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Abstract

Propagation of transient electric and magnetic (TEM) pulses in nonstationary,

linear, homogeneous, and isotropic dielectric and magnetic materials is inves-

tigated using an exact wave splitting. Key intrinsic properties are the index

of refraction and the relative admittance, which are both temporal integral

operators with kernels that depend on two time variables. In addition, the

Sommerfeld forerunners in dispersive nonstationary materials are derived. A

numerical example � a single-resonance Lorentz model with time-dependent

plasma frequency � is presented.

1 Introduction

Propagation of transient electric and magnetic (TEM) pulses in nonstationary, lin-
ear, strati�ed dielectrics has been studied extensively by Åberg et al. using optical
wave splitting [2�5]. Nonstationary materials are complex materials in the sense
that the dielectric constant depends on time. Speci�cally, this description applies
to nondispersive materials. However, real materials are known to be dispersive. In
dispersive nonstationary materials, the electric susceptibility kernel depends on two
times, the excitation time and the observation time.

Model problems, where time-dependent coe�cients occur, can be found in tele-
communication problems, for example, fading and modulation problems. Other
interesting �elds of applications arise in control theory [10]. In [10], Tzou shows
how piezo-electric sensors can be used to control continua. Here the research �elds
of elastodynamics and electromagnetics are interconnected. Another interesting ap-
proach, that has proven successful, is to apply the nonstationary wave equations to
wave propagation in weakly nonlinear electromagnetic media. Accordingly, two non-
linear applications � high-frequency switching and Kerr e�ect � are treated in [1].
Microwave propagation in ferrites also shows applications that can be modelled with
time-dependent coe�cients.

The analysis in the above references leads to the study of systems of coupled,
hyperbolic integro-di�erential equations. In the present article, this propagation
problem is revisited, and the theory is extended to include magnetic nonstationary
materials as well.

Speci�cally, a so called dispersive wave splitting, leading to scalar hyperbolic
integro-di�erential equations for the up-going and down-going �elds, that is, one-
way equations, is adopted. Dispersive wave splitting has been used before for time-
invariant media [7]. The index of refraction, the relative admittance, and the relative
impedance of the nonstationary medium are de�ned. These temporal integral opera-
tors are the key intrinsic properties of the medium. Using these concepts is believed
to facilitate the direct and inverse scattering problems for the nonstationary slab.

Moreover, Sommerfeld forerunners or �rst precursors in these materials are de-
�ned and derived. The Sommerfeld forerunner is the highly oscillating early time-
behavior of the signal in a dispersive material. These transients are generalizations of
the classical results for Lorentz materials presented by Sommerfeld [8]. The adopted



2

method is similar to the time-domain technique used by Karlsson and Rikte for time-
invariant materials [7]. The early time-behavior of the signal can be obtained much
easier by using the Sommerfeld approximation than by solving the one-way integro-
di�erential equation for the propagating �eld. A numerical example illustrating the
theory is given; speci�cally, a Lorentz model with a time-varying plasma frequency
is discussed.

The problem is formulated in Section 2. In Section 3, the dispersive wave splitting
is introduced and the intrinsic properties of the medium are de�ned. The properties
of the one-way wave equations are presented in Section 4. Sommerfeld forerunners
are discussed in Section 5.

2 Basic equations

Throughout the article, Cartesian coordinates O(x, y, z) are used. The radius vector
is written r = uxx + uyy + uzz, where ux, uy, and uz are the basis vectors in the
x−direction, y−direction, and z−direction, respectively. Time is denoted by t.

The electric and magnetic �eld intensities at (r, t) are denoted by E(r, t) and
H(r, t), respectively, and the corresponding �ux densities are D(r, t) and B(r, t).
Each �eld vector is written in the form

E = uxEx(r, t) + uyEy(r, t) + uzEz(r, t).

The speed of light in vacuum is c and the intrinsic impedance of vacuum η. The
Dirac delta measure is denoted by δ(t) and the Heaviside step function by H(t).

