
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

An Interactive PID Learning Module for Educational Purposes

Theorin, Alfred; Johnsson, Charlotta

Published in:
[Host publication title missing]

DOI:
10.3182/20140824-6-ZA-1003.01669

2014

Link to publication

Citation for published version (APA):
Theorin, A., & Johnsson, C. (2014). An Interactive PID Learning Module for Educational Purposes. In [Host
publication title missing] https://doi.org/10.3182/20140824-6-ZA-1003.01669

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.3182/20140824-6-ZA-1003.01669
https://portal.research.lu.se/en/publications/2cc7d674-88e6-490c-85c2-2c566b1e67ad
https://doi.org/10.3182/20140824-6-ZA-1003.01669

An Interactive PID Learning Module for
Educational Purposes ⋆

Alfred Theorin ∗ Charlotta Johnsson †

∗Department of Automatic Control, Lund University, Lund, Sweden
(e-mail: alfred.theorin@control.lth.se)

†Department of Automatic Control, Lund University, Lund, Sweden
(e-mail: charlotta.johnsson@control.lth.se)

Abstract: The PID controller is the most common controller and it is taught in most
introductory automatic control courses. To develop an intuitive understanding of the basic
concepts of the PID controller and PID parameter tuning, interactive and freely available tools
are important. A PID module for educational purposes has been implemented in JGrafchart,
a freely available development environment for the graphical programming language Grafchart.
JGrafchart includes interactive graphical elements such as live plots and it is possibile to create
animated graphics, for example of a simulated process. JGrafchart’s variables, for example
controller parameters and modes, can be changed interactively while executing. The PID module
will be included in future releases of JGrafchart with sample applications which can be used for
example to demonstrate a PID controller live in lectures or to let students interactively change
controller parameters and modes to develop an intuitive understanding of the PID controller and
PID parameter tuning. The sample applications are designed for users without any knowledge
about JGrafchart and can be used to control both simulated and physical processes.

Keywords: Control education, Education, Grafchart, PID control, PID controllers, Teaching

1. INTRODUCTION

An important concept in automatic control is the concept
of the PID controller. The PID controller is by far the most
commonly used controller in industry. There are billions
of control loops (Soltesz (2012)) and the PID controller is
used for more than 95% of all control loops (Åström and
Murray (2012)). The PID controller concept is also taught
in most introductory automatic control courses and given
its wide use it is important that the students obtain a
deep understanding for PID control. The availability of
interactive learning tools in these courses is important
since it facilitates the possibility for students to develop an
intuitive feel and understanding. Interactive tools provide
students with an opportunity to experiment with PID
controllers and give them hands on experience of how the
PID controller works.

Examples of interactive learning tools in the field of auto-
matic control are ICtools (Johansson et al. (1998)) and
Interactive Learning Modules for PID (Guzman et al.
(2008)). ICtools is an interactive MATLAB based tool for
learning the basics of automatic control whereas Interac-
tive Learning Modules for PID is a learning tool which
covers many aspects of PID controller design and tuning
in an intuitive and highly interactive way.

Students should also be familiarized with PID controllers
in a realistic setting, that is, controlling a physical process.

? Financial support from VINNOVA and the Swedish Research
Council through the LCCC Linnaeus Center grant, the ELLIIT Ex-
cellence Center, and the LISA project are gratefully acknowledged.

If a physical process is not available, an animated simula-
tion of the process can be used instead. The idea is to let
the students control the process, and by doing so find out
the basic ideas of automatic control and get an intuitive
feel for how the PID controller and its parameters work.

A PID module for educational purposes is presented
in this paper. It has been implemented in JGrafchart,
an integrated development environment for the graphi-
cal programming language Grafchart. JGrafchart includes
interactive graphical elements such as live plots and
the possibility to create animated graphics, for exam-
ple of a simulated or physical process (Theorin (2013)).
JGrafchart’s variables, for example the controller param-
eters and modes, can also be changed interactively while
executing. The learning module is designed for users with-
out any knowledge about JGrafchart.

