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Bayesian Combination of Multiple Plasma Glucose
Predictors

F. Ståhl, R. Johansson and Eric Renard

Abstract—This paper presents a novel on-line approach of
merging multiple different predictors of plasma glucose into
a single optimized prediction. Various different predictors are
merged by recursive weighting into a single prediction using
regularized optimization. The approach is evaluated on 12 data
sets of type I diabetes data, using three parallel predictors. The
performance of the combined prediction is better, or in par, with
the best predictor for each evaluated data set. The results suggest
that the outlined method could be a suitable way to improve
prediction performance when using multiple predictors, or as a
means to reduce the risk associated with definite a priori model
selection.

I. INTRODUCTION

Type I Diabetes Mellitus (IDDM) is a chronic metabolic
disease characterized by impaired plasma glucose regulation.
Maintaining normoglycemia is crucial in order to avoid both
immediate and long-term complications, and to this end, sev-
eral insulin injection are taken daily by pen injection devices or
using an insulin pump. Therapy decision are determined based
on-the-spot information provided by infrequent blood (plasma)
glucose (BG) measurements, and more recently also by the
so-called Continuous Glucose Measurement Systems (CGM)
providing interstitial glucose values every 5 or 10 min, together
with the patient’s and/or the care provider’s knowledge and
understanding of the patient-specific glucose dynamics.

To further facilitate the therapy outcome, numerous predic-
tive models of plasma glucose dynamics have been suggested
in the literature [19], [3], both for the purpose of closed-loop
insulin pump based control in a MPC framework [6], and as
a means to decision support in itself [24]. These predictors
are based on different methods and data; purely empirical
[14], derived from physiological models [9] or a combination
thereof [7], [10], and designed for, and validated on different
usage scenarios. Selecting among the different predictors a
priori is a challenging task, and considering the complex
dynamics of plasma glucose metabolism, there is good reason
to believe that different predictors may be experts in specific
conditions, and that no single model will be able to fully
capture the dynamics alone. To overcome the problem of a
priori model selection, and to take advantage of the different
levels of expertise, merging of multiple predictors on an on-
line basis is an interesting option.
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Fusion of models for the purpose of prediction was devel-
oped in different research communities, such as in the me-
teorological and econometric communities where regression-
oriented ensemble prediction has been a vivid research area
since the late ’60s, see e.g. [25] and [11].

Also in the machine learning community the question of
how different predictors or classifiers can be used together
for increased performance has been investigated and different
algorithms developed such as the bagging, boosting [5] and
weighted majority [20] algorithms, and on-line versions of
these [23], [17].

In most approaches the merged prediction ŷe
k at time k

is formed by a linear weighted average of the individual
predictors ŷk.

ŷe
k = wT

k ŷk (1)

It is also common to restrict the weights wk to [0,1]. The
possible reasons for this are several, where the interpretation
of the weights as probabilities, or rather Bayesian beliefs,
is the dominating. Such restrictions are however not always
applicable, e.g., in the related optimal portfolio selection
problem where negative weight (short selling) can reduce the
portfolio risk [12].

A special case considering distinct switches between dif-
ferent linear system dynamics has been studied mainly in
the control community. The data stream and the underlying
dynamic system are modelled by pure switching between
different filters derived from these models, i.e., the weights
wk can only take value 1 or 0. A lot of attention has been
given to reconstructing the switching sequence, see e.g. [15],
[22]. From a prediction viewpoint, the current dynamic mode
is of primary interest, and it may suffice to reconstruct the
dynamic mode for a limited section of the most recent time
points in a receding horizon fashion [1].

Combinations of specifically adaptive filters has also stirred
some interest in the signal processing community. Typically,
filters with different update rate are merged to benefit from
each filter’s specific change responsiveness respectively steady
state behavior [2].

Finally, in fuzzy modeling, soft switching between multiple
models is offered using fuzzy membership rules in the Takagi-
Sugeno systems [27].

This paper presents a novel approach combining elements
from both the switching and averaging techniques above,
forming a ’soft’ switcher in a Bayesian framework. The paper
is organized as follows; in Sec. II the problem formulation is
presented, Sec. III describes the algorithm, Sec. IV discusses
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suitable cost functions, Sec. V presents the data obtained in the
DIAdvisor project and the evaluation metrics, Sec. VI gives
the results, which are discussed in Sec. VII, and Sec. VIII
concludes the paper.

