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Min-Mix Control in Discrete Timeby Completion of SquaresyPer HaganderDepartment of Automatic ControlLund Institute of TechnologyP.O.Box 118, S-221 00 Lund, SwedenPhone: +46 46 108786 Bo BernhardssonIMA, Univ. of Minnesota,514 Vincent Hall, 206 Church Street S.E.,Minneapolis, MN 55455E-mail: bob@control.lth.seAbstract: This paper discusses the so called min-mixproblem for discrete time systems. The min-mix problemis one of the mixed H2=H1-control problems that cap-ture the idea that disturbances may be both determin-istic and stochastic. The deterministic behavior modelsworst case situations and stochastic disturbances modelaverage properties. The problem is very rich and has con-nections both to recent results inH1 and also to classicalresults in stochastic control and di�erential games. Us-ing the methods of [Bernhardsson, 1992] it is possible toshow that the discrete time case also follows directly bycompletion of squares. The continuous time and discretetime cases are therefore uni�ed. The solution is given bythree coupled Riccati equations. The time-varying, �nitetime horizon, output feedback version of the problem istreated, and an explicit formula for the value of the gameis also obtain. A simple example demonstrates how thisinformation is useful for the in�nite time horizon case.Keywords: Mixed H2=H1 Control; Stochastic Di�er-ential Games; Stochastic Optimal Control; H1-opti-mization; Linear-quadratic-Gaussian Control; RiccatiEquations; Discrete-time Systems; Linear Systems.1. IntroductionStandard H1-control can be applied to disturbance at-tenuation design, but it has then fundamental practicallimitations. A description of the process disturbance asa worst case bounded signal has to include the e�ect ofmeasurement noise. In H1-control the system is( qx = Ax+ B1d+B2uy = Cx+DeHere d and e denote process and measurement distur-bances, u control signals, y measurements and q the for-ward shift operator, i. e. qx(k) := x(k + 1). The H1-control problem optimizes system performance againsty This work was partly supported by the Swedish ResearchCouncil for Engineering Sciences under contract 91-721

worst disturbances d and e:minK maxd;e kzk22; when kdk22 + kek22 � 1where z is a vector of signals to be minimized. The con-straint means that process disturbances and measure-ment noise can not both be large. It is unnatural to cou-ple process disturbance and measurement noise in thisway. An alternativ is to assume that e. g. the measure-ment noise is stochastic. Several other motivations existfor considering a mixture of H2 and H1 problems. Itis important to separate between the many di�erent socalled \mixed H2=H1 -problems", although some rela-tions exist between the di�erent setups, see e. g. [Doyleet al., 1989], [Mustafa, 1989], [Rotea and Khargonekar,1990], [Khargonekar and Rotea, 1991], [Limebeer et al.,1991], [Peters and Stoorvogel, 1992], [Haddad et al.,1991], [Kaminer et al., 1992], [Zhou et al., 1990],[Zhouet al., 1992].Much research is now concentrated on �nding toolsthat make optimal controller design in the case of acombination of stochastic and deterministic disturbancespossible. There have been many slightly di�erent at-tempts. The most promising result seems to be thethree coupled Riccati equations developed by [Doyleet al., 1992]. See also [Nikoukhah and Delebecque, 1992].In [Bernhardsson, 1992], [Bernhardsson and Hagander,1993] a classical stochastic games approach is used todetermine the �nite time horizon, continuous time, ver-sion of these equations. The operations of minimizing,maximizing and taking expected values appear in theproblem. The name min-mix is coined to emphasize thegame theory background, see e. g. [Ho, 1970, Rhodes andLuenberger, 1969].The cornerstone for the solution method presentedhere is a (conjectured) generalization of a recent dynamicprogramming separation principle [Bernhard, 1992]. Theapproach makes it possible to obtain the solution bycompletion of squares, to unify several results and to gaininsight. An explicit formula for the value of the game isalso determined. A simple example is used to investigatefeasible stationary solutions to the three coupled Riccatiequations.