Unlike MATLAB, JGrafchart is free and based on an
industrial control language. Unlike many other learning
tools, JGrafchart can be used in industry-like environ-
ments as it can be connected to physical processes.

In this paper, the importance of interactive learning en-
vironments is discussed in Section 2. The PID controller
itself and its implementation aspects are discussed in Sec-
tion 3. Grafchart and JGrafchart are described in Section 4
and the PID module and information about usage and
setup is presented in Section 5. The educational aspects
with an interactive example and possible uses of the in-
teractive tool in an introductory course are discussed in
Section 6. Finally, in Section 7 conclusions are drawn and
future work is discussed.

2. LEARNING ENVIRONMENTS

To assure good learning situations and learning environ-
ments it is important to understand how knowledge is
constructed in the mind.

Basically, there are two types of students:

A. The group that constructs new knowledge mainly
from concrete experience.

B. The group that constructs new knowledge mainly
by formation of abstract concepts and general-
izations.

Students often prefer either experiments (group A) or ab-
stract concepts (group B) as starting point for constructing
new knowledge. Since this is individual, both starting
points should be provided in a learning situation.

The model Kolb Learning Cycle (Kolb (1984)), see Fig. 1,
illustrates how an experience (left) results in reflection on
observations (top), which results in new abstract think-
ing (right), which might cause conceptual changes in a
student’s mind (bottom), which might cause a need for
obtaining more concrete experiences (left), and so on. The
preferred starting point in the Kolb Learning Cycle is
individual and depends on the student’s preferred way of
learning (compare to group A/B above).

Fig. 1. The Kolb Learning Cycle.

The availability of interactive PID learning tools make it
possible for students taking classes in automatic control to
obtain concrete experiences on a PID controller.

3. PID CONTROLLERS

A controller in a feedback loop can be used to control a
process (physical or simulated) to give it desired behavior,
see Fig. 2. More than 95% of all control loops are PID
controllers, or rather PI controllers as the derivative part
is rarely used (Åström and Murray (2012)).

∑
Controller Process

u

−1

ysp e y

Fig. 2. A feedback loop where a controller is used to control
the process by considering the control error.

3.1 Basic PID Controller

The input to the PID controller is the control error,
𝑒(𝑡), which is the difference between the desired (refer-
ence/setpoint) process state, 𝑦sp(𝑡), and the measured
process state, 𝑦(𝑡):

𝑒(𝑡) = 𝑦sp(𝑡)− 𝑦(𝑡) (1)

The output of the PID controller is the manipulated
variable (control signal), 𝑢(𝑡). A basic PID controller in
continuous time is described by

𝑢(𝑡) = 𝐾

⎛⎝𝑒(𝑡) +
1

𝑇i

t∫︁
0

𝑒(𝜏)𝑑𝜏 + 𝑇d
𝑑𝑒(𝑡)

𝑑𝑡

⎞⎠ (2)

where the PID controller parameters are the controller
gain 𝐾, the integral time 𝑇i, and the derivative time 𝑇d

(Åström and Hägglund (2006), Glad and Ljung (2006)).
These parameters are used to tune the closed loop behav-
ior.

3.2 PID Implementation

In (2) many details are ignored such as:

∙ The derivative for time 𝑡 is unknown at time 𝑡.
∙ Physical control signal limits are not considered which

will cause integrator windup.
∙ The controller parameters are assumed to be constant

but the operator may change them at any time.

PID controllers are practically always implemented digi-
tally on computers and thus (2) must be discretized. There
are best practices for how to tackle these, and most other,
PID implementation related issues.

For a PID learning tool to be complete it should include
all common PID features:

∙ Anti-windup
∙ Auto/Manual mode
∙ Bumpless mode change (automatic/manual)
∙ Bumpless parameter change
∙ Feedforward
∙ Maximum derivative gain
∙ Setpoint weighting
∙ Tracking

3.3 PID Algorithms

Most PID controllers are implemented on positional form
which means that the control signal is calculated directly.
Each sample a new control signal is calculated based on
the new and/or previous process and setpoint values as
well as on the internal state of the PID controller. A
drawback with positional form is that the internal states,
primarily the integrator state, are sensitive to mode and
parameter changes, and need many special cases to get
proper behavior.

