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Abstract

Stored energy and Q-factors are used to quantify the performance of small

antennas. Accurate and e�cient evaluation of the stored energy is also essen-

tial for current optimization and the associated physical bounds. Here, it is

shown that the frequency derivative of the input impedance and the stored

energy can be determined from the frequency derivative of the electric �eld

integral equation. The expressions for the di�erentiated input impedance and

stored energies di�er by the use of a transpose and Hermitian transpose in the

quadratic forms. The quadratic forms also provide simple single frequency for-

mulas for the corresponding Q-factors. The expressions are further generalized

to antennas integrated in temporally dispersive media. Numerical examples

that compare the di�erent Q-factors are presented for dipole and loop anten-

nas in conductive, Debye, Lorentz, and Drude media. The computed Q-factors

are also veri�ed with the Q-factor obtained from the stored energy in Brune

synthesized circuit models.

1 Introduction

Temporal dispersion is present in natural [21, 23, 33] and arti�cial materials [3, 5, 9].
Dispersion can often be neglected for antenna modeling in the microwave range but
it is usually necessary for modeling of phenomena in the mm, THz, and optical range.
Electromagnetic energy density in dispersive media builds on the classical results
in [23] with a renewed interest in applications such as; antennas, metamaterials, and
photonics [28, 32, 37, 41].

Antennas are often placed in the proximity of, or inside lossy media for example,
submarines and body implants [29, 38]. The losses of the system are associated
with conduction or relaxation of the media. These lead to a frequency dependent
permittivity and hence temporal dispersion. Characterization of antennas in a lossy
background medium is challenging as the electromagnetic �elds decay exponentially
away from the antenna and radiation patterns are coordinate dependent [25].

Stored energy is instrumental for antenna analysis in terms of the Q-factor.
In [19, 40�42] stored energy is considered for small antennas composed of dispersive
or lossy media, embedded in free space. The classical subtraction technique, where
the energy in the far �eld is subtracted from the total energy density, is di�cult
to generalize to lossy media due to the exponential decay of the far �eld and its
associated coordinate dependence. Using the power �ow in the subtraction tech-
nique might be useful for spherical geometries, [22]. Here, we follow the approach
by Vandenbosch [34] and express the stored energy and Q-factors in terms of the
current density on the antenna structure. The derivation is based on frequency
di�erentiation of the method of moments (MoM) impedance matrix.

The Q-factor, QZ′
in
, de�ned by the frequency derivative of the input impedance [42]

is �rst expressed in terms of the current density. This simpli�es the expression pro-
posed in [4] by eliminating the frequency derivatives of the current density and
generalizes it to temporally dispersive media. Although, the QZ′

in
factor is inversely

proportional to the fractional bandwidth [17, 42], it is always possible to obtain



2

QZ′
in
≈ 0 with a simple matching network [18]. Therefore, care should be taken when

using QZ′
in
for antenna optimization and deriving physical bounds. The quadratic

form for the frequency derivative of the input impedance can also be useful for
e�cient interpolation of the input impedance over a frequency interval.

The stored energy expressions in [34] can produce negative values [16] for large
structures. This questions the validity of the energy expressions although several
numerical tests indicate that the expressions are accurate for sub-wavelength anten-
nas [17, 20]. The derivations in [17, 34�36] are based on subtraction of the radiated
far �eld energy and hence not easily applicable for antennas in lossy media.

Here, we discuss some potential generalizations of the stored energy for anten-
nas in general temporally dispersive media. These expressions are compared to the
stored energy in circuit models that is determined from the input impedance using
Brune synthesis [17, 39]. The resulting Q-factors for dipole and loop antennas are
compared for electric conduction, Debye, Lorentz, and Drude material models. The
numerical results verify the expression for the di�erentiated Q-factor, QZ′

in
. The

results also indicate that the generalized expressions for the stored energy are valid
for many cases of temporal dispersion. Strongly dispersive material models are used
to investigate the validity of the expressions. Moreover, a particular material model
with arbitrary small temporal dispersion is synthesized such that the Q-factor from
the di�erentiated input impedance is negligible for self-resonant antennas. This in-
dicates that it is di�cult to express the stored energy solely in terms of the frequency
derivative of the MoM impedance matrix for general temporally dispersive media.

This paper is organized as follows. In Sec. 2, method of moments modeling of
antennas in dispersive media is discussed. The Q-factor from the antenna input
impedance QZ′

in
is derived in Sec. 3. Stored energy and the Q-factor for lumped

circuit models are analyzed in Sec. 4. The stored energy and Q-factor for antennas
are discussed in Sec. 5. Numerical examples for dipoles and loops in conductive,
Debye, Lorentz, and Drude models are shown in Sec. 6.

2 Antennas in temporally dispersive media

We consider antennas in a homogeneous temporally dispersive background medium.
The antennas are modeled as perfect electric conductor (PEC) and the background
medium has relative permittivity εr(ω) and relative permeability µr(ω), where ω de-
notes the angular frequency. The wave impedance is η =

√
µ/ε and the wavenumber

is k = −j
√
−ω2ε(ω)µ(ω).

