
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Feedback Scheduling of Control Tasks

Cervin, Anton; Eker, Johan

Published in:
Proceedings of the 39th IEEE Conference on Decision and Control, 2000.

DOI:
10.1109/CDC.2001.914702

2000

Link to publication

Citation for published version (APA):
Cervin, A., & Eker, J. (2000). Feedback Scheduling of Control Tasks. In Proceedings of the 39th IEEE
Conference on Decision and Control, 2000. (Vol. 5, pp. 4871-4876). IEEE - Institute of Electrical and Electronics
Engineers Inc.. https://doi.org/10.1109/CDC.2001.914702

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/CDC.2001.914702
https://portal.research.lu.se/en/publications/6f4f6761-958c-4240-8c29-703ba45fa6e3
https://doi.org/10.1109/CDC.2001.914702

Proceedings of the 39" IEEE
Conference on Decision and Control
Sydney, Australia December, 2000

Feedback Scheduling of Control Tasks

Anton Cervin Johan Eker

Department of Automatic Control
Lund Institute of Technology

Box 118, SE-221 00 Lund
Sweden

{anton,johane)@control.lth.se

Abstract

The paper presents a feedback scheduling mecha-
nism in the context of co-design of the scheduler
and the control tasks. We are particularly interested
in controllers where the execution time may change
abruptly between different modes, such as in hy-
brid controllers. The proposed solution attempts to
keep the CPU utilization at a high level, avoid over-
load, and distribute the computing resources evenly
among the tasks. The feedback scheduler is im-
plemented as a periodic or sporadic task that as-
signs sampling periods to the controllers based on
execution-time measurements. The controllers may
also communicate feedforward mode-change infor-
mation to the scheduler. As an example, we con-
sider hybrid control of a set of double-tank processes.
The system is evaluated, from both scheduling and
control performance perspectives, by co-simulation of
controllers, scheduler, and tanks.

1. Introduction

There is currently a trend towards more flexible real-
time control systems. By combining scheduling the-
ory and control theory, it is possible to achieve higher
resource utilization and better control performance.
To achieve the best results, co-design of the sched-
uler and the controllers is necessary. This research
area is only beginning to emerge, and there is still
a lot of theoretical and practical work to be done,
both in the control community and in the real-time
community.
Control tasks are generally viewed by the schedul-
ing community as hard real-time tasks with fixed
sampling periods and known WCETs. Upon closer
inspection, neither of these assumptions need neces-
sarily be true. For instance, many control algorithms
are quite robust against variations in sampling pe-
riod and response time. Controllers can be designed
to switch between different modes with different exe-
cution times and perhaps also different sampling in-

tervals. It is also possible to consider control systems
that are able to do a trade-off between the available
computation time and the control loop performance.
As an example throughout this paper, we study the
problem of scheduling a set of hybrid-control tasks.
Such tasks are good examples of tasks that do not
really meet the assumptions commonly made in the
scheduling theory. A hybrid controller switches be-
tween different modes, which may have very dif-
ferent execution-time characteristics. Utilizing only
worst-case execution-time (WCET) estimates in the
scheduling design can result in very low resource
utilization, slow sampling, and low control perfor-
mance. On the other hand, if instead, average-case
execution-time estimates are used in the scheduling
design, the CPU may experience transient overloads
during run-time. This, again, can result in low con-
trol performance, and even temporary shut-down of
the controllers.
In this work, we present a feedback scheduler for
control tasks that attempts to keep the CPU utiliza-
tion at a high level, avoid overload, and distribute
the computing resources evenly among the tasks.
While we want to keep the number of missed dead-
lines as low as possible, control performance is our
primary objective. Thus, control tasks, in our view,
fall in a category somewhere between hard and soft
real-time tasks. The known-WCET assumption is re-
laxed by the use of feedback from execution-time
measurements. We also introduce feedforward to fur-
ther improve the regulation of the utilization.
The structure of the feedback scheduler is shown in
Figure 1. A set of control tasks generate jobs that
are fed to the run-time dispatcher. The scheduler
gets feedback information about the actual execu-
tion time, Ci, of the jobs (it is assumed that this
information can be provided by the real-time oper-
ating system). It also gets feedforward information
from control tasks that are about to switch mode.
This way, the scheduler can proact rather than react
to sudden changes in the workload. The scheduler