An alternative to positional form is velocity form which
instead calculates increments to the control signal each
sample. An advantage with velocity form is that it has

fewer internal states. Most notably the integral term
is not an internal state of the controller, it is instead
included in the control signal itself, which means that
several controller features like anti-windup, tracking, and
bumpless mode changes practically come for free. On the
other hand, without integral action a pure velocity form
implementation has arbitrary stationary error. All in all,
the velocity form implementation does not require as many
special cases which makes it more compact and easier to
implement correctly.

A discretized PID algorithm on velocity form (Åström and
Hägglund (2006)) is described by

Δ𝑢(𝑡k) = 𝑢(𝑡k)− 𝑢(𝑡k−1) = (3)
= Δ𝑃 (𝑡k) + Δ𝐼(𝑡k) + Δ𝐷(𝑡k) + Δ𝑢ff (𝑡k) (4)

Δ𝑃 (𝑡k) = 𝑃 (𝑡k)− 𝑃 (𝑡k−1) =

= 𝐾(𝑏𝑦sp(𝑡k)− 𝑦(𝑡k))−𝐾(𝑏𝑦sp(𝑡k−1)− 𝑦(𝑡k−1))
(5)

Δ𝐼(𝑡k) = 𝐼(𝑡k)− 𝐼(𝑡k−1) = 𝑏i1𝑒(𝑡k) + 𝑏i2𝑒(𝑡k−1) (6)
Δ𝐷(𝑡k) = 𝐷(𝑡k)−𝐷(𝑡k−1) =

= 𝑎dΔ𝐷(𝑡k−1)− 𝑏d(𝑦(𝑡k)− 2𝑦(𝑡k−1) + 𝑦(𝑡k−2))
(7)

Δ𝑢ff (𝑡k) = 𝑢ff (𝑡k)− 𝑢ff (𝑡k−1) (8)

where 𝑦 is the process value, 𝑦sp is the reference value, Δ𝑢
is the control signal increment, and Δ𝑃 , Δ𝐼, and Δ𝐷 are
the increments for the P, I, and D part respectively. 𝐾 is
the controller gain and 𝑏 is the scalar setpoint weight for
the P-part. 𝑏i1 and 𝑏i2 are constants which depend on how
the integral term is discretized. For no particular reason,
backward difference was selected which gives 𝑏i1 = Kh

Ti
and 𝑏i2 = 0 where 𝑇i is the integral time and ℎ is the PID
controller sample time. Similarly 𝑎d and 𝑏d are constants
which depend on how the derivative term is discretized.
Most derivative part discretizations except for backward
difference either have issues with overflow or instability.
Thus, backward difference was selected which gives 𝑎d =

Td

Td+Nh and 𝑏d = KTdN
Td+Nh where 𝑇d is the derivative time

and 𝑁 is the maximum derivative gain. Finally, 𝑢ff is the
feedforward signal.

Without integral action the velocity form has arbitrary
stationary error. The reason is that the P part is assumed
to be included in the control signal and only needs to
be adjusted when the measurement value changes. This
assumption does not hold for example when tracking or
when the control signal saturates. To avoid this issue, the
P-part is then instead

Δ𝑃 (𝑡k) = 𝑃 (𝑡k) + 𝑢b(𝑡k)− 𝑢(𝑡k−1) =

= 𝐾(𝑦sp(𝑡k)− 𝑦(𝑡k)) + 𝑢b(𝑡k)− 𝑢(𝑡k−1) (9)

where 𝑢b is the bias term which will be set to 𝑢ff to
support feedforward for controllers without integral action.
Setpoint weighting is also removed for this case.