The impedance matrix is computed with the method of moments (MoM) formula-
tion of the electric �eld integral equation (EFIE) using the Galerkin procedure [26].
The basis functions are assumed to be real valued, divergence conforming, with
vanishing normal components at the antenna boundary [26]. A standard MoM im-
plementation of the EFIE determines the impedance matrix Z = R + jX, with the
elements

Zmn
η

= j

∫

V

∫

V

(
k2ψm1 ·ψn2 −∇1 ·ψm1∇2 ·ψn2)

e−jkR12

4πkR12

dV1 dV2, (2.1)
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where ψni is a short hand notation for basis functions ψn(ri) with n = 1, ..., N
and i = 1, 2, r denotes the position vector, and R12 = |r1 − r2|. The current
column matrix I contains the expansion coe�cients In for the current density J(r) =∑N

n=1 Inψn(r) that is determined from the linear system

ZI = V or I = Z−1V = YV, (2.2)

where V is the column matrix with excitation coe�cients and Y = G + jB is
the admittance matrix. The MoM impedance matrix in temporally dispersive me-
dia (2.1) is formally identical to the free space case with the use of the complex-valued
wavenumber k in the background medium and normalization to the complex-valued
background impedance η.

For simplicity, we assume that V is real valued with non-zero elements corre-
sponding to the input voltage Vin. The input impedance, Zin = Rin + jXin = Y −1in ,
is determined from the admittance matrix

Zin =
1

Yin
=

V 2
in

VTYV
, (2.3)

where Yin = Gin + jBin is the input admittance, for a single port antenna. The
Q-factor for an antenna tuned to resonance is de�ned as

Q =
2ωmax{We,Wm}

Pd

, (2.4)

where We and Wm denote the stored electric and magnetic energies and Pd is the
dissipated power. The dissipated power is determined from the Poynting vector and
can be written [11, 17, 27, 34]

Pd =
1

2
Re{IHV} = 1

2
IHRI =

1

2
VHGV. (2.5)

3 Frequency derivative of the input impedance

For a self-resonant single resonance antenna, we have the QZ′
in
estimate for the

fractional bandwidth [42]

B ≈ 2

QZ′
in

Γ0√
1− Γ 2

0

, (3.1)

where Γ0 denotes the threshold of the re�ection coe�cient, Γ , and

QZ′
in
=
ω|Z ′in|
2Rin

=
ω|Y ′in|
2Gin

= ω|Γ ′| (3.2)

where Z ′in, Y
′
in, and Γ ′ are the input impedance, input admittance, and re�ection

coe�cient derivatives, respectively [42]. The QZ′
in
was �rst expressed in terms of

the current density J and its frequency derivative J ′ in [4]. Here, we follow [24]
and use the EFIE impedance matrix (2.1) to express QZ′

in
solely in the current I or

equivalently J .
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We use the frequency derivative of the impedance matrix (2.1) to expressQZ′
in
(3.2)

in the current. The (angular) frequency derivative of the admittance matrix is

Y′ =
∂Y

∂ω
=
∂Z−1

∂ω
= −Z−1Z′Z−1 = −YZ′Y. (3.3)

Using a real-valued frequency independent voltage source V′ = 0 in (2.2), we get
the frequency derivative of the input admittance Yin from

V 2
inY

′
in = (VTYV)′ = VTY′V = −ITZ′I. (3.4)

Here, we note that the current is frequency dependent, i.e., I′ = Y′V 6= 0, see
also [4, 12]. The assumption of a real-valued frequency independent voltage source
agrees with modeling of a voltage gap in the MoM [26]. The corresponding frequency
derivative of the input impedance is Z ′in = −Z2

inY
′
in. The Q-factor (3.2) de�ned from

the frequency derivative of the input admittance and input impedance are evaluated
using

ωY ′in
2Gin

=
ωV 2

inY
′
in

2V 2
inGin

= −ωITZ′I

2IHRI
(3.5)

and
ωZ ′in
2Rin

=
−ωZ2

inY
′
in

2Rin

=
ω|Y 2

in|ITZ′I

2Y 2
inI
HRI

, (3.6)

respectively, giving

QZ′
in
=
ω|ITZ′I|
2IHRI

(3.7)

for self-resonant antennas.
We are most interested in the Q-factor of antennas tuned to resonance. The

frequency derivative depends on the used matching network [18]. For series tuning
with a lumped capacitor or inductor we have the Q-factor [42]

Q
(s)

Z′
in
=

∣∣∣∣
ωZ ′in
2Rin

+ j
|Xin|
2Rin

∣∣∣∣ =
√
(ωR′in)

2 + (ωX ′in + |Xin|)2
2Rin

=

∣∣∣∣
ωY ′in|Y 2

in|
2GinY 2

in

− j
|Bin|
2Gin

∣∣∣∣ (3.8)

and the case with parallel tuning elements is

Q
(p)

Z′
in
=

∣∣∣∣
ωY ′in
2Gin

+ j
|Bin|
2Gin

∣∣∣∣ =
∣∣∣∣
ωZ ′in|Z2

in|
2RinZ2

in

− j
|Xin|
2Rin

∣∣∣∣ . (3.9)

The series case (3.8) is most commonly used [42]. However, the two tuning cases

Q
(s)

Z′
in
and Q

(p)

Z′
in
are similar and here we consider the maximal value of Q

(s)

Z′
in
and Q

(p)

Z′
in

to de�ne
QZ′

in
= max{Q(s)

Z′
in
, Q

(p)

Z′
in
}. (3.10)

This de�nition removes the ambiguity of the tuning element or equivalently the
preference of the input impedance or input admittance. The practical di�erence
is often small but sometimes observable around the resonance and anti-resonance
frequencies. The tuning factor in (3.8) and (3.9) is the di�erence between the stored
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magnetic and electric energies normalized with the dissipated power and can be
written in di�erent forms, e.g.,

ω|Wm −We|
2Pd

=
|Xin|
2Rin

=
|Bin|
2Gin

=
|IHXI|
2IHRI

=
|VHBV|
2VHGV

. (3.11)

The frequency derivative of the EFIE impedance matrix Z in (2.1) is

ω
∂Zmn
∂ω

= ωη
∂(Zmn/η)

