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Controller Reduction with Closed Loop Performance Guarantee

Kin Cheong Sou and Anders Rantzer

Abstract— This paper describes a modification of a singular
value decomposition (SVD) based controller reduction method
recently proposed in [13]. Instead of formulating a H2 norm
characterizing generalized controllability Gramian inequality as
in the previous case, the current method applies the bounded-
real lemma to certify the closed loop performances in H∞ norm.
In addition, unlike the previous method, the current one does
not suffer from the lack of symmetry that all the data from the
plant is not utilized. Yet, the current method inherits the same
merit as the previous one that the formulated problem can be
solved as a generalized minimum rank matrix approximation
problem which can be solved efficiently using SVD. Extensions
and numerical examples are shown in the end.

I. INTRODUCTION

In this paper the controller reduction problem in Fig. 1 is

considered. In this reduction problem, the feedback structure

should remain and only the controller can be simplified.

This can be viewed as a special case of the more general

problem of structured model reduction (e.g. [1], [2], [3]).

However, the controller reduction problem, by itself, has

also been extensively studied because of its potential values.

For example, the optimal H∞ or H2 controllers can some-

times be very complicated, and reduced order controllers are

oftentimes desirable for implementation purposes. Methods

for controller reduction mostly fall into two categories. One

category is based on balanced truncation/Hankel norm re-

duction and their variants (e.g. [4], [5], [6], [7], [8]), and the

other category solves some optimization problems derived

from some forms of the KYP lemma (e.g. [9], [10], [11],

[12]). The two groups of controller reduction methods are

based on different principles and they have their own merits.

Balanced truncation methods find very good reduced order

approximations to the full order controller and/or closed

loop system using relatively inexpensive singular value de-

composition (SVD) computations. On the other hand, the

KYP lemma based approaches bypass the full controller,

and instead directly search for a globally optimal reduced

order solution which satisfies some pre-specified closed loop

performance constraints. However, the global optimization

problems from the KYP approaches are typically difficult

to solve. In an attempt to take advantage of the benefits of

the two groups of controller reduction methods, [13] was

recently proposed to investigate the use of the information of

the full controller to conduct a local search for an optimiza-

tion problem reminiscent of the KYP approach. In the end,

[13] sets up a rank minimization problem with a generalized

K.C. Sou (kin.cheong.sou@ee.kth.se) is with the School of Electri-
cal Engineering, Royal Institute of Technology, Sweden. Anders Rantzer
(rantzer@control.lth.se) is with the Department of Automatic Control, Lund
University, Sweden.

controllability Gramian inequality constraint, which happens

to be solvable using SVD. However, in terms of closed

loop performance the method in [13] can only establish an

inequality between the full and reduced Gramians. In order

to translate the Gramian relationship into a H2 norm one, the

C and D matrices of the reduced controller are required to be

the same as those of the full order controller. In addition, the

method in [13] cannot enforce both the controllability and

observability inequalities together because the resulted opti-

mization problem would become computationally intractable.

This causes a lack of symmetry in terms of plant data use,

which in turn motivates the current research. In this paper,

the proposed approach is based on another KYP type lemma

which is commonly known as the bounded-real lemma. The

bounded-real lemma is a direct characterization of the system

input/output behavior, and it explicitly involves the use of

all the system matrices of the plant and the controller. As a

result, the symmetry issue is avoided and none of the system

matrices of the reduced controller need to be fixed a priori.

The rest of the paper is organized as follows. In Sec. II the

notations and technical background materials are introduced.

In Sec. III the problem which forms the core of the proposed

controller reduction scheme is described. The properties of

the proposed problem are also discussed in detail. Then in

Sec. IV the SVD based solution procedure for the proposed

problem is discussed. Sec. V describes an extension of the

proposed method pertaining further order reduction. In Sec.

VI some numerical examples are shown. Finally in Sec. VII

the differences between the proposed method in this paper

and the one in [13] are summarized.

