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Abstract

As robot control systems are traditionally closed, it is difficult to add supplementary intelligence. Accordingly, as based
on a new notion ofuser views, a layered system architecture is proposed. Bearing in mind such industrial demands as
computing efficiency and simple factory-floor operation, the control layers are parameterized by means of functional operators
consisting of pieces of compiled code that can be passed as parameters between the layers. The required interplay between
application-specific programs and built-in motion control is thereby efficiently accomplished. The results from experimental
evaluation and several case studies suggest the architecture to be very useful also in an industrial context. ©1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The term advanced robot systems is commonly
used, but with a wide variety of different meanings
depending on the field of application. Consider, for
example, robots used for manufacturing purposes in
well-defined environments, or autonomous robots op-
erating in poorly defined environments. In the former
case, the difficulty is to make the robot flexible and
easy to program for new applications in combination
with the high-level performance demands of robot
productivity. In the latter case, the control problems
involve coordination tasks with active sensing, per-
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ception, reasoning, and actuation in a time-specific
manner. Specifically, all kinds of control require sup-
port for the introduction of tight software couplings
of sensing and actuation [42].

As currently available industrial robot control
systems generally fail to provide the flexible and
powerful environment that permits complex task-level
programming as well as improved autonomy and in-
telligence to be added [19], we need an appropriate
architecture that provides a framework for robot con-
trol. Here we will mainly be considering robots for
manufacturing purposes, while keeping more intelli-
gent robots in mind. Many of the available high-level
control concepts/architectures should then be possible
to superimpose on our foundation.

Inherent in the present and particularly the future
increased capabilities of robots is the problem of com-
plexity. The purpose of many current research projects
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is to cope with this complexity by defining a control
system architecture. Moreover, it is a common goal
that such an architecture should also promote modu-
larity and reuse of control and software components.
In the field of industrial robot control, robot auto-
nomics is currently attracting keen research interest.
Neglecting or overlooking the importance of advanced
robots for manufacturing, however, causes problems
such as:
• The need to redevelop manipulator control subsys-

tems for adaptability to the intelligent control sys-
tem. Ability to utilize industrial robot controllers
would reduce development time and cost by sharing
the large user base of extensively tested modules.

• With a pure top-down or functional decomposition
approach to the design of intelligent robot control
systems, “the community will be trapped, forever
making interesting, expensive and unique creations
which never see widespread application” [23].

In this paper, we propose an architecture, architec-
tural principles, and a bottom-up approach that should
serve as a basis and a complement to other architec-
tural approaches within intelligent robot control. This
is approached in the following way:
• A review and classification of architectures found

in the literature will be presented in this section.
• Section 2 treats architectures and abstractions used

for so-called intelligent robots with particular atten-
tion to robots operating in relatively well-defined
environments as in manufacturing.

• The architecture we propose is presented in Section
3, where a concept ofuser viewswill also be intro-
duced.

• Section 4 contains an evaluation, and Sections 5 and
6 contain discussion and conclusions.

1.1. Role of software architectures

There is no possibility of the system designer being
able to foresee every application demand. This is par-
ticularly manifest in motion control, where its prop-
erties must be amenable to modification in advanced
applications. Moreover, to provide sufficient scope for
task-level programming, it is desirable to preclude un-
necessary interference or obstruction deriving from
software architectures, a problem that has been over-
looked within robotics research.

The “NASA/NBS Standard Reference Model for
Telerobot Control System Architecture (NASREM)”
[3] is one of the earliest and best known (and criti-
cized) architectures for robots. One of its greatest dis-
advantages is “its use of a large global memory which
violates basic software engineering principles of en-
capsulation and information hiding” [42]. A number
of problems are brought to light by a closer scrutiny
from two points of view — robots acting inuncon-
trolled environmentsand intelligent industrial robots.
However, as such analysis is predicated upon certain
basic distinctions as to functionality, we must first con-
sider some fundamental concepts.

1.2. Fundamental concepts

In this context, the term architecture may generally
be defined as denoting structure or style of struc-
ture with various — sometimes not very precise —
meanings. For the purpose of industrial robot control
systems, and for this paper, architecture is defined as
denotingthe concepts and techniques that character-
ize the structure of the system. The approach adopted
here (Section 3) is to base the architecture on the us-
age of the system rather than on the internal design.
The following list is an attempt to classify different
architectures.
• Hardware. When the computing power of micro-

processors was still the major limiting factor for
advanced robot control, the main purpose of an
architecture was to define a hardware structure
that provided the required real-time computing
power. Descriptions of several such architectures
have been published [5,6,35,62,63]. Though the
hardware structure is still important, experimental
systems now need to be modular in such a way that
a variety of interfaces, sensors, special computers,
etc. can easily be added or replaced. Low cost is
also important.

• Control. The manipulator dynamic control problem
is a challenging problem that has inspired many re-
search efforts [16,31,32,44,60]. The scheme solv-
ing the control problem can be seen as an archi-
tecture as it may involve many interacting control
modules. From a control theoretical point of view,
other aspects of the system design are often consid-
ered to be merely a matter of implementation. More
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experiment-oriented research, on the other hand, of-
ten defines the control and the physical architecture
jointly [4,51,63], whereas other researchers explic-
itly address control architecture [33].

• Task specification. Convenient task description is
another source for control system architectures and
end-user robot programming. Solutions range from
explicit manipulator programming [59] to systems
where the system automatically generates or links
robot programs although no general purpose sys-
tem has yet been developed. However, systems
have been designed for supporting some particular
aspects of task-level programming [37,64], or for
specific applications [10,29,36,56], or using special
algorithmic concepts [18,28,52].

• Abstractions. Robots operating in an unstructured
and largely undefined environment must make
excessive use of external sensors, and they must
perform dynamic world modeling and real-time
planning. Such systems are more complex than
the control systems for robots in manufacturing.
For the purposes of this paper we will focus on
the issue:
– Can we find any, possibly new, abstraction that

allows us to further enhance robot programming
capabilities in typical industrial applications?

