Nonequivalent cascaded convolutional codes obtained from equivalent constituent convolutional encoders

Höst, Stefan; Johannesson, Rolf; Zyablov, Viktor V.

Published in: [Host publication title missing]

DOI: 10.1109/ISIT.1998.708943

1998

Link to publication

Citation for published version (APA):
Höst, S., Johannesson, R., & Zyablov, V. V. (1998). Nonequivalent cascaded convolutional codes obtained from equivalent constituent convolutional encoders. In [Host publication title missing] (pp. 338) https://doi.org/10.1109/ISIT.1998.708943

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Nonequivalent Cascaded Convolutional Codes Obtained from Equivalent Constituent Convolutional Encoders

Stefan Höst and Rolf Johannesson
Dept. of Information Technology
Lund University
P.O. Box 118
S-221 00 Lund, Sweden
stefanh@it.lth.se, rolf@it.lth.se

Viktor V. Zyablov
Inst. for Problems of Information Transmission
of the Russian Academy of Science
B. Karetnyi per., 19, GSP-4
Moscow, 101447 Russia
zyablov@ippi.ras.ru

Abstract — Casced convolutional codes with conventional convolutional codes as constituent codes are powerful and attractive to use in communication systems where very low error probabilities are needed. This paper clearly demonstrates the dramatic effect the replacement of the inner convolutional encoder by an equivalent one could have on the cascaded convolutional code.

I. INTRODUCTION

The cascade of two convolutional encoders without an interleaver but with matched rates is a cascade of a rate $R_0 = b_0/c_0$, outer encoder of memory m_0 and a rate $R_i = b_i/c_i$ inner encoder of memory m_i, where $b_i = c_i$. The cascaded convolutional code C_c is encoded by the rate $R_c = R_0R_i = b_0/c_0$ convolutional encoder of memory $m_c = m_0 + m_i$.

The paper will be illustrated by examples. We also notice that since $C_c \subset C_1$, catastrophicity of the generator matrix does not imply catastrophicity of the generator matrix for the cascade.

Can the inner generator matrix be chosen such that we obtain the same cascaded convolutional code, i.e., such that $G'(D)$ is equivalent to $G(D)$? Indeed it can, which will be illustrated by a simple example. If $G'(D)$ and $G(D)$ are equivalent generator matrices, then for some invertible $b_0 \times b_0$ matrix $S(D)$

$$G'(D) = G(D)T(D)G'(D) = S(D)G(D).$$

III. SYSTEMATIC CASCaded ENCODers FROM SYSTEMATIC CONSTITUENT ENCODers

From basic encoding matrices we can easily obtain equivalent rational systematic encoding matrices,

$$G_{sys}^c(D) = G_{sys}^c(D)G_{sys}^f(D).$$

REFERENCES