II. BACKGROUND AND NOTATIONS

A. Controller order reduction problem

In this paper, all the systems involved are discrete-time

linear time-invariant systems. Consider the standard feedback

setup of a plant and a controller in Fig. 1. In this figure, the

P

K

u y

w z

Pu

w

K̂

controller

reduction

ẑ

ŷ

Fig. 1. The block diagram in the left is the feedback interconnection of a
plant P and a controller K . The problem of controller reduction is to find

a lower order controller K̂ to replace K , so that the performances of the
reduced closed loop system (in the right) do not degrade too much.

plant is denoted as P and the controller is denoted as K .

The feedback closed loop system is denoted as P ⋆K , and it
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is assumed to be stable. The H∞ norm of P ⋆K is denoted

as ‖P ⋆K‖∞. The controller reduction problem in this paper

seeks a minimum order reduced controller K̂ to replace K ,

so that the corresponding reduced closed loop system P ⋆ K̂

is stable and the H∞ norm, ‖P ⋆ K̂‖∞, is less than some

user-specified value.

B. State space characterization of the closed loop systems

In Fig. 1 the dimensions of the signals w, u, z, y are nw,

nu, nz , ny respectively. The plant P is described in state

space matrices as follows.

P =





A B1 B2

C1 D11 D12

C2 D21 D22



 (1)

where A ∈ R
n×n, D12 ∈ R

nz×nu , D21 ∈ R
ny×nw . In

this paper, a technical assumption is made that D22 = 0.

If this is not the case in the original plant/controller setup,

an equivalent setup can be obtained by removing the D22

term from the plant and incorporating it into the controller

as a positive feedback.

The given full order controller and the to-be-found re-

duced controller are described by their respective state space

matrices as the following transfer matrices.

K =

(

Ak Bk

Ck Dk

)

(2a)

K̂ =

(

Âk B̂k

Ĉk D̂k

)

(2b)

where Ak ∈ R
nk×nk , Dk ∈ R

nu×ny and Âk ∈ R
n̂k×n̂k ,

D̂k ∈ R
nu×ny . The full and reduced controllers are also

characterized by the following two matrices respectively.

L ,

[

Ak Bk

Ck Dk

]

∈ R
(nk+nu)×(nk+ny) (3a)

L̂ ,

[

Âk B̂k

Ĉk D̂k

]

∈ R
(n̂k+nu)×(n̂k+ny) (3b)

Subsequently, K and L (also K̂ and L̂) will be used

interchangeably to describe the controllers.

Define the data matrices

Ā ,

[

A 0
0 0n̂k

]

, B̄1 ,

[

B1

0

]

, B̄2 ,

[

0 B2

In̂k
0

]

C̄1 ,
[

C1 0
]

, C̄2 ,

[

0 In̂k

C2 0

]

D̄12 ,
[

0 D12

]

, D̄21 ,

[

0
D21

]

(4)

With the matrices defined in (4), the state space matrices of

the reduced closed loop system P ⋆ K̂ can be described as

affine functions of the reduced controller L̂ (cf. (3b)) as

Acl(L̂) , Ā+ B̄2L̂C̄2

Bcl(L̂) , B̄1 + B̄2L̂D̄21

Ccl(L̂) , C̄1 + D̄12L̂C̄2

Dcl(L̂) , D11 + D̄12L̂D̄21

(5)

Notice that the dimensions of the closed loop state space

matrices above depend on the dimension of L̂ (i.e. n̂k). In

the case where nk = n̂k (which is the focus of this paper),

the full order closed loop state space matrices of P ⋆K can

also be described in terms of L (cf. (3a)) as

Acl(L) , Ā+ B̄2LC̄2 , Acl

Bcl(L) , B̄1 + B̄2LD̄21 , Bcl

Ccl(L) , C̄1 + D̄12LC̄2 , Ccl

Dcl(L) , D11 + D̄12LD̄21 , Dcl

(6)

If no confusion is expected, the data matrices Acl(L),
Bcl(L), Ccl(L) and Dcl(L) will be shortened to Acl, Bcl,

Ccl and Dcl respectively.

C. Bounded-real lemma

The bounded-real lemma (e.g. [14]) is the result used in

this paper to characterize the performance of the reduced

controller. A statement can be given as follows.