An architecture meticulously attuned to the man-
ufacturing issues will not, of course, solve com-
plexity problems encountered in conjunction with
so-called intelligent robots working in uncontrolled
environments. For such robots, the authors ac-
knowledge that top-level architectures based on
certain abstractions comprise an important issue.
However, an additional aim here is that industrial
robots should be useful as modules in fully au-
tonomous systems, thereby promoting a bottom-up
approach to make things work in practice. Fur-
thermore, suitable abstractions are also important
for task-level robot programming and autonomous
operation in some manufacturing situations. There-
fore, these questions have also been of great con-
cern for the proposed techniques:
– How should the industrial robot controller be or-

ganized to permit the use of industrial robots as
modules in autonomous systems?

– How can principles from intelligent robot con-
trol systems be beneficial also for robots used in
manufacturing systems?

Hence, we need to take a closer look into the issue of
abstractions.

2. Intelligent robots — preliminaries

We will now outline how different forms of ab-
stractions have been used to define architectures for
so-called intelligent robots. We will then see how these
principles can be used for more conventional industrial
robots, and how industrial robots can fit into so-called
intelligent systems.

2.1. Abstraction beats complexity

The purpose of abstractions is to cope with com-
plexity. When a complex system is divided into smaller
manageable parts, those parts can be given a new sim-
plified interface with aspects of the internal behavior
omitted or simplified in some sense. We find this prin-
ciple in organizations, industrial production (e.g., pro-
duction cells), control theory (e.g., cascade control),
and in software engineering (e.g., abstract data types).
The abstraction then allows more powerful hierarchies
to be built, using more abstract interfaces at higher
levels of the hierarchy.

One way of using abstractions is to formulate pure
science problems that are well suited to formal anal-
ysis. This is a popular approach within academic re-
search, mainly because theory can be used to prove
optimality which concludes the work (remaining prac-
tical aspects are left to the industrial user to solve).
Though important — consider for instance problems
ranging from system identification, adaptive control,
minimal time/energy motions, and up to overall fac-
tory scheduling — solving these individual problems
does not give us an optimal (or even useful) system.
Therefore, here we are concerned with the overall sys-
tem architecture. If properly designed, such architec-
ture will then allow optimization techniques to be used
as a means of improving performance.

An interesting question about any control system
architecture is what set of abstractions or hierarchies
it is built upon. Consider a multi-layered real-time
control system for fully autonomous robots. Such a
system will contain both hard real-time software and
artificial intelligence (AI) related features (planning).
The detailed implementation of such a system would
of course make use of data abstraction and other soft-



208 K. Nilsson, R. Johansson / Robotics and Autonomous Systems 29 (1999) 205–226

ware paradigms, but some kind of high-level abstrac-
tion is needed to build hierarchies to cope with the
complexity [40]. As pointed out by Schoppers, several
such hierarchies have been proposed (see, e.g., [48]
for further details and many references):
• Frequency hierarchiesare based on the standard

real-time principle that the real-time processes in a
lower layer run more frequently than those in the
next higher layer of the system.

• Data abstraction hierarchiesare closely related
to object-oriented programming. A lower software
layer provides an abstract machine for the adjacent
higher layer.

• Representational abstraction hierarchiesare used
within AI as a means of constructing an abstraction
by suppressing or ignoring information.

• Deresolution hierarchiesare often used in motion
planning. Two layers are functionally capable of do-
ing the same computations, but the degree of resolu-
tion is higher at the lower level. Deresolution is re-
lated to the above mentioned, previous hierarchies,
but is not the same.

• Subsystem hierarchiesare based on grouping the
control of subsystems — e.g., control of individual
joints — to control of the composed system — e.g.,
the arm driven by the joints. This approach is often
combined with data abstraction.

• Competence hierarchiesare built by combining
simple behaviors of lower layers into more compe-
tent behaviors at a higher level of the system. For
example, vibrations in a robot gripper caused by a
simplified control can be utilized at a higher level
for an advanced ‘non-stiction’ assembly operation.

• Temporal extent hierarchiesare designed so that
higher levels manage behaviors of longer duration.
Actually, long time-horizon computations may re-
quire updating and re-computation more frequently
than lower levels do.
Behavior abstractionis another abstraction which

is an attempt to unify several of the abstractions listed.
Although we need to bear these approaches in mind
when designing advanced industrial controllers, fur-
ther discussion of them here is beyond the scope of
this paper. Instead, we want to emphasize the exter-
nally visible (to the end user, etc.) properties of the
systems — i.e., those that affect the usefulness of the
robot system in a normal manufacturing situation in-
volving operators, production engineers, etc.

Software paradigms
Even more internal to the system are the implemen-

tation techniques of the actual control system, and the
system software might be considered as merely a mat-
ter of implementation. However, we need open sys-
tems where the boundary between system program-
ming and user programming will not be completely
rigid. Furthermore, when developing an architecture,
the implementation and software aspects become
important.

Robot control systems are typically heterogeneous,
both in terms of hardware and the required real-time
properties [34]. One might then expect that there is
no single software paradigm that is most suitable for
implementation of the entire system. For parts of the
system, declarative and formal methods could be used,
such as the synchronous approach [8,21,57] which of-
fers a uniform approach and some formal verification
tools concerning the logical and temporal properties
of the software. However, each software component
has to be implemented in a traditional way using im-
perative languages such as C/C++ as most commonly
used in industry.

There is no general agreement on the criteria for a
‘good’ paradigm. We may strive for code reuse, ef-
ficiency, maintainability, ensured correctness, or pro-
grams that are easily understood. The most appro-
priate language or paradigm may depend on system
level, application, cost-effectiveness demands, actual
hardware, etc. In fact, hybrid techniques appear to be
most appropriate. Our approach has been to use or
combine whatever paradigm that suits the actual sit-
uation. Currently we are using C, C++, Modula-2,
and Java for system programming, as well as vendor
or application-specific languages at an end-user level.
Our architecture does not prescribe any particular soft-
ware paradigm, but object-oriented programming ap-
pears to be most convenient to use for the core design
and implementation of robotic systems.

In addition to programming paradigms, mod-
ern high-level software design is usually based on
so-called patterns and frameworks to maintain overall
structure and to support code reuse. Design solutions
are often referred to as architectures. Use of the term
architecture in software design stems from the fact that
different software solutions have overall properties in
common. This is also the basis for the development
of Design Patternsand Frameworks [20]. Adding
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another level of abstraction, even Architectural Pat-
terns have been developed [12]. Such architectures
still constitute a way of organizing classes, objects
and their interactions to facilitate development and
maintenance (but not usage) of the system.