0-7803-6638-7/00$10.00 0 2000 IEEE 4871

mode changes

Scheduler ispatche

Figure 1 The feedback scheduling structure.

tries to keep the utilization, U, as close as possible
to the utilization setpoint, U,. This is done by ma-
nipulating the sampling periods, { Ti}. The choice of
utilization setpoint depends on the scheduling pol-
icy of the dispatcher, and on the sensitivity of the
controllers to missed deadlines. Notice that the well-
known, guaranteed utilization bounds of 100% for
earliest-deadline-first (EDF) scheduling and 69% for
fixed-priority scheduling [Liu and Layland, 19731 are
not valid in this context, since the assumptions about
known, fked WCETs and fixed periods are violated.
The calculated task periods should reflect the rela-
tive importance of the different control tasks. One
possibility is to assign nominal sampling periods to
the controllers off-line. The feedback scheduler can
then do linear rescaling of the task periods to achieve
the desired utilization. The controllers are informed
of the new sampling periods and may adjust their
parameters if necessary. Other possibilities could in-
clude on-line optimization of a control performance
criterion over the task periods, subject to the uti-
lization constraint. The feedback scheduler is in the
end also implemented as a periodic or sporadic task
that consumes computing resources. There is a fun-
damental trade-off between the time that should be
spent doing scheduling, and the time left over for
control computations.

1.1 Related Work
A survey of related work in the area of control and
CPU scheduling is found in [k z h et al., 20001. Fur-
ther references can be found in the theses (Cervin,
20001 and [Eker, 19991.
Closely related to our work, [Stankovic et al., 19991
presents a general scheduling algorithm that explic-
itly uses feedback. A PID controller regulates the
deadline miss-ratio for a set of soft real-time tasks
with varying execution times by adjusting their re-
quested CPU utilization. It is assumed that the tasks
can change their CPU consumption by executing dif-
ferent versions of the same algorithm. An admission
controller is used to accommodate large changes in
the workload.

2. A Hybrid Controller

A hybrid controller for the double-tank process, see

Figure 2 "he double-tank process.

Figure 2, is described. The controller was designed
and implemented in [Eker and Malmborg, 19993. The
goal is to control the level of the lower tank to a
desired setpoint. The measurement signals are the
levels of both tanks, and the control signal is the
inflow to the upper tank. Choosing state variables
xl (t) for the upper tank level and xz(t) for the
lower tank level, we get the nonlinear state-space
description

The process constants a and p depend on the cross-
sections of the tanks, the outlet areas, and the
capacity of the pump. The control signal u (t) is
limited to the interval [0,1].
Traditionally there is a trade-off in design objectives
when choosing controller parameters. It is usually
hard to achieve the desired step-change response
and at the same time get the wanted steady-state
behavior. An example of contradictory design crite-
ria is tuning a PID controller to achieve both fast
response to setpoint changes, fast disturbance rejec-
tion, and no or little overshoot. In process control it
is common practice to use PI control for steady state
regulation and to use manual control for large set-
point changes. One solution to this problem is to use
a hybrid controller consisting of two sub-controllers;
one PID controller and one time-optimal controller,
together with a switching scheme. The time-optimal
controller is used when the states are far away from
the reference point. Coming close, the PID controller
will automatically be switched in to replace the time
optimal controller.
The sub-controller designs are based on a lineariza-
tion of Equation (1):

d"c dt = [-," 3 x (t) + [i] u(t) . (2)

The new process parameters a and b are functions
of a, p and the current linearization level.

4872

2.1 PID Controller
The PID parameters (K , Ti, Td) are calculated to give
the closed-loop characteristic polynomial

(s + W 0) (S 2 + 26WOS + m i) , (3)

where (WO, c) = (6,0.7) are chosen to give good rejec-
tion of load disturbances. The following discrete-time
implementation, which includes low-pass filtering of
the derivative part (N = l o) , is used:

P(t) = K(YSP(t1 - Y (t)) . (4)

(5)

(6)

(7)

I (t> = I (t - h) + ?(YSP(t) -At>>,
Wt) = & W - h) + $&(Y(t-h) - Y(t)),
u(t) = P(t) + I (t) + D (t) .