The Maxwell equations govern the dynamics of the �elds in macroscopic media:

∇×E(r, t) = −∂tB(r, t), ∇×H(r, t) = J(r, t) + ∂tD(r, t),

where J(r, t) denotes the imposed current density and the current density

Jσ(r, t) = σ(t)E(r, t),

due to a �nite conductivity, σ(t), has been included in the displacement current
density, ∂tD(r, t). This conductivity may vary with time.

The constitutive relations of a linear, homogeneous, and isotropic medium are

cηD(r, t) = [ErE](r, t), cB(r, t) = η[MrH ](r, t), (2.1)

where

Er = εr(t) + χe(t, t′)∗ =
(
εr(t)δ(t− t′) + χe(t, t′)

)
∗ (2.2)

Mr = µr(t) + χm(t, t′)∗ =
(
µr(t)δ(t− t′) + χm(t, t′)

)
∗

are the relative permittivity operator and the relative permeability operator, re-
spectively. The electric and magnetic optical responses, εr(t) ≥ 1 and µr(t) ≥ 1,
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respectively, are assumed to be su�ciently regular (e.g., bounded and smooth) func-
tions. Temporal dispersion and causality are modeled by integrals in time:

(χe ∗E)(r, t) =

∫ +∞

−∞
χe(t, t′)E(r, t′) dt′,

where the electric and magnetic susceptibility kernels, χe(t, t′) and χm(t, t′), respec-
tively, are functions of two time-variables, namely, the observation time, t, and the
excitation time, t′. The susceptibility kernels vanish for t < t′, and are assumed to
be su�ciently regular (e.g., bounded and smooth) functions of both variables for
t > t′. This implies causality: the wave-front of any nonpathological traveling plane
wave propagates through the dispersive material with the speed

c√
εr(t)µr(t)

≤ c.

For time-invariant materials, εr(t) and µr(t) are independent of time and the sus-
ceptibility kernels dependent of one time-variable only: χe(t, t′) = χe(t − t′) and
χm(t, t′) = χm(t − t′). A non-dispersive medium is characterized by εr(t), µr(t),
χe(t, t′) = cησ(t′)H(t−t′), and χm(t, t′) = 0. Nonmagnetic materials satisfyMr = 1.

The simplest radiation problem for the unbounded temporally dispersive dielec-
tric medium with the constitutive relations (2.1) is to calculate the electromagnetic
response to a transverse current source distribution:

J(r, t) = J(z, t) = uxJx(z, t) + uyJy(z, t).

Such an initially quiescent and su�ciently regular source distribution supports trans-
verse electric and magnetic (TEM) waves:

E(r, t) = E(z, t) = uxEx(z, t) + uyEy(z, t),

H(r, t) = H(z, t) = uxHx(z, t) + uyHy(z, t).

Concentrated sources terms on the form J(z, t) = δ(z − z0)j(t), where j(t) is reg-
ular surface current density, arise at normal incidence at plane interfaces and such
distributions are allowed as well. Subjected to TEM waves, the Maxwell equations
reduce to

∂zE = c−1∂tMr (uz × ηH) , ∂z (uz × ηH) = ηJ + c−1∂tErE. (2.3)

3 Dispersive wave splitting

The Maxwell equations (2.3) couple the electric �eld and the magnetic �eld in the
dispersive medium locally in space and nonlocally in time. In this section, the
Maxwell equations are transformed into two uncoupled �rst-order integro-di�erential
equations via a dispersive wave splitting. To this end, three temporal integral oper-
ators of the form (2.2) are introduced, namely, the index of refraction, the relative
intrinsic admittance, and the relative intrinsic impedance. These operators are the
intrinsic characteristics of the nonstationary medium as far as wave propagation is
concerned. The obtained uncoupled �rst-order equations � the dynamical equations
� are analyzed in the proceeding sections.
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3.1 Index of refraction, relative intrinsic admittance, and rel-

ative intrinsic impedance

A wave splitting is a change of the dependent vector �eld variables, E(z, t) and
H(z, t), such that the new �eld variables, E±(z, t), represent the up-going waves and
the down-going waves in the medium, respectively. The split vector �eld variables
of the nonstationary medium are de�ned by