2.2. Uncontrolled environments

A major problem for robots in space, and for au-
tonomous robots and vehicles in general, is to main-
tain a model of the dynamically changing environment
and to replan the motions according to environmental
changes. An architecture should, of course, aid in the
development of such systems including a large num-
ber of sensors, some possibly using active sensing as
well as advanced sensory processing and world model
updating.

From an AI point of view, an upper layer plans
and transmits detailed actions down to the next lower
layer, keeping the abstract plan in the higher layer.
Unless some more sophisticated management of the
interplay between the layers is introduced, the lower
layer cannot cope with changes of goal or environment
and will remain confined to dealing with the origi-
nally expected situation. Such a modification appears
to be very hard to combine with hard real-time require-
ments. A more promising approach would be to also
supply more abstract actions and replanning functions
along with the detailed orders, a problem which is still
the subject of research. Though the selection of suit-
able abstractions and associated architectures is still a
topic of ongoing research [24,40,55,67], a promising
prototype implementation of high-level concepts for
robots in space is underway [53,54].

2.3. Intelligent industrial robots

Among architectures supporting planning and
task-level programming, there are few systems that
have proved workable. The AI Laboratory at the
University of Edinburgh has developed a complete as-
sembly system called SOMASS [22,38]. The system
plans and executes assemblies in a special artificial
block-type world, namely the Soma world. SOMASS
has been demonstrated to work well despite a number
of possible sources of failure. The uncertainties that
may cause assembly failure include part tolerance,

physical characteristics such as friction or stiction and
the like. The following quote from [22] is central to
the purposes of the paper:

“... the position that the planner should concentrate
on those aspects of the problem that can tractably
be expressed in symbolic form, leaving the execution
agent to cope with the specifically manipulative dif-
ficulties of the assembly problem. Since the agent is
hand-crafted, most of the consequences of the uncer-
tainties in the parts and their manipulation are dealt
with by the human programmer who has years of ex-
perience of object manipulation to call on when diag-
nosing and repairing failures in the tacit skills of the
executive agent.”

The fundamental standpoint in this quote is shared by
us. In the context under consideration, however, the
main interest is not planning or activity orchestration,
but rather the executive agent and the supporting soft-
ware layers for application programming.

3. Open Robot Control architecture (ORC)

We shall first justify the the choice of basic princi-
ple for our architecture, and then present the architec-
ture as such. This is followed by discussion of some
implementation issues which should also help to clar-
ify the basic concept.

3.1. User views

From the perspectives of various categories of pro-
grammers who need to configure or program industrial
robot systems, several programming situations have
been identified. When solving a specific application
problem, we may need to modify the system in sev-
eral ways (control laws, operator interfaces, etc.) re-
quiring different types of competence. Assume that we
have one user type for each type of required compe-
tence, each user type viewing the control system in a
certain way. Unless the system is carefully designed,
any particular such view will be unnecessarily com-
plex (involving a variety of computers, programming
environments, special restrictions on use of interfaces,
etc.).

If we instead base the architecture on properly se-
lected user views, it is more likely that programming
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can be done conveniently. A major difference from
other current approaches is that the external view,
rather than the internal implementation, is the primary
matter. A view may map well onto internal modules
based on some software paradigm or abstraction prin-
ciple, but this is not an essential criterion.

Relations to available software principles provide
some support concerning the design and implementa-
tion of the system, but the key issues are which views
we need, how they are organized, their type of inter-
faces, and how to implement them. These issues will
be treated in the sequel. In this paper we focus on the
embedded control parts because the interconnections
between high-level and low-level control are crucial
in advanced robot application, and other architectures
fail to solve this in an industrially feasible way.

A small step in the direction of user views is the
use of dedicated user interfaces for different types of
users. Industrial systems have various kinds of such
interfaces, e.g., for control tuning, user programming,
IO configuration, etc. The problem is that added tools
either have to access several different parts of the sys-
tem which implies that much complexity have to be
dealt with and the tools will be dedicated to that par-
ticular type of controller (Fig. 1(a)), or the system
has to provide an embedded real-time database for
system-wide data access which adds overhead to the
time-critical interplay between different levels of con-
trol and it makes it hard to limit data accesses to pre-
serve safety (Fig. 1(b)).

Instead, our experiences from full-scale industrial
systems suggest that the place where system functions
(such as access to control signals) are defined and re-
ferred to from a user point of view should be decoupled
from the level of control where those functions actu-
ally are computed/evaluated (Fig. 1(c)). Of course, a
decoupled function has to be accompanied by a virtual
context (such as a data type describing the subspace
of accessible control states) that permits specification
of control extensions. We will return to how such a
decoupling can be efficiently implemented, but to get
a first flavor of it the reader may study Fig. 2.

It is as a design principle for complex systems with
a rich variety programming or operation possibilities
that user views are beneficial. Then, a user view is a
delimited set of services that has been made available
for a certain type of user or usage. One user view can
be expressed in terms of a collection of inter-related

use cases [30], or possibly in terms of the grammar
and semantics of a dedicated programming language
or system. Thus, the concept ofuser viewsadds a new
level to the design of complex systems and stands out
as the primary architectural principle for robot control
systems.

3.2. Software layers

The Open Robot Control (ORC) architecture is
based on layers and typical users as shown in Fig. 3.
The layers are characterized by the following:
• The layers are dedicated to programming cases re-

quiring a certain type of competence. Within indus-
trial production development, such a separation of
concerns is crucial for system improvements.

• The servo control has been split up for control en-
gineering reasons. The motion control layer coor-
dinates and commands arm controller(s) and motor
control of external axes. The popular research topic
of advanced feedback control of robot motions is
encapsulated by the arm control layer.

• The intermediate level has a specific layer for
application-specific motion control, admitting more
general and advanced control features than other
systems do. Handling external sensors, or internal
servo signals exposed by the motion control layer,
in the application layer permits faster enactment
and higher performance than user-level control
does.

• The system programming level of other systems is
mainly covered by the executive layer in ORC, a
layer that also serves as a holder of the robot pro-
gramming language, which is fixed in other systems.

• There is both an on-line and an off-line program-
ming layer. These are uniquely integrated on an
equal level basis as outlined in Fig. 5. The need
for transformation of robot program, opposed to the
simple down-load/upload used today, stems from
differences in the way work-pieces are preferably
referred to in the on-line and off-line programming
cases.