2.2 Time-Optimal Controller
The time-optimal control signal is of bang-bang type.
For the linearized process it is possible to derive the
switching curve

0.15

0.1

2.4 Red-Time Properties
The execution-time properties of the hybrid con-
troller were investigated in [Persson et al., 20001.
It was found that the optimal-control mode had con-
siderable longer execution time than the PID mode.
In each mode, the execution time was close to the
best case most of the time, but it also exhibited ran-
dom bursts. For purposes of illustration, assume that
the execution-time characteristics in the different
modes can be described by CPID = 1.8 + 0.2.5; ms and
Copt = 9.5 + 0 . 5 ~ ; ms, where { E i } is unit-variance
Gaussian white noise.
The nominal sampling interval is chosen to be one
tenth of the rise time, T,, of the closed-loop system.
Our first example process has T p 1 = 210 ms which
gives hmml = 21 ms. A simulation of the computer-
controlled system is found in Figure 3. The controller

--
- ,

I
-

1 ax: - bii
x2(x1) = - ((ax1 - bii) (l +In(-)) + b s) , a ax1 - bu

I -

(8)

where ii takes values in (0, l}, and x; is the target
state for XI. The control signal is U = 0 above
the switching curve and U = 1 below. A closeness
criterion on the form

where P(8, y) is positive definite matrix, is evaluated
at each sample, to determine whether the controller
should switch to PID mode.

2.3 Implementation
The controller implementation is outlined below.

y = analogIn(yChan);
ysp = getsetpoint 0 ;
if (getMode0 == PID) c
if (ysp != ysp-old) C
setMode (OPT) ;
signal(FBS-sed; /* feedforward, see Sec 3.3 */
U = calculateOPT0;

U = calculatePID0;
1 else .C

3

Vclose = computeVclose0;
if (Vclose < Vregion) .C
setMode(PID1;
U = calculatePID0;

U = calculateOPT0;

1 else C /* OPT */

1 else C

1
1
analogOut (uChan,u) ;

Control signal 1

Figure 3 Performance of Controller 1 when running
in isolation. The controller displays very good set-point
response and steady-state regulation. (The undershoot at
t = 2.9 s is due to a load disturbance.) The CPU never
becomes overloaded.

displays very good set-point response and steady-
state regulation. It is seen that the requested CPU
utilization is very low in PID mode, on average =
CpID/hmml = 9%. In Optimal mode, it is significantly
higher, on average

-

= cOpt/hmml = 45%.

3. Feedback Scheduling Example

Now assume that two additional hybrid double-tank
controllers should execute on the same CPU as the
first one. The tanks have slightly different process
parameters. Based on the rise-times, (Tr2,Tr3) =
(180,150) ms, they are assigned the nominal sam-
pling intervals (hnom2,hmm8) = (18,15) ms. To con-
sider scheduling, some assumptions about the real-
time operating system must be made. Throughout
this example, we assume a fixed-priority real-time
kernel with the possibility to measure task execution

4873

time. The tasks are assigned rate-monotonic priori-
ties, i.e., the task with the shortest period gets the
highest priority.
First, open-loop scheduling is attempted. Then, a
feedback scheduler is added to the system. Finally,
feedforward is introduced in the scheduler. The sys-
tems are evaluated by co-simulation of the real-time
kernel and the plant dynamics [Eker and Cervin,
19991. A 4-second simulation cycle is constructed as
follows. At time t = 0, all controllers start in the PID
mode. At t = 0.5 s, the worst-case scenario occurs: all
controllers receive new setpoints and should switch
to Optimal mode. Following this, the controllers get
new setpoints pairwise, and then one by one. For
each simulation, the behavior of Controller 1, now
having the lowest priority, is plotted. Also plotted is
the total requested utilization, xi cilhi, where ci is
the current actual execution time of task i, and hi is
the current period of task i. Notice that the total re-
quested utilization cannot be directly measured and
used for feedback, but must be estimated.

3.1 Open-Loop Scheduling
We first consider open-loop scheduling, where the
controllers are implemented as tasks with fixed
periods equal to their nominal sampling intervals.
The simulation results are shown in Figures 4 and 5.
The system easily becomes overloaded, since in the
worst case, = xi copt/hnomi = 170 %. Controller 1
is for instance temporarily turned off in the intervals
t = [0.5,0.8] s and t = [1.5,1.8] s because of
preemption. The result is low control performance.