The main reason to choose velocity form is that it requires
fewer special cases which means less code, specifically
considerably less special code which is rarely executed and
thus more likely to contain errors.

4. GRAFCHART

Grafchart is a graphical programming language based on
Sequential Function Charts (SFC), one of the IEC 61131-3
(IEC (1993)) PLC standard languages which is used to im-
plement sequential, parallel, and general state-transition
oriented applications. Grafchart uses the same graphical
syntax with steps and transitions where steps represent
the possible application states and transitions represent
the change of state (Theorin (2013)). Associated with the
steps are actions which specify what to do. Associated
with each transition is a Boolean guard condition which
specifies when the application state may change.

A part of a running Grafchart application is shown in
Fig. 3. Here two steps are connected by a transition and
there are two variables, namely var and cond. In the left
part of the figure, the upper step has just been activated
which involves executing its S action, thus setting var to 7.
That the step is active is indicated by a black dot, known
as a token. The upper step will remain active until the
guard condition of the transition becomes true, that is,
until cond gets the value 4. When the guard condition
becomes true, shown in the right part of the figure, the
upper step is deactivated and the lower step is activated
which means that var is set to 12.

S var = 7;

S var = 12;

cond == 4

var: 7

S var = 7;

S var = 12;

cond == 4

var: 12

cond: 1 cond: 4

Fig. 3. A piece of a running Grafchart application. The
left part shows one application state and the right
part shows a later application state.

Steps also have additional properties, namely x, t, and s.
x is true if the step is active and false if the step is inactive.
t is how many scan cycles the step has been active since
the previous activation if the step is active. For inactive
steps t is 0. s works the same as t but counts seconds
instead of scan cycles.

Grafchart supports basic SFC functionality such as several
action types and alternative and parallel paths. Also, addi-
tional constructs such as hierarchical structuring, reusable
procedures, and exception handling have been added
which makes it convenient to implement large applications
that are maintainable and possible to overview (Theorin
(2013)).

With reusable components, code duplication is avoided.
Reusable code can be put in a Grafchart Procedure which
can then be called Procedure Steps and Process Steps, see
Fig. 4. The difference is that Procedure Steps wait for the
call to complete before the application can proceed while
Process Steps do not.

Procedure

ProcedureStep

ProcessStep

b

c

Fig. 4. A Procedure can be called from Procedure Steps
and Process Steps. Each Procedure Step and Process
Step specify which Procedure to call when activated.

4.1 Execution Model

Grafchart applications are, like SFC, executed periodically,
one scan cycle at a time. Since Grafchart is a state oriented
language and not a data flow language, ensuring the de-
sired execution order requires knowledge about its execu-
tion model. A transition is enabled when all immediately
preceding steps are active. An enabled transition is fireable
if its condition is true. Firing a transition involves deacti-
vating the immediately preceding steps and activating the
immediately succeeding steps. The execution model of a
scan cycle is described by the following sequence:

1. Read inputs.
2. Mark fireable transitions.
3. Remove mark for conflicting transitions of lower

priority.
4. Fire marked transitions.
5. Update step properties t and s.
6. Execute P actions.
7. Mark variables subject to N actions.
8. Update marked variables.
9. Sleep until the start of the next scan cycle.

The execution model gives sufficiently deterministic be-
havior and has the property that a step which is activated
always remains active for at least one scan cycle. The
remaining non-determinism is for cases where the appli-
cation should not depend on the execution order anyway,
for example the firing order of transitions affects which
step’s S and X actions are executed first. Another example
is which step’s P actions are executed first.

4.2 JGrafchart

JGrafchart is a Java based integrated development en-
vironment for Grafchart with some extensions (Theorin
(2013)). Most interesting for this paper are inline if and
graphical elements.