E = E+ +E−, uz × ηH = −YrE+ + YrE−, (3.1)

where the temporal integral operator

Yr = yr(t) + Y (t, t′)∗ =
(
yr(t)δ(t− t′) + Y (t, t′)

)
∗

is the relative intrinsic admittance. This operator, which is independent of the
sources and depend on the permittivity and the permeability operators only, is
de�ned precisely later in this section. The de�nition is such that Yr inherits the
properties of Er andMr. In particular, the optical contribution, yr(t), depends on
εr(t) and µr(t) only, and the admittance kernel, Y (t, t′), is regular for t > t′ and
vanishes for t < t′. For time-invariant materials, yr(t) is independent of time and
Y (t, t′) = Y (t− t′). In general, Y (t, t′) is nonzero also in the non-dispersive case.

The operator Yr is de�ned such that the Maxwell equations reduce to the �rst-
order integro-di�erential equations

∂zE
± = ∓c−1∂tNE± ∓ZrηJ/2 (3.2)

when the wave splitting is applied. The refractive index

N = n(t) +N(t, t′)∗ =
(
n(t)δ(t− t′) +N(t, t′)

)
∗ (3.3)

and the relative intrinsic impedance

Zr = zr(t) + Z(t, t′)∗ =
(
zr(t)δ(t− t′) + Z(t, t′)

)
∗

are temporal integral operators to be determined. Since the split vector �elds do
not couple, E±(z, t) can be interpreted as the up-going and the down-going electric
�elds in the medium, respectively. The dispersive wave equations (3.2) are analyzed
in Section 4 using the fundamental solutions of the dispersive wave operators

±∂z + c−1∂tN . (3.4)

The optical responses of the refractive index and the relative impedance, n(t) and
zr(t), respectively, are given explicitly below. The corresponding integral kernels,
N(t, t′) and Z(t, t′), are given implicitly in terms of Volterra integral equations of
the second kind. These kernels are regular for t > t′ and vanish for t < t′. For time-
invariant materials, n(t) and zr(t) are independent of time, N(t, t′) = N(t− t′), and
Z(t, t′) = Z(t− t′).
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Straightforward calculations show that the conditions on the operators Yr, N ,
and Zr for exact wave splitting leading to the dynamical equations (3.2) are

∂tEr = Yr∂tN , (3.5)

MrYr = N , (3.6)

YrZr = 1, (3.7)

where 1 is the identity operator. Combining these operator equalities gives

N∂tN = Mr∂tEr, (3.8)

Mr = NZr. (3.9)

In general, these integral operators do not commute; however, by de�nition, the
operators Yr and Zr always commute since they are inverses (resolvents) of one
another, see, e.g., Tricomi [9]. For time-invariant media, all the integral operators
reduce to convolution operators which are known to commute. Moreover, equa-
tions (3.8) and (3.5) can be integrated in this special case:

Er = YrN , N 2 =MrEr.

Observe that Yr = N for nonmagnetic time-varying materials.
It is pro�table to use the operators Yr, N , and Zr in direct and inverse scattering

problems for the slab. In the direct scattering problem, the operators Er and Mr

are known. Equation (3.8) is used �rst to obtain N and then equation (3.6) to
obtain Yr. Finally, equation (3.7) is used to obtain Zr. Knowing Yr, N , and Zr,
the direct scattering problem is relatively easy to analyze. In the inverse scattering
problem, it is assumed that N and Zr have been calculated from scattering data.
The operators Er and Mr are obtained by solving �rst equation (3.7) for Yr and
thereafter equation (3.9) forMr. Finally, equation (3.5) is employed to obtain Er.

3.2 Integral equations

For clari�cation and for numerical purposes, equations (3.5)�(3.9) are now written
down explicitly. The kernel of the operatorMr∂tEr (with optical responses included)
is found to be

εr(t
′)µr(t

′)δ′(t− t′)− εr(t′)µ′r(t′)δ(t− t′) +
+µr(t)∂tχ

e(t, t′)− εr(t′)∂t′χm(t, t′)− (∂t′χ
m ∗ χe)(t, t′).