Theorem 1 ([14]): Consider a discrete-time transfer ma-

trix described by G(z) = C (zI −A)
−1

B+D and a positive

scalar γ. Then the following statements are equivalent.

• G is stable and the H∞ norm of G is less than γ (7a)

• there exists X ≻ 0 such that
[

X 0
0 γI

]

≻

[

A B

C D

]T [
X 0
0 1

γ
I

] [

A B

C D

]

(7b)

�

The bounded-real lemma provides a sufficient and necessary

condition on the state space matrices, in the form of a matrix

inequality in (7b), to characterize the system properties in

(7a). To illustrate the use of the bounded-real lemma and

to motivate the proposed problem in the next section, the

problem in [9], [10] is now described first. To design an

optimal H∞ norm controller of order n̂k < nk, it suffices to

apply (7b) in which the matrices A, B, C, D are replaced by

the reduced closed loop state space matrices Acl(L̂), Bcl(L̂),
Ccl(L̂), Dcl(L̂) defined in (5). Then an optimization problem

can be set up minimizing the H∞ norm upper bound γ with

the decision variables being γ, X and L̂. The minimization

regarding γ can be achieved through bisection. However,

the optimization with respect to L̂ and X turns out to be

computationally intractable because of their cross terms. This

is where the proposed method and [9], [10] diverge. The main

difference is in terms of the determination of the matrix X .

The details will be given in the next section.

III. PROBLEM FORMULATION

A. Description of the proposed problem

The data of the proposed problem are the plant matrices in

(4) and L in (3a) describing the full order controller. There

is a scalar parameter γ which is required to satisfy γ >

‖P ⋆ K‖
∞

. The parameter γ is a user-specified upper bound

of

∥

∥

∥P ⋆ K̂
∥

∥

∥

∞

controlling the tradeoff between performance

loss and controller order reduction. The requirement that γ >

‖P ⋆ K‖
∞

is needed to ensure that the full order controller L

is a feasible solution of the proposed problem. The decision
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variable of the proposed problem is L̂ characterizing the

reduced controller. It is required that L̂ and L have the same

dimensions (i.e. n̂k = nk, reason to be given shortly). The

proposed problem is

minimize
L̂

rank(L̂) subject to (8a)

[

X 0
0 γI

]

≻

[

Acl(L̂) Bcl(L̂)

Ccl(L̂) Dcl(L̂)

]T [
X 0
0 1

γ
I

]

[

Acl(L̂) Bcl(L̂)

Ccl(L̂) Dcl(L̂)

] (8b)

where X ≻ 0 can be computed from the data by solving
[

X 0
0 γI

]

≻

[

Acl Bcl

Ccl Dcl

]T [
X 0
0 1

γ
I

] [

Acl Bcl

Ccl Dcl

]

(8c)

The definitions of the closed loop system matrices in (8b)

and (8c) above can be found in (5) and (6). Note that X

in (8c) is not part of the decision variable because it can be

computed beforehand. Also note that the reason for imposing

the dimensions of L̂ and L to be the same (i.e. n̂k = nk) is

that X satisfies both (8b) and (8c). Once an optimal solution

of L̂ is found solving (8a) and (8b), controller K̂ in (2b)

can be defined, and a minimal realization can be obtained

as the proposed reduced controller for the problem in Fig.

1. Finally, it is emphasized that while the rank minimization

in (8a) might seem to be intractable, the proposed problem

can in fact be solved efficiently using SVD. This is the same

situation as in [13]. The details will be discussed in Sec. IV.

B. Discussions on the proposed problem

The proposed problem in (8a), (8b), (8c) is formulated

roughly according to the problem description in Sec. II-

A. The detailed motivations for (8a), (8b), (8c) are now

discussed separately.

Since P ⋆ K is assumed to be stable and γ is chosen

such that γ > ‖P ⋆ K‖
∞

, P ⋆ K satisfies the bounded-real

lemma statement in (7a). Hence, the corresponding statement

in (7b) is true, and a solution X ≻ 0 satisfying (8c) exists. In

addition, since L̂ has the same dimension as L (i.e. n̂k = nk),

L is always a feasible solution of (8b) because (8b) and (8c)

are the same when L̂ = L. This concludes that the proposed

problem in (8a), (8b), (8c) is always feasible.