∂ω
+ ω

Zmn
η

∂η

∂ω
= k

∂(Zmn/η)

∂k

ηω

k

∂k

∂ω
+ ω

Zmn
η

∂η

∂ω
(3.12)

for a temporally dispersive background medium with k = ω
√
εµ, η =

√
µ/ε, kη =

ωµ, and k/η = ωε. For the common case of a non-magnetic medium, µr = 1, the
result simpli�es to

ω
∂Zmn
∂ω

= k
∂(Zmn/η)

∂k
η

(
ω∂ε

2ε∂ω
+ 1

)
− Zmn

2

ω∂ε

ε∂ω
. (3.13)

The terms (3.12) and (3.13) involve the impedance matrix Z, its wavenumber deriva-
tive, and frequency derivatives of the material parameters. The di�erentiation with
respect to the background wavenumber k of the EFIE impedance matrix (2.1) nor-
malized with the background impedance is

k
∂

∂k

Zmn
η

=

∫

V

∫

V

(
j(k2ψm1 ·ψn2 +∇1 ·ψm1∇2 ·ψn2)

+ (k2ψm1 ·ψn2 −∇1 ·ψm1∇2 ·ψn2)kR12

) e−jkR12

4πkR12

dV1 dV2, (3.14)

where we observe that the �rst term resembles the impedance matrix (2.1) but with
an addition instead of subtraction of the two terms. The second term is non-singular
due to the multiplication with kR12. Combining (3.13) and (3.12) with (3.8), (3.9)
and (3.5) expresses QZ′

in
as a quadratic form in the current I. The corresponding

expressions in [4] di�er from (3.7) as they include frequency derivatives and complex
conjugates of the current density.

The frequency derivative (3.14) involves both the real and imaginary part of the
impedance matrix. A series expansion in the wavenumber reveals that

k ∂R′mn
η0 ∂k

∼ k2 and
k ∂X ′mn
η0 ∂k

∼ k−1 (3.15)

as k → 0 and hence the derivative of the reactance dominates for small antennas.
The matrix Z′ is symmetric and can hence be Takagi factorized as Z′ = UTΛU,

where Λ is a diagonal matrix containing the eigenvalues (non-negative) of Z′Z′H.
This gives the quadratic (bilinear) form

ITZ′I = (IU)TΛIU = ĨTΛĨ =
N∑

n=1

Ĩ2nλn, (3.16)
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where we note that it is always possible to �nd non-zero currents I such that ITZ′I =
0 if there are at least two non-zero eigenvalues (or modes) λn. This shows that the
lower bound on QZ′

in
is in general 0 if the currents are chosen arbitrary, see also

the explicit construction using matching circuits in [18]. This problem with QZ′
in

stems from the use of the transpose of I in the (bilinear) quadratic form (3.7). The
corresponding energy expressions are formulated as quadratic (sesquilinear) forms
involving the Hermitian transpose of I giving positive semide�nite forms suitable
for optimization [7, 14].

4 Q in lumped circuit models of antennas

The input impedance can be used to synthesize a lumped circuit model of the an-
tenna that is used to determine the antenna Q [6, 17, 30, 31]. Consider a lumped
circuit network with resistors, inductors, and capacitors. The input impedance be-
tween two nodes of the network is de�ned by the quotient between the voltage and
current. The circuit is fed using either a voltage or current source between the nodes.
The results are related and correspond to an interchange between the impedance
and admittance in the discussion below. For simplicity, we assume a voltage source
and use the Kirchho� voltage law to construct the linear system [13]

ZI = V, (4.1)

where the impedance matrix Z = R + jX contains elements of the form Zmn =
Rmn + jωLmn − j/(ωCmn) depending on the lumped elements in the branch. Order
the branches such that the voltage matrix V contains the source voltage Vin at
one position and is zero elsewhere. The corresponding current matrix contains the
input current at the same position. The input impedance Zin = Vin/Iin and input
admittance Yin = 1/Zin are determined from [13],

YinV
2
in = ZinI

2
in = VinIin = VTI = ITZI (4.2)

that can also be derived using Tellegan's theorem [39]. The voltage source is fre-
quency independent, V ′in = 0, so di�erentiation of the input admittance (4.2) with
respect to the frequency gives

Y ′inV
2
in = VTI′ = ITZI′ = −ITZ′I = −jITX′I, (4.3)

where di�erentiation of (4.1) is used to get Z′I + ZI′ = 0. Moreover, the resistance
matrix R is frequency independent so the di�erentiated impedance matrix Z′ = jX′

is imaginary valued with the elements

X ′mn =
∂

∂ω

(
ωLmn −

1

ωCmn

)
= Lmn +

1

ω2Cmn
. (4.4)

Here, it is important to realize that the current matrix I in (4.3) is complex valued
and hence the di�erentiated input admittance Y ′in is complex valued. The di�erenti-
ated input impedance is �nally Z ′in = −Z2

inY
′
in. Moreover, we observe that the expres-

sion is similar to the corresponding expression for the antenna input impedance (3.4).
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The frequency di�erentiated impedance matrix for the antenna case can have a non-
zero contribution from the resistance matrix. The Q-factors from the di�erentiated
input impedance are analogous to the antenna case (3.7).

