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ABSTRACT histograms which are not embedded platform friendly, the
second proposed is based on neural-networks [5] requiring

This paper introduces a real-time surveillance application for
object tracking with capablilities of functioning on 25 f/s mode, a feedback and training not feasible in our platform. In [6] a

implemented in a high efficient, high performance and low Markov process is used to model the tracking behavior. In this
power smart cameaWia(WrelesCmerademethod candidates of the target are generated in a probabilis-power smart camera WiCa (Wireless Camera) developed by tcfaeokclr n oino h betwt oini

NXP Research. The proposed application deals with the prob- the scene. Ireure som more rouresnot ailb in an
lem of constantly changing environments as light change, sway-
ing branches, rain and noise introduced by the camera with embedded platform. IBM Research [7] came into scene with

techniques of robust background modeling. This article also new perspectives on the problem, they have been working in
the field with different techni ues, they rely on the use of aproposes a method to detect objects merging into the back- q y y

ground model named "Forgetting Foreground" Technique and complex infrastructure where the information is analyzed in
also a new method called "multi-directional image mapping" computer running specialized software.
used for object labeling and segmentation. We propose a solution integrated into a stand alone cam-

era with embedded video processing capabilities and wire-
Index Terms- Smart Camera, Object Tracking, Embed- less communication. Our application takes as a initial step

ded, Multidirectional Image mapping, Forgetting Foreground. a Background Subtraction (BGS) taken from [8] and then a
new technique Forgetting Foreground (FFG) is introduced to

1. INTRODUCTION automatically detect objects standing still in the scene during
a certain amount of time, a second novelty is the introduc-

In Surveillance applications, object tracking plays a very im- tion of Multidirectional Parallel Mapping to extract the im-
portant role when objects or persons are under constant su- ages features. This new technique is only achievable thanks
pervision. A complete robust real time tracking system has to the high parallelism of the platform and the non-linear re-
been a challenging problem for the technological scientific lation between an image stored in the memory and the SIMD
community for the last decade. processor, which is the heart of the Smart camera.

Some first attempts to address this problem with a full in- The proposed application relies in one of the most mod-
tegrated solution were done around 2000 by Robert Collins em and high efficient platform today and is able to perform
[1]. He proposes a complete video and monitoring applica- object tracking in real time with no PCs or any extra external
tion, based on a complex distributed network of cameras with processing.
a huge and expensive infrastructure. In the same year Co- The rest of this paper is organized as follows: In the sec-
maniciu and Ramesh [2] introduced a not so complete but tion 2 we brieftly describe the platform, in the section 3 we
much simpler solution using mean-shift methods for track- describe in detail the methods implemented, the section 4
ing systems, their solution performs real-time based on fea- presents some experimental results and in section 5 we con-
tures like color or texture. It is partially robust to occlusions, clude the paper with some discussion for further work.
clutter, and small changes in the camera position. It's per-
formance suffers when objects move fast in the scene. In
2004 Khan and Balch [3] introduced a new approach based on 2. PLATFORM
eigen-space vectors, this new method presents a good perfor-
mance but with a very high computational cost. Recently new A smart camera with low power consumption, high process-
techniques have been introduced in the same field, Venkatesh ing capability and a tiny size is what the WiCa offers in the
Babu andAnamitraMakuroffers two completely different so- smart cameras field, its simple architecture aloud a perfor-
lutions. The first uses kernel-computation [4] based on an im- mance higher than conventional processors. The camera was
proved version of the mean-shift tracker, but requires color designed by NXP Research (Formerly Philips Research) [9]
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for High Demanding computation video processing. The plat- 2.1. Sensors
forms processing capabilities have been proved in [10], [11] . .
Simmons and Ljung built a WiCa network and successfully T t i

communicatedsc for small devices like mobile phone or PDAs. Every sensor is
ton.uni[tead Jegaden wimlem e rea tme a compact CMOS color camera module with embedded Cam-tion In[12]Jeane nd Jgadn imlemnte a ral ime

era Signal Processor that support up to VGA resolution for-face detection using properties of light being projected in the e
peoples face. mats in a small package including a focused optical system..

The device is programmable via an I2C serial interface. The
sensors contain features like Auto White Balance, Auto expo-
sure, Lens shading corrections, 8 bit parallel YUV, or RGB.