• Task-level features are today usually implemented
on top of off-line systems. Such features also define
a higher-level user interface or programming envi-
ronment. Therefore, task-level programming has its
own software layer in ORC, see Fig. 4.
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Fig. 1. Different ways of connecting user interfaces to multi-level control systems: (a) traditional, (b) database, (c) decoupled.

Fig. 2. Example of separation between implementation layers and user views which exposes the functionality needed for certain users and
tools.
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Fig. 3. Users and properties of software layers/views in the ORC architecture.

3.2.1. End-user programming
The aim that standard industrial robots should be

possible to use as components for so-called intelli-
gent robot control implies that task-level program-
ming principles should be superimposed on explicit
robot programming tools. Task-level programming fa-
cilities can of course be accessible directly from an
on-line programming tool, but its software should rely
on off-line programming. The reason is that off-line
and task-level programming have the same need of ab-
stract world modeling, whereas on-line programming
utilizes the physical equipment which results in dif-
ferent requirements on the programming environment.
The integration of the on-line (tangible) and off-line
(abstract) interfaces is a topic of its own, including
transformation of robot programs as depicted in Fig.
5 and described in [48].

Superimposing task-level programming on off-line
programming results in the set-up shown in the upper
part of Fig. 4. Note that even if task-level and off-line
programming are based on the same tool (IGRIP
[17] in our case), the architecture specifies that the

task-level features should expose a uniform view to
the user.

3.2.2. System-level programming
Properties of computer programming also appear

within robot programming. On a system-level this
means implementation of (robot and process indepen-
dent) libraries, and conventional implementation of
drivers for IO devices and sensors. This is simply a
matter of (computer) programming appearing at any
level of the system, and it is therefore not further dis-
cussed here. More important, system programming
(from an end-user point of view) deals with aspects of
specific robot functionality and control of the phys-
ical world. We prefer to separate these issues into
two categories: (1) implementation of robot-specific
libraries, robot programming tools, and robot pro-
gramming languages; and (2) implementation of
application-specific motion control.

From an engineering point of view, the latter — i.e.,
the tailoring of motion control — requires control
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Fig. 4. The Open Robot Control (ORC) architecture.

Fig. 5. Integration of on-line and off-line programming required
transformation of the robot programs involved. These transforma-
tions are denotedf andf −1 here.

engineering competence, whereas the former (appli-
cation support) does not. It is therefore reasonable
and appropriate to define two different layers for these
two types of programming, see Fig. 4. The lower
layer for application-specific motion control is called
theapplication layer, and the upper layer for tailoring
of the programming interface is called theexecutive
layer [50].

3.2.3. Servo-level programming
On the level of servo programming, a persistent fea-

ture is that software and hardware modules are charac-
terized by their very close relationship. Hardware and

software, at least for the motor control, are designed
as integrated activities to facilitate price-performance
optimization. Thus, the software naturally takes on a
structure that reflects that of the hardware, whereas
programming is performed by the implementors of
the system. This implies that the user views of the
architecture map well onto an object-oriented design
of the motion control system, which in turn reflects
the structure of the physical objects.

3.3. Implementation

Each software layer initially exposes a basic func-
tionality in two directions; an interface to the next
higher level of control and an interface to the en-
gineering/programming/operation tools of the user.
Utilizing the tools interface, the user or engineer
may develop, install or use software supporting that
particular type of user’s needs. This may, of course,
be done in multiple stages at increasing levels of
abstraction. Typically, only the first stage is actu-
ally installed within the embedded system. See for
example the Matlab Real-Time Workshop interface,
designated SimulinkIO in Fig. 6, which then can be
used from other Matlab tool-boxes. The high-level
operations (or abstractions) added within a set of
user tools should not be confused with functionality
providing system abstractions. However, the control
system interfaces that we actually need (or dare) to
expose will be almost the same; on a specific level
it does not matter if a planner operating within a
higher software layer or an externally connected
human operator abuses a too open system. On the
other hand, the user of one view may hide some
of the default functionality exposed to higher levels
of control. That is necessary in some safety-critical
applications.

If we can formalize the creation of high-level op-
erations originally performed by the human operator,
we can also achieve it within the ORC architecture
(even if the AI system is handled from another user
view), possibly using a meta-protocol like OpenC++
for compiled parts of the system [15]. Thus, the equiv-
alence of the internal system and the external oper-
ator interface is attractive from an AI point of view,
though in this paper we only describe the openness of
the layers from a user point of view.
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Fig. 6. Master part of the motor control implementation.

3.3.1. Combining flexibility and efficiency
Even though the internal implementation was not

our primary concern for the definition of our ar-
chitecture, the software slots of a certain user-view
provide the desired flexibility, and the fixed/closed
parts of the software provides safety which also can
be made more extensive by additional modules cre-
ated by the user. Nonetheless, in order to accomplish
the user-views which do not map to any specific
single-CPU software, we need to pass software pieces
over CPU-boundaries. Software techniques normally
used for multi-processor systems (such as message
servers and remote procedure calls) would cause un-
desirably high data-flows at run-time. One alternative
would then be to use symbolic or interpreted lan-
guages, though that would decrease efficiency and
safety. For the non-real-time parts (if any) and for
connection of user-interfaces, the web-technologies
of recent years provide solutions. They do, however,
not extend to the hard real-time control parts of the
architecture. Therefore, taking demands on efficiency
and predictability into consideration, we decided to
use compiled functions that are dynamically bound at
run-time to software already running in the embedded
system.

The problem we are facing can be described in terms
of a client and a server. The server is the embedded

software already implemented, and possibly running.
The basic service is first of all not only to perform the
control, but also to serve requests to change the control
behavior. It is the latter aspect that is treated here. The
client acts at a higher hierarchical level, which means
that it contains more knowledge about the application.
Depending on what is appropriate to the particular ap-
plication, the client requests the lower-level control
(i.e., the server) to use different new control functions.
We then need some means of expressing these func-
tions, and to dynamically let the server evaluate them.