The Q-factor de�nition in (2.4) includes the stored electricWe and magneticWm

energies. The stored energies [13, 39] in capacitors and inductors are |V |2C/4 =
|I|2/(4ω2C) and |I|2L/4, respectively. Comparing the stored energy in capacitors
and inductors with (4.4) shows that the frequency derivative of the impedance matrix
gives the total stored energy

We +Wm =
IHX′I

4
≥ 0 (4.5)

that resembles (4.3) with the transpose replaced by a Hermitian transpose. The
di�erence between the stored magnetic and electric energies is Wm−We =

1
4ω

IHXI,
giving the stored magnetic and electric energies as

Wm =
1

8
IH
(
∂X

∂ω
+

X

ω

)
I =

1

4

N∑

m,n=1

I∗mLmnIn ≥ 0 (4.6)

and

We =
1

8
IH
(
∂X

∂ω
− X

ω

)
I =

1

4ω2

N∑

m,n=1

I∗mC
−1
mnIn ≥ 0, (4.7)

respectively. The dual formulation of (4.6) and (4.7), using a current source changes
currents to voltages and the impedance matrix to the admittance matrix, e.g., We+
Wm = VHB′V/4.

The frequency di�erentiated reactance matrix X′ is real valued symmetric pos-
itive semi de�nite and can be diagonalized as X′ = UTΛU, where Λ is a diagonal
matrix containing the eigenvalues (non-negative) and U is a real-valued unitary ma-
trix. This gives an inequality between the expression for the frequency derivative
and the stored energy

IHX′I = (UI)HΛUI ≥
∣∣(UI)TΛUI

∣∣ =
∣∣ITX′I

∣∣ . (4.8)

The inequality becomes an equality for currents with a constant phase, e.g., real-
valued currents. This condition for equality is su�cient but not necessary as seen
by interchanging the impedance and admittance formulations. For a self-resonant
input impedance, Xin = 0, this shows that the Q determined from the stored energy
is always greater than or equal to the Q determined from the frequency derivative,
i.e.,

Q =
ω(We +Wm)

Pd

=
ωIHX′I

2IHRI
≥ ω|ITX′I|

2IHRI
= QZ′

in
. (4.9)
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For an input impedance tuned to resonance, we have

Q =
2ωmax{We,Wm}

Pd

=
max{IH(ωX′ ±X)I}

2IHRI
=
ωIHX′I + |IHXI|

2IHRI

= max
|α|=1

|ωITX′Iα|+ |IHXI|
2IHRI

≥ max
|α|=1

|ωITX′Iα + IHXI|
2IHRI

≥ max

{ |ωY ′in ± j|Bin||
2Gin

,
|ωZ ′in ± j|Xin||

2Rin

}
≥ QZ′

in
, (4.10)

where we used the series (3.8) and parallel (3.9) tuning elements with α = {±1,±|Yin|2/Y 2
in}.

This is a general inequality between the Q-factors derived from the di�erentiated
impedance and the stored energy valid for lumped circuit networks. Here, we inves-
tigate its implications for the stored energy expressed as the current density on the
antenna.

5 Q and stored energy for antennas

The frequency derivative of the impedance matrix (3.13) together with the lumped
circuit expressions (4.3) and (4.5) also shed new light on the stored energy expres-
sions �rst derived by Vandenbosch [34]. The frequency derivative of the reactance
matrix X′ produces the quadratic forms for the stored energies in [7, 17, 34], i.e.,

WeX′ +WmX′ =
1

4
IHX′I. (5.1)

This is a Hermitian quadratic form in terms of the frequency derivative of the re-
actance matrix. The di�erence between the stored magnetic and electric energies
gives the explicit formulas for the stored magnetic and electric energies

WmX′ =
1

8
IH
(
∂X

∂ω
+

X

ω

)
I (5.2)

and

WeX′ =
1

8
IH
(
∂X

∂ω
− X

ω

)
I, (5.3)

respectively. The relations (5.2) and (5.3) are formally identical to the stored energy
expressions for the lumped circuit networks (4.6) and (4.7). They also resemble the
expressions in [10] derived for the input impedance of single and array antennas.
Here, it is essential to note that (5.2) and (5.3) are for the EFIE impedance matrix
and not for the input impedance, cf., with (4.7) and (4.7). Geyi [12] has also recently
proposed modi�cations involving frequency derivatives of the current density.

The Q-factor for antennas tuned to resonance (2.4) is

QX′ =
max{IH(ωX′ ±X)I}

2IHRI
=
ωIHX′I + |IHXI|

2IHRI
(5.4)
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for the stored energy (5.1). Although the expressions for the frequency deriva-
tive (3.6) and stored energy (5.1) are similar, there are some fundamental di�er-
ences. For a real valued (with a constant phase) current the stored energies only
di�er by the frequency derivative of the resistance R′. This implies that QZ′

in
≥ QX′

for real-valued currents due to this non-zero R′ 6= 0. This di�ers from the typi-
cal numerical results [17] and is explained by the in many cases negligible R′, i.e.,
||R′|| � ||X′||, see (3.15). For small self-resonant antennas with non-constant cur-
rents and a negligible R′, i.e., ||R′|| ≈ 0, we have QZ′

in
≤ QX′ as |ITX′I| ≤ IHX′I

for symmetric real-valued positive semi-de�nite matrices X′ in accordance with the
lumped circuit case (4.8).

One problem with expression (5.1) for the stored energy is that it can produce
negative values for large structures [16]. This questions the validity of the expres-
sion (5.1). Moreover, the inequality between the frequency derivative and the stored
energy for lumped circuits (4.8) is in general not satis�ed with (5.1). An alternative
expression for the stored energy that is non-negative and resembles the expressions
from the di�erentiated input impedance (3.6) is given by

WeZ′ +WmZ′ ≈ 1

4

∣∣IHZ′I
∣∣ . (5.5)

For small antennas the frequency derivative of the resistance is negligible compared
with the frequency derivative of the reactance (3.15) and the frequency derivative
of the reactance is positive semi-de�nite. This simpli�es the energy to the expres-
sions (5.1) introduced by Vandenbosch [34], i.e.,

WeZ′ +WmZ′ ≈ 1

4

∣∣IHZ′I
∣∣ ≈ 1

4
IHX′I = WeX′ +WmX′ (5.6)

for ka� 1, where a denotes the radius of the smallest sphere that circumscribes the
antenna. For antennas tuned to resonance we can use the energy di�erence (3.11)
to get the Q-factor

QZ′ =
ω|IHZ′I|+ |IHXI|

2IHRI
, (5.7)

similar to the tuned case for lumped circuits (4.10). The expression is also equal
to the result from the frequency derivative of the input impedance for real valued
currents I.

