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Abstract: This paper discusses the so called min-mix
problem for discrete time systems. The min-mix problem
is one of the mixed Hy/H-control problems that cap-
ture the idea that disturbances may be both determin-
istic and stochastic. The deterministic behavior models
worst case situations and stochastic disturbances model
average properties. The problem is very rich and has con-
nections both to recent results in H,, and also to classical
results in stochastic control and differential games. Us-
ing the methods of [Bernhardsson, 1992] it is possible to
show that the discrete time case also follows directly by
completion of squares. The continuous time and discrete
time cases are therefore unified. The solution is given by
three coupled Riccati equations. The time-varying, finite
time horizon, output feedback version of the problem is
treated, and an explicit formula for the value of the game
is also obtain. A simple example demonstrates how this
information is useful for the infinite time horizon case.

Keywords: Mixed Hy/Hy Control; Stochastic Differ-
ential Games; Stochastic Optimal Control; H-opti-
mization; Linear-quadratic-Gaussian Control; Riccati
Equations; Discrete-time Systems; Linear Systems.

1. Introduction

Standard H -control can be applied to disturbance at-
tenuation design, but it has then fundamental practical
limitations. A description of the process disturbance as
a worst case bounded signal has to include the effect of
measurement noise. In H.,-control the system is

gz = Az + Bid + Bau
y=Cz+ De

Here d and e denote process and measurement distur-

bances, u control signals, ¥y measurements and ¢ the for-

ward shift operator, i.e. gz(k) := z(k + 1). The Hy-

control problem optimizes system performance against
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worst disturbances d and e:

minmax|z[3,  when |3+ [l < 1

K de

where z is a vector of signals to be minimized. The con-
straint means that process disturbances and measure-
ment noise can not both be large. It is unnatural to cou-
ple process disturbance and measurement noise in this
way. An alternativ is to assume that e.g. the measure-
ment noise is stochastic. Several other motivations exist
for considering a mixture of Hs and H, problems. It
is important to separate between the many different so
called “mixed Hy/H -problems”, although some rela-
tions exist between the different setups, see e.g. [Doyle
et al., 1989], [Mustafa, 1989], [Rotea and Khargonekar,
1990], [Khargonekar and Rotea, 1991], [Limebeer et al.,
1991], [Peters and Stoorvogel, 1992], [Haddad et al.,
1991], [Kaminer et al., 1992], [Zhou et al., 1990],[Zhou
et al., 1992].

Much research is now concentrated on finding tools
that make optimal controller design in the case of a
combination of stochastic and deterministic disturbances
possible. There have been many slightly different at-
tempts. The most promising result seems to be the
three coupled Riccati equations developed by [Doyle
et al., 1992]. See also [Nikoukhah and Delebecque, 1992].
In [Bernhardsson, 1992], [Bernhardsson and Hagander,
1993] a classical stochastic games approach is used to
determine the finite time horizon, continuous time, ver-
sion of these equations. The operations of minimizing,
maximizing and taking expected values appear in the
problem. The name min-mix is coined to emphasize the
game theory background, see e.g. [Ho, 1970, Rhodes and
Luenberger, 1969].

The cornerstone for the solution method presented
here is a (conjectured) generalization of a recent dynamic
programming separation principle [Bernhard, 1992]. The
approach makes it possible to obtain the solution by
completion of squares, to unify several results and to gain
insight. An explicit formula for the value of the game is
also determined. A simple example is used to investigate
feasible stationary solutions to the three coupled Riccati
equations.



2. Discrete Time Min-Mix Controllers

The calculations in discrete time are analogous to con-
tinuous time, although there are some differences. The
algebra is more complicated in discrete time. The calcu-
lations have hopefully been reduced to a near minimum
in what follows. Let the, possibly time-varying, system
be given by
gz = Az + Bowo + Biw; + Bau
2(0) = 20 )
y = C2z + Daowo + D21wy

Here wo denotes a stochastic disturbance modeled as
Gaussian unit-variance white noise. Let the criterion be
to find saddle equilibria for

ty— 1
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where w; is a worst-case disturbance. The controller is
assumed to be of the form u(k) = f(y*~1), i.e. to contain
a computational delay of one step. The disturbance
wy(k) is allowed to be a function of z*,y*~1 but not
of future information.

The idea is now to use dynamic programming in
the spirit of Isaacs’ equation, see [Isaacs, 1965], applying
a generalization of a recent separation principle, see
[Bernhard, 1992], [Bernhardsson, 1992]. Inspired by
the continuous time case, see also [Bernhardsson and
Hagander, 1993], we define & by

qi‘. = A% + Bz’ul—i— Blﬁlfl —
:Z‘.(O) = oo

L(y — Czi‘. — D21F\1€Z‘.)