In this paper, the termactionwill be used for such
a compiled function that is to be dynamically bound
in the embedded system and we distinguish between
two types of action implementations:
1. The simplest version is so-calledfunction-based

actions. Such actions are functions that are com-
piled into position-independent code which is then
called with pointers to the target context. This type
of action can be achieved by ‘pointers to func-
tions’ in the special case of a single CPU within
one address space. The main advantage is that a
minimum of run-time support is needed on the
target CPU. We use it mainly when the high lev-
els of control need to perform control actions at
the lowest level of feedback/real-time control. For
example, a simple ‘impact signature catcher’ was
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Fig. 7. Thedynamically linked robot programand thedynamically
linked skill are the slots where actions are installed to extend the
capabilities of the robot.

passed at run-time via a master M68040 CPU into
on-chip memory of a DSP (used by the motor
control), requiring only 212 bytes of memory and
3.4ms of execution time in the target DSP (worst
case, including overhead).

2. The more general type of actions are the so-called
dynamically linked actions— e.g., actions con-
sisting of complete objects, or even complete pro-
grams — which have proven useful at intermedi-
ate levels of control. For example, robot capabil-
ities were extended (at run-time) by introducing
additional feedback control loops within the Ap-
plication layer. Such an action may be installed
from a high-level planner, and it may in turn con-
tain other actions that are passed to the under-
lying motion control. The application layer slot
was defined in such a way that installed actions
(designatedskill in Fig. 7) extended the available
primitives of the Executive (language) layer. Re-
search concerning on-line incremental extensions
of robot programming languages (grammar and
semantics) is in progress.

When using a type safe language, both types of actions
are type safe. The use of actions as plug-ins is shown
in Fig. 2 with further examples on application in [49].

To ensure that real-time deadlines in the system are
met, the timing of individual actions is of paramount
interest. The reader may recall the Spring Kernel [61]
and the Synchronous approach [58] as relevant exam-
ples. If the system is statically scheduled, the schedule
has to take into account the extra time that actions are
allowed to take. The timing constraints then constitute

a property of the action slot, and need to be checked
when actions are installed. In dynamically scheduled
systems, rescheduling has to be done when actions are
loaded. In both cases, the execution time of the action
has to be supplied from the client and/or determined
or checked by the server.

3.3.2. Prototypes
The work done on the implementation of all layers

includes the following:
• A task-level interface based on IGRIP has been

developed by other members of our project [11].
Connecting high-level planning and expert systems
to the world-model database of available off-line
systems appears to be a practical way of creating
task-level interfaces.

• A programming interface to application-specific
motion control was developed at our laboratory [7].
To the user, it exposes a set of module interfaces en-
capsulating the available features of the application
layer as well as the available internal contexts of
the underlying motion control system (Section 3.3).

• A control engineering interface for the motor con-
trol layer was created based on Simulink Real-time
Workshop interfaces [39] and some additional
Matlab-based graphical interfaces to DSP filters
[25]. The user could conveniently tune the feed-
back loops using available tools (on the host com-
puter) for control design. Alternatively, using an
intermediate text-based interface, such changes of
the feedback control can also be performed from
a high level planner (for example, to introduce a
high-frequency limit cycle to avoid stiction during
certain robot operations).

In some respects, motor control is the simplest part to
design because its structure is not that complex. On
the other hand, the real-time requirements are strict
and the hardware must be efficiently utilized despite
the interactive access we need.

3.3.3. Motor control example
The motor control was mapped to the hardware in

such a way that digital signal processors (DSPs) were
utilized for the high-frequency properties of the con-
trol, and a master M68040 CPU was used for the
low-frequency part. The reason is that the DSPs ex-
ecute pure filter algorithms very efficiently, but inte-
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Fig. 8. Motor control implementation on the DSP hardware level. Only the two main DSPs DSP#0 and DSP#3 are shown. Other DSPs
handle sensor input, actuator output, and AC-motor torque control (for an ABB IRB-2000 robot in this case).

grating action and the necessary wind-up protection
contains logic that breaks the floating point pipeline
in a very undesirable way. The M68040 CPU, on
the other hand, is better suited for general control
tasks [13]. Sampling frequencies up to 1 kHz were
used on the master CPU, whereas frequencies up to
24 kHz was used on the DSP part. (The hardware in-
terface to ABB robots, designed and built at our lab-
oratory, allows sampling frequencies of up to 48 kHz
[48].)

Fig. 8 shows the data flow for the DSP part of the
control. The DRAM memory is a central feature for
the multi-processor implementation. Control parame-
ters and references are written by the master proces-
sor to the DRAM, the two DSPs shown in the figure
exchange control data via the DRAM, observed states
are updated by the DSPs and it is then used both by
the master part of the control and by another M68030
that protects the equipment from illegal and possibly
damaging control actions. The programs were written
in C++ [47]. However, the filtersHy(z), Hv(z), and
Hp(z) were available as highly optimized assembly
code from the application library for the DSPs.

The master control part running on the M68040
board is shown in Fig. 6. It contains a fixed imple-
mentation of an I regulator which can integrate speed
or position error according to parameters set at run
time. The I-part deals with the low frequency be-

havior of the control, whereas the HF-control gov-
erns the high-frequency part. Advanced motor con-
trol such as active damping typically takes place in
a mid-frequency range. The maximum sampling fre-
quency of 1 kHz for the master control is enough for
this, given the HF-control part. For the rapid pro-
totyping of new control principles, code generation
from block diagram descriptions on the host com-
puter forms a valuable tool, as mentioned above. To
load and unload the Simulink descriptions at run-time,
we use the action mechanism handled by the Dy-
namicLinker module shown in Fig. 6. Special soft-
ware solutions were developed to handle the differ-
ences in address spaces, real-time primitives, floating
point representation, and byte numbering, as described
in [48]. For clarity, data logging services have been
omitted.

4. Applications and evaluation

The proposed architecture has been confronted with
a number of application problems ranging from spe-
cial low-level control for spot-welding applications to
improved autonomous operation for robots perform-
ing deburring of castings [48]. As an example of typ-
ical multi-layered requirements, we shall now briefly
describe some aspects of arc-welding robots.
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4.1. Arc-welding control and programming

Of the several needs for intermediate-level program-
ming within arc-welding applications, the following
situations have been studied:
• Basic functionality.A basic application package for

arc welding includes control and programming fea-
tures for waving motions and control of the weld-
ing equipment and interfaces to common types of
welding equipment. The ArcWare package [1] de-
veloped within ABB Robotics is an example of
well-designed software for this purpose.

