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Abstract

When the wavelength is much larger than the typical scale of the microstruc-
ture in a material, it is possible to define effective or homogenized material
coefficients. The classical way of determination of the homogenized coeffi-
cients consists of solving an elliptic problem in a unit cell. This method and
the Floquet-Bloch method, where an eigenvalue problem is solved, are nu-
merically compared with respect to accuracy and contrast sensitivity. The
Floquet-Bloch method is shown to be a good alternative to the classical ho-
mogenization method, when the contrast is modest.

1 Introduction

In the study of composite materials one is concerned with the study of a material
with microstructure. When the period of the structure is small compared to the
wavelength, the coefficients in Maxwell’s equations oscillate rapidly. The oscillating
coefficients give rise to numerical problems, which are hard to overcome when the
period is very small compared to the wavelength. To handle the numerical problem
various kinds of methods have been developed. A multiscale finite element method,
particulary suitable for problems with many scales, has been developed for scalar
elliptic problems, see [10]. In [1] the authors applied a finite difference method for
the same type of problems. The purpose of homogenization is to replace the rapidly
oscillating coefficients with new effective constant coefficients. The coefficients are
some times random and some times, as in this paper, periodic. A detailed exposi-
tion on the subject can be found in the books [2] and [11]. Among the many papers
on the topic, we mention a wavelet-based numerical homogenization method intro-
duced in [8], suitable for non-periodic problems. In [6], the authors compare the
classical method of homogenization and Floquet-Bloch homogenization for scalar
elliptic equations, in one and two dimensions. We perform calculations in two and
three dimensions for Maxwell’s equations.

This paper is organized as follows. The problem is formulated in Section 2.
In Section 3 basic results from the classical homogenization method are presented.
Results from the Floquet-Bloch method can be found in Section 4. The numerical
implementation used in this paper is given in Section 5 and the numerical experi-
ments are presented in Section 6.

2 Formulation of the problem

The material is modelled by the relative permittivity matrix ε and the relative
permeability matrix µ. The time-harmonic Maxwell equations (time convention
e−iωt) in a source-free region are

∇× E = iωµ0µH , ∇ · (εE) = 0,

∇× H = −iωε0εE, ∇ · (µH) = 0,
(2.1)
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where the permittivity and permeability of vacuum are denoted ε0 and µ0 respec-
tively. The speed of light in vacuum is c0 = 1/

√
ε0µ0. The first order Maxwell

system (2.1) can be written as a second order system in H{
∇× (ε−1∇× H) = (ω/c0)

2µH ,

∇ · (µH) = 0.
(2.2)

In the two-dimensional TM case, H = H3(x1, x2)x̂3, with vacuum permeability
µ = I, the system (2.2) becomes

−∇ · (ε−1∇H3) = (ω/c0)
2H3. (2.3)

The coefficients ε = εδ(x) are assumed to be δ-periodic, where δ is a small number.
Matrices of the form εδ(x) = ε(x/δ) are then unit-periodic in y = x/δ.

For a fixed δ the solution H is described by two scales, the macroscopic vari-
able x and the microscopic variable y = x/δ. When the period δ goes to zero,
the limit solution, depending on x alone, satisfies a system of partial differential
equations with constant coefficients (which is a model of a homogeneous material).
These constants are the homogenized, or effective, material parameters obtained
from problems in the microscopic variable y over one unit cell. Since the solution
does not oscillate rapidly over one cell, this avoids the numerical problems associated
with solving the full probelm.

3 Classical homogenization

Assume that the permittivity matrix ε is symmetric, and its eigenvalues are bounded
between positive constants, not depending on position. Let 〈f〉 denote the average
over the unit cell U = [0, 1[n in n dimensions and u0 an arbitrary constant vec-
tor. Denote by H1

per(U) the space of U -periodic functions belonging to H1(U), the
space of functions f that together with ∂f/∂xi are square integrable over U 1. The
homogenized relative permittivity εh is defined as, see [2, 5] for a derivation,

εhu0 = 〈ε(u0 −∇χ)〉 , (3.1)

where χ ∈ H1
per(U) is a solution to the local problem

∇ · [ε(u0 −∇χ(y))] = 0, y ∈ U, n = 2, 3. (3.2)