2. Discrete Time Min-Mix ControllersThe calculations in discrete time are analogous to con-tinuous time, although there are some di�erences. Thealgebra is more complicated in discrete time. The calcu-lations have hopefully been reduced to a near minimumin what follows. Let the, possibly time-varying, systembe given by8><>: qx = Ax +B0w0 +B1w1 +B2ux(0) = x0y = C2x+D20w0 +D21w1 (1)Here w0 denotes a stochastic disturbance modeled asGaussian unit-variance white noise. Let the criterion beto �nd saddle equilibria forEw0 � tf�1Xk=0xT (k)Qx(k) + uT (k)u(k) � 
2wT1 (k)w1(k)�+ Ew0 xT (tf )Qfx(tf ) (2)where w1 is a worst-case disturbance. The controller isassumed to be of the form u(k) = f(yk�1), i. e. to containa computational delay of one step. The disturbancew1(k) is allowed to be a function of xk; yk�1 but notof future information.The idea is now to use dynamic programming inthe spirit of Isaacs' equation, see [Isaacs, 1965], applyinga generalization of a recent separation principle, see[Bernhard, 1992], [Bernhardsson, 1992]. Inspired bythe continuous time case, see also [Bernhardsson andHagander, 1993], we de�ne �x by( q�x = A�x+ B2u+ B1 bF1�x� L(y �C2�x�D21 bF1�x)�x(0) = x0 (3)where L and bF1 will be determined later. The interpre-tation of �x will also be clari�ed later; Consider it forthe moment just to be a suitably de�ned signal. Simi-larly we investigate the following quadratic expression asa possible candidate for the future loss from time k andonwards:8>><>>:V(k; x; ~x) = xTX(k)x + ~xTY (k)~x+ �(k)�(k) = tfXj=k+1Tr �BT0 X(j)B0 +BT0LY (j)B0L�(4)Recursions for X and Y will be determined later. Herewe introduce the notation ~x = x� �x, B0L = B0 + LD20and B1L = B1 + LD21. We have alsoq8>>:x~x9>>; = A8>>:x~x9>>;+B0w0 + B8>>:w1u 9>>;A = 8>>: A 0�B1L bF1 A+ LC2 +B1L bF19>>;B0 = 8>>: B0B0L9>>; ; B = 8>>: B1 B2B1L 0 9>>;

The loss per step in (2) can be rewritten asxTQx+ uTu� 
2wT1 w1 = xTQx+8>>:w1u 9>>;T J8>>:w1u 9>>;with J = 8>>:�
2 00 I9>>;. For the dynamic programmingwe introduceX = 8>>:X(k + 1) 00 Y (k + 1)9>>; ; Q =8>>:Q 00 09>>;and study the future loss plus the loss at step kf = Ew08>>: qxq~x9>>;TX8>>: qxq~x9>>;++ Ew0�8>>:x~x9>>;T Q8>>:x~x9>>;+8>>:w1u 9>>;T J8>>:w1u 9>>;�= TrBT0X B0 + 8>>:x~x9>>;T nATX A +Qo8>>:x~x9>>; ++28>>:x~x9>>;T ATX B8>>:w1u 9>>; ++ 8>>:w1u 9>>;T nBTX B + Jo8>>:w1u 9>>;To complete the squares we determine F from8>>>>>><>>>>>>: S = 8>>:S11 S12ST12 S229>>; = BTX B + JSF = �BTX AF = 8>>:F1 F12F2 F229>>; (5)givingf = TrBT0XB0+ 8>>:x~x9>>;T nATX A+Q� FTSFo8>>:x~x9>>;+ �8>>:w1u 9>>;� F 8>>:x~x9>>;�T S �8>>:w1u 9>>;� F 8>>:x~x9>>;�(6)We �rst evaluate the o�-diagonal block of the secondterm in (6)8: I 09;nATX A +Q� FTSFo8>>: 0I9>>; =8: I 09;nAT + FTBToX A8>>: 0I9>>;= �� bFT1 � FT1 �BT1LY �A+ LC2 + B1L bF1� (7)and choose to make it zero by bF1 = F1. Then rewritethe feedback-gain equationS 8>>:F1F29>>; = �BTX A8>>: I09>>;�[B1B2]TX[B1B2] + [B1L0]TY [B1L0] + J	8>>:F1F29>>;= �[B1B2]TXA + [B1L0]TY B1LF1



which simpli�es to8>>:F1F29>>; = �J�18:B1 B29;T V A (8)V �1 = X�1 +8:B1 B29; J�18:B1 B29;T (9)This we recognize from standard discrete time H1-theory, see e. g. [Ba�sar and Bernhard, 1991]. The fol-lowing convexity-concavity conditions on the S-blocks in(5) are now required for the min-max problemS11 = �
2I +BT1 XB1 +BT1LY B1L < 0 (10)S12 = BT1 XB2 (11)S22 = I +BT2 XB2 > 0 (12)Using the completion of squares (6) and a lot of similarmatrix algebra, we obtain that f has a maximum withrespect to w1 in case u = u� = F2�x,maxw1 f = xTXkx+ ~xTYk~x+Tr �BT0 XjB0 +BT0LYjB0L�for w1 = w�1 given byw�1 = F1�x+N ~x (13)�S11N = BT1 XA + BT1LY (A+ LC2) (14)with S11 from (10), and X(k) and Y (k) given by theRiccati recursionsq�1X = Q+ ATV A (15)q�1Y = ATXA � ATV A++ (A + LC2)TY (A + LC2)� NTS11N (16)where V is obtained by (9), and where X(tf ) = Qf andY (tf ) = 0. To discuss the minimization with respect tou we rewrite the system using u� and w�1:8><>: qx = Acx+ [B1(N � F1)� B2F2]~x+B0w0 ++ B1(w1 �w�1) + B2(u� u�)q~x = Ae~x+ B0Lw0 + B1L(w1 �w�1) (17)(Ac = A +B1F1 +B2F2Ae = A + LC2 +B1LN (18)If we now assume w1 = w�1, we thus have that thecovariance matrix P = E[~x~xT j yk�1], is given by( qP = AePATe +B0LBT0LP (0) = 0 (19)and the system equations could be written asqx = (A+ B1F1)x +B2u+ B0w0 + B1(N � F1)~xy = (C2 +D21F1)x+D20w0 +D21(N � F1)~xNow de�ne8>>: Va VabV Tab Vb 9>>; = Cov8>>: qx� (A+ B1F1)�x� B2uy � (C2 +D21F1)�x 9>>;= Cov8>>: (A +B1N )~x+ B0w0(C2 +D21N )~x+D20w09>>; = Cov8>>: ab9>>;so thatVa = (A+ B1N )P (A+B1N )T +B0BT0Vab = (A+ B1N )P (C2 +D21N )T + B0DT20Vb = (C2 +D21N )P (C2 +D21N )T +D20DT20