• Path tracking. Available industrial systems usu-
ally also support weld-seam-tracking using a
laser-scanner sensor. The sensor is then integrated
with the motion control system, but this can so far
only be done by the robot manufacturer (because
available systems do not provide an open appli-
cation layer). The path tracking control problem
includes estimation of the weld seam based on
(often very noisy) data from the laser-scanner, and
control of robot motion in such a way that the seam
is tracked. The stochastic nature of the problem,
and the desire to perform high-speed welding of
thin-sheet metal without losing track of the seam
necessitates a stochastic control approach.

• Welding-specific functionality.Arc-welding is a
quite complex electrical, mechanical, and chemical
process, which can be influenced by voltages, cur-
rents, and weld-tool motions. For special materials,
or for welding with special demands on quality or
productivity, special welding principles have been
developed [2]. Sensing and control (of voltages,
currents, weld-joint geometry, etc.), and close in-
teraction with the robot motion control are of key
importance.

• Task-level programming.Even if on-line program-
ming is claimed to be superior concerning op-
erator adjustments, it should be borne in mind
that the initial programming of, for instance, ad-
vanced arc-welding programs may often be done
better off-line. That is because CAD data for the
work-pieces can be used for the definition of weld-
ing paths and end-effector orientations. The off-line
programming system also provides a platform for
task-level programming using knowledge-based
techniques. So far this does not imply any need
for intermediate-level control, but our desire to use

‘hand-crafted agents’ does. Special welding tech-
niques according to the previous item should be
possible to load and refer to from the task-level
system.
A thorough review indicated that the proposed con-

trol system design should suit the basic functionality
and path tracking needed, but implementation of those
parts has been done within our project. As industrially
available systems can handle such items, these aspects
are omitted here. Instead, let us focus on the desired
‘welding-specific functionality’ and on the ‘task-level
programming’.

Thus, we want a system admitting incorporation
of welding control at an intermediate level (here, in
the application layer), and an on-line connection to
a task-level programming system. The welding con-
trol should be possible to define and install from the
task-level system, and it should be possible for mo-
tion commands from the task-level system to utilize
the loaded welding skill.

4.2. Implementation

Efforts to support advanced arc-welding were in-
spired by the welding experts at the next-door labo-
ratory at the Department of Production and Materials
Engineering (DPME). Implementations were done in
close collaboration with them. This activity is still in
progress. At the time of writing, the situation is the
following.

Techniques for control of special welding have been
developed and experimentally verified at the DPME
[2]. Because available systems are not open enough,
such research entails the addition of controllers exter-
nal to the robot controller. The solutions have been
studied to obtain requirements on open robot control
systems. The feedback control nature of the welding
control is visualized in Fig. 9. Clearly, implementa-
tion of the welding control at the end-user level of
the system would be very inefficient (e.g., many addi-
tional function calls and data transfers for each sam-
ple). Instead, we want to implement this within the
application layer. The observers may require addi-
tional hardware to be plugged in (on the VME-bus
in our case), which is a standard procedure, but prin-
ciples for the application layer programming would
be similar to what has been described above for the
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Fig. 9. Block scheme interpretation of welding control according to [2].

deburring control. Installation of a special welding
controller will return an identification number to the
host.

Implementation of task-level programming for
arc-welding was made based on the IGRIP [17]
off-line programming system; results are reported
in [9]. An on-line connection between the task-level
system and the robot was needed. Using the fea-
tures of the ORC architecture and our experimen-
tal robot control system, this was accomplished as
follows:
• The shared library in IGRIP was extended with

functions for teleoperation that during robot simu-
lation transmitted the robot joint trajectories to the
embedded controller which was located over 100 m
away in another laboratory. The IGRIP part of the
interface is based on UNIX sockets connected to
Internet.

• A server running on a workstation in our laboratory
was developed. This server connects the off-line
system to the embedded control system whenever
these clients are available and responding properly.

• On-line control engineering was supported by our
Matlab-based software. Tuning of a few control pa-
rameters is shown to the upper right in Fig. 10; for
brevity, tools for on-line system identification are
not shown.

• An IGRIP server for the embedded controller was
developed. This server is installed at run-time into
the executive layer. The server accepts trajectories
from IGRIP as robot commands. Call of embedded
system primitives from the IGRIP system is accom-
plished by escape codes (negative numbers) in the
time column of a supplied trajectory. One such code
is used to refer to robot skills loaded into the appli-

cation layer. (The identity of the skill is supplied as
the second number of the trajectory sample.)

• Video cameras, a frame grabber in the Sun worksta-
tion, and SunVideo software was used to remotely
observe the robot motions.

Though Internet-based teleoperation of the robot is
possible, it is currently hard to rely on dynamic
feedback information transmitted through the avail-
able network, due to the often quite limited data
rate (bandwidth). In our case, to speed up the video
interface, a dedicated 10 Mbit/s connection was
installed.

4.3. Experiences and safety considerations

Based on the combined need for appropriate user
views and the flexibility needed for new unforeseen ap-
plications, we use the proposed concept of actions as a
solution. Both actions and built-in parts of the system
can provide configuration/tuning support by allowing
parameter changes. By restricting the values of the pa-
rameters, the system can keep its tuning operational
and safe. In the motor control example above, there
was not only a built-in part with filters that could be
adjusted from higher levels of control, but also an ac-
tion slot where additional control strategies can be in-
serted. Previous industrial experience shows that such
special controllers are highly desirable in some cases,
such as for optimized short motions in spot welding
[48].

Considering the specific example of arc welding,
our system provides a control engineering interface
which in its unrestricted version is well suited for the
work normally done by the robot manufacturer. Fol-
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Fig. 10. User interface to off-line robot simulation (at DPME) with on-line connection to the physical robot (at the Department of Automatic
Control). The robot (located 100 m away) is observed via a video interface (available on a Sun close to the robot and connected back to
the X-server on the SGI running IGRIP). The robot can also be manually controlled and tuned using our Matlab-based interface shown
to the right.

lowing ORC, a new part of that control design is to
decide what functionality that should be exposed for
future tailoring of the control. Findings on our exper-
iments suggest a reasonable approach appears to be
to permit arbitrary algorithms and additional states as
actions may generally contain, but also to impose re-
strictions by:
• Exposing only a restricted set of control signals

(some read-only), though others can be changed.
• Limitation of the magnitude of the changes that in-

stantly affect motions (but still maintaining short
response times allowing corrections done at, e.g.,
kHz rates).

• Checking added high-priority CPU-load, using soft-
ware timers and supervision threads.