We can also use the admittance to introduce the Q-factor in an alternative form,

QY′ =
ω|VHY′V|+ |VHBV|

2VHGV
(5.8)

Here, we note that for a real valued frequency independent voltage source VHY′V =
VTY′V = −ITZ′I, giving QY′ ≥ QZ′

in
for the self-resonant case.

For current optimization [7, 8, 14] it is essential to have expressions of the stored
energy that are convex in the current density. This directly eliminates the ex-
pressions for the di�erentiated input impedance as they are non-convex due to the
transpose giving a bilinear quadratic form. Also expressions involving the frequency
derivative of the impedance or admittance matrix are in general non-convex e.g.,
due to the inde�nite sign of R′.
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6 Numerical examples

We compare the proposed Q-factors QZ′
in
in (3.10), QZB

in
in (4.10), QX′ in (5.4), and

QZ′ in (5.7). The circuit model for Q = QZB
in
in (4.10) is determined using Brune

synthesis from the input impedance of a single port antenna [2, 17, 39]. The antenna
parameters are computed using a MoM code based on rectangular elements and
divergence conforming basis functions [26] for planar (negligible thickness) structures
modeled as a perfect electrical conductor (PEC).

We consider the conductivity, Debye, Lorentz, and Drude material models for
the permittivity [21, 23, 33] together with a free space permeability. To conclude,
an example dispersion model with parameters arbitrary close to free space, giving
negligible Z′, is synthesized. This example illustrates the di�culties to derive uni-
versally valid expressions for Q-factors. The Q-factors are depicted for dipole and
loop antennas. The dipole antenna has length `, width 0.01`, and is either fed in
the center or 0.27` from the center. The loop antenna has height `, width 0.5`, and
a strip width of `/64 and is fed in the center of the longer side.

The results are presented in the dimensionless parameter `/λ, where λ is the
free-space wavelength. The material parameters are functions of the dimensionless
parameter ω = 2π`/λ.

6.1 Conductivity model

We consider a strip dipole fed 0.27` from the center in a homogenous medium with
relative permittivity εr = 1− jσ/ω, where ω = 2π`/λ. The o�-center feed is chosen
to eliminate some of the symmetries of the induced current density distribution in
comparison to the center fed case, and increase the phase shift of the induced current
density.

The calculated Q-factors are depicted in Fig. 1 for the relative permittivity εr =
1 − j0.25/ω. All Q-factors are small for low frequencies where the loss tangent
0.25/ω is high. The Q-factors agree well for approximately `/λ ≤ 0.5 or k0a ≤ π/2,
where a denotes the radius of the smallest circumscribing sphere and k0 is the free-
space wavenumber. The di�erences between the Q-factors from the di�erentiated
impedance QZ′ in (5.7) and reactance QX′ in (5.4) matrices are small indicating that
the contribution from R′ is negligible for this case. The Q-factor from the Brune
circuit QZB

in
follow QX′ well but gives slightly lower values. The Q-factor from the

di�erentiated input impedance is also similar to QZB
in
except for `/λ ≈ 2, where QZ′

in

has a dip, see also [17] for the corresponding free space case where QZ′
in
≈ 0 at

`/λ ≈ 2.
The conductivity is swept to produce the relative permittivity εr = 1 − αj/ω,

with α = {0.25, 0.1, 0.05, 0.01, 0.001, 0} for the same strip dipole in Fig. 2. Here, the
di�erences between the expressions for the Q-factors are negligible. The e�ect of
the temporal dispersion on the di�erentiated input impedance is estimated by the
factor ∣∣∣∣

ω∂ε

2ε∂ω

∣∣∣∣ =
1

2

∣∣∣∣∣
−1

jω
α
+ 1

∣∣∣∣∣ =
1/2√
ω2

α2 + 1
≤
{

1
2

all ω
1√
8

ω > α
(6.1)
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Figure 1: Q-factors for a strip dipole with length `, width `/100, fed 0.27` from
the center, and placed in a homogeneous medium with relative permittivity εr =
1 − 0.25j/ω, where ω = 2π`/λ. The Q-factors are determined from the Brune
synthesized circuit model QZB

in
as in [17], the di�erentiated input impedance QZ′

in

in (3.10), frequency derivative of the reactance matrixQX′ in (5.4), and the frequency
derivative of the impedance matrix QZ′ in (5.7).

indicating that the e�ect of the dispersion for QX′ is small if ω � α. This is also
seen in Fig. 2, where all estimates agree except for ω < α where also Q is very low.

6.2 Debye model

The Debye model describes relaxation e�ects in molecules and is used to model the
permittivity of distilled water and other polar liquids [21]. The Debye model can be
written εr = ε∞ + (εs − ε∞)/(1 + jωτ), where τ is the relaxation time, εs the static
relative permittivity, and ε∞ the high-frequency response. Here, we consider the
Debye models

εr = 1 +
α

0.5 + jω

giving a dimensionless relaxation time τ = 2. The permittivity and derivative
|ωε′r/εr|/2 in (3.13) are depicted in Fig. 3 for α = {1, 0.5, 0.1, 0.01, 0.001, 0}. We
observe that |ωε′r/εr|/2 ≤ 1/4 that extends to all Debye models.

