket not
empty, the mess-
age is assigned
priority 1

According to the algorithm
presented in the stage 4 section
messages are accepted or
rejected dependent of their
priority and current load status

Stage 1 Stage 2 Stage 3 Stage 4

igure 5. Overview of the different stages in the LB/AC

Messages to
PX-P con-
verter 1

Messages to
PX-P con-
verter m

Prio. 1

Prio. 3
Prio. 2

Prio. 1

Prio. 3
Prio. 2

Se
rv

ic
e

Pr
ov

id
er

τ
dk

Ai

ri

τ
ri

Ai τ ri⋅=

4.2 Constraint Control (Stage 2)

When the LB/AC has explored which category an arriving message belongs to, the LB/AC
must control that the constraint of accepted MakeACall messages per second is fulfilled.

To fulfil the guaranteed number of accepted MakeACall messages for SP i we use a token
bucket of size and tokens arriving with rate . If there is a token in the bucket when a

MakeACall message arrives the message is given priority 1, the same priority as the EndCall
messages, and thereby it will always be accepted at later stages. Notice that each LB/AC only
have one bucket for controlling the guaranteed rate of MakeACall messages. If the bucket is
empty when a MakeACall message arrives, it is just forwarded to the next stage with the
original priority, 3. The GetCallInfo and EndCall messages are always forwarded with their
original priorities 2 and 1.

4.3 Load Balance (Stage 3)

We propose the use of weighted round robin algorithm for load balancing, since it is known to
be robust. The amount of messages a PX-P converter receives should be weighted by the
capacity of the PX-P converters. However, the algorithm should not be adopted to all
messages (i.e. all messages should not be load balanced), as a consequence of the session
based nature. Since the application calls are session based only the MakeACall messages are
distributed with the round robin algorithm. The GetCallInfo and EndCall messages can only
be served by a specific PX-P converter. Therefore it is not optimal to send a message to the
wrong PX-P converter as this would result in extra processing and waste of total processor
capacity. The information about which call-id that should be served by which PX-P converter
is maintained in a table. There is no information on how many active application calls there
are at the moment since the LB/AC is not noticed when a session ends from the network side.

4.4 Admission Control (Stage 4)

During overload situations in the converters some kind of action must be taken. The
admission control mechanism should choose which messages to serve and which to reject.
Overload is defined as when the messages cannot be served within the time constraint. If a
message is not served within the time constraint it is said to be an expired message. Notice
that the measurements are performed of the time from request to response in the LB/AC,
denoted . However, an expired message is defined as when the duration between

request and response at the SP, denoted , is larger than . The aim for the controller is
to keep

(EQ 2)

Proposed admission control algorithm

The following algorithm is designed to be sensitive to transients in the load condition of the
PX-P converters. To avoid buffering messages at the PX-P converters during overload it is

di

di di

∆tmeasured

∆tuser τ

∆tuser τ<

only allowed to have one active thread between an LB/AC and a PX-P converter. When a
message is load balanced it is sent to a priority queue. In the considered case with messages of
three priorities, each LB/AC have three queues for each PX-P converter, see Figure 5.
Statistics are maintained on how many messages of priority j that are present in a certain
queue and this number is denoted . The messages in the queues are assigned a time stamp
when the message are put into the queue. By using the time stamp information can be
maintained of how long a message has been queuing in the LB/AC, denoted . To

predict the load in the converters the measured times are used. is
actually expressing the load status when the message was sent to the converter, but we assume
that the load will not change too fast.

However, as we try to fulfil Equation 2 the converter cannot always serve all of the
messages in the queues. Messages cannot be queued too long as includes both
and . So first of all the messages, excluding priority 1 messages, that do not fulfil
the following constraint are rejected

(EQ 3)
as the service time for a message is assumed to be . The variable f is just a factor
less than 1, used to have a margin. Then the following comparison is performed to predict
from how many priority queues we can accept messages if the total time in the PX-P
converter, , remain the same and the constraint should be fulfilled

 (EQ 4)

The largest k for which the condition is fulfilled equals the highest priority that can be
accepted. Now the message that has been queuing longest in the LB/AC is chosen from any of
the queues with messages with a .