• Maintaining original low-performance control for
possible activation by the built-in supervision sys-
tem.

Note that keeping the safety functions adds another
lever of protection. Therefore, plugging in arc-welding
actions providing the feedback control described
above works safely with small high-frequency cor-
rections. But if needed, how can larger corrections be
accomplished?

The answer iscascade control; larger corrections
are made at higher levels of control at a slower rate.
This affects the low-level set-points which can then
be further corrected, but task-planners, operator inter-
faces, or restrictions defined at the end-user level still
work properly.

For weld quality control, small but rapid correc-
tions of waving, wire-feed, and voltages are sufficient.
But for high-speed welding of a partly unknown seam,
seam-tracking motions to locations far outside the ac-
cepted range for high-frequency corrections may be
necessary. To describe the benefits of the ORC archi-
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Fig. 11. Industrial controllers have many safety functions working
on all levels of the system. Almost any sensor can be incorporated
on a user-program level, but only some specific sensors are allowed
(decided by robot manufacturer) on a feedback-control level.

tecture in this case, we need to compare this approach
with others.
• Industrial systems.If the desired control happens

to be supported by the controller, e.g., by setting
parameters and activating the control, it is unusu-
ally fortuitous. Otherwise, it takes a big customer
(such as a major car manufacturer) to get the re-
quired functions implemented. In other words, as
denoted by the traffic light in Fig. 11, it is decided
by the system whether fast feedback is available
or not.

• Research systems.To circumvent the restrictions of
available systems, research-type systems are fully
open, perhaps even with source code for the entire
system. The researcher is then free to introduce any
type of control, but proper system behavior in an
abnormal production situation (perhaps involving
human operators and a sensor failure) cannot be
guaranteed. This is depicted in Fig. 12 by full-speed
input of external sensor signals but with the safety
block shown in Fig. 11 replaced by an experimental
software block.

• Our approach.One solution is to have the above re-
strictions built into the system, and to provide slots

Fig. 12. Research-type controllers form fully open systems, and
feedback loops can thereby be freely accomplished. But this type
of system does not comprise any industrially useful safety net
(which major robot manufacturers put years of experience and
work in).

where actions can be plugged in to extend embed-
ded functionality. This is depicted in Fig. 13, where
the action slots are denoted ‘Plug-in’. Note that fast
response to external sensors is always possible to
introduce, and large corrections can be achieved by
slower feedback via higher levels of control where
multiple built-in safety restrictions are working. For
instance, the maximum path deviation between re-
quested and actual motion will be kept small.
Figs. 11–13 illustrates how tight application-specific

feedback is accomplished in ORC. As a front end
to those levels of control, user views are defined as
depicted in Fig. 2 to aid in managing system features.
One such user view is the application layer that han-
dles the issue of tight application-specific feedback
control.

5. Discussion

Industrial manipulators are characterized by inten-
sive interplay between user-level commands, which
often appear robot independent, a good (but not per-
fect) world model, motion control services, and exter-
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Fig. 13. Our hybrid approach includes the (possibly revised) in-
dustrial safety functions, but permits additional control functions
to be plugged into the system. The plug-in slots are defined by
in the embedded controller in such a way that both safety and
application-specific performance can be achieved.

nal signals from, say, a welding or grinding tool. This
interplay is crucial not only to obtain flexibility and
performance, but also to avoid the cost of otherwise
necessary external sensors.

The motion control system provides a set of robot
functions. Seen from the outside it consists of data
and procedures. Programmers often regard it as a set
of device drivers. One might consider the possibil-
ity of trying to find a complete set of well-defined
procedures — i.e., some form of generic set of robot
functions. These functions could then form a hard
shell (no reason to enter) library, where the inter-
nal implementation is hidden and optimized. We can

Fig. 14. Application know-how gets expressed in robot programs. Presently (left) however, it also affects the built-in motion control. The
proposed system (right) contains a software layer for application-specific (customized) motion control.

then consider the robot as an abstract data type [66],
and it can even be conveniently incorporated in an
object-oriented framework [43]. There are proprietary
and safety reasons for having a closed system, and
they are also easier to implement than open systems
are. This explains why several of the currently avail-
able robot control systems seem to have such a closed
structure. This is a major reason for the difficulties in
slightly modifying motion control to include a new
sensor, etc. This leads to a situation when it is no
longer possible for the robot manufacturer to do the
required modifications. Thus, the flexibility or perfor-
mance becomes unnecessarily limited. It is therefore
important for the purposes of the approach outlined in
this paper that know-how about the application can be
added on top of the built-in motion control as shown
in Fig. 14. Note that it is only in simple cases that
application-specific motion control can be achieved
by changing available control parameters. More often,
new control strategies need to be added which puts
special demands on the implementation.

The term ‘Plug-in’, used in Fig. 13, is nowadays also
used for code loading over the Internet, e.g., to extend
the functions of a web browser, but such a plug-in is re-
quested and run at the client side. In ORC it works the
opposite way; an action is defined and issued from the
client side, and its operation is performed by (and in
the context of) the server/controller. Additionally, the
actions are subject to dedicated slot-dependent (and
sometimes application dependent) access restrictions
for system security reasons. The ability to extend the
available set of functions in one high-level slot from
actions plugged into a low-level slot, as shown in Fig.
7, makes it possible to maintain the user views of the
extended system.

An architecture should be long-lasting and stable,
but yet flexible and extensible. It should be simple
and understandable, otherwise it will not be used. A
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remaining problem with architectural development is
how to know what architecture is the best or ‘optimal’
(in some sense). There are two approaches to deal
with this problem; formal methods and experimental
verification. As formal methods are difficult to apply to
heterogeneous systems, we are left with experimental
verification which has been done. Having experienced
the properties of our architecture, work with additional
arc-welding control is under way.

5.1. Misconceptions

Tackling ill-posed problems can create confusion.
Depending on the reader’s background and previous
experience (e.g., from some existing system), different
parts of the solutions presented can give rise to some
confusion concerning approach, importance, novelty,
etc. Based on reactions to viewpoints presented in
technical discussions and earlier work [45], the fol-
lowing remarks are made in order to pin-point some
standard misconceptions.

The purpose of software architecture
Software architectures have received much atten-

tion within robotics research [3,14,40]. One reason is
that when robot controllers (e.g., for space applica-
tions) become more and more complex, abstractions
and software structures are introduced to cope with the
complexity. In other words, the purpose of the archi-
tecture is to make the implementation of the system
feasible.