In this expression, the derivatives are to be interpreted in the sense of distributions:

∂tχ
e(t, t′) = χe(t, t− 0) δ(t− t′) + {∂tχe(t, t′)}classical,

∂t′χ
m(t, t′) = −χm(t, t− 0) δ(t− t′) + {∂t′χm(t, t′)}classical.

Analogously, a similar expression can be obtained for the operator N∂tN . The
most irregular terms in equation (3.8) contain derivatives of the delta distribution.
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Comparing these terms gives

−n(t′)n′(t′)δ(t− t′) + n(t)∂tN(t, t′)− n(t′)∂t′N(t, t′)− (∂t′N ∗N)(t, t′) =

= −εr(t′)µ′r(t′)δ(t− t′) + µr(t)∂tχ
e(t, t′)− εr(t′)∂t′χm(t, t′)

−(∂t′χm ∗ χe)(t, t′), (3.10)

where
n(t) =

√
εr(t)µr(t).

Integrating this equation with respect to t gives a Volterra integral equation of the
second kind in the refractive kernel:

n(t)N(t, t′) + n(t′)N(t′, t′ − 0) +

∫ t

t′

(
N(t′′, t′′ − 0)− n′(t′′)

)
N(t′′, t′) dt′′

− n(t′)
∫ t

t′
D(t′′, t′) dt′′ −

∫ t

t′

(∫ t′′

t′
D(t′′, t′′′)N(t′′′, t′) dt′′′

)
dt′′ − n(t′)n′(t′)

= µr(t)χ
e(t, t′) + εr(t

′)χm(t′, t′ − 0) +

∫ t

t′

(
χm(t′′, t′′ − 0)− µ′r(t′′)

)
χe(t′′, t′) dt′′

− εr(t′)
∫ t

t′
{∂t′χm(t′′, t′)} dt′′ −

∫ t

t′

(∫ t′′

t′
{∂t′′′χm(t′′, t′′′)}χe(t′′′, t′) dt′′′

)
dt′′

− εr(t′)µ′r(t′), t′ ≤ t,

where
D(t, t′) = {∂t′N(t, t′)}

denotes the classical derivative of N(t, t′) with respect to t′. Letting t′ ↗ t gives the
initial condition

N(t, t− 0) =
n(t)n′(t)− εr(t)µ′r(t) + εr(t)χ

m(t, t− 0) + µr(t)χ
e(t, t− 0)

2n(t)
.

This shows that N(t, t′) 6= 0 also in the absence of memory terms in the constitutive
relations (χe(t, t′) = χm(t, t′) = 0). In other words, a pure optical response in the
refractive operator is not possible unless εr(t) and µr(t) are constant.

Equation (3.6) can be written in the form

µr(t)Y (t, t′) + yr(t
′)χm(t, t′) +

∫ t

t′
χm(t, t′′)Y (t′′, t′) dt′′ = N(t, t′),

where

yr(t) =
n(t)

µr(t)
=

√
εr(t)

µr(t)
.

This is a linear Volterra integral equation of the second kind. Letting t′ ↗ t gives
the initial condition

Y (t, t− 0) =
N(t, t− 0)− yr(t)χm(t, t− 0)

µr(t)
.
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Similarly, equation (3.7) can be written as

yr(t)Z(t, t
′) + zr(t

′)Y (t, t′) +

∫ t

t′
Y (t, t′′)Z(t′′, t′) dt′′ = 0,

where

zr(t) =
1

yr(t)
=

√
µr(t)

εr(t)
.

This is also a linear Volterra integral equation of the second kind. In particular,

Z(t, t− 0) = −z2r (t)Y (t, t− 0).

The susceptibility kernels can be expressed in terms of the refractive kernel and
the relative admittance and impedance kernels. Integrating equation (3.5) with
respect to t gives

χe(t, t′) = yr(t)N(t, t′) + n(t′)Y (t′, t′ − 0) +

∫ t

t′

(
Y (t′′, t′′ − 0)− y′r(t′′)

)
N(t′′, t′) dt′′

− n(t′)
∫ t

t′
{∂t′Y (t′′, t′)} dt′′ −

∫ t

t′

(∫ t′′

t′
{∂t′′′Y (t′′, t′′′)}N(t′′′, t′) dt′′′

)
dt′′

− n(t′)y′r(t′), t′ ≤ t.