3.2 Feedback Scheduling
Next, a feedback scheduler is introduced. In its
first version, it is implemented as a high-priority
task with a period TFBS = 100 ms. The utilization
setpoint is set to U,, = 80 %. At each invocation,
the feedback scheduler estimates the current total
reqyested utilization of tke tasks by computing U = xi Cilhi. The estimate Ci is obtained from filtered
execution-time measurements,

ei'i(k) = - 1) + (1 - a)ci, (10)

where A is a forgetting factor. Setting A close to
1 results in a smooth, but slow estimate. In this
case, A = 0, which gives fast detection of overloads,
was preferred. Finally, new task periods are assigned
according to the linear rescaling

The execution time of the feedback scheduler is
assumed to be 2 ms. The simulation results are
shown in Figures 6 and 7. The scheduler tries to

4874

Lower tank level 1

~ ~~ ~ ~ ~~

Total requested utilization

0 0.5 1 1.5 2 2.5 3 3.5 4
Time [SI

Figure 4 Performance of Controller 1 under open-loop
scheduling. The CPU is overloaded during long intervals,
and the controller cannot update its control signal very
often. The result is low control performance.

Schedule (high=running, medium=preempted, low=sleeping)

FBS I
Task 3

Task 2

Task 1

0.4 0.5 0.6 0.7 0.8 0.9
Time [SI

Figure 5 Close-up of the schedule under open-loop
scheduling. At t = 0.5 s, Task 2 and 3 switch to Optimal
mode, and the CPU gets overloaded. As a result, Task 1
is preempted in a long interval.

keep the workload close to 80 %. However, there is
a delay from a change in the requested utilization
until it is detected by the feedback scheduler. This
results in overload peaks at some of the mode change
instants. For instance, Controller 1 is preempted in
the interval t = [0.5,0.6] s. The result is slightly
degraded control performance.

3.3 Feedback and Feedforward Scheduling
A feedforward mechanism is added to the sched-
uler. The basic period of the scheduler is kept at
TFSS = 100 ms. However, when a task in PID mode
detects a new setpoint, it notifies the feedback sched-
uler, which is released immediately. The task periods
gre adjusted before the notifying, task can continue
to execute in the Optimal mode. The execution-time

Control signal 1

I I

Lower tank level 1
I 1

0.15

0.1

- , I
I I

O d 0:5 1:5 2 2:5 3 3:5 A
Time [SI

Figure 6 Performance of Controller 1 under feedback
scheduling. The CPU is overloaded in shorter intervals
and the performance is better than under open-loop
scheduling, cf. Figure 4.

Schedule (high=running. medium=preempted, low=sleeping)

Task 3

Task 2

Task 1

0.4 0.5 0.6 0.7 0.8 0.9
Time [SI

Figure 7 Close-up of the schedule under feedback
scheduling. At t = 0.5, Task 3 switches to Optimal mode,
and the CPU gets overloaded. At t = 0.55, the feedback
scheduler rescales the task periods. But this allows Task 2
to switch to Optimal mode, and the CPU gets overloaded
again.

estimation can also benefit from the mode-change
information, by running separate estimators in the
different modes. A forgetting factor of d = 0.9 was
chosen to give smooth estimates in both modes. The
result is a more responsive and accurate feedback
scheduler. The simulation results are shown in Fig-
ures 8 and 9. It is seen that the delay for Controller 1
at t = 0.5 s has been reduced, and that the control
performance is slightly better.

3.4 Performance Evaluation and Summary
The performance of the controllers under different

Control signal 1

, I

Lower lank level 1

-
I
I

Total requested utilization 2

-0 0.5 1 1.5 2 2.5 3 3.5 4
Time [SI

Figure 8 Performance of Controller 1 under feedback
and feedforward scheduling. The CPU is almost never
overloaded, which results in better control performance,
cf. Figures 4 and 6. The performance is not as good as
in Figure 3 though, since the controller must sometimes
execute at a lower rate.

Schedule (high=running, medium=preempted, low=sleeping)
I

FBS - I I I I
Task 3

Task 2

Task I

0.4 0.5 0.6 0.7 0.8
Time [SI

Figure 9 Close-up of the schedule under feedback and
feedforward scheduling. The periods are rescaled by the
feedback scheduler as each controller switches to Optimal
mode. As a result, the CPU is almost never overloaded.