The Q-factors from the di�erentiated input impedance QZ′
in
, the Brune synthe-

sized circuit model QZB
in
, the di�erentiated impedance matrix QZ′ , and the di�erenti-

ated reactance matrix QX′ are depicted in Figs. 4 and 5 for the cases of an o�-center
fed dipole and a loop antenna, respectively. We observe the general trend that the
Q-factors decrease with increasing α as a result of the increasing losses, see Fig. 3.
Moreover, the Q-factors agree well for Q > 5 and QZ′

in
is slightly below the other

curves for Q < 5. The good agreement is partly explained by the relative small
values of |ωε′r/εr|/2, as depicted in Fig. 3, indicating that (3.13) is dominated by the
matrix elements in (3.14).
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Figure 2: Q-factors for a strip dipole with length `, width `/100, fed 0.27` from
the center, and placed in a homogeneous medium with relative permittivity εr =
1− αj/ω, with α = {0.25, 0.1, 0.05, 0.01, 0.001, 0} and ω = 2π`/λ.

6.3 Lorentz model

The Lorentz model
εr = ε∞ +

α

ω2
0 + jνωω0 − ω2

(6.2)

or, more generally, a sum of Lorentz terms are used to describe resonance phe-
nomena in media [21]. We consider Lorentz models of the form εr = 1 + α

1+jω−4ω2

with α = {0.25, 0.1, 0.05, 0.01, 0.001, 0} having the resonance frequency ω0 = 1/2 or
equivalently `/λ = 1/(4π) ≈ 0.08. The permittivity and weighted frequency deriva-
tive |ωε′r/εr|/2 are depicted in Fig. 6. Here, we observe that the weighted frequency
derivative is close to unity for the α = 0.25 case. The matrix elements from (3.14)
are hence multiplied by an almost arbitrary phase. This implies that the imaginary
part of the impedance matrix can assume any value and that the Q-factors de�ned
from the di�erentiated reactance matrix can be erroneous. This is also observed
in Fig. 7, where the Q-factors for an o�-center fed dipole in a background Lorentz
media are depicted. The Q-factors agree well for approximately Q > 10 and start
to deviate for lower Q-values. In particular the estimated Q-factors from the di�er-
entiated reactance matrix QX′ and di�erentiated input impedance QZ′

in
are very low

around the resonance frequency `/λ ≈ 0.08 for the α = 0.25 case.

6.4 Drude model

The interaction between a free electron gas and electromagnetic �elds can be mod-
eled with a Drude dispersion model [21]. The model also exhibits phenomena such
as negative permittivity and epsilon near zero materials [1]. Consider the relative
permittivity

εr = 1 +
α

0.05jω − ω2
(6.3)
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Figure 3: Weighted frequency derivative of the relative permittivity for the Debye
model εr = 1 + α

0.5+jω
with α = {1, 0.5, 0.1, 0.01, 0.001, 0} and ω = 2π`/λ.

as depicted in Fig. 8 for the parameter values α = {5, 2, 1, 0.5, 0.1, 0}. We observe
that the real part of the permittivity is negative for low frequencies and that the
permittivity is close to zero around ω =

√
α or `/λ ≈ 0.16

√
α.

The weighted frequency derivative of the Drude model (6.3) is shown in Fig. 9.
We observe that the weighted frequency derivative is maximal for the frequency
ω = 2π`/λ where the permittivity is close to zero. The maximal value is also much
greater than unity indicating that the matrix elements (3.14) are multiplied with a
complex number of arbitrary phase.

The resulting Q-factors for a center fed dipole embedded in a homogeneous Drude
model are shown in Fig. 10. The Q factors determined from the Brune synthesized
circuit QZB

in
, the di�erentiated input impedance QZ′

in
, and di�erentiated impedance

matrix QZ′ agree very well for all considered cases. The Q-factors from the di�er-
entiated reactance matrix QX′ agree with the other estimates except for frequencies
where the weighted frequency derivative of the relative permittivity is large. This
is consistent with the interpretation of the multiplication of the matrix element
in (3.14) with a large complex valued number giving the resultant matrix element
an arbitrary phase and hence potentially a small imaginary part.

In Fig. 10, we also observe that the Q-factors decrease for low frequencies where
the losses are high and the real part of the permittivity is negative, cf., Fig. 8. The Q-
factors are higher than for the free-space case (α = 0) in the region where the losses
are small and the real part of the relative permittivity is between zero and unity.
This is partly explained by a comparison with the case of a dipole in a homogeneous
non-dispersive lossless medium with a relative permittivity in the range 0 < εr < 1.
Here, the lower permittivity corresponds to an increased wavelength or equivalently
a shorter dipole. Consider e.g., the α = 5 case that has the relative permittivity
εr ≈ 0.5 at `/λ = 0.5. This corresponds to the free space case at

√
0.5 0.5 ≈ 0.35

with a Q-factor approximately 20. We also observe that although there is a small
change in the Q-factors at the frequencies where εr ≈ 0, there is not a major e�ect
of εr ≈ 0, except for the approximation using QX′ .
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Figure 4: Q-factors for a strip dipole with length `, width `/100, fed 0.27` from
the center, and placed in a homogeneous Debye medium with relative permittivity
εr = 1 + α

0.5+jω
with α = {1, 0.5, 0.1, 0.01, 0.001, 0}, see Fig. 3.

