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Abstract: In this paper we study the design of
low-rate Turbo codes efficient at very low signal-to-
noise ratios (SNRs). The alternative to use low-rate
component codes where repeated use of some gener-
ator polynomials is allowed is compared to the case
when component code generalor polynomials are re-
stricted to be unique. Il is observed thatl correla-
tion between the extrinsic information of consecu-
tively transmitted bils, which has a negalive impact
on the performance of the iterative Turbo decoding al-
gorithm, is higher for component codes with repeated
generator polynomials than for component codes with
unique generator polynomials. It is concluded that
correlation of the extrinsic information should be
considered as a complement lo distance criteria in
order to identify component codes that yield efficient
low rate turbo codes in the region of very low SNRs.

Keywords - low-rate Turbo codes, generator poly-
nomials, iterative decoding, extrinsic information.

1. INTRODUCTION

Turbo codes [1], good for relatively high signal-to-
noise ratios (SNRs) can be derived for a wide range
of code rates using component code search criteria
based on distance arguments [2, 3]. However, for the
additive white gaussian noise (AWGN) channel, in
the region of SNRs where Turbo codes are most ef-
ficient, distance criteria do not always produce the
most powerful Turbo codes. For instance, when low-
rate component encoders are obtained by repeated
use of generator polynomials good distance proper-
ties can be achieved but, in general, component codes
where the generator polynomials are restricted to be
unique yield better performance in the waterfall re-
gion of SNR [3,6], cf Figure 1.

In order to find a design methodology for low-rate
Turbo codes with high performance at very low SNRs
there is a need to extend the previously proposed
distance based criteria.

In this paper we adopt three different perspec-
tives on the design of low-rate Turbo codes: 1) dis-
tance properties, 2) extrinsic information transfer
(EIT) characteristics and 3) correlation of the extrin-
sic information. The tangential sphere bound [4] is
used to derive upper bounds on the maximum likeli-
hood (ML) decoding performance of different Turbo
codes with random interleavers. The upper limits
on the ML-decoding performances provided by the
tangential sphere bounds indicate that the best ML-
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Figure 1: Low-rate component encoder with re-
peated use of generator polynomial 17g.

decoding performance in the whole range of SNRs is
achieved with component codes defined by repeated
generator polynomials. However, the iterative de-
coding algorithm of Turbo codes is not ML-decoding
and therefore these results should not be taken too
far.

The application of EIT analysis [5] indicates that
it occurs a loss of mutual information between the
transmitted bit and the extrinsic values, output from
an a posteriori probability (APP) [8] decoding step,
when repeated- instead of unique generator poly-
nomials are used in the component encoders. Fur-
ther, the correlation between the extrinsic informa-
tion of consecutively transmitted bits is observed to
be higher for codes with repetition of generator poly-
nomials.

Correlation between the extrinsic information of
consecutively transmitted bits violates the assump-
tion of independent a priori information inherent in
the Turbo decoding algorithm. This is taken as an
explanation to the performance degradation arising
in the waterfall region of SNRs when using repeated
generator polynomials in the component codes.

2. DISTANCE CRITERIA

We consider a Turbo encoder structure with two
component encoders and an intermediate interleaver.
While most previous work has been focused on low
bit-error rates (BERs) in the error-floor region [2,6],
we focus on the frame-error rate (FER) in the water-
fall region. In [3] it was suggested that codes suitable
for these requirements should be non-systematic with
no repetition of generator polynomials. It was seen
that the minimum distances corresponding to low-
weight input sequences, cf Table 1, did not determine
the performance in the waterfall region. An impor-



21,82,8n | d2,Ng | d3g,Ng | dg,Nyg | d5,N5 | dg,Ng
17,15,11 18,1 9,1 10,1 13,2 14,3
17,17,15 18,1 11,2 8,1 13,6 10,1
17,16,15,11 22,1 12,1 12,1 18,2 16,1
17,17,15,11 24,1 13,1 12,1 17,2 16,1
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Table 1: Minimum weight of code sequences and their
multiplicities, (d;, Vi), 2 < i < 6, for convolutional codes
with memory 3, rate 1/3 and 1/4 and feedback polyno-
mial 13g.
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Figure 2: Bounds and simulations for Turbo codes
with interleaver length 100 bits using the component
codes in Table 1. Filled- and white faced mark-
ers correspond to Turbo codes with random- and
correlation-designed interleavers respectively.

tant property for this region of SNRs was rather the
multiplicity of the larger distance codewords.