Inline if (?:) is also known as the conditional operator
and ternary if. It is used for conditional expression eval-
uation and can make applications easier by reducing the
number of steps. The syntax is <cond> ? <trueExpr> :
<falseExpr> which evaluates to <trueExpr> if the condi-
tion <cond> is true and to <falseExpr> otherwise. Fig. 5
shows a small JGrafchart application written without and
with inline if. The implementations behave slightly differ-
ent: The left part executes the initialization in one scan

cycle and the rest in the next scan cycle. The right part
executes everything in the same scan cycle and is more
compact and less complicated.

!bb

S c = 42;

1
// Use c

X b = 0;

S c = b ? 42 : c;

// Use c

X b = 0;

Without Inline If With Inline If

Fig. 5. The variable c needs to be initialized to 42 if b
is true. The left part shows how to implement this
without inline if. The right part shows how it can be
implemented with inline if.

JGrafchart also includes a multitude of graphical ele-
ments such as rectangles, ellipses, lines, arrows, text fields,
images, lists, and plots. The elements can be modified
from actions in the Grafchart application which makes it
possible to create animations, visualizations, or operator
interfaces for physical or simulated processes. There are
also buttons with associated on click actions. Another
useful feature is that variables are interactive. They are
shown graphically with their current value and can also
be changed while executing. Here this is particularly useful
for controller parameters and modes.

Finally, JGrafchart can also be connected to external
environments through a multitude of customizable in-
put/output (I/O) integration capabilities and can thus
also be used to control physical processes.

5. IMPLEMENTATION

5.1 PID Procedure

A full-fledged PID module has been implemented as a
reusable Grafchart Procedure which means that it can
be used for any number of control loops by adding a
Procedure Step or Process Step for each control loop.
The Procedure is called PID and is shown in Fig. 6. The
Procedure parameters are explained in Table 1.

A Procedure executes at the same rate as the application
it is called from. The PID sample time is thus limited to
a multiple of the application’s scan cycle time. The PID
algorithm is implemented in a single step and can thus
execute at the same rate as the caller.

In Procedure calls, each Procedure parameters can be set
as either call-by-reference (R), call-by-value (V), or default
(omitted). For call-by-value and default the parameter is
set once when the call is made. For call-by-reference the
parameter will be a reference to a variable or I/O in the
calling context. To be useful, PV, SP, TR, and MV should
be call-by-reference and the caller should set and update
all parameters except MV which is the PID Procedure’s sole
output.

S PV2 = PV;

S PV1 = PV;

S SP1 = SP;

S FF1 = FF;

S useFF1 = useFF;

Real

TR

0.0Real

PV

0.0 Real

SP

0.0

Real

K

1.0

Signals

Real

MV

0.0

Real

Ti

20.0 Real

Td

0.0 Real

Nd

8.0

Real

Man

0.0

Controller Parameters 1

Interaction

Internal

Real

PV1

0.0

Real

b

1.0

Real

FF

0.0

Bool

manualMode

0

Real

dP

0.0 Real

dI

0.0 Real

dD

0.0

Real

PV2

0.0 Real

h

0.0

Real

dFF

0.0 Real

dMV

0.0

Real

SP1

0.0 Real

FF1

0.0

Bool

useFF

0

Int

execFreq

1

exec

// Execute one increment

S h = execFreq * getTickTime() / 1000.0;

S dP = (Ti != 0) ? K*(b*SP-PV) - K*(b*SP1-PV1) : K*(SP-PV) + (useFF ? FF : 0) - TR;

S dI = (Ti != 0) ? K*h/Ti*(SP-PV) : 0;

S dD = (Td/(Td+Nd*h))*dD - (K*Td*Nd/(Td+Nd*h))*(PV-2*PV1+PV2);

S dFF = (useFF & useFF1) ? FF - FF1 : 0;

S dMV = dP + dI + dD + dFF;

S MV = manualMode ? Man : TR + dMV;

// Update previous values

S PV2 = PV1;

S PV1 = PV;

S SP1 = SP;

S FF1 = FF;

S useFF1 = useFF;

exec.t >= execFreqstop1Bool

stop

0

Real

useFF1

0.0

Fig. 6. The new PID Procedure. The parameter values
here are the default values. See Table 1 for more
detailed parameter descriptions. The step actions are
not intended to be readable in this figure.