II. PROBLEM FORMULATION

CGM measurements yk ∈ R, used as a proxy for plasma
glucose, and additional data uk are sampled at a fixed rate,
together forming the data zk, at time tk ∈ {1,2, ...}. The data
uk provide information about meal and insulin intake.

Given m number of expert p-steps-ahead predictions at
time tk, ŷ j

k+p|k, j ∈ {1, ..m}, each utilizing different methods,
and/or different training sets; how is a Clarke Error [8]
optimal p-steps-ahead prediction ŷe

k+p|k of the plasma glucose
yk determined?

III. SLIDING WINDOW BAYESIAN MODEL AVERAGING

Apart from conceptual differences between the different
approaches to ensemble prediction, the most important differ-
ence is how the weights are determined. Numerous different
methods exist, ranging from heuristic algorithms [27], [2] to
theory based approaches, e.g. [16]. Specifically, in a Bayesian
Model Averaging framework [16], which will be adopted in
this paper, the weights are interpreted as partial beliefs in each
predictor model Mi, and the merging is formulated as:

p(yk+p|Dk) = ∑
i

p(yk+p|Mi,Dk)p(Mi|Dk) (2)

and, if only point-estimates are available one can e.g. use:

ŷe
k+p|k = E(yk+p|Dk) (3)

= ∑
i
E(Mi|Dk)E(yk+p|Mi,Dk) (4)

= wT
k ŷk (5)

w(i)
k = E(Mi|Dk) (6)

p(w(i)
k ) = p(Mi|Dk) (7)

Where ŷe
k+p|k is the combined prediction of yk+p using infor-

mation available at time k, Dk : {z1:k} is the data received up
until time k, w(i)

k indicates position i in the weight vector. The
conditional probability of predictor Mi can be further expanded
by introducing the latent variable Θ j.

p(Mi|Dk) = ∑
j

p(Mi|Θ j,Dk)p(Θ j|Dk) (8)

or in matrix notation

p(wk) =
[
p(wk|θk=Θ1) . . . p(wk|θk=ΘM )

]
p(Θ|Dk) (9)

Here Θ j represents a predictor mode, and likewise θk the
prediction mode at time k, p(Θ|Dk) is a column vector
of p(Θ j|Dk), j = {1 . . .M} and p(wk|Θi) is the joint prior
distribution of the conditional weights of each predictor model
given the predictor mode Θi.

Data for estimating the distribution for p(wk|Θi) is given by
the following constrained optimization.

{wk}T = argmin
k+N/2

∑
i=k−N/2

L (y(ti),wT
k ŷi), k ∈ T (10)

s.t. ∑
j

w( j)
k = 1 (11)

Where T represents the time points in the training data, N
is the size of the evaluation window and L (y, ŷ) is a cost
function. Next, cluster analysis is attempted by e.g., using a
Gaussian Mixture Model (GMM) or the k-means algorithm,
giving M different predictor mode clusters. Unless given by the
cluster identification, prior distributions can be estimated by
the Parzen window method [4], giving mean w0|Θi = E(wk|Θi)
from these cluster data sets. An alternative to the Parzen
approximation is of course to estimate a more parsimoniously
parametrized pdf (e.g., Dirichlet) for the extracted data points.
Now, in each time step k the wk|θk−1

is determined from the
sliding window optimization below by taking advantage of
the information provided in the cluster pdfs and the posterior
p(M|Dk), if provided. First, determine the optimal weight
given the N most recent predictions and the predictor mode
θk−1.

wk|θk−1
= argmin

k−1

∑
j=k−N

µ
k− jL (y j,wT

k|θk−1
ŷ j) (12)

+(wk|θk−1
−w0|θk−1

)Λ(wk|θk−1
−w0|θk−1

)T (13)

s.t. ∑
j

w( j)
k|θk−1

= 1 (14)

Here, µ is a forgetting factor, w0|θk−1
is the mode center for

the active mode and Λ is a regularization parameter.
The p(wk|θk

) prior density functions can be seen as defining
the region of validity for each predictor mode. If the wk|θk−1
estimate leaves the current active mode region θk−1 (in a sense
that p(wk|θk−1

) is very low) it can thus be seen as an indication
of that a mode switch has taken place.