The dimension constraint on L̂ makes it impossible to

specify the order of the reduced controller via the dimension

of the matrix Âk, which is fixed to be n̂k = nk. Instead, the

order reduction is achieved through the minimization of the

rank of L̂ as in (8a). This is the same technique as in [13],

which shows that order(K̂) ≤ rank(L̂). Therefore, while

L̂ has the same dimension as L, the rank minimization in

(8a) can still lead to a low order minimal reduced controller.

However, note that the inequality order(K̂) ≤ rank(L̂) can

be strict, and this can result in a restriction.

The closed loop performance of the reduced controller is

guaranteed by (8b). Since X ≻ 0, condition (8b) can be

interpreted as the bounded-real lemma statement (7b) applied

to the closed loop system P ⋆ K̂. Therefore, for any reduced

controller K̂ satisfying (8b), P ⋆K̂ is guaranteed to be stable

and

∥

∥

∥P ⋆ K̂
∥

∥

∥

∞

< γ.

While it is necessary to introduce (8a) for order reduction

and (8b) for closed loop performances, the motivation for

(8c) deserves more elaborations. In principle, a positive

definite X does not need to satisfy (8c) to be “valid” for

(8b) in the sense that there is at least one (any one) reduced

controller satisfying (8b). However, as it turns out in [9],

[10], the reduction problem with the entire set of valid X

is intractable. Therefore, this paper only considers a subset

of the valid X , which is defined by (8c). Any X satisfying

(8c) is automatically valid for (8b) because L satisfies the

(8b) with this X . The restriction on the candidate set of X

has two implications. On one hand, the reduced controller

candidates are now confined to a neighborhood of L. If L̂ is

a member of the neighborhood and X is a matrix that makes

L̂ satisfy (8b), then L has to satisfy the same inequality.

This is in general not the case for the globally optimal

reduced controller in [9], [10]. For this reason, the proposed

method is only a local search for the optimal reduced order

controller. An important question then arises as to whether

the proposed local search is too restrictive. This question

is positively answered by the numerical examples in Sec.

VI. On the other hand, the restriction of (8c) results in a

significant gain in terms of computation. (8c) is a linear

matrix inequality (LMI) with respect to X when γ is fixed.

For moderate size instances, X can be solved from (8c) as a

semidefinite program to allows some flexibilities. This will

be explained in Sec. V. Conversely, when the semidefinite

program approach is deemed too expensive, the Schur’s

complement can be applied to (8c) to obtain an equivalence

given by a Riccati equation in (9) and a LMI in (10).

V = X −AT
clXAcl −

1
γ
CT

clCcl +
(

AT
clXBcl +

1
γ
CT

clDcl

)

(

BT
clXBcl +

1
γ
DT

clDcl −
1
γ
I
)

−1(

AT
clXBcl +

1
γ
CT

clDcl

)T

(9)

BT
clXBcl +

1
γ
DT

clDcl −
1
γ
I ≺ 0 (10)

In (9), V is a small positive definite matrix to ensure that (8c)

is satisfied strictly. In practice, V can be chosen as V = ǫI

for some small ǫ > 0. Equation (9), as a Riccati equation, can

be solved much more efficiently than a LMI. If an solution

X ≻ 0 of (9) also satisfies (10), then this X satisfies the

bounded-real inequality (8c). To recap, inequality (8c) results

in a restriction on the choice of the bounded-real lemma

related matrix X . It is introduced to enable the efficient use

of the full controller information in the search of valid X .

IV. SOLUTION VIA MATRIX APPROXIMATION

This section is concerned with the solving of the proposed

problem in (8a), (8b). Similar to [13], the main result here is

developed in two steps. First, condition (8b) is shown to be

equivalent to a simplified matrix approximation inequality.

