A genie-aided detector with a probabilistic description of the side information

Eriksson, Håkan B.; Ödling, Per; Koski, Timo; Börjesson, Per Ola

Published in:
[Host publication title missing]

DOI:
10.1109/ISIT.1995.550319

1995

Citation for published version (APA):
A Genie-Aided Detector with a Probabilistic Description of the Side Information

Håkan B. Eriksson¹ Per Ödling¹ Timo Koski² Per Ola Börjesson¹

¹ Division of Signal Processing, Luleå University of Technology, S-971 87 Luleå, Sweden
² Department of Mathematics, Royal Institute of Technology, S-100 44 Stockholm, Sweden

Abstract—Building on Forney’s concept of the genie [4], [5], and introducing the idea of an explicit statistical description of the side information provided to the genie-aided detector, we develop a generic tool for derivation of lower bounds on the bit-error rate of any actual receiver [3]. With this approach, the side information statistics become design parameters, which can be chosen to give the resulting bound a desired structure. To illustrate this, we choose statistics in order to obtain a special case: the lower bound derived by Mazo [6]. The statistical description of the side information makes the lower bounding a transparent application of Bayesian theory.

I. INTRODUCTION

The idea of a good genie with a corresponding genie-aided detector (GAD) has, in particular, often been used to determine a lower performance bound for the probability of bit-error [1], [2], [3], [4], [5]. The GAD has access to more information than any actual detector: it has access to the side information supplied by the genie and is expected to handle all information optimally. Because of this, it is argued, it cannot have a worse performance than any detector working without the side information. However, in order that optimal processing of the side information be well-defined in the sense of Bayesian detection theory, an explicit (statistical) description of the side information is required. This paper introduces such a representation of the genie, augmenting the foundational ideas of Forney’s work in [4], [5]. Our aim is to introduce the side information supplied by the genie as the output of a “side information channel” parallel to the original channel and governed by a probabilistic rule with free parameters.

II. THE SIDE INFORMATION CHANNEL

Consider a transmission system where binary data is sent through a discrete-time, additive Gaussian channel with intersymbol interference, and where additional side information is carried to the detector through a parallel channel (representing the genie).

We discuss the detection of bit number \(k \) in the important special case when the side information consists of a pair of sequences and one of the sequences is equal to the transmitted sequence, cf. [4], [5]. Define \(C_k^+ \) and \(C_k^- \) as the sets of sequences with the bit in position \(k \) as +1 and −1, respectively, and denote the side information with \(z \) and its outcome with \(\zeta \). Let \(\zeta \) consist of pairs in \(C_k^+ \times C_k^- \) of the form \(\zeta_{i,j} \triangleq (\beta_i^+, \beta_j^-) \), for \(1 \leq i, j \leq 2^{N-k} \). With the transmitted sequence being \(\beta \), let the additional sequence be chosen at random among the sequences differing from \(\beta \) in bit \(k \), according to the known, probabilistic transition rule:

\[
\Pr \{ z = \zeta_{i,j} \mid \beta = \beta \} = \begin{cases}
 p(j|i) & \text{if } \beta = \beta_i^+ \in C_k^+ \\
 q(i|j) & \text{if } \beta = \beta_j^- \in C_k^- \\
 0 & \text{otherwise.}
\end{cases}
\]

Hence, the properties of the genie, or equivalently, the properties of the output of the side information channel, are defined by the statistics (or transition probabilities) \(p(j|i) \) and \(q(i|j) \).

III. THE GENIE-AIDED DETECTOR

With the complete statistical description of the transmission system, including a set of transition probabilities, the GAD with minimum bit-error probability is derived in terms of a binary Bayesian hypothesis test. By evaluating the performance of this GAD, a lower bound on the probability of bit-error of any detector, with or without access to the side information, is obtained as

\[
P_{\text{BER},k} \geq \sum_{i,j} Q \left(\frac{d_{i,j}}{2} + \frac{\ln \gamma_{i,j}}{d_{i,j}} \right) p(j|i) \Pr \{ \beta = \beta_j^- \} + \sum_{i,j} Q \left(\frac{d_{i,j}}{2} - \frac{\ln \gamma_{i,j}}{d_{i,j}} \right) q(i|j) \Pr \{ \beta = \beta_i^+ \},
\]

where \(d_{i,j} \) is the Euclidean distance between \(\beta_i^+ \) and \(\beta_j^- \),

\[
\gamma_{i,j} = \frac{q(i|j) \Pr \{ \beta = \beta_j^- \}}{p(j|i) \Pr \{ \beta = \beta_i^+ \}}.
\]

and \(Q(x) \triangleq (1/\sqrt{2\pi}) \int_x^\infty e^{-t^2/2} dt \).

The transition probabilities \(\{ p(j|i), q(i,j) \} \) are free parameters which can be chosen to optimize the performance of the GAD. They might for example be chosen to make the corresponding bound tight, or to give the bound a simple structure. We choose several sets of transition probabilities as examples in order to discuss the properties of their respective performance bounds. In this, we also discuss the relation of the attainable performance bounds to the works by Forney [4], [5] and Mazo [6].

REFERENCES