Next, a logical test is used to determine if a mode switch
has occurred. The predictor mode is switched to mode Θi, if:{

p(Θi|wk,Dk)> λ , and
p(wk|Θi,Dk)> δ

(15)

where

p(Θi|wk,Dk) =
p(wk|Θi,Dk)p(Θi|Dk)

∑ j p(wk|Θ j,Dk)p(Θ j|Dk)
(16)

Where a λ somewhat larger than 0.5 gives a hysteresis
effect to avoid chattering between modes, and δ assures
that non-conclusive situations, evaluated on the outskirts of
the probability functions, don’t result in switching. Unless
otherwise estimated from data, the conditional probability of
each prediction mode p(Θi|Dk) is set equal for all possible
modes, and thus cancels in (16). The logical test is evaluated
using the priors received from the pdf estimate and the wk|θk
received from (14).
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Finally, the weights are determined by rerunning (14) with
the new mode.

Now, since only one prediction mode θk is active; (9)
reduces to p(wk) = p(wk|θk

).
The length N of the evaluation period is, together with the

forgetting factor µ , a crucial factor determining how fast the
ensemble prediction reacts to sudden changes in dynamics.
A small forgetting factor will put much emphasis on recent
data making it more agile to sudden changes. However, the
drawback is of course that the noise sensitivity increases.

Λ should also be chosen such that a sound balance between
flexibility and robustness is found, i.e., a too small Λ may
result in over-switching, whereas a too large Λ will give a
stiff and inflexible predictor. Furthermore, Λ should force the
weights to move within the perimeter defined by p(w|Θi).
This is approximately accomplished by setting Λ equal to
the inverse of the covariance matrix Rθk of an approximative
Gaussian distribution of the active cluster distribution.

The ensemble engine outlined above will hereafter be re-
ferred to as Sliding Window Bayesian Model Averaging (SW-
BMA) Predictor.

IV. CHOICE OF L

A suitable cost function for determining appropriate weights
should take into account that the consequences of acting on too
high glucose predictions in the lower BG region (<90 mg/dl)
could possibly be life threatening. The margins to low blood
glucose levels that may result in coma and death are small, and
blood glucose levels may fall rapidly. Hence, much emphasis
should be put on securing small positive predictive errors and
sufficient time margins for alarms to be raised in due time in
this region. In the normoglycemic region (here defined as 90-
200 mg/dl) the predictive quality is of less importance. This is
the glucose range that non-diabetics normally experience, and
thus can be considered, from a clinical viewpoint in regards
to possible complications, a safe region. However, due to
the possibility of rapid fluctuation of the glucose into unsafe
regions some considerations of predictive quality should be
maintained.

Based on the cost function in [18] the selected cost function
incorporates these features; asymmetrically increasing cost of
the prediction error depending on the absolute glucose value
and the sign of the prediction error.

In Fig. 1 the cost function can be seen plotted against
relative prediction error and absolute blood glucose value.

A. Correspondence to the Clarke Grid Error Plot

A de facto accepted standardized metric of measuring the
performance of CGM signals in relation to reference measure-
ments, and often used to evaluate glucose predictors, is the
Clarke Grid Plot [8]. This metric meets the minimum criteria
raised earlier. However, other aspects makes it less suitable;
no distinction between prediction errors within error zones,
instantaneous switches in evaluation score, etc.

In Fig. 2 the isometric cost of the chose cost function for
different prediction errors at different BG values has been
plotted together with the Clarke Grid Plot. The boundaries

Fig. 1. Cost function of relative prediction error.

of the A/B/C/D/E areas of the Clarke Grid can be regarded
lines of isometric cost according to the Clarke metric. In the
figure the isometric cost of the cost function has been chosen
to correspond to the lower edge defined by the intersection of
the A and B Clarke areas. Thus, the area enveloped by the
isometric cost can be regarded as the corresponding A area of
this cost function. Apparently it puts much tougher demands
both in the lower and upper BG regions in comparison to the
Clarke Plot.
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Fig. 3. Example of distribution of weights in the training data by (11) and
clusters given by the k-means algorithm. The red ellipses represent the fitted
Gaussian covariances of each cluster. (Patient 0103, Trial B)

V. DATA AND EVALUATION CRITERIA

A. Predictors
Three different predictors of different structure were used in

this study; a state-space-based model (SS) (model M1 in [26]),
a recursive ARX model [13] and a kernel-based predictor [21].
The SS and ARX models furthermore utilized inputs generated
by population parametrized sub models describing the flux and
digestion of insulin and glucose following an insulin injection
or meal intake [9]. For further information regarding these
predictors and the underlying models the reader is referred to
[26], [13], [21].