2.2. XeTal

The XeTal is the core of the WiCa platform, with a process-
ing power of 50GOPS running at a frequency of 80 MHz. Is a
processor SIMD consisting of four mains processing entities:
The Global Control Processor (GCP), Digital Input proces-
sor (DIP), the Digital Output Processor (DOP) and the Linear
Processor Array (LPA).

iCWiC ir(W ire raam lilillFig.1.WiCa(WirelessCamera)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.................................
The WiCa achieves a maximum performance when par- a |||||||||||||||||||| F

Multiple Data (SIMD) processor with 320 pixel processors, _
this processor called XeTal [13] operating at parallel with a ; J2 11
embedded RAM memory and I/O interfaces optimized for 24
real time video processing.

The camera is equipped with two CMOS color sensors Vie n 2 ff f c:
supporting up to VGA resolution formats; the sensors are sep-i
arated to each other for some centimeters and this character-
istic gives the camera the ability to measure depth with some Fig. 3. XeTal Architecture
computational cost.

The WiCa architecture is composed by an 8051 as a mas- -h C si hreo h rga lwoeain n
ter processor, holding a small operating system handling the the loading of operation into the LPA. The DIP takes care
communication and global operations of the camera, the Xe- ofdthaligrmteinutohepcsigmmre.
Tal as a slave processor for high computation demanding op- ThDO taetedtafoteprcsigm oisan
erations, both processors are sharing a Dual Port RAM, which sedtmtoheupt,heLAianrayf32pxl
aloud to both processors to operate on the same data. processors accessing a corresponding part of the processing

memory executing simultaneously the same instruction that

;_~~~~~~~~~~~~~i nthe processing miemory.

S C1g m g F A i 1~~~~~~Sderived from the 320 pixel processors encapsulated within
2 |1gil-l 1 W 1 t-P1SE1 theLPA. TheFig..4.

2.3. DualPort~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ RAM...................

_ ~~~~~~~~~~~~DPRAMis a high speed 128K x 9 Dual-Port Static RAM.
This device provides two independent ports with separate con-
trol address and I/O pins that permit independent, asynchronous

Fig. 2. WiCa Block Diagram access for reads or writes to any location in memory. An
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automatic power down feature controlled by the chip permit
the on-chip circuitry of each port to enter a very low standby 1NPr -Z K (t-xi) (1)power mode. n

The DPRAM plays a very important role in the implemen- il
tation because given that the data can be accessed randomly, Where xl, X2, *.., XN are the values of the pixel in the
non-linear relation between images or part of images stored in BG bank and Pr is the probability of the Xi pixels belongs
the memory can be implemented and all methods explained in into the BG model, and K is the kernel estimator function
this paper requires such characteristic, assumed to be a Normal function N(O, Z).If independence

between different colors channels is assumed then
_azqg. / (J1~~~~~~~o2 0 0\

2~~~~~~~2-~~~~~~~~~~~~~~~~~~ 0 = °2 ° (2)
Where j2 is the variance in the probability function for

every channel per every pixel in the BG Model.
|17 [ aI7We took the work made in [8] and simplified in order to

fit in our platform in such way that only one channel is used
with BG Bank size of 14 images and a refreshing rate of 1

Fig. 4. LPA Structure

3. METHODS

3.1. Non Parametric BGS

In Surveillance it's important to distinguish between what is
relevant in the scene and what is not. A very common tech-
nique to discriminate between what is static in a scene is

Fg .PoaiiyDniyFnto o ifrn aine
Background Subtraction, where a background is represented
or modeled and then subtracted from the image to analyze in

Tevrac nteFg el shwsra
order to separate the object not belonging to the background. the varincuaesein theFasiaig.rbut5n tells uhshoasrinead ar