Equation (3.9) reduces to

χm(t, t′) = n(t)Z(t, t′) + zr(t
′)N(t, t′) +

∫ t

t′
N(t, t′′)Z(t′′, t′) dt′′.

4 One-way wave equations

The �rst-order dispersive wave equations (3.2) for the up-going and down-going
�elds read(

±∂z + c−1n(t)∂t
)
E±(z, t) + c−1

(
n′(t) +N(t, t− 0)

)
E±(z, t) + (4.1)

+

∫
K(t, t′)E±(z, t′) dt′ = −zr(t)ηJ(z, t)/2−

∫
Z(t, t′)ηJ(z, t′) dt′/2,

where the wave-number kernel, K(t, t′), is the classical time-derivative of the refrac-
tive kernel, N(t, t′), divided by c:

K(t, t′) = c−1 {∂tN(t, t′)} .

The kernel K(t, t′) vanishes for t < t′ since N(t, t′) has this property. In this section,
these scalar dispersive wave equations are analyzed using the method of character-
istics.
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4.1 Characteristics

Temporal dispersion, being a lower-order, however, important e�ect, do not signi�-
cantly a�ect the propagation of jump discontinuities; therefore, the characteristics of
a dispersive equation are de�ned in the same way as for the non-dispersive equation.
This is the approach of Åberg et al. [4].

Equation (4.1) shows that the characteristic projections depend on the optical
contribution n(t) only. The intensities of jump discontinuities in the split vector
�elds depend on the initial values of the memory kernel N(t, t′) as well.

Consider the �rst-order dispersive wave equation for the up-going �eld, and let

ζ → τ(z − ζ, t)

be a parametrization of the characteristic projection passing through the point (z, t).
This notation is a specialization of the parametrization ζ → τ+(ζ, z, t) employed by
Åberg et al. [4] for materials strati�ed in the z-direction. By de�nition, τ(0, t) = t.
Moreover, the characteristic projection through the space-time point (z1 + z2, t)
passes through (z1, τ(z2, t)); therefore,

τ(z1, τ(z2, t)) = τ(z1 + z2, t) for all z1, z2, and t.

In particular,
τ(z, τ(−z, t)) = t = τ(−z, τ(z, t)) for all z, t.

By de�nition, the characteristic projection through (z, t) satis�es the ordinary
di�erential equation

dτ(z − ζ, t)
dζ

=
n(τ(z − ζ, t))

c
.

Integration gives

τ(z, t) = t− c−1
∫ z

0

n (τ(z − ζ, t)) dζ.

For time-invariant materials, τ(z, t) = t − zn/c. It is now straightforward to show
that

∂τ

∂z
(z, t) + c−1n(t)

∂τ

∂t
(z, t) = 0. (4.2)

and
d

dζ
lnn (τ(z − ζ, t)) = 1

c
n′ (τ(z − ζ, t)) . (4.3)

These results may be used to derive fundamental solutions of the dispersive wave
operators.

Now consider the �rst-order wave equation for the down-going �eld. Due to
symmetry

ζ → τ(−z + ζ, t)

is a parametrization of the characteristic projection passing through the point (z, t).
This is a specialization of the parametrization ζ → τ−(ζ, z, t) employed by Åberg et
al. [4] for strati�ed media.
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4.2 Propagation of discontinuities

Discontinuities in the split vector �elds, E±(z, t), propagate along the characteristic
projections. If the current density, J(z, t), is assumed to be regular, the intensity
of a propagating jump discontinuity,

[
E±(z, t)

]
, satis�es the ordinary di�erential

equation

± d

dζ

[
E±(ζ, τ(±z ∓ ζ, t))

]
+ c−1n′ (τ(±z ∓ ζ, t))

[
E±(ζ, τ(±z ∓ ζ, t))

]
+

+c−1N (τ(±z ∓ ζ, t), τ(±z ∓ ζ, t)− 0)
[
E±(ζ, τ(±z ∓ ζ, t))

]
= 0.