6.5 Refractive index

We synthesize a medium such that Z′ ≈ 0 at a desired frequency ω0. This implies
that QZ′

in
≈ 0 for any self-resonant antenna at ω0 unless Pd = IHRI/2 ≈ 0 at the

same frequency. It is known that one can synthesize antennas withQZ′
in
≈ 0 as shown

in [18] and also by the construction in (3.16). However, the explicit construction
used here also shows that it is not possible to express the stored energy solely in
Z′ that is valid for general (passive) temporal dispersive media. This implies that
although the considered energy expressions (5.1), (5.7), and (5.8) work well for the
considered dispersion models they do not work for every dispersion model.

For simplicity we consider models with identical relative permittivity and per-
meability, εr = µr, and hence η = η0 and k = εrω/c0. The term

ω

k

∂k

∂ω
=

1

εr

∂ωεr
∂ω

(6.4)

multiplies the matrix elements in (3.12). This term vanishes if (ωε)′ = 0 unless
ε = 0 simultaneously. The properties of (ωε)′ are well understood and classical
results [15, 23, 40] show that (ωε)′ ≥ ε∞ in frequency intervals with Im εr = 0, where
ε∞ = limω→∞ εr/ω is the high-frequency limit of the permittivity, that is often
assumed equal to unity ε∞ = 1, [23]. This suggests that (ωε)′ does not vanish in
lossless media. However, the assumption of a lossless medium is essential for the
bounds presented in [23, 40]. The bounds are generalized to lossy media in [15],
where it is demonstrated that there are no point wise (at a single frequency) bounds
on (ωε)′ for general passive material models, see also App. A.

Consider the Lorentz model [15]

εr = µr = 1 +
ν2ω2

0/2

ω2
0 − ω2 + jωνω0

, (6.5)
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Figure 5: Q-factors for a loop antenna with length `, width `/2, fed at the center
of the longer side, and placed in a homogeneous medium with relative permittivity
εr = 1 + α

0.5+jω
with α = {1, 0.5, 0.1, 0.01, 0.001, 0}, see Fig. 3.

see Fig. 11, having the values

εr(ω0) = 1− jν/4 and (ωεr)
′|ω=ω0

= 0 (6.6)

at the resonance frequency and implying that Z′ = 0 at ω = ω0 for any ν > 0, cf.,
(3.12). The corresponding impedance matrix does not change signi�cantly as ν → 0
and hence does not the energy distribution in the �elds, currents, or circuit models
of the antenna.

The computed Q-factor values for a strip dipole with length ` and width 0.01`
are used to illustrate the estimated Q-factors, see Fig. 12. Consider the resonance
frequency ω0 = 2π`/λ = 3 and the damping ν = 10−n for n = 0, 1, 2, 3 in the Lorentz
model (6.5), see Fig. 11. The maximal susceptibility is |1− εr| = ν/

√
4− ν2 ≈ ν/2

for ν � 1. The magnitude of the frequency derivative ω
k
∂k
∂ω

= ε−1r
∂(ωεr)
∂ω

is depicted
in Fig. 11. Here, it is observed that |ε−1r (ωεr)

′| is zero at the resonance frequency
ω = ω0 and close to unity away from the resonance. The resonance has a relative
half-power bandwidth proportional to ν.

Conclusions

The analysis of the frequency derivative of the input impedance and the stored
electromagnetic energy are uni�ed by the frequency derivative of the electric �eld
integral equation (EFIE) impedance matrix Z′. The di�erentiated input impedance
is proportional to the bilinear quadratic form ITZ′I. The corresponding stored
energy for lumped circuit networks is the sesquilinear quadratic form IHZ′I/4. This
shows that they basically di�er by a complex conjugate of the current matrix. The
resulting Q-factors are hence similar for currents with negligible phase variation.

The stored energy for electromagnetic systems is more involved. Here, we show
that the stored energy introduced by Vandenbosch [34] in the free space case is iden-
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Figure 6: Weighted frequency derivative of the relative permittivity and
relative permittivity for the Lorentz model εr = 1 + α

1+jω−4ω2 with α =

{0.25, 0.1, 0.05, 0.01, 0.001, 0} and ω = 2π`/λ.

tical to the quadratic form IHX′I/4 of the di�erentiated reactance matrix. This en-
ergy expression has been veri�ed for several antennas with good results [7, 8, 17, 20].
In [16], it is however shown that the quadratic form can be inde�nite for su�ciently
large structures. This partly questions the validity of the energy expression, al-
though the same problem appears in the commonly used stored energy [42] de�ned
by subtraction of the far-�eld [17].

We investigate possible generalizations of the stored energy based on the quadratic
form |IHZ′I|/4. These expressions resemble the QZ′

in
formula based on |ITZ′I|. The

proposed expressions are illustrated for dipole and loop antennas integrated in tem-
porally dispersive media. The resulting Q-factors are compared with the Q-factor
determined from Brune synthesized circuit networks. The results suggest that the
proposed expressions are valid as long as the losses are not too large and the tem-
poral dispersion (frequency dependence) is not too strong. We also synthesize a
temporally dispersive material model (ωε)′ = 0 that gives Z′ = 0, hence vanishing
QZ′

in
and QZ′ values. This shows that the proposed stored energy expressions are

not valid for all material models. This is also the case for the classical de�nition of
energy density, i.e., (ωε)′|E|2/4 + (ωµ)′|H|2/4 in dispersive media [23].

The proposed quadratic form for the di�erentiated input impedance Z ′in can also
be useful for e�cient interpolation of Zin over a frequency interval. In essence, the
additional computational cost to evaluate Z ′in is small compared to the evaluation of
Zin as I is already computed. This means that the interpolation can be performed
with both Zin and Z

′
in known in a set of frequency points. The same procedure can

also be used to evaluate higher order derivatives. The technique could potentially
be used to evaluate the frequency derivatives of other parameters.