Table 1. Parameter descriptions for the param-
eters of the PID Procedure in Fig. 6.

Parameter Description
PV Process Value, the measurement value for the

process.

SP SetPoint, the reference value.

TR TRacking signal, the actually actuated control
signal in the previous scan cycle.

MV Manipulated Variable, the control signal.

FF FeedForward, an external signal added to the
control signal.

Man Manual, the control signal when in manual mode.

K Controller gain.

Ti Integral time.

Td Derivative time.

Nd Maximum derivative gain, usually called N but
that is a reserved word in JGrafchart.

b Setpoint weight for the P-part.

execFreq Execution Frequency, the PID controller sample
time is execFreq times the calling Grafchart
application’s scan cycle time.

useFF Signal to turn feedforward on/off.

manualMode Signal to turn manual mode on/off.

stop Signal to terminate the Procedure call and thus
stop executing the PID controller.

Fig. 7. A Process Step calling the PID Procedure.

A call to the PID Procedure is shown in Fig. 7. Here
the parameters for feedforward, manual mode, setpoint
weighting, and the D-part are omitted and will thus get
their default values, which means that these features are
not used. Call-by-reference is used for all parameters, for
example the parameter PV in the call will be a reference
to the variable Level in the calling context. Changing the
value of the variable also updates the parameter and vice
versa.

5.2 Code

The code for the main step (exec) of Fig. 6 is shown
in Fig. 8. It is a straightforward implementation of the
discrete equations in Section 3.

// Execute one increment
S h = execFreq * getTickTime() / 1000.0;
S dP = (Ti != 0) ?
 K*(b*SP-PV) - K*(b*SP1-PV1) :
 K*(SP-PV) + (useFF ? FF : 0) - TR;
S dI = (Ti != 0) ? K*h/Ti*(SP-PV) : 0;
S dD = (Td/(Td+Nd*h))*dD -
 (K*Td*Nd/(Td+Nd*h))*(PV-2*PV1+PV2);
S dFF = (useFF & useFF1) ? FF - FF1 : 0;
S dMV = dP + dI + dD + dFF;
S MV = manualMode ? Man : TR + dMV;

// Update previous values
S PV2 = PV1;
S PV1 = PV;
S SP1 = SP;
S FF1 = FF;
S useFF1 = useFF;

Fig. 8. The main step code of the PID Procedure in Fig. 6.

First the current PID controller sample time is calculated.
Then the P, I, D, and feedforward increments are calcu-
lated. dP and dI have special handling if the integrator is
turned off as discussed in Section 3. The feedforward calcu-
lation has special handling to avoid bumps when feedfor-
ward is enabled at the same time as the feedforward value
is changed. After this the whole control signal increment
dMV is calculated and then the control signal is selected
depending on the current mode. Note that TR is typically
the limited MV from the previous scan cycle and the caller
is responsible to update TR. Finally, previous values are
stored for the next sample in internal variables suffixed
with how many scan cycles old they are, for example PV1
is PV from the previous scan cycle.

5.3 Simulation Setup

A tricky part of setting up a simulated process that uses
the PID Procedure is to ensure proper execution order:

1. Execute the PID controller
2. Limit the control signal
3. Update the simulated process

The PID Procedure uses S actions to make it execute as
early as possible (step 4 in the execution model). Hence
P actions can be used for the simulated process (step 6 in
the execution model). To ensure that the limited control
signal is used to update the simulated process, the limiting
should be a preceding P action in the same step.

6. EDUCATIONAL ASPECTS

For educational tools it is paramount that they are easily
available and easy to run for everyone. The interactive PID
module presented in this paper only requires JGrafchart,
a freely available software. JGrafchart is written in Java
and is platform independent. It has been verified to run
on Windows, Linux, and Mac. The interactive PID module
will be made readily available by including sample appli-
cations with the JGrafchart installation as well as having
the PID Procedure as a JGrafchart library component.

