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ESTIMATING THE COMPUTATIONAL CUT-OFF RATE FOR THE
GILBERT-ELLIOT CHANNEL WITH SHORT INTERLEAVING

Rolf Johannesson

Department of Information Theory
Lund University

Box 118

S-221 00 Lund, Sweden

Abstract—In this paper we estimate the computational cut-
off rate for sequential decoding when used together with short
interleaving to communicate over the Gilbert-Elliot channel.

Although the curse of sequential decoding is that its computational
performance deteriorates drastically when errors occur in clusters it
has been shown [1] that it is feasible to use sequential decoding to-
gether with a short interleaver to exploit the memory of the Gilbert-
Elliot channel. In this paper we estimate the computational cut-off
rate Rcomp for our sequential decoder.

The Gilbert-Elliot channel model has two states: ‘Good’ (G) and
‘Bad’ (B). Let P and Q denote the transition probabilities G — B
and B — G, respectively. The binary channel crossover probability is
€in G and % in B. A rate R = b/c convolutional encoder is followed
by an L X cr interleaver:

$i |Si+1

cr

The code symbols are written rowwise into the interleaver and read
columnwise. After transmission over the Gilbert-Elliot channel and
deinterleaving we use a stack algorithm-like sequential decoder.
Suppose that the ith symbol read from the deinterleaver corresponds
to state s; and that the (i + 1)th symbol corresponds to state s;41.
The conditional probabilities P(s;41 | i), where s;,s.41 € {G, B},
are given by the following

Lemmal Let® = P(B|G)=1-P(G|G)and ¥ = P(G| B) =

1— P(B| B). The transition probabilities & % &, and ¥ %' ¥, are
the solutions for =L of

& = (1-¥1)P+&4(1-P)
¥ o= (1-2)Q+¥a(1-Q),
where | = 2,3,...,L and ®, = P, ¥, = Q. ]

Our sequential decoder should estimate the channel state correspond-
ing to each received symbol. In the ideal case it knows exactly this
state (optimistic approach); in worst case it knows nothing about the
state (pessimistic approach). We estimate the computational cut-
off rate in both cases, viz., R%hp and R%h.p, respectively. Clearly,
Ry < Ry,

The optimal metric increments in the optimistic case does not depend
directly from ® and ¥:

State Received symbol

transition | equal to code symbol? | Metric increment
G—-G Yes ag =log2(1—¢)— R
G-G No ¢ =log2e — R
G- B - b =-R

B— B - ag=-R

B—-G Yes bp=1log2(l—¢€)— R
B—-G No cp =log2c - R
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Then we have

Lemma 2 Let u denote the cumulative metric along the correct path.
In the optimistic case we have P(n < z) < A2, where A > 1 does
not depend on z and h is the smallest root of

P2hbe
(1 - ¥)2hem — 1)) =1

=]

det (1 — ®)(1 — €)2h26 + (1 — @)e2hec — 1)
(¥(1 — )22 + We2hes)

We can prove that R‘c‘gl..,, corresponds to the root A = —1/2.

Theorem 3

R

comp

(1-@)2 P +1-0—/(1-2)2"F — 1+ ¥)2 4 4092~ 7
21— & - ¥)2-F

where Rg = 1 — log(1 + 21/e(1 — €)). a

In the pessimistic case we have the following metric increments:

=2log

1’

State Received symbol

transition equal to Metric increment

(hypothetical) code symbol?

G—-G Yes ac =log2(1-®)(1-¢)— R
G -G No cg =log2(1—-®)e - R
G— B - ba = 10g<1’ —R
B— B - ap=log(l1-¥)—R
B—-G Yes bp =log2¥(1—-¢)- R
B—-G No cg = log2¥e — R

If we use these metric increments Lemma 2 is valid also in the pes-
simistic case. Finally, we have

Theorem 4

R, = 2log((1 - ®)52 2 + (1 - ¥)}

(=2 B (1- v a((1- @)i(1- ¥)} — @t ud)-T)
—2log(2((1 - ®)3(1 — W)} — B3I )2~ ),

where Ry = 1 — log(1 + 2y/e(1 — ¢)). o
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