The solution of this electrostatic problem is unique if we impose the condition 〈χ〉 =
0. A physical motivation to equation (3.2) is that ∇χ represent the microscopic part
of the field, and u0 represents the macroscopic part. Due to the duality relation, [2, p.
663], we can equivalently calculate{

∇× [ε−1(u0 −∇× ψ(y))] = 0, y ∈ U n = 3

∇ · ψ = 0
(3.3)

1More precisely H1
per(U) is the closure of C∞

per(U) in the norm

‖f‖ =
√
‖f‖2

L2(U) +
∑n

i=1 ‖ ∂f
∂xi

‖2
L2(U)



3

and define the homogenized inverse permittivity as

(ε−1)hu0 =
〈
ε−1(u0 −∇× ψ)

〉
. (3.4)

In the two-dimensional TM case we have

∇ · [ε−1(u0 −∇ψ(y))] = 0, y ∈ U, n = 2 (3.5)

and
(ε−1)hu0 =

〈
ε−1(u0 −∇χ)

〉
. (3.6)

4 Floquet-Bloch homogenization

When a wave propagates in a homogeneous medium, we use plane waves eik·y to
solve the problem. If the medium is heterogeneous and periodic it is natural to look
for solutions that can be written on the form

H = v(y)eik·y, k ∈ U ′ = [−π, π[n, (4.1)

where v(x + m) = v(y), m ∈ Z
n. The vector k is the Floquet-Bloch wave vector

representing the mismatch of the wavelength with the lattice. The Floquet-Bloch
waves, for Maxwell’s equations, are solutions of (2.2) that have the form (4.1). Since
∇× (v(y)eik·y) = eik·y(∇ + ik) × v(y), the eigenvalue problem can be written

 (∇ + ik) × [ε−1(∇ + ik) × vn] =
ω2

n

c2
0

vn,

(∇ + ik) · vn = 0, y ∈ U, n = 3,

(4.2)

with periodic boundary conditions. In the two-dimensional TM case we have the
eigenvalue problem

−(∇ + ik) · [ε−1(∇ + ik)vn] =
ω2

n

c2
0

vn, y ∈ U, n = 2. (4.3)

The Floquet-Bloch waves were introduced by Floquet [9] and Bloch [4]. Properties
of the Floquet-Bloch waves can be found in [14] and [16]. The homogenized relative
permittivity is given by the Hessian of the lowest eigenvalue ω2

0 at k = 0

(ε−1)h
ij =

1

2c2
0

∂2ω2
0

∂ki∂kj

(0), (4.4)

see [2] or [7] for a derivation. We give a simple physical motivation. Using ω0(0) = 0
we obtain

1

2c2
0

∂2ω2
0

∂k2
(0) =

1

c2
0

(
∂ω0

∂k
(0)

)2

, (4.5)

where ∂ω0

∂k
(0) is the group velocity. In an isotropic non-magnetic homogeneous

medium we have ∂ω0

∂k
(0) = ω/k and ω/k = c0/

√
ε. Then follows

1

2c2
0

∂2ω2
0

∂k2
(0) = ε−1, (4.6)

which justifies (4.4). In the case of electron dynamics in metals, (4.4) corresponds
to the effective mass, see for instance [13, p. 193].
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5 Numerical implementation

5.1 Classical method

Suppose that the permittivity matrix is isotropic, ε = εI. The diagonal elements
of the homogenized matrix, εh

ii, are then, in the two-dimensional TM case, given by
the minimization problems

εh
ii = minχ∈H1

per(U)

∫
ε|∇χ + êi|2 dy (5.1)

or

(ε−1)h
ii = minχ∈H1

per(U)

∫
ε−1|∇χ + êi|2 dy. (5.2)

The solutions of these problems are equivalent with the solutions of the differential
equations (3.2) and (3.5), see [11, p. 39]. Let V be any finite-element subspace
of H1

per(U). Denote by ε+
ii , ε−ii the solution of (5.1), (5.2) where the minimum is

taken over V . Since the minimum is then taken over a smaller space, it follows that
εh
ii ≤ ε+

ii and (εh
ii)

−1 ≤ (ε−ii)
−1. That means

ε−ii ≤ εh
ii ≤ ε+

ii . (5.3)

We use these numerical estimates in the two-dimensional TM case and εh
ii ≤ ε+

ii

in the three-dimensional case. All calculations are performed with the MATLAB
toolbox FEMLAB, which uses a standard Galerkin implementation.