B. Training and Test data
Data records from three different in-hospital trials conducted

at the Montpellier University Hospital have been used. Each
trial ran over three days with standardized meals at scheduled
hours. No specific intervention on the usual diabetes treatment
was undertaken during the studies since a trueful picture of
normal blood glucose fluctuation and insulin-glucose interac-
tion was pursued. Apart from notations on meal and insulin
administration, glucose was monitored by CGM and frequent
plasma glucose measurements (> 40 daily). The BG data was
sufficiently rich to allow interpolation (cubic), and was used
for evaluation purposes.

A number of patients participated in all three trials. Based
on data completeness, six of these have been selected for this
study.

The first trial data (DAQ) was used to train the individual
predictor models. The second and third trial data (DIAdvisor I
B and C) were used to train and cross-validate the SW-BMA,
i.e., the SW-BMA was trained on B data and validated on C
data, and vice versa.

C. Evaluation Criteria
The prediction results were compared to the interpolated

BG in terms of Clarke Grid Analysis and the complementary
Root Mean Square Error (RMSE).

VI. RESULTS

A. Training the mode switcher
1) Cluster Analysis - Finding the Modes: The three predic-

tors were used to create 40 minute ahead predictions for both

Fig. 4. Example of estimated probability density functions for the different
predictor mode clusters in the training data. (Patient 0103, Trial B)

training data sets DTB(C)
. Using (11) with N = 20 the weights

{wk}TB(C)
were obtained; example depicted in the (w1,w2)

plane in Fig. 3. The weights received from the training are
easily visually recognized as belonging to different groups
(true for all patients, not shown). Attempts were made to
find clusters using a GMM by the EM algorithm, but without
viable outcome. This is not totally surprising considering e.g.
the constraints 0 ≥ wi ≥ 1 and ∑w = 1. A more suitable
distribution, often used as a prior for the weights in a GMM,
is the Dirichlet distribution, but instead the simpler k-means
algorithm was applied using four clusters (number of clusters
given by visual inspection of the distribution of {wk}TB(C)

),
providing the cluster centers w0|Θi .

The corresponding probability distribution for each mode
p(w|Θi), projected onto the (w1,w2)-plane, was estimated by
Parzen window technique, and an example can be seen in Fig.
4. Gaussian distributions were fitted to give the covariance
matrices RΘi used in (14).

2) Feature selection: The posterior mode probability
p(Θ|Dk) is likely not dependent on the entire data Dk, but
only a few relevant data features, possible to extract from
Dk. Features related to the performance of a glucose predictor
may include meal information, insulin administration, level of
activity, measures of the glucose dynamics, etc. By plotting
the training CGM data, colored according to the best mode
at the prediction horizon retrieved by the training, interesting
correlations become apparent (Fig. 5). The binary features in
Table I were selected.

Meals were considered to be announced 30 minutes before
the meal.

From the training data the posterior mode probabilities
p(Θi| f j) given each feature f j were determined by the ratio
of active time for each mode over the time periods when each
feature was present. Additionally, the overall prior p(Θi) was
determined by the total ratio of active time per cluster over
the entire test period.