9

scheduling policies are evaluated using the criterion

where ynomi is the process output when Controller i
is running unpreempted at its nominal sampling in-
terval, and ymti is the actual process output when
Controller i is running in the multitasking real-time
system. The function V is referred to as the addi-
tional loss due to scheduling. Twenty-five simulation
cycles (100 s) are simulated and the final losses for
the controllers are summarized below:

4875

Scheduling Vl(l00) Vz(100) V3(100)
Open-loop 42.4. 2.0. 0

Feedback and 1.5.10-~ 1.1. 1.0.10-~
feedforward

Feedback 5.0.10-~ 3.2.10-~ 1.0.10-~

Under open-loop scheduling, Controller 3 has zero
additional loss. This is because Task 3 has the
highest priority and thus executes unpreempted at
its nominal sampling period. Controller 2 suffers
from some preemption from Task 3 which gives a
small loss, while Controller 1 is preempted during
long intervals which gives a very large loss.
Under feedback scheduling, the loss is much smaller
for Controller 1, due to the drastically reduced
amount of preemption from Task 2 and 3. Because
of the period rescaling, however, Controller 2 and 3
increase their losses.
Under feedback and feedforward scheduling, Con-
troller 1 and 2 decrease their losses, since the CPU
overloads are almost completely avoided. The total
loss is small, and it is evenly distributed among the
controllers.
The evolution of the additional loss for Controller 1 is
shown in Figure 10. There is a very large improve-
ment when introducing feedback, and the addition
of the feedforward mechanism gives even further re-
duction of the loss.

Accumulated loss due to scheduling V1 0.02

0.015 -

0.01 -

“0 20 40 60 80 100
Time Is1

Figure 10 The accumulated additional loss due to
scheduling for Controller 1, Vl(t) . The introduction of
feedback scheduling gives a large reduction in the loss.
Adding the feedforward mechanism reduces the loss even
further.

4. Conclusions

The presented feedback scheduler improves the con-
trol performance and relaxes the requirement on
known execution times for multitasking control sys-
tems. The controllers are allowed to miss an occa-

4876

sional deadline, and are hence not treated as hard
real-time tasks. In the case of an overload, the sched-
uler calculates new sampling periods for all control
tasks. The estimate of the current workload is based
on execution-time measurements. The new sampling
periods are given by simple linear rescaling of the
nominal sampling periods, i.e., the relative impor-
tance order of the controllers is preserved. A more
elaborate rescaling procedure would most likely give
better control performance but also require more
computational power. The feedback scheduler itself
is implemented as a task, and its period is an impor-
tant design parameter.

5. References

k z h , K.-E., A. Cervin, J. Eker, and L. Sha (2000):
“An introduction to control and scheduling co-
design.” In Proceedings of the 39th IEEE Confer-
ence on Decision and Control. Sydney, Australia.

Cervin, A. (2000): IIbwards the Integration of Control
and Real- l lme Scheduling Design. Licentiate the-
sis ISRN LUTFDB/TFRT--3226--SE, Department
of Automatic Control, Lund Institute of Technol-
ogy, Lund, Sweden.

Eker, J. (1999): Flexible Embedded Control Sys-
tems. Design and Implementation. PhD thesis
ISRN LUTFDB/TFRT--1055--SE, Department of
Automatic Control, Lund Institute of Technology,
Lund, Sweden.

Eker, J. and A. Cervin (1999): “A Matlab toolbox for
real-time and control systems co-design.” In Pro-
ceedings of the 6th International Conference on
Real- Time Computing Systems and Applications,
pp. 320-327. Hong Kong, P.R. China.

Eker, J. and J. Malmborg (1999): “Design and im-
plementation of a hybrid control strategy.” IEEE
Control Systems Magazine, 194.

Liu, C . L. and J. W. Layland (1973): “Scheduling
algorithms for multiprogramming in a hard-real-
time environment.” Journal of the ACM, 201,

Persson, P., A. Cervin, and J. Eker (2000):
“Execution-time properties of a hybrid controller.”
Report ISRN LUTFDB/TFRT--759l--SE. Depart-
ment of Automatic Control, Lund Institute of
Technology, Lund, Sweden.

Stankovic, J. A., C. Lu, S . H. Son, and G. Tao (1999):
‘The case for feedback control real-time schedul-
ing.” In Proceedings of the 11th Euromicro Con-
ference on Real-Time Systems, pp. 11-20. York,
UK.

pp. 40-61.