In real life scenarios we have to deal with constantly chang- teihetausitheFrgaoussiaGcndsrbution,lusing this varanc asah
ing backgrounds and this characteristic becomes a challenge weighttthfeFregonde (FG)wcanbheicmodelpied asdtheSmeofth
when a foreground segmentation is needed. Many different vabslute diffterenc boetweemutheincomingphaixnel and th meanht
methods to address this problem have been proposed, being vale ofuathe B3 hw hGmodel,utpyn tevrante eqastwight.4
the most popular Mixture of Gaussian [14] by Stauffer and The eqationt(3)mshowstheFGeramodenndteeqaios4
Grimson, showing a very good accuracy with a relative high
cost of memory, but achieving a slow adaptability when new-N
objects are being incorporated in the BG model. FG [Z1(xt - xi)] o0- > Thr (3)

In [8] the same probabilistic base is used when a back-i
ground is modeled as a bank of images and therefore the ye- N

th Sizlaneofth BG Bmorank and ditigsherefreshng rhate in th BG_
Beeank,ithen o sever pixethw rbblthat thein.AeycomiongNeh ''
pixueleogtoBGscrBanktistwcalculate andsatifinaldcsione is z+ 5

take aordld ng toe(1). ate fro 1h mg oaayei

orert spraeth bjctnt eonig oth bcgrud. Te aiacea se i heFg.5 elsu 374ped r
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The resulting implementation is functioning in real-time,
handling situations of not static backgrounds, like swaying 2 2 2
trees or light changes, it's velocity to adapt to new objects FFG = 1 if 0_21 = max and oT2 - 02 > O (6)
merging into the background is very fast (15 seconds). The
drawbacks of this implementation are that no shadow sup- Following this simple concept is possible to catch objects
pression is performed since there is used only one color chan- in the transition from foreground to background, and then it
nel, all shadow information is lost. can be seen as the foreground is being forgotten by the model.

In Fig. 7 simulations were done with different noises ra-
dios, and we can see that even with the noisiest source there

3.2. Forgetting Foreground (FFG) is always a well defined curve with no local maximums, and
therefore the proposed theory remains true in all noise cases.

In some surveillance scenarios is needed to know when an ob-
ject has been static for more than certain amount of time. This Variance vs time _contrast90
takes us to analyze the behavior of a pixel in the process be- 300
tween being in the Foreground and see how slowly becomes -*No noise
part of the Background. The Background is modeled as Bank 250 5% noise

15% noisewith several pictures taken from the scene as done in Sub- 200 25% noise
section 3.1. When a new pixel alien to the BG model first is
tagged as a Foreground because it's value differs drastically 1b'
from the values in the BG Model. If the pixel in the scene 100-
remains the same it's being learned by the BG Model until
suddenly is marked as Background. 5

The Fig. 6 illustrates the ideal case of a pixel correspond- 0

ing to an object being incorporated in the Background model, time
as the time passes by, more images on the model have the
value of the new object, then the variance in the normal dis-
tribution grows reaching a maximum point when half of the Fig. 7. Simulation of pixel Behavior in the BG Model
background model has the object and half dont have it.

Then the questions that pops out is where in the curve we
want to catch the object, and the answer would seem very
simple, in the negative part of the curve which means that the
object is being learned just after the maximum point has been
reached.

Object Merging
Detection inithe One of the drawbacks of this approach is that its perfor-

, ~ jBackgrountd mance is dependent on the contrast between the background

value and the foreground value merging in the background
model, since the parameter to analyze is the variance and the
variance is an indicator of how different are the values in the

>~BG Model.
A time

MAaximum Difference vs Contrast (Not: Noise)

Fig. 6. Ideal Behavior of a pixel incorporating in the BG 180
Model 160

140

Then the curve in Fig. 6 can be interpratated as two phases 120
curve, the positive slope telling when a new pixel alien to 100|
the BG model is being detected and the negative slope telling 80
when the same pixel is merging into the background model, 60
while the rest of the pixels in the foreground, constantly mov- 40
ing will present a high initial variance but not as well defined

20

as in Fig. 6. Then when we derivate the variance over the al- X
time, the first negative derivative of the variance after reaching 0l 50 100t 150200250 300:
a maximum variance was achieved will tell us exactly when cotrsvlel
that pixel is being incorporated into the BG Model. The equa-
tion (6). Fig. 8. Maximum Difference vs Contrast
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The Fig. 8 shows how the maximum obtained slope incre- imums and minimums are either generated (G) or propagated
ments as the contrast between the two colors increments. In (P), depending on the connection between the current pixel
the case of a high difference is chosen as a threshold the sys- and the pixels of the previous calculated row. The equations
tem detects correctly the high contrast pixels, but is unable to (7), (8) and (9) indicate the logic of how the values are gen-
detect low contrast pixels; if a low difference is chosen, false erated. Then four different images are generated containing
detections are encounter in high contrast pixels. the four features (Ymax, Ymin, Xmax, Xmin) for every pixel.