Then using the simplified inequality, the proposed problem

in (8a), (8b) can be shown to be equivalent to a classical

minimum rank matrix approximation problem which can be

solved efficiently using SVD.
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A. Reformulation of (8b) to a simplified matrix approxima-

tion constraint in (17)

First note that, by using (5), the following in (8b) is true.
[

Acl(L̂) Bcl(L̂)

Ccl(L̂) Dcl(L̂)

]

=

[

Ā B̄1

C̄1 D11

]

+

[

B̄2

D̄12

]

L̂
[

C̄2 D̄21

]

Insert the above expression into (8b) and multiply both sides

of (8b) with blkdiag

(

X−
1
2 , γ−

1
2 I

)

(this matrix can be

defined since X ≻ 0 and γ > 0). Then (8b) becomes

σ̄
(

F +GL̂H
)

< 1 (11)

where σ̄(·) denotes the maximum singular value of a matrix,

and F , G and H can be defined from the problem data as

F ,

[

X
1
2 0

0 γ−
1

2 I

]

[

Ā B̄1

C̄1 D11

]

[

X−
1
2 0

0 γ−
1

2 I

]

G ,

[

X
1
2 0

0 γ−
1

2 I

]

[

B̄2

D̄12

]

H ,
[

C̄2 D̄21

]

[

X−
1
2 0

0 γ−
1

2 I

]

(12)

For notation convenience, it is denoted that F ∈ R
mF×nF

and L̂ ∈ R
mL×nL . Whether (11), an equivalence of (8b), is

easy to handle depends on the dimensions of G and H . In this

paper the most difficult (and typical) case will be considered.

That is, the dimensions of data matrices such as B2 and D12

are assumed so that G is a full rank “thin” matrix with more

rows than columns. Similarly, H is assumed to be a full rank

“fat” matrix with more columns than rows. The rest of this

subsection presents the result from [15] to reduce (11) into a

simplified matrix approximation constraint to be defined in

(17). To begin with the discussion, denote the (rectangular,

or “economy size”) SVD of G and H as

G = UGSGV
T
G s.t. UG ∈ R

mF×mL , UG
TUG = ImL

SG ∈ R
mL×mL , positive diagonal

VG ∈ R
mL×mL , VG

TVG = ImL

(13)
H = UHSHV T

H s.t. UH ∈ R
nL×nL , UH

TUH = InL

SH ∈ R
nL×nL , positive diagonal

VH ∈ R
nF×nL , VH

TVH = InL

(14)

In addition, define the basis matrices NG and NH for the

kernels of UG in (13) and VH in (14) as, respectively

NG ∈ R
mF×(mF−mL), NG

TNG = I, UG
TNG = 0

NH ∈ R
nF×(nF−nL), NH

TNH = I, VH
TNH = 0

(15)

Then [15] states that if (11) is feasible, which is the case in

this paper, then the following two matrices can be defined.

∆G ,

(

InF
− FTNGNG

TF
)

−1

≻ 0

∆H ,

(

ImF
− FNHNH

TFT
)

−1

≻ 0
(16)

In addition, (11) is equivalent to the following inequality.

σ̄
(

F̌ + Ľ
)

< 1 (17)

where

F̌ ,
(

UG
T∆HUG

)−
1

2 UG
T∆HFVH

(

VH
T∆GVH

)
1

2

Ľ , (P1)
−1

L̂ (P2)
−1

P1 , VG (SG)
−1 (

UG
T∆HUG

)−
1

2

P2 ,
(

VH
T∆GVH

)−
1

2 (SH)−1
UH

T

(18)

with data matrices computed in (13), (14), (15) and (16). To

summarize, constraint (8b) is equivalent to the constraint in

(11), which in turn is equivalent to (17) with a new decision

variable Ľ defined in (18). Additionally, compared with (11)

the “Ǧ” and “Ȟ” matrices in (17) are now identities.

B. Reformulation of (8a), (8b) into a classical minimum rank

matrix approximation problem in (20)

In the previous subsection the proposed problem in (8a),

(8b) was shown to be the same as

minimize
L̂

rank
(

L̂
)

subject to σ̄
(

F +GL̂H
)

< 1
(19)

with F , G and H defined in (12). In addition, the constraint

σ̄
(

F + GL̂H
)

< 1 above (i.e. (11)) was shown to be

equivalent to (17) with a new variable Ľ defined in (18).