6.1 Evaluation

The implementation was evaluated on a simulated tank
process similar to the upper tank of the tank process
used in the introductory automatic control course at Lund
University, Sweden. The process consists of a water tank
and the objective is to control the tank’s water level. The
inflow to the tank is controlled with a pump and there is
an outflow through a hole in the bottom of the tank.

Fig. 9 shows the application in action. There is a live an-
imation showing the current state of the (simulated) pro-
cess and both setpoint and basic control parameters can
be changed while executing. The figure shows a suitable
setup for beginners. More of the PID Procedure features
can be included in subsequent exercises.

Fig. 9. In the left part, the setpoint and controller parame-
ters can be changed and an animation of the simulated
tank is shown. The upper plot shows the measurement
value (black) and the setpoint (red). The lower plot
shows the control signal. In this screenshot, the set-
point and controller parameters were recently changed
several times.

6.2 Possible Uses

It is possible to create and use simulated processes for
hands on or laboratory exercises. With JGrafchart’s capa-
bility to connect to external environments it is also possible
to use the same implementation for controlling the actual
process. One possibility is to control a physical process in
a laboratory exercise and provide a simulated process for
preparatory or followup work.

Another possible use is live demonstrations in lectures and
there are certainly many other possibilities.

7. CONCLUSIONS

The PID controller is the most common controller and is
taught in most introductory automatic control courses. To
aid learning of new concepts interactive learning tools play
an important role. The interactive PID module presented
in this paper aims to aid obtaining both an understanding
of the PID controller concept and an intuitive feel for PID
parameter tuning in an industry-like setting. Unlike many
other learning tools JGrafchart is free, based on an indus-
trial control language, and can be used in industry-like
environments. The module was evaluated on a simulated
process and works very well.

The PID module and samples will be included with future
releases of JGrafchart. The samples are designed for users
without any knowledge about JGrafchart. Download link:
http://www.control.lth.se/Research/tools/grafchart.html

7.1 Future Work

The next step is to evaluate the tool further by including
it in introductory course education.

Issues with the PID algorithm have been noticed by run-
ning it in JGrafchart, specifically issues with the D-part.
Further reaserch on the PID algorithm is thus desired.

There are several possible extensions for the current PID
Procedure. For example it would be useful to include an
optional process value filter or more advanced features,
such as an auto-tuner.

REFERENCES

Åström, K. and Hägglund, T. (2006). Advanced PID
Control. ISA-The Instrumentation, Systems, and Au-
tomation Society.

Åström, K. and Murray, R. (2012). Feedback Systems:
An Introduction for Scientists and Engineers. Princeton
University Press, Princeton and Oxford. URL http://
www.cds.caltech.edu/~murray/amwiki.

Glad, T. and Ljung, L. (2006). Reglerteknik: grundläg-
gande teori. Studentlitteratur.

Guzman, J.L., Åstrom, K., Dormido, S., Hägglund, T.,
Berenguel, M., and Piguet, Y. (2008). Interactive
learning modules for PID control [lecture notes]. Control
Systems, IEEE, 28(5), 118–134.

IEC (1993). IEC 61131-3: Programmable controllers – part
3: Programming languages. Technical report, Interna-
tional Electrotechnical Commission.

Johansson, M., Åström, K.J., and Gäfvert, M. (1998).
Interactive tools for education in automatic control.
IEEE Control Systems, 18(3), 33–40.

Kolb, D. (1984). Experiential learning: experience as the
source of learning and development. Prentice Hall,
Englewood Cliffs, NJ.

Soltesz, K. (2012). On automation of the PID tuning
procedure. Licentiate Thesis ISRN LUTFD2/TFRT-
-3254--SE, Department of Automatic Control, Lund
University, Sweden.

Theorin, A. (2013). Adapting Grafchart for industrial
automation. Licentiate Thesis ISRN LUTFD2/TFRT-
-3260--SE, Department of Automatic Control, Lund
University, Sweden.