The solution of this equation can be written in the form[
E±(z, t)

]
= Q(±z ∓ ζ, τ(±z ∓ ζ, t))

[
E±(ζ, τ(±z ∓ ζ, t))

]
or [

E±(z, τ(∓z ± ζ, t))
]
= Q(±z ∓ ζ, t)

[
E±(ζ, t)

]
,

where wave-front factor, Q(z, t), is regular and satis�es the ordinary di�erential
equation

∂zQ(z, t) + c−1
(
n′ (τ(−z, t)) +N (τ(−z, t), τ(−z, t)− 0)

)
Q(z, t) = 0, Q(0, t) = 1.

Straightforward integration using equation (4.3) gives

Q(z, t) =
n (t)

n (τ(−z, t))
exp

(
−1

c

∫ z

0

N (τ(−ζ, t), τ(−ζ, t)− 0) dζ

)
.

For time-invariant media, this expression reduces to Q(z, t) = exp
(
− z
c
N (+0)

)
.

4.3 Fundamental solutions

In order to solve the dynamical equations (3.2), or, equivalently, equations (4.1),
the fundamental solutions of the dispersive wave operators (3.4) are needed. These
fundamental solutions are denoted by E±(z; t, t′), respectively, and satisfy the �rst-
order dispersive wave equations(

±∂z + c−1∂tN
)
E± = δ0 ⊗ δt′ ,

where the refractive index is of the form (3.3) and the excitation time, t′, is regarded
as a parameter. Explicitly, E±(z; t, t′) satisfy the fundamental equations(

±∂z + c−1n(t)∂t
)
E±(z; t, t′) + c−1

(
n′(t) +N(t, t− 0)

)
E±(z; t, t′) +

+

∫
K(t, t′′)E±(z; t′′, t′) dt′′ = δ(z)δ(t− t′).

E±(z; t, t′) can be considered as the material response at the point (z, t) due to a
concentrated source at (0, t′) (although this is not entirely correct). Since E+(z; t, t′)
is up-going and E−(z; t, t′) down-going, the conditions

E±(±z; t, t′) = 0, z < 0
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are imposed on the fundamental solutions. These �elds are required to be time-
retarded (causal) as well:

E±(z; t, t′) = 0, t′ > τ(|z|, t).

For time-invariant media, E±(z; t, t′) = E±(z; t− t′).
Under suitable assumptions, Schwartz' kernel theorem [6, pp. 128-129] is appli-

cable, and the solutions of the propagation problems (3.2) can be written as

E±(z, t) =

∫∫
E±(z − z′; t, t′)S(z′, t′) dz′ dt′, (4.4)

where the source term is

S(z, t) = −zr(t)ηJ(z, t)/2−
∫
Z(t, t′)ηJ(z, t′) dt′/2.

The electric and magnetic �elds are obtained from equation (3.1) and electric and
magnetic �ux densities from the constitutive relations (2.1).

The retarded fundamental solutions are de�ned in the following theorem:

Theorem 4.1. The distribution

E±(z; t, t′) = H(±z)Q(|z|, t′)
(
δ (τ(|z|, t)− t′) + P (|z|; τ(|z|, t), t′)

)
,

where Q(z, t) is the wave-front factor and the regular propagator kernel, P (z; t, t′),
satis�es the integro-di�erential equation

∂zP (z; t, t
′) +K (τ(−z, t), τ(−z, t′)) ∂t′τ(−z, t′) +

+

∫ t

t′
K (τ(−z, t), τ(−z, t′′)) ∂t′′τ(−z, t′′)P (z; t′′, t′) dt′′ +

+c−1
(
N (τ(−z, t), τ(−z, t)− 0)−N (τ(−z, t′), τ(−z, t′)− 0)

)
P (z; t, t′) +

+c−1
(
n′ (τ(−z, t))− n′ (τ(−z, t′))

)
P (z; t, t′) = 0,

P (0; t, t′) = 0,

are retarded fundamental solutions (causal Green's functions) of the dispersive �rst-
order wave operators (3.4), respectively. Thus, P (z; t, t′) = 0 for t < t′. Explicitly,
the initial condition for the propagator kernel is

P (z; t, t− 0) = −
∫ z

0

K (τ(−z′, t), τ(−z′, t)− 0) ∂tτ(−z′, t)dz′.