Since in (18) Ľ = (P1)
−1

L̂ (P2)
−1

, the ranks of Ľ and L̂

are the same. Hence, the optimization problem in (19), as

well as the proposed problem in (8a), (8b) is equivalent to

minimize
Ľ

rank
(

Ľ
)

subject to σ̄
(

F̌ + Ľ
)

< 1
(20)

where F̌ is defined in (18). For computation purposes, the

problem in (20) can be put in an equivalent form as follows.

minimize
r

r

subject to

(

min
Ľ

σ̄(F̌ + Ľ)

s.t. rank(Ľ) ≤ r

)

< 1

This can be solved using SVD via the well-known theorem

by Eckart-Young-Mirsky (e.g. [16]). From the description

above, it can be seen that the computation cost of forming

and solving (20) is dominated by the SVD’s of matrices of

dimension n+ nk. Therefore, the proposed problem can be

solved by a O((n+ nk)
3) algorithm.

V. SOLVING (8C) AS A SEMIDEFINITE PROGRAM

When n+nk is relatively small (e.g. less than 40), it might

be realistic to set up a semidefinite program to solve for the

bounded-real matrix X in (8c). To set up the optimization

problem, the following result from [15] is needed.

Theorem 2 ([15]): If the problem in (19) is feasible

(which is the case in this paper), then the rank of the optimal

L̂ is the number of singular values of F which are greater

than or equal to one. �

Denote the number of singular values of F which are greater

than or equal to one as sve(F ) (shorthand for singular value

excess), then the above theorem states that the minimum rank
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of L̂ in (19) is sve(F ). Since F is a function of X (cf. (12)),

it is possible to pose an optimization problem to solve for

X satisfying (8c) and minimizing sve(F ). More specifically,

notice that sve(F ) is the same as the number of nonnegative

eigenvalues of FTF − I . By the Sylvester’s law of inertia

(e.g. [16], pp. 223), multiplying both sides of FTF − I with

a symmetric matrix blkdiag

(

X
1
2 , γ

1
2 I

)

does not change

its number of nonnegative eigenvalues. Therefore, for any

given X , sve(F ) is the rank of the minimum rank matrix in

the following set.

Y ,

{

Y � 0 s.t. Y ≻

[

Ā B̄1

C̄1 D11

]T [
X 0
0 1

γ
I

]

·

[

Ā B̄1

C̄1 D11

]

−

[

X 0
0 γI

]

}

(21)

Note that in above if X , in addition to Y , is treated as a

decision variable, then the minimization problem of sve(F )
with respect to X can be obtained. The resulted optimization

problem is a rank minimization problem subject to a joint

LMI constraint with X and Y . Unfortunately this problem

turns out to be computationally intractable. Nevertheless, the

trace heuristics (e.g. [17]) can be applied to replace the rank

in the objective as the trace of Y . The heuristic problem can

be formulated as follows.

minimize
X,Y

Tr(Y )

subject to X ≻ 0 and X satisfies (8c)

Y ∈ Y in (21)

(22)

The trace heuristics turns the rank minimization problem into

a semidefinite program, and in practice it is observed that

it oftentimes yields reasonably low rank solutions. Finally,

notice the similarity between (8c) and the second LMI in

(21). For example, while Acl is Acl(L), Ā is in fact Acl(0).
Analogous relationships with the B, C and D matrices are

also true. Therefore, on one hand X is chosen to satisfy

(8c) with the full controller L. On the other hand, X is also

chosen to satisfy as much as possible the open loop bounded-

real inequality to obtain a good rank reduction of L̂.

VI. NUMERICAL EXAMPLES

A. Reduction of a Youla optimized controller

This example is the same as the one in [13] and data are

taken from [19]. In this problem, a reduced controller K̂ is

sought so that the H∞ norm difference

∥

∥

∥
P ⋆ K − P ⋆ K̂

∥

∥

∥

∞

,

instead of

∥

∥

∥P ⋆ K̂
∥

∥

∥

∞

, should be small. To apply the pro-

posed method for controller reduction, a modified plant,

denoted as P̃ , is defined so that P̃ ⋆ K̂ = P ⋆ K − P ⋆ K̂.