The four images are written back into the memory for poste-
3.3. Multidirectional Parallel Image Mapping rior analysis. The Fig. 10 shows the block diagram of how

the max and min images are generated and the Area and COG
The WiCa architecture enables the possibility of accessing are calculated in a posterior phase.
randomly an image stored in the memory allowing comput- If the pixel under analysis is empty the value of the max/min
ing it in a non-linear manner by manipulating the memory is set to 0 as shown in (7) if the pixel is not empty the max/min
address. In this case several copies of the same image are ac- is generated/propagated with (8).
cessed at the same time in order to achieve maximum parallel
performance taking advantage of the number of processors
working in parallel in the platform architecture. I , i

In this paper the Multidirectional Parallel Image mapping
is introduced as an alternative method for labeling and extrac- When a non empty pixel is found I(i, 0, the max/mm
tion of objects features for the posterior object analysis. values are generated or propagated according to (8), whereMany labeling methods have been published before, most I(i, is the max/mm value belonging to each pixel. The
based on single processors architectures, the method showed
in [15] takes color and texture information in order to segment spectiveyI
different objects, unfortunately this method is very memory
and time consuming and not well suitable in a real time im-
plementation. In [16] and [17] contour tracking methods are , , -
slightly faster, yet these methods are meant to be simple pro-
cessing element based and do not produce a satisfactory per- if I 1 else G(I(i,j)) (8)
formance when the Architecture is SIMD.

In this proposed method we start from a binary image The equation (9) is True if at least one of the elements in
stored in the memory, in order to extract all features of the the previous row is not empty in the range from -K to +K.
objects seen in the image, being more specific area and posi- In our case we decided to set K= 1.
tion. The image is mapped in four different directions as seen
in Fig. 9, the four images are handled as independent non cor- K
related images. These four images are scanned row by row in I-1 S I(i,j-1)>1 (9)
the direction shown by the thick line on the right side of the j=-K
Fig. 9.

After having the maximums and minimums per every ob-
ject in the original image we calculate the bounding box con-
taining every object and the center of gravity (COG). The
equations (10) and (11) show the calculations for the Bound-
ing box area and the COG.

Area = (Xmax - Xmin) (Ymax - Ymin) (10)

-256 P

(Xmax + Xmin Ymax + Ymin)

vlI i c = - ; _lWhile calculating maximums and minimums four differ-
~64 FKeent images are generated containing all connected pixels co-

ordinates. The Fig. 10 shows the block process flow, where
Fig. 9. Multidirectional Parallel Mapping the image to be analyzed is scanned in the four directions,

the four posterior images are generated and finally the objects
As the images are being read; horizontal and vertical max- features calculations are performed.
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t=O [=1 t=2 t[3
r;-0--~~~~~~~~~~~~~~~~~~Nr---b

DPRAM =4 t 5 [=6 [=F

Fig. 10. Multidirectional Parallel Max and Min Calculations _ _

4. EXPERIMENTAL RESULTS _I

The methods previously presented in this paper have been im-
plemented and satisfactory proved their performance. Im-
proving of the application revealed is still undergoing and
therefore all results we are presenting here are experimental
and might change at final release. [t-12 t-? 3 t- 4 t-[ 5

From the Fig. 11 we can see how the object is being de- time s,e,ht
tected as a standing still object after 7 seconds being static, the
pixels in white color denote the pixel detected by the method
to be FFG pixels. After the object was detected as FFG slowly
fades into the background until is no part of the Foreground.
We can see how a the chair is split into two different objects
in t=10. and finally are no longer detected in t= I . Fig. 11. FFG shows detection after object being static for 7

The FG is shown in Fig. 12 when a person walks and seconds
moves within the scene. The application runs real-time at 30
f/s with using 64 Kb ofRAM memory, with a minimum work- 6. REFERENCES
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