Proof. Straightforward di�erentiation using equation (4.2) gives(
±∂z + c−1n(t)∂t

)
E±(z; t, t′) = δ(z)Q(0, t) (δ(t− t′) + P (0; t, t′)) +

+H(±z)Q(|z|, t′)∂|z|P (|z|; t, t′)|t=τ(|z|,t) +
+H(±z)∂|z|Q(|z|, t′) (δ(τ(|z|, t)− t′) + P (|z|; τ(|z|, t), t′)) .
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The change of variables t′′ = τ(−|z|, t′′′) shows that∫
K(t, t′′)E±(z; t′′, t′) dt′′ = H(±z)Q(|z|, t′)K (t, τ(−|z|, t′)) ∂t′τ(−|z|, t′) +

+H(±z)Q(|z|, t′)
∫
K (t, τ(−|z|, t′′)) ∂t′′τ(−|z|, t′′)P (|z|; t′′, t′) dt′′.

Substituting these equations into the fundamental equation, matching contributions
of the same regularity, and introducing wave-front time yield the desired result.
Assuming unique solubility for the integro-di�erential equation shows that P (z; t, t′)
vanishes for t < t′ since K(t, t′) vanishes for t < t′. Therefore, E±(z; t, t′) are causal,
which �nishes the proof.

Now consider a concentrated source distributed over the plane z = 0:

J(z, t) = j(t)δ(z).

The wave splitting (3.1) shows that this current density generates the electric �eld

E(0, t) = E+(+0, t) = E−(−0, t) = −
(
zr(t)j(t) +

∫
Z(t, t′)j(t′) dt′

)
η/2

in the plane z = 0. Using this and equation (4.4), the up-going and down-going
electric �elds can be written as

E±(z, t) =

∫
E±(z; t, t′)E(0, t′) dt′

or

E±(z, t) = H(±z)Q(|z|, τ(|z|, t))E(0, τ(|z|, t))+

+H(±z)
∫ τ(|z|,t)

−∞
Q(|z|, t′)P (|z|; τ(|z|, t), t′)E(0, t′) dt′.

This is the canonical problem in the study of forerunners.
Finally, using wave-front time, the fundamental solutions can be written as

E±(z; τ(−|z|, t), t′) = H(±z)Q(|z|, t′)
(
δ (t− t′) + P (|z|; t, t′)

)
.

The integral operator

P(|z|) = Q(|z|, t′)
(
δ (t− t′) + P (|z|; t, t′)

)
∗

is referred to as the wave propagator.

5 Sommerfeld forerunners

In this section, expressions for Sommerfeld forerunners are derived in the heuristic
sense of [7]. The Sommerfeld forerunner or the �rst precursor in a dispersive medium
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is the early time-behavior of the propagating �eld at a distant �eld-point shortly
after the arrival of the wave-front. In the one-dimensional case, �nding this �eld is
tantamount to obtaining an approximation to the propagator kernel P (z; t + t′, t′)
for large z > 0 and for small t > 0. In this section, the leading edge behavior
of this �eld in nonstationary materials is derived. The response is referred to as
the Sommerfeld forerunner since it corresponds to Sommerfeld's result for the time-
invariant single-resonance Lorentz medium [8]. The early time-behavior of the �eld
can be obtained much quicker by using the Sommerfeld approximation instead of
solving the integro-di�erential equation in (4.1).

For simplicity, assume that

εr(t) = µr(t) = 1, χe(t, t− 0) = χm(t, t− 0) = 0. (5.1)

This special case is, perhaps, the most physical one, and applies, for instance, to
nonstationary Lorentz materials, see Åberg et al. [4]:

χe(t, t′) = ω2
p(t)

sin (ν0(t− t′))
ν0

exp
(
−ν
2
(t− t′)

)
H(t− t′), ν0 =

√
ω2
0 − ν2/4,

where the natural frequency, ω0, and the collision frequency, ν, are constant and the
plasma frequency, ωp(t), depends on time. Generally, Lorentz materials are assumed
nonmagnetic for the case the anomalous dispersion occurs in the optical regime.