5. Configuration and setup parameters
In the simulations 4 SPs, 4 LB/ACs and 2 PX-P converters have been used. The equipment
used during the investigations was provided by Appium AB. The processing time for
handling a SOAP message (unwrapping and wrapping) in a PX-P converter is measured to be
about 2,5 ms. The processing time for handling a CORBA message is measured to be about
2,5 / 4 ms. This mean that the total service time in the converter for an EndCall message is
12,5 / 4 ms.

There are reasons to believe that the traffic to ASs will be rather bursty, since the AS in
Parlay X are reached from the Internet. It is actually the arrival process at the web servers
hosting the applications, which consequently will be the arrival process of new service calls
for the AS. In the context of web servers the arrival process is often modelled as a Markov
Modulated Poisson Process (MMPP), see Chen et al. [13]. We believe that MMPP is a good
assumption also in the context of ASs, and this scenario will be used to compare the proposed
algorithm with other algorithms. New MakeACall messages were generated according to a
four state MMPP with the means 25, 33, 50, 67 calls per second. Changes between the
different states occurred according to a poisson process with exponential distributed time

N j()

∆tqueued

∆tmeasured ∆tmeasured

∆tuser ∆tqueued
∆tmeasured

∆tmeasured ∆tqueued+ τ f⋅<
∆tmeasured

∆tmeasured

N j() ∆tmeasured⋅
j 0=

m

∑ τ f⋅<

priority j≤

intervals with mean 4 seconds. GetCallInfo messages are generated to a certain call-ID with
exponential distributed time intervals with mean three times higher than the MakeACall
messages. As no calls will be ended from the network in our setup EndCall messages are
generated with the same intensity as MakeACall messages. The behaviour of the proposed
overload control mechanism is also evaluated during steady state poisson arrivals with means
10, 25, 33, 50 and 67 calls/s.

The constraints of accepted MakeACall messages per second, was set to 25 for all SPs.
The value of was set to 250 ms and f was set to 0,9. is set to 25 for all of the LB/ACs.

6. Results and discussion
The proposed algorithm has successfully been implemented in a real Parlay X environment.
Comparisons of the proposed overload control mechanism in this paper is made with the
algorithm proposed in Andersson et. al. [14], and also with a common used algorithm in the
context of a system with priorities and time constraints.

6.1 Results during different load scenarios

The result during the different arrival processes described in section 5 is concluded by Table
1. From the results it is seen that the mechanism react and rejects more messages as the load
increases. As mentioned before it is not only by processing the messages that the PX-P
converters get loaded. Figure 6 shows how the service times varies over the time. The
transients in the figure is not a consequence of too many messages in the converters. Only 4
SPs are used, which result in a maximum of 4 messages at the same time in a converter. The
sudden peaks are created when a converter starts to process other processes. This is also the
reason why some of the messages are expired. As none of the priority 1 messages are rejected
the priority 1 queue gets long when a converter is occupied with other processes. Assume that

di
τ Ai

0 500 1000 1500 2000 2500 3000 3500 4000
0

200

400

600

800

1000

1200

Accepted messages

∆t
us

er
 (m

s)

Figure 6. Typical outcome of during a realisation.∆tuser

a converter is busy for over 250 ms. Then the priority 1 queue may get full during a heavy
load scenario. Therefore 25 messages are expired each time something like that happen.
Despite that, the rate of expired messages is quite low. From the table it is also seen that when
enough messages are provided, there is always more than 2500 MakeACall messages
accepted (the guaranteed value during 100 seconds). This indicate that stage 2 in the
algorithm function sufficient.

6.2 Comparison with other algorithms

The algorithm proposed in Andersson et. al. [14] is quite similar to the one in this paper. The
algorithm presented in this paper can yet deal with a system where other processes are
prioritized and a converter may be unavailable during a time interval. As the proposed
algorithm only use one thread it will have instant feedback to stop sending messages. With the
mechanism presented in [14] such a scenario only result in a lower rate of messages. Too
many messages queued at a converter seem to result in an unpredictable behaviour, not
preferable. Measurements have shown bad results of expired messages with that algorithm.