Under ML-decoding the best asymptotic FER per-
formance is obtained using the component codes with
the best weight distribution properties, i.e. the com-
ponent codes with repeated generator polynomials.
However, with low-rate Turbo codes, the most im-
portant performance improvement is achieved below
the cut-off rate. In order to upper bound the ML-
decoding performance of Turbo codes with compo-
nent codes according to Table 1, we use the tangen-
tial sphere bound [4] since it, in contrast to the union
bound, provides a useful upper bound on the error
performance for ML-decoding also below the cut-off
rate of the channel. Due to space limitations, the
equations of the tangential sphere bound will not be
restated here.

Using the low-rate component codes in Table 1
with uniform interleaver of blocksize 100 bits we ob-
tain rate 1/6 and rate 1/8 Turbo codes with perfor-
mance bounds according to Figure 2.

For rate 1/3 component codes, code A results in
the lowest bound on the FER performance below
1.5 dB. However, asymptotically, component code B,
having the best minimum distance properties accord-

ing to Table 1, yields the best ML-performance. Sim-
ilar observations are made for the rate 1/4 compo-
nent codes C and D. Accordingly, simulation results
for Turbo codes with random- as well as correlation-
designed [7] interleavers indicate that the use of com-
ponent codes with repeated generator polynomials,
having the best minimum distance properties, gives
asymptotically good performance. However, there is
a large region of SNRs of practical interest where it
is possible to improve the FER performance choos-
ing component codes defined by unique- instead of
repeated generator polynomials. In Figure 2, sim-
ulations of a Turbo code using component code D,
with good distance properties but repeated generator
polynomials, yield worse performance up to 2.5 dB in
spite of the fact that the upper bound indicates the
opposite relation. Due to this inconsistency there is
a need for a modified design criterion.

3. ITERATIVE DECODING ISSUES
3.1. Turbo Decoding

The symbolwise log-likelihood ratio Aff“) of the
t*" output at the k" decoding step from an APP
decoder [8] for a non-systematic Turbo code is cal-
culated according to
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At the end of the iterative decoding process, the

value of Aff“) is compared with a threshold value in
order to give a decision about the transmitted bit at
position .

The agk),ﬁgk) and %E’“) values are produced dur-
ing the forward/backward recursions according to
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Note that the values of Lgk) correspond to the
interleaved values of Lgkil).



3.2. Extrinsic Information Transfer

In [5], a tool for prediction of the convergence of
the iterative decoding process of Turbo codes was
presented. The methodology relies on the assump-
tion of a large interleaver which keeps the a priori
information values relatively uncorrelated from their
respective channel values during the decoding itera-
tions. This assumption allows limitation of the anal-
ysis to a study of the relation between the a pri-
ori values and the extrinsic values of single decoding
steps.

The decoding process is described in terms of the
development of the information content of the ex-
trinsic values, Lg?, along with an increasing number
of decoding steps k. In Figure 3, the values of the

mutual information, (Lg? ; X), between the a priori

values, Lg;? , at the input of an a APP decoder and
the transmitted bits X are given along the x-axis.

For the case of an AWGN channel, the corresponding

mutual informations, I (Lgft); X), between the extrin-

sic values, Lgkt), at the output of the APP decoder

and the transmitted bits X are given along the y-
axis. All possible values of the mutual information

pairs [I(Lgfg; X), I(Lgft); X)] constitute an extrinsic
information transfer (EIT) chart.

If the EIT chart follows the diagonal, no infor-
mation about the transmitted bits, X, additional to
that contained in the a priori values, Lgkg , is gained
during an APP decoding step. As long as the EIT
trajectory does not intersect with the diagonal the
mutual information of the extrinsic values is refined
in each decoding step and convergent behavior is pos-
sible. In Figure 3, the EIT trajectory is mirrored in
the diagonal to reflect the fact that the extrinsic val-
ues of one decoding step will be fed as a priori values
to the other decoder. For low SNRs, when conver-
gence is most uncertain, a component code with good
EIT characteristics has large separation between the
upper and lower EIT trajectories. If the EIT tra-
jectory coincides with the diagonal, the Turbo de-
coding algorithm does not converge under the above
assumptions.

In Figure 3 it is shown that the component code
D, using repeated generator polynomials has worse
EIT characteristics than the component code C' with
unique generator polynomials and it is argued that
this translates into worse performance of the itera-
tive decoding process. Interestingly, we have noted
that it is possible to obtain further improved EIT
characteristics using low-rate component codes with
non-primitive feedback polynomials, such as for in-
stance 17g in a rate 1/4 component encoder with
memory 3.