5.2 Floquet-Bloch method

The eigenvalues ω2(k) are symmetric with respect to the origin and ω2(0) = 0.
This gives us a second order, o(h2), finite difference formula for the second partial
derivatives

∂2ω2(0)

∂k2
1

=
1

h2
ω2(hê1),

∂2ω2(0)

∂k1∂k2

=
1

2h2
[ω2(hê1 + hê2) − ω2(hê1 − hê2)]. (5.4)

These formulas are used in most calculations. The error in the calculations in Section
6 are not in the approximation of the derivatives. When the number of nodes is
small, the discretization error dominates. In one case, Figure 3, a fourth-order finite
difference formula is used

∂2ω2(0)

∂k2
1

=
1

6h2
[16ω2(hê1) − ω2(2hê1)]. (5.5)

In the two-dimensional case the calculations are done with the MATLAB toolbox
FEMLAB, which uses a Krylov subspace method (Arnoldi’s method), see [15]. The
calculations for the three-dimensional inclusions are performed with the freely avail-
able MIT Photonic-Bands package, described in [12]. The MIT program uses the fast
Fourier transform (FFT), which gives a very fast algoritm compared to FEMLAB.



5

ε1

ε1

ε2

ε2

ε1

ε1

ε2

ε2

ε3

ε3 =
√

ε1ε2

10
1

10
2

10
3

 35

 30

 25

 20

 15

Contrast

R
el

at
iv

e 
er

ro
r 

in
 d

B

Bloch
Classical
Bloch reg.
Classical reg.

Figure 1: Relative error as a function of contrast (log scale). The Floquet-Bloch
vector is k = (0.01, 0) and the number of nodes are about 6200. Both methods
are sensitive to contrast in the standard checkerboard case (upper geometry). The
Floque-Bloch (Bloch) and classical solutions are approximately equal. The classical
solution (Classical reg.) of the regularization of the checkerboard problem (lower
geometry) is less sensitive to contrast than the Floquet-Bloch solution (Bloch reg.).
In this case the side length of the squares are 0.4.

6 Numerical results

6.1 The two-dimensional TM case

Explicit formulas for the homogenized matrix can in general only be found in the
one-dimensional case. In two dimensions it is possible to calculate an explicit formula
if the matrix ε satisfies the symmetry condition

ε(y)ε(Ry) = cI (6.1)

where c is a positive constant and

R =

(
0 1
−1 0

)
(6.2)

is the matrix associated with the rotation by the angle π/2. It can be shown that

εh =
√

cI. (6.3)

see, [11, pp. 35-36]. We consider problems with checkerboard structure as in Figure
1 and Figure 2, which all have the analytic solution εh =

√
ε1ε2 I. The analytic

result is compared with numerical computations of the classical solution (3.1) and
the Floquet-Bloch solution (4.4). Due to the behavior of the field near corner
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Figure 2: Relative error as a function of contrast (log scale), when ε3 =
√

ε1ε2 and
the semi axes are (0.24, 0.20). The number of nodes are 2080 and the Floquet-Bloch
vector is k = (0.01, 0). The classical solution is not sensitive to contrast.

points, the standard checkerboard in Figure 1 is numerically difficult, see [3]. We
cannot expect small errors with standard FEM. From a physical point of view the
question is whether the inclusions are touching or not. The classical method and
the Floquet-Bloch method are equally bad in this case.

A possible regularization of the standard checkerboard problem is to put in a
new material ε3 between the squares, see Figure 1. The error with ε3 =

√
ε1ε2

is considerably lower and the error in the classical method is not so sensitive to
contrast.

The relative error as a function of contrast, for elliptical inclusions, is shown in
Figure 2. The classical solution is astonishingly good at high contrasts, but even in
the worst case the Floquet-Bloch method gives us three correct digits.

In the case of a simple square inclusion, as in Figure 3, we do not have an ana-
lytical solution, but we have the numerical bounds (5.3). Using the approximation
εh = (ε+ + ε−)/2 with the maximum error (ε+− ε−)/2, we get εh = 1.54422±2 ·10−5

with the classical method. In the figure, the Classical High/Low corresponds to
ε+/ε−. The convergence of the Floquet-Bloch solution depends on the chosen k. If
k = 0.001 is chosen and the derivatives are approximated with a second order finite
difference formula, then the algorithm seems to be unstable. The smallest eigenvalue
is 104 times smaller when k = 0.001 is used. This probably cause a larger relative
error. The solution is much better if we choose k = 0.1 and use a fourth order finite
difference formula. The accuracy can be improved even further by using Richardson
extrapolations.