The used approach can lastly be used to generalize the results to more complex
material models such as anisotropic and bi-anisotropic material models, as well as
evaluation of QZ′

in
for inhomogeneous structures.
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Figure 7: Q-factors for a strip dipole with length `, width `/100, fed 0.27` from
the center, and placed in a homogeneous medium with relative permittivity εr =
1 + α

1+jω−4ω2 , where ω = 2π`/λ and α = {0.25, 0.1, 0.05, 0.01, 0.001, 0}.

Appendix A Circuit models for temporal dispersion

The temporal dispersion of background media enters the energy expressions in the
multiplicative terms involving the classical frequency derivatives (ωε)′ in (3.12).
The approximation of the electric energy density as the real or absolute value of
(ωε)′|E|2/4 is accurate for many material models but has obvious problems with
material models such as, the resonance model (6.5) where (ωε)′ = 0. This resembles
the antenna case with QZ′

in
= 0 although Q� 1 in [18]. One possible solution is to

use a circuit model for the temporal dispersion and to determine the corresponding
total stored energy in the circuit model. This is similar to calculate the antenna Q
from a Brune synthesized circuit model [17].

Consider for simplicity the case with a general Lorentz type resonance, i.e.,

εr(ω) = ε∞ +
α

β + jγω − δω2
(A.1)

that includes the conductivity, Debye, and Drude models as special cases. The
corresponding time-domain representation expresses the electric �ux density D as

D = ε0ε∞E + P (A.2)

where the polarization P satis�es the ordinary di�erential equation

δP̈ + γṖ + βP = αε0E (A.3)

and the dot denotes di�erentiation with respect to time. Insertion of D into
Maxwell's equations and multiplication with E and Ṗ gives the energy balance

E · Ḋ =
ε0
2

∂

∂t

(
ε∞|E|2 +

δ|Ṗ |2
αε20

+
β|P |2
αε20

)
+
γ|Ṗ |
αε0

, (A.4)
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Figure 9: Weighted frequency derivative of the relative permittivity for the Drude
models depicted in Fig. 8.

where we identify the terms di�erentiated with respect to time as the terms con-
tributing to the stored energy.

Transforming back to the frequency domain gives the electric energy density

we =
ε0
4

(
ε∞|E|2 +

δω2 + β

αε20
|P |2

)
=
ε0
4

(
ε∞ +

α(δω2 + β)

(β − δω2)2 + ω2γ2

)
|E|2. (A.5)

The special case of a conductivity model (β = δ = 0) reduces to the classical
approximation we = (ωε)′|E|2/4 = ε0ε∞|E|2/4, but Debye, Drude, and Lorentz
models can give di�erent results.

The Debye model εr = 1 + 1/(1 + s), Drude model εr = 1 + 1.1/(s + s2), and
Lorentz model εr = 1 + 0.005/(1 + 0.1s+ s2) with s = jω as depicted in Fig. 13 are
used to illustrate the di�erences between the normalized energy density we4/|E|2
from (A.5) and the local approximation |(ωε)′|. We note that the we values are
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Figure 10: Q-factors for a strip dipole with length `, width `/100, fed at the
center, and placed in a homogeneous Drude medium with relative permittivity εr =
1 + α

0.05jω−ω2 , where ω = 2π`/λ and α = {5, 2, 1, 0.5, 0.1, 0}, see Figs 8 and 9.

similar for the Debye and Drude models. This is explained by the decomposition
of the Drude model as the di�erence between a conductivity term and a Debye
term, i.e., 1/(s + s2) = 1/s − 1/(1 + s), and that the conductivity term does not
contribute to the energy density. The corresponding local approximation |(ωε)′|
di�er substantially for the Debye and Drude cases due to the sign change in the
Debye term. The Lorentz term has (ωε)′ = 0 for ω = 1. The normalized energy
density (A.5) increases to 2 for ω = 1.

The relation between the energy density determined from the local approxima-
tion (ωεr)

′ and the di�erential equation (A.3) is similar to the relation between the
Q-factors de�ned by di�erentiation of the input impedance QZ′

in
and circuit synthe-

sis QZB
in
. The analogy is clearly seen by identi�cation of the input impedance as

Zε = sε. We synthesize a circuit model from the equivalent input impedance

Zε(s) = sεr(s) = sε∞ +
αs

β + γs+ δs2
(A.6)

that has the circuit representation

ε∞ α

γ

α

β
δ

α

The circuit representation has stored energy in the capacitors and inductors. The
stored energy in the capacitors and inductors are usually separated as electric and
magnetic, respectively. There is only electric energy related to the permittivity
model (A.3) so here we consider the total energy in the circuit. The total stored
energy in the circuit network is identical to (A.5). Here, we note the Brune synthesis
can be used to construct circuit models for arbitrary permittivity models. It is



20

0.2 0.4 0.6

0.5

1

0
0

`/λ

∣∣∣∂(ωεr)εr∂ω

∣∣∣

10−3
0.1, 0.01

0.1 0.2 0.3 0.4 0.5 0.6

−0.04

−0.02

0.02

0.1

0.1

Re

Im

0
`/λ

εr − 1

Figure 11: Lorentz resonance relative permittivity and permeability in (6.5) with
ω = 2π`/λ, ω0 = 0.48 2π, and ν = 10−n with n = {1, 2, 3, 4}. A zoomed in part
around the resonance ω0 is depicted in the top right inset. The magnitude of the
factor (6.4) is depicted in the lower left inset.

however not clear if the stored energy in the circuit model is identical to the energy
density in the electric �eld.
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