3.3. Correlation of Extrinsic Values

Since the state metric agk)(m) in (3) is defined
for a memoryless channel, the a priori values, Lg;? ,

are required to be independent [9]. Further the a pri-
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Figure 3: Extrinsic information transfer chart of
turbo code component codes with rate 1/4 at —0.5
dB SNR and blocklength 1000 bits.

ori value, Lgfg, should be independent of the channel
value y; at time . Since the a priori values are ob-
tained by interleaving the extrinsic values, correla-
tion between the extrinsic values causes correlation
between the a priori values which makes the iterative
algorithm described in (1) suboptimum. An impor-
tant task of the Turbo code interleaver is therefore
to permute the correlated extrinsic values in such a
way that they appear uncorrelated when used as a
priori values at the succeeding decoder [7]. Adopt-
ing the assumption of a large interleaver, made in
Section 3.2., we have investigated this correlation for
component, codes with repeated- and non-repeated
generator polynomials by estimating the covariance
between the extrinsic values of different bits after an
APP decoding step, cf Equation 5. In (52, the ex-
trinsic value of the transmitted bit at the 5" position
in the block, output from the k" decoding step, is

denoted by Lg;? . The estimated mean of the extrin-

sic values at the &*" decoding step is represented by
Hop oo and the estimated variance is denoted Ui(k).
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The correlation between adjacent extrinsic values
is dependent on the memory, the feedback- and the
feedforward polynomials of the component encoder.
In Figure 4, the correlation coefficients after one APP
decoding, of a 1000 bit block, are plotted for different
component codes given that the mutual information
between the a priori values and the transmitted bits,
I(Lgk); X), defined in [5], is equal to 0.55. This cor-
responds to the region of mutual information content
in the a priori values where the EIT trajectories are
most narrow and convergence should be most likely
to cease. When distinct generator polynomials are
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Figure 4: Correlation of extrinsic values after one
APP decoding step for different component encoders.
The extrinsic values are separated by m trellis steps,
Ey, /Ny is equal to 1.0 dB and the mutual information

I(Lgk); X) equals 0.55.

Generators Distance Multiplicity (Nq)
£1,828n No | Ny | Ng | N3 | Ny
A | 178,158,118 1 6 6 2 -
B | 178,178,158 3 4 4 4
C | 17g,16g,15g,118 4 6 4 1
D | 178,178,158,11% 1 4 4 4 2

Table 2: Distance spectra of transition labels

used, the correlation decreases with the decreasing
code rate. However when the code rate is decreased
by repetition of generator polynomials the correla-
tion instead increases, as illustrated in Figure 4.

For low SNRs the correlation between the extrin-
sic values appears to have a significant impact on the
Turbo decoding performance. Higher correlation be-
tween the extrinsic values in combination with short-
length interleaving would degrade the performance of
the Turbo decoding algorithm defined by (1) since it
implicitly assumes independent a priori values.

In Table 2, the distributions of Hamming dis-
tances between the transition labels are listed for
different component encoders. The component codes
with repeated generator polynomials are seen to have
smaller minimum distance between the transitions
labels or higher multiplicity of the transition label
minimum distance. In general, we have noted that
the correlation decreases when the distances between
the trellis transitions increases. If this distance is
large, it is reasonable that the correlation between
extrinsic values corresponding to consecutively trans-
mitted bits should be smaller since high trellis tran-
sition distance reduces the impact of the memory in
the code.

4. CONCLUSIONS

We have studied different types of component codes
in low-rate Turbo codes using repeated and non-
repeated generator polynomials. It is seen that su-
perior distance properties can be obtained using re-
peated generator polynomials. However, simulations
show that repetition gives rise to performance losses
in the waterfall region of SNRs. Using extrinsic in-
formation transfer analysis it is argued that the con-
vergence of the iterative decoding is degraded at low
SNRs when component codes using repeated gener-
ator polynomials are used. Further, it is observed
that the correlation of the extrinsic values is higher
for component codes with repeated generator poly-
nomials. Ideally, the extrinsic values should be in-
dependent when used as a priori values in the suc-
ceeding decoding step. It is therefore inferred that
an increase of correlation between the extrinsic val-
ues has a negative effect on the iterative decoding
of the Turbo code. This is an interesting issue that,
according to our knowledge, has not previously been
addressed and further studies will be done.
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