When the fourth order approximation (5.5) is used, we need two points instead
of only one. The computation time for the solution of the classical problem is
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Figure 3: Relative error as a function of the number of nodes (log scale), when the
contrast is ten and the side length of the square is 0.5. The error is the normalized
distance, with sign, to εh = 1.54422, which is the arithmetic mean of Classical High
and Classical Low, when the number of nodes are 105. Bloch High is the usual
Floquet-Bloch solution, calculated with ε and Bloch Low is calculated with ε−1.
All Floquet-Bloch solutions except ’�’ are calculated with the second order finite
difference formula (5.4). In the Floquet-Bloch solution ’�’, the fourth order formula
(5.5) is used. This solution is very close to the classical solution.

almost equal to the time for the solution of the Floquet-Bloch problem when the
second order approximation is used. If the fourth order approximation is used, the
computation time is twice the time for the classical problem. In the anisotropic
case we need two and eight points for the second and fourth order approximation,
respectively.

6.2 Three dimensions

In the case of spherical inclusions Figure 4, we do not have an explicit formula,
but we know that the solution shold approach the Maxwell-Garnett formula (lower
bound in Figure 4) when the radius goes to zero. Figure 4 shows that we have good
agreement with the Maxwell-Garnett formula and between the different methods.
The classical solution provides an upper bound. The Floquet-Bloch solution is
slightly above the bound, but this probably depends on the different grid, that is
used by the MIT program. The MIT program uses a uniform grid and FEMLAB
uses a grid that adapts to the geometry.

To get a problem with an analytical solution we extend a two-dimensional
checkerboard problem to three dimensions, see Figure 5. The error is considerably
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Figure 4: Relative permittivity is 16. The number of elements in the classical
solution is 107716 and in the Floquet-Bloch solution 262144 elements are used.
The Floquet-Bloch vector is k = (0.1, 0, 0). The lower Maxwell-Garnett bound
is εb + 3fεb(εi − εb)/(εi + 2εb − f(εi − εb)), where f is the volume fraction of the
inclusion and εi, εb is the permittivity of the inclusion and the background material,
respectively. If the inclusion and the background material are exchanged, the upper
bound is described by the same formula. The Maxwell-Garnett formula is a very
good approximation when the radius is small.

larger if we calculate the problem in three dimensions, compare Figure 2 and Figure
5. The FFT based MIT program uses the effective-medium technique, see [12], to
handle the discontinuity of ε. The algorithm works well for modest contrasts, but
cannot handle large contrasts.

7 Discussion and conclusions

In the two-dimensional cases a finite-element algorithm is used in both methods.
The classical method works better when the contrast is high, but the Floquet-Bloch
solution can probably be improved if a good preconditioner is used. For instance a
generic incomplete LU factorization algorithm with threshold is used in [15, p. 288]
to solve a similar problem.

In the three-dimensional cases a finite-element algorithm, FEMLAB, is used for
the classical method and a FFT based algorithm, from MIT, for the Floquet-Bloch
method. The MIT program is considerably faster than FEMLAB, but it does not
work well for high contrasts. As in the two-dimensional cases, a finite-element
algorithm with a good preconditioner, will probably give better accuracy when the
contrast is high. The Floquet-Bloch method is shown to be a good alternative to
the classical homogenization method, when the contrast is modest.
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(0.1, 0, 0). The Floquet-Bloch solution is accurate for modest contrasts, but bad for
high contrasts.

References

[1] M. Avellaneda, T. Hou, and G. Papanicolaou. Finite difference approximations
for partial differential equations with rapidly oscillating coefficients. Math.
Modell. Numer. Anal., 25(6), 693–710, 1991.

[2] A. Bensoussan, J. L. Lions, and G. Papanicolaou. Asymptotic Analysis for
Periodic Structures, volume 5 of Studies in Mathematics and its Applications.
North-Holland, Amsterdam, 1978.

[3] S. Berggren, D. Lukkassen, and A. Meidell. A new method for numerical so-
lution of checkerboard fields. Journal of Applied Mathematics, 1(4), 157–173,
2001.
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