Measurements of a traditional overload control mechanism has also been performed for
comparison. This traditional mechanism make the decision whether a message should be
rejected or accepted at once when a message arrives. This mechanism cannot guarantee the
amount of MakeACalls but it does consider priorities. The decision of rejection is based on
how many messages that have been sent during the preceding time interval. A similar stage 1
rejection mechanism as in the proposed mechanism is also included in this mechanism. When
measurements are performed with the traditional mechanism during the MMPP arrival
process the following results are obtained: 5% expired messages, a meantime of 68 ms, 3000

Table 1: Outcome during different scenarios of arrivals

100 s simulation
scenarios

Steady state
10/s

Steady state
25/s

Steady state
33/s

Steady state
50/s

Steady state
67/s

MMPP
proposed

mechanism

rejected prio. 2
messages

0,1% 0,5% 0,9% 3% 11% 4%

Rejected prio. 3
messages

0% 0% 4% 15% 35% 17%

tot. accepted
MakeACalls

1000 2400 3100 3400 3500 3300

tot. accepted
GetCallnfos

3000 6900 8400 9100 7000 7600

tot. accepted
EndCalls

1000 2400 3100 3300 3300 3200

Mean service
time

10ms 19ms 19ms 70ms 127ms 65ms

Expired mes-
sages

0.2% 1% 1% 6% 14% 5%

MakeACalls accepted, 7000 GetCallInfos accepted and 2850 EndCalls accepted. These
values compared to the results for the proposed mechanism show how we gain in throughput,
compare with Table 1. The throughput increases as messages are buffered waiting to see if the
current load is decreasing such that it is feasible to succeed the deadline despite heavy load at
the moment.

7. CONCLUSIONS
In this paper we have described a Parlay X application server and its environment and also
proposed and evaluated an overload control algorithm for the application server. The overload
control mechanism could handle constraints of guaranteed amount of application calls,
messages of different priorities and constraints of maximal delay from request to response.
When comparing the proposed mechanism with a classical mechanism the rate of expired
messages and mean time for service was about same, but the total number of accepted
messages during 100 seconds clearly differed to advantage for the proposed method. This is
the gain by buffering messages in the proposed method, compared to the classical method
where decisions are taken immediately at an arrival.

Acknowledgement
The authors would like to thank Christian Zieger and Per Karlsson for their help with
implementation and measurements. This work was financially supported by VINNOVA proj.
nbr. 23918-2.

REFERENCES

[1] I. Faynberg; L.R. Gabuzda; M.P. Kaplan and N.J. Shah, 1996. The Intelligent Network Standards:
Their Application to Services, 1st edition, McGraw-Hill

[2] Parlay Group, http://www,parlay.org
[3] JAIN, http://java.sun.com/products/jain/index.html
[4] 3GPP, http://www.3gpp.org
[5] ETSI, http://www.etsi.org
[6] A W Berger, 1991. "Overload control using rate control throttle: selecting token bank capacity for

robustness to arrival rates", IEEE Transactions on Automatic Control, vol 36
[7] Pham X H, Betts R, 1992. "Congestion Control for Intelligent Networks", In proceedings of 1992

international Zurich Seminar On Digital Communications
[8] M Dahlin, 2000. "Interpreting Stale Load Information", IEEE Transactions on parallel and distrib-

uted systems, vol 11, no 10
[9] Stallings W, 2000. Data and Computer Communications, Prentice-Hall, NJ
[10] ETSI standard 202 915-1 V1.2.1, 2003. " Open Service Access (OSA): API; Part 1: Overview",

http://www.3gpp.org
[11] White paper, 2002. "Parlay APIs 4.0; Parlay X Web Services", http://www.parlay.com, dec
[12] A Moerdijk, L Klostermann, 2003. "Opening the networks with PARLAY/OSA APIs: standards

and aspects behind the APIs", IEEE Network Magazine, Vol. 17 Nbr. 3, May
[13] Chen X, Mohapatra P and Chen H, 2001. “An Admission Control Scheme for Predictable Server

Response Time for Web Accesses”, In proceeding of 10th WWW Conference, Hong Kong
[14] Andersson J, Kihl M and Söbirk D, 2004. “Overload Control of a Parlay X Application Server”,

In proceeding of SPECTS 2004, San Jose