The different features are overlapping, and to resolve this
issue they were given different priority—only allowing the
feature of highest priority, f ∗k to be present at each time step
tk. Thereafter, p(Θ|Dk) = p(Θ| f ∗k ) is determined. If no feature
is active the p(Θ|Dk) is approximated by the p(Θi) estimate.
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Fig. 5. Example of CGM coloured according to best predictor mode in 40
minutes together with active features. (patient 0103, Trial B)

TABLE I
SELECTED FEATURES. ε CORRESPONDS TO THE MAXIMUM AMPLITUDE OF
GLUCOSE RATE-OF-APPEARANCE, Ra AFTER DIGESTING 10 G CHO, AND

∆BG = BGk−BGk−5

Feature Threshold Priority
Meal max(Rak, ..,Rak+30)> ε 1

Rising mean (∆BGk−10, . . . ,∆BGk) 2
BG > 30 mg/(dl· h)

Falling mean (∆BGk−10, . . . ,∆BGk) 3
BG <−18 mg/(dl· h)

Meal and See above. 4
rising BG

Meal maxRa(k−30, ...,k)< ε and 5
Onset maxRa(k, ...,k+30)> ε

B. Prediction Performance on test data

Using the estimated mode clusters {w0|i,R0|i}, i = [1 . . .M],
and the estimated posteriors p(Θi| f ∗) from Trial B (C), the
ensemble machine was run on the Trial C (B) data. The
parameter µ was set to 0.8 and N to 20 minutes. An example
of the distribution of the weights wk for the three predictors
can be seen in Fig. 6.

Table II summarizes a comparison of predictive perfor-
mance over the different patient test data sets for the RMSE
evaluation criteria, and in Table III the evaluation in terms
of Clarke Grid Analysis is given. The optimal switching
approach, here defined as using the non-causal fitting by Eq.
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Fig. 6. Example of the distribution of weights in the test data using the
estimated clusters and feature correlations. (Patient 0108, Trial B)

(11), is used as a measure of optimal performance of a linear
combination of the different predictors.

TABLE II
PERFORMANCE EVALUATION FOR THE 40 MINUTE SW-BMA PREDICTION

COMPARED TO THE OPTIMAL SWITCHING AND THE INDIVIDUAL
PREDICTORS. THE METRIC IS THE ROOT MEAN SQUARE ERROR (RMSE),
NORMALIZED AGAINST THE BEST INDIVIDUAL PREDICTOR M1−M3 FOR

EACH PATIENT.

median RMSE
RMSEbest

[min-max]
Merging Strategy Trial B Trial C

SW-BMA 1.03 [0.75-1.04] 1.03 [0.94-1.05]
Optimal switching 0.97 [0.54-1.0] 0.94 [0.73-1.0]

2:nd best individual pred. 1.16 [1.09-1.27] 1.21 [1.04-1.37]
Worst individual pred. 1.44 [1.25-1.73] 1.45 [1.18-1.83]

TABLE III
PERFORMANCE EVALUATION FOR THE 40 MINUTE SW-BMA PREDICTION

COMPARED TO THE OPTIMAL SWITCHING AND THE BEST INDIVIDUAL
PREDICTOR BY THE AMOUNT OF DATA (%) IN THE ACCEPTABLE A/B

ZONES VS THE DANGEROUS D AND E ZONES.

Merging Strategy Trial B Trial C
A/B D E A/B D E

SW-BMA 95.5 2.2 0 95.3 3.0 0.1
Optimal switching 96.2 1.7 0 96.9 1.3 0

Best individual pred. 94.8 2.6 0 95.0 3.4 0

VII. DISCUSSION

Compared to the individual predictors the SW-BMA has, for
most patients, the same RMSE and Clarke Grid performance as
the best individual predictor. In one case the merged prediction
clearly outperformed also the best predictor ( RMSE

RMSEbest
= 0.75).

However, comparison to the optimal switcher indicates that
there is still further room for improvement. To fill this gap,
timely switching is most important. A crucial part of the
algorithm is thus to select important features with significant
correlations to mode switching, in order to improve the likeli-
hood that the best predictor mode is used at each time. Further
research is needed to improve this aspect.

VIII. CONCLUSIONS

In this paper a novel merging mechanisms for multiple
glucose predictor has been proposed and evaluated on 12 data
sets from a clinical trial. The results show that the merged
prediction has a predictive performance in comparison with
the best individual predictor in each case.

This early assessment indicates that the concept may prove
useful when dealing with several individual glucose predictors
of uncertain reliability, or as a means to improve predictive
quality if the predictions are diverse enough.

Further research will be undertaken to investigate how
interesting features should be extracted, and in regards to the
possibility of making the algorithm unsupervised.
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