(3)
where L and ﬁl will be determined later. The interpre-
tation of & will also be clarified later; Consider it for
the moment just to be a suitably defined signal. Simi-
larly we investigate the following quadratic expression as
a possible candidate for the future loss from time k& and
onwards:

V(k,z,2) = 2T X (k)z + 3TY (k)Z + v(k)
v(k) = Xf: Tr (B35 X (5)Bo + B1Y (5)Boz)
j=k+1

(4)
Recursions for X and Y will be determined later. Here
we introduce the notation Z = z — &, Bor, = Bo + LD3yg

and By;, = By + LD3;. We have also

A
_ [ A 0 ]
A= ~ ~
—BitFi A+ LCy+ B Fy
[ o

)

The loss per step in (2) can be rewritten as
T
w w
mTQm—i—uTu—’yzwfwl =2TQz + [ ! ] J [ ! ]
u u
-

with J = [
0

2
I] . For the dynamic programming

we introduce
— X(k+1 0 — 0
¥ - [ (k+1) ] o= [ Q ]
0 Y(k+1) 0 0
and study the future loss plus the loss at step &

T
f=E [qf] Y[qf] +
wo \ qT qz

{23 () ()

T [“:]T{FTXEH} [“:]

To complete the squares we determine F from

S S S

S:[ " 12]—BTXB—|—J
Si2 S22

SF=-B'XA (5)
o [ F Fop ]
Ry P
giving
f= TfﬁTﬁo

[ ] e XA—i—QT FTSF}[z]
A B L) - (B)] @

We first evaluate the off-diagonal block of the second
term in (6)

[I 0] {ZTYZJrQ—FTSF} [2] =
(o)
—_ (ﬁlT - FlT) BLY (A+ LC: + BlLﬁl) (7)

and choose to make it zero by F\l = Fi.
the feedback-gain equation

()

{(B1B2)" X[ByBs] + [B1,0]7Y [By1,0] + J } [ 2 ]

Then rewrite

I
:—BTXA[ ]
0

—[B1B2]T XA + [B10]TY Bi L Fy



which simplifies to

Fy 1 T

[Fz]_—.] [B1 Bz] VA (8)
T

vl=Xx"14 [B1 Bz] J1 [B1 Bz] (9)

This we recognize from standard discrete time H -

theory, see e.g. [Bagsar and Bernhard, 1991]. The fol-

lowing convexity-concavity conditions on the S-blocks in
(5) are now required for the min-max problem

S11=—2I+BfXB, + BI,YBi1, <0
Si2 = Bf XB; (11)
Sps =I+BfXB; >0 (12)
Using the completion of squares (6) and a lot of similar
matrix algebra, we obtain that f has a maximum with

(10)

respect to wy in case u = u* = FyZ,
max f = 2T Xyz + 37 V3% + Tr (B XjBo + BE,Y;Bor)
for wy = wi given by
w; =Fz+ Nz (13)
—S1 N =B XA+ Bl Y(A+ LC,) (14)
with S1; from (10), and X (k) and Y (k) given by the

Riccati recursions
¢ X=Q+ATVA
gy =ATXA - ATVA+
+ (A+LC)TY(A + LC;) — NTS; N (16)
where V is obtained by (9), and where X(t;) = Q5 and

Y (t;) = 0. To discuss the minimization with respect to

(15)

u we rewrite the system using v* and wj:
gz = Acz + [B1(N — Fi) — B2 F3)& + Bowo +
+ By(w; — wy) + Ba(u — u")
g% = AcE+ Bopwo + Bip(wy — wy)
{Ac:A—I—BlFl-I-Bze (18)
A, =A+ LC; + BN

If we now assume w; = wj, we thus have that the

(17)

covariance matrix P = E[#37 | y*~1], is given by
P = A,PAT + By B,
q oLBgL (19)
P(0)=10

and the system equations could be written as
qr = (A + BlFl)l‘. + Bz’U, + Bo’wO + Bl(N — Fl)i:
y = (C2 + D31 F1)z + Daowo + D21 (N — F1)E
Now define
[ Va Vab] [ql‘.—(A—FBlFl)i‘.—Bz’U,]
= Cov

vl W y—(C2+ Da1 F1)&
(A—|—BlN):E—|—Bo’w0 a
= Cov N = Cov
(C3 + D31 N)E + Daowo b
so that