From equation (5.1), it is a straightforward matter to show that

n(t) = 1, N(t, t− 0) = 0

and

∂tχ
i(t, t− 0) = −∂t′χi(t, t− 0), i = e,m, cK(t, t− 0) = −D(t, t− 0).

Using these results and equation (3.10) gives the initial values

2cK(t, t− 0) = ∂tχ
e(t, t− 0) + ∂tχ

m(t, t− 0) = −∂t′χe(t, t− 0)− ∂t′χm(t, t− 0).

The wave-front factor Q(z, t) = 1 and the integro-di�erential equation for the prop-
agator kernel reduces to

∂zP (z; t, t
′) +K

(
t+

z

c
, t′ +

z

c

)
+

∫ t

t′
K
(
t+

z

c
, t′′ +

z

c

)
P (z; t′′, t′) dt′′ = 0,

where P (0; t, t′) = 0.
In order to obtain an approximation to P (z; t + t′, t′) for small t ≥ 0, it makes

sense apply the approximation

K
(
t+

z

c
, t′ +

z

c

)
= K

(
t′ +

z

c
, t′ +

z

c
− 0
)
H(t− t′)

to this integro-di�erential equation. The excitation time, t′, can now be treated as
a parameter. Denoting the Sommerfeld forerunner kernel by PS(z; t + t′, t′), one
arrives at an integro-di�erential equation in the variables (z, t) only:

∂zPS(z; t+ t′, t′) +K
(
t′ +

z

c
, t′ +

z

c
− 0
)(

H(t) +
(
H(·) ∗ PS(z; ·+ t′, t′)

)
(t)
)
= 0,
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where H(t) is the Heaviside step function. Then, formally, for the corresponding
temporal integral operator, one can write

1 + PS(z; ·+ t′, t′)∗ = exp (−f(z, t′)H(·)∗),

where frequency f(z, t′) is

f(z, t′) =

∫ z

0

K

(
t′ +

z′

c
, t′ +

z′

c
− 0

)
dz′,

the asterisk (∗) represents temporal convolution, and the exponential convolution
operator is interpreted in terms of its Taylor series, see Karlsson and Rikte [7].
Exploiting that

H(t)
∞∑
i=1

(
− f(z, t′)

)i ti−1

(i− 1)!i!

is a Bessel-function expansion, the Sommerfeld forerunner kernel becomes

PS(z; t+ t′; t′) = −f(z, t′)
(
J0

(
2
√
f(z, t′)t

)
+ J2

(
2
√
f(z, t′)t

))
H(t).

This agrees with the general result in the time-invariant case [7]. Other ways to
obtain this result is to use the method of successive approximations or to employ
Laplace transform techniques.

For the Lorentz model, K(t, t− 0) = ω2
p(t)/(2c) and

f(z, t′) =
1

2c

∫ z

0

ω2
p

(
t′ +

z′

c

)
dz′ =

1

2

∫ z/c

0

ω2
p (t
′ + ζ) dζ.

The choice of parameters

ωp(t) = ω (1 + α sin (βt))

employed by Åberg et al. [4] gives

f(z, t′)

ω2
=

1

2

(
1 +

α2

2

)
z

c
+
α2

8β

(
sin (2βt′)− sin

(
2β
(
t′ +

z

c

)))
+
α

β

(
cos (βt′)− cos

(
β
(
t′ +

z

c

)))
.

For a �xed propagation depth z, the Sommerfeld propagator kernel, PS(z; t+ t′; t′),
for this special Lorentz model is depicted in Figure 1. The choice of parameters is,
as in [4], ω =

√
2 · c/z, α = .4, β = 10 · c/z, (and ν = 1 · c/z, ν0 = 2 · c/z).
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Figure 1: The Sommerfeld propagator kernel, PS(z; t+t′; t′), at a �xed propagation
depth z in a Lorentz material with a periodic plasma frequency in the time interval
0 < t < 200 · z/c and in the excitation time interval 0 < t′ < z/c.
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