Standard estimation theory now says that if L satis�esLVb + Vab = 0 simplifying to� LD20DT20 = AeP (C2 +D21N )T + B0DT20 (20)then ~x(k+1) ? Yk where Yk denotes all past information,since we in (3) made the choice�x(k + 1)� (A +B1F1(k))�x(k)� B2u(k) == �L(k)[y(k) � C2�x(k)�D21F1(k)�x(k)]i.e. a = �Lb. This is the classical orthogonality prin-ciple. In summary the discrete time min-max problemboils down to the following:Theorem 1Let the problem be given by (1)-(2). The discrete timeoptimal min-mix controllers satisfy( q�x = A�x+B2u+ B1F1�x� L(y � C2�x�D21F1�x)u = u� = F2�x; w1 = w�1 = F1x+ (N � F1)~xq�1X = Q+ ATV Aq�1Y = ATXA � ATV A++ (A + LC2)TY (A + LC2)� NTS11NqP = AePATe + B0LBT0L�LD20DT20 = AeP (C2 +D21N )T +B0DT20where fF1; F2g, V , and N are given by (8), (9), and (14),and where Ac and Ae are de�ned in (18). The concavity-convexity conditions are given by (10), and (12).Proof: The proof follows from the previous discussionin the following way: Complete the squares as in (6),anduse the dynamic programming principle described in[Bernhard, 1992]. First prove that given u = u� themaximization over w1 leads recursively to the value ofthe game given in (4). Here the Riccati equations forX and Y are used. Then put w1 = w�1 instead andprove, using the orthogonality described above, that theminimization minu E [f j yk�1]using (6) gives u = u� and thus also recursively thesame value of the game in (4). The convexity-concavityconditions apply at each time step.Conjecture: The stationary controller now follows, if inaddition Ac and Ae, in (18), are stable.3. A Simple ExampleConsider the following �rst order SISO systemqx = ax+ u+ w1; x(0) = 0y = x+w0Let the criteria function be given byX�Qx2 + u2 � g�1w21�



where we have introduced g := 
�2 for convenience. Thestationary equations for the controller are the followingX = Q+ a2V; V = 1=(1=X + 1� g)Ac = a� aV (1� g); Ae = a+ L +NY = a2X � a2V + (a+ L)2Y � N2(X + Y � 1=g)N = (aX + (a+ L)Y )=(1=g �X � Y )P = A2eP + L2�2L�2 = �AePThese equations have two sets of solutions, the open loopsolution with L = 0; P = 0; Ae = a+N , and the solutionL = Ae � 1=Ae, P=�2 = 1=A2e � 1 and Ae = 1=(a + N ).An interesting observation is now that di�erent solutionsshould be chosen for di�erent levels of 
. The open loopsolution with L = 0 is for a stable system optimal if
2 > 
2o = Q=(1 � a)2. For smaller 
 there is a regionwhere the other solution should be chosen. For 
 < 
mixthere are no solutions to the equations satisfying boththe stability and convexity-concavity conditions. Thereare several open questions for future research here.4. ConclusionsThe paper has presented a solution of the min-mixproblem for the discrete time, output feedback, �nitehorizon case. The solution was obtained by completionof squares. It is rewarding for the understanding tostudy how LQG and H1 follows as special cases fromthe min-mix formulas above. From a practical pointof view the main drawback is that the obtained threeRiccati equations are coupled and constitute a two pointboundary value problem in the �nite horizon case. It isnontrivial to �nd numerical solutions. There might bea possibility to triangularize these equations by cleverchange of variables.The discrete time parallels the continuous time,e. g. in the use of a dynamic programming separationprinciple. The main di�erence is that the algebra is morecomplicated. There are also some other di�erences. Thestochastic theory needed is simpler in discrete time sinceIto-calculus does not have to be used. The conjugate-point theory connected to the Riccati equations is alsosimpler. It is replaced by the concavity-convexity condi-tions (10) and (12).We have in this paper restricted ourselves to thecase with a time delay of one step in the controller. Thecase with a direct term in the controller involves evenmore tedious algebra. We have also presented a simpleexample illustrating the equations and the solutions.More work has to be done to judge the practical meritsof this controller design method.The problem is quite rich and we have found manypossibilities for future work. One goal could be to tiethe results closer to the elegant operator factorizationapproach for the risk-sensitive problem treated by Whit-
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