Vo= (A+ BN)P(A+ B;N)T + BoBY
Vab = (A+ B1N)P(Cy + D21 N)T + By DY,
Vs = (C2 + D31 N)P(Cz + D21 N)" + Dy D3,

Standard estimation theory now says that if L satisfies
LVy + Vg = 0 simplifying to

— LDy D}y = A.P(Cy + D1 N)T + BoDL,  (20)

then &(k+1) L Vi where V; denotes all past information,
since we in (3) made the choice

#(k+1)— (A+ B1Fi(k)E(k) — Bau(k) =
= —L(k)[y(k) — C2&(k) — D21 F1(k)&(k)]
i.e. @ = —Lb. This is the classical orthogonality prin-

ciple. In summary the discrete time min-max problem
boils down to the following:

THEOREM 1
Let the problem be given by (1)-(2). The discrete time
optimal min-mix controllers satisfy

gé = Az 4+ Bau+ B1F1é — L(y — Coz — Dy 1)
{ wy =w] = Fiz 4+ (N — F1)&
¢ X=Q+ATVA
gy =ATXA - ATVA+
+(A+LC)TY(A+ LC,) — NTSiuN
qP = A,PAT + By, BY,
—LDyo D%, = A, P(Cy + D33 N)T + By DY,

where {Fy, F2}, V, and N are given by (8), (9), and (14),
and where A, and A4, are defined in (18). The concavity-
convexity conditions are given by (10), and (12).

u=1u" = Fyf,

Proof: The proof follows from the previous discussion
in the following way: Complete the squares as in (6),and
use the dynamic programming principle described in
[Bernhard, 1992].
maximization over w; leads recursively to the value of
the game given in (4). Here the Riccati equations for
X and Y are used. Then put w; = wj instead and
prove, using the orthogonality described above, that the
minimization

First prove that given v = u* the

min B [f | y* 7]

using (6) gives v = u* and thus also recursively the
same value of the game in (4). The convexity-concavity
conditions apply at each time step. O

Conjecture: The stationary controller now follows, if in

addition 4. and 4., in (18), are stable.

3. A Simple Example

Consider the following first order SISO system
gz = az + u + wy, z(0)=0
Y=+ wo

Let the criteria function be given by

Z (sz 42 _g—lwf)



where we have introduced g := =2 for convenience. The
stationary equations for the controller are the following

X = Q + a*V, V=1/(1/X+1-9)
Ac=a—aV(l-g), Ac=a+L+N
Y =a®’X —a*V +(a+ L)’Y - N*(X +Y - 1/g)
N=(aX+(a+L)Y)/(1/g— X -Y)
P=A’p 4 L%7
Lo?=—-A,P

These equations have two sets of solutions, the open loop
solution with L = 0, P = 0, A, = a+ N, and the solution
L=A,—-1/A, P/oc? =1/A? -1 and A, = 1/(a + N).
An interesting observation is now that different solutions
should be chosen for different levels of v. The open loop
solution with L = 0 is for a stable system optimal if
72 > 42 = @/(1 — a)?. For smaller y there is a region
where the other solution should be chosen. For v < iz
there are no solutions to the equations satisfying both
the stability and convexity-concavity conditions. There
are several open questions for future research here.

4. Conclusions

The paper has presented a solution of the min-mix
problem for the discrete time, output feedback, finite
horizon case. The solution was obtained by completion
of squares. It is rewarding for the understanding to
study how LQG and H, follows as special cases from
the min-mix formulas above. From a practical point
of view the main drawback is that the obtained three
Riccati equations are coupled and constitute a two point
boundary value problem in the finite horizon case. It is
nontrivial to find numerical solutions. There might be
a possibility to triangularize these equations by clever
change of variables.

The discrete time parallels the continuous time,
e.g. in the use of a dynamic programming separation
principle. The main difference is that the algebra is more
complicated. There are also some other differences. The
stochastic theory needed is simpler in discrete time since
Ito-calculus does not have to be used. The conjugate-
point theory connected to the Riccati equations is also
simpler. It is replaced by the concavity-convexity condi-
tions (10) and (12).

We have in this paper restricted ourselves to the
case with a time delay of one step in the controller. The
case with a direct term in the controller involves even
more tedious algebra. We have also presented a simple
example illustrating the equations and the solutions.
More work has to be done to judge the practical merits
of this controller design method.

The problem is quite rich and we have found many
possibilities for future work. One goal could be to tie
the results closer to the elegant operator factorization
approach for the risk-sensitive problem treated by Whit-

tle, see eg. [Whittle, 1990]. It might then be possible to
describe the solution using operator factorizations, see

[Hagander, 1973] for the LQG case.
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