In industrial robotics the software is complex and
various functions must be tightly coupled to achieve
efficiency. However, the implementation complex-
ity is not worse than that which can be handled
by proper software engineering methods such as an
object-oriented design. However, the variety of user
interactions in flexible manufacturing systems indi-
cates that user views of the system should constitute
the basis for the architecture. This is a completely
different approach that should not be confused with
implementation architectures.

“We can do that in our system”
When suggesting a new embedded control system,

there will always be alternative means of implementa-
tion. Take, for instance, some advanced process con-
trol systems. First, such a system can of course be used

to control a robot, but will the desired performance,
cost-effectiveness, programmability, and flexibility be
achieved? Secondly, when designing servo control us-
ing process control systems, will use of a specific sys-
tem and its special language etc. be appropriate for in-
terfacing to stand-alone servos? In conclusion, almost
anything feasible can be implemented in any system,
but specific application demands as considered in this
paper are typically not taken into consideration. Al-
though the desired application software structure may
sometimes be accomplished, performance specifica-
tions are not met simultaneously.

“Layered systems are not useful without a detailed
specification”

Layered systems are perhaps most common within
computer communication. Within computer and
telecommunication applications, it is crucial that the
specification of the layers is complete in all its de-
tails. It must be possible to integrate components and
layers from different vendors, and the layers reflect
the implementation.

In this work, the layers reflectuser viewsof the sys-
tem. Detailed internal interfaces could of course also
be developed, but that needs to be done in collabora-
tion with major vendors and/or standardization orga-
nizations. Otherwise, the industrial impact would be
too small. On the other hand, we claim that earlier
and current standardization of robot interfaces on high
[41], intermediate [26,65], and low levels [27] are in-
appropriate. Because this work is not devoted to some
new programming language, it does not depend on a
detailed standard. It is usage of the principles proposed
that yields the benefits. Standards come with maturity!

“A robot controller is just another PLC block”
Process control systems and PLCs (programmable

logic controllers) often control motions usually via
dedicated servo controllers containing the drive elec-
tronics and the low-level feedback control. Process
controllers are typically programmed by combining
and connecting PLC blocks into a block diagram
defining the control program. A servo controller can
then be encapsulated in such a block. What then is
a robot controller? In simple and less demanding
cases, a robot control system is simply a multi-axis
programmable servo controller. For the reader whose
experience mainly derives from such applications, it
may be hard to understand why robot control should
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be such a big issue; it is just another PLC-block.
However, investigating demanding use of industrial
robots, the needs of motion descriptions, operator
interactions, non-linear and variable structure con-
trol, and computing efficiency clearly show that robot
control requires its own control techniques.

“We already have an open system”
A system that isopen allows the user or system

manager to change or add certain internal compo-
nents of the system. In practice, systems are a mix-
ture of open and closed parts [19]. The open parts
can also be open in many ways. For example, con-
sider a robot control system with a replaceable trajec-
tory generator. Such a system can be claimed to be
open. However, the interfaces to the software compo-
nent (the trajectory generator in this case) could be
so rigid that only the algorithm can be replaced. In
other words, structural changes involving, for exam-
ple, new types of interaction with the servo control are
often not possible. Therefore, an open system should
be reviewed concerning the type of changes possible,
and what degree of flexibility that implies. However,
it should be borne in mind that there may be safety
and proprietary reasons for keeping parts of the system
closed.

“Our customers have not required that feature”
Industrial development has to focus on customer

requirements. Sometimes, however, new features that
let customers explore new possibilities simply have to
be offered. Proposal of new features for application
or customer support engineers, sometimes results in a
comment that “our customers have not required that
feature”.

This research is inspired by real industrial problems,
but specific solutions can very well be questioned in
the light of short term requirements. The reader should
in those cases, however, not forget the fundamental
long-term benefits.

“A new type of motion is just another procedure”
Principles for the incorporation of application fea-

tures have not received the same attention as other
software aspects in robotics, such as high-level plan-
ning or low-level explicit joint control. This aspect has
been dismissed with such statements as “just imple-
ment a procedure” or “implement another robot func-
tion”. On the other hand, robot manufacturers exspend

major resources in designing and implementing such
robot functions. Even so, it is well known that it may
be difficult or impossible to slightly modify a func-
tion, to change an application feature, or to include
a new type of sensor in existing systems. The reason
is of course that the software is complex with many
coupled functions that are based on mutual primitives,
include timing and so on. The seemingly innocuous
task of including a new robot function may represent
a major effort. Applications mature over time, and it
is natural that more and more special features need
to be implemented. If this can be done efficiently us-
ing the principles proposed in this paper, then the
implications for production speed and efficiency are
obvious.

6. Conclusions

Efficient design and industrial applications of ad-
vanced robot control systems require support for in-
stallation of application software for improved intel-
ligent behavior and of tight application-specific con-
trol loops. Thus, robot control systems need to be
open. We have achieved that objective by using func-
tional operators as parameters which can be changed
from the next higher level. Such operators consist of
pieces of cross-compiled executable code. A unique
combination of efficiency and flexibility was thereby
achieved.

We also identified the need for software archi-
tectures to cope with the internal complexity of
autonomous robot operations as well as with the
multiple types of user interaction. Whereas architec-
tures usually deal with the internal complexity of the
system, we have proposed an architecture primarily
intended for support of the user or programmer of the
system, which is manifested by the new architectural
concept ofuser views. Within each such user view, in-
terfaces and tools constitute a uniform and integrated
environment which also forms a software layer for
the design of system architectures.

The proposed Open Robot Control (ORC) archi-
tecture defines multiple software layers for different
types of users and programming situations. Use of the
functional operators turned out to be a key mechanism
for implementation of the ORC architecture. It made
the user-view concept applicable, for instance, by
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allowing tight control loops to be conceptually de-
fined within one (high-level) view and then effi-
ciently carried out by the run-time services of another
(low-level) view. This proved to work even down to
the lowest level of (motor) control, and even when
industrial demands in terms of efficiency were con-
sidered. Nevertheless, ORC also supports high-level
abstractions, and several other architectures can be
achieved as special cases.

We have experimentally verified that the ORC ar-
chitecture efficiently responds to combined needs such
as performance, flexibility, task-level operation, and
incorporation of intelligent sensors.
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