Then the feedback setup of P̃ and K is considered for

controller reduction purposes. The full controller K has 152

states and also an integrator. The same approach that was

in [13] is applied in here to make sure that the reduced

controller has an integrator. See [13] for detail. Because the

order of K is too large for a semidefinite program to be

solved in reasonable amount of time, the Riccati equation

in (9) is solved to obtain an X , and then the proposed

problem in (8a) and (8b) is solved using SVD. In the

end, a reduced controller with 18 states is obtained. As a

comparison, two other reduced controllers of order 18 are

obtained. One is by directly applying balanced truncation

(BT) (see, e.g. [8] pp.7-8) to the full controller K , and the

other is by frequency-weighted balanced truncation (FWBT)

[8] pp.106-107 with the input and output weights being

(I − P0(2, 2)K)−1P0(2, 1) and (I − P0(2, 2)K)−1P0(1, 2)
respectively (to minimize first order closed loop difference).

Fig. 2 shows the magnitude Bode diagram of the error of

closed loop systems due to different reduced controllers, as

well as the magnitude Bode diagram of the full order closed

loop system. It is observed that the three different methods

have similar approximation qualities in this example.
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Fig. 2. Magnitude Bode diagrams of the closed loop system error.
Solid: error with SVD reduced controller. Dash: error with FWBT reduced
controller. Dot: error with BT reduced controller. Dash-dot: full order closed
loop for reference. The closed loop approximation qualities of the three
different controller reduction methods are similar.

B. Controller reduction of the HIMAT example

In this example the standard controller reduction problem

in Fig. 1 is considered. The plant P models the HIMAT

aircraft (data available from the MathWorks website), and the

full controller K is the optimal H∞ norm controller obtained

using MATLAB’s routine hinfsyn. The full controller has

10 states. In this example, the proposed controller reduction

method is applied where the bounded-real matrix X is

obtained by solving (22). In the end an 8th order reduced

controller is obtained. As a comparison, two other reduced

controllers of the same order are obtained using HIFOO [18]

and balanced truncation. The reduction results are shown in

Table I. In this example, balanced truncation fails to return a

stabilizing controller. HIFOO and the proposed method have

similar closed loop performances, but the proposed method

is much more efficient than HIFOO (generally true when the

order of K̂ is relatively large).

VII. COMPARISON WITH THE METHOD IN [13]

The discussion in this section is not meant to be self-

contained. Some properties of the method in [13] are listed

here without any explanation. The purpose of the discussion
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TABLE I

CONTROLLER REDUCTION RESULTS FOR THE HIMAT EXAMPLE

method order ‖CL‖∞ CPU time (sec)

full 10 0.7885 ≈ 0

proposed 8 0.8242 38

HIFOO 8 0.8487 5602

BT 8 unstable ≈ 0

in this section is to collect the differences between the two

similar SVD based methods in this paper and in [13].

1) In [13], the proposed reduction problem is based on a

generalized controllability Gramian inequality, hence

the method therein characterizes closed loop perfor-

mance in H2 norm. On the other hand, the proposed

problem in this paper is based on the bounded-real

lemma in Sec. II-C. The corresponding reduced con-

troller has instead H∞ norm performance guarantee.

2) The generalized controllability Gramian in [13] can

be computed by solving a Lyapunov equation. On

the other hand, the bounded-real matrix X is ob-

tained either by solving a Riccati equation in (9) or a

semidefinite program in (22). Regarding computation

the method in [13] has an edge because it is less

expensive to solve a Lyapunov equation than a Riccati

equation of the same size.

3) The method in [13] can only enforce one of the two

Gramian inequalities (either controllability or observ-

ability but not both). Hence, some of the plant data

never appears in the search of the reduced controller

in [13]. On the other hand, the bounded-real lemma

statement in (8b) involves the use of all plant data.

4) In [13] the C and D matrices of the reduced controller

have to be the same as those of the full controller.

This is necessary for the generalized controllability

Gramian inequality to be meaningful in terms of H2

norm performance. On the other hand, the application

of the bounded-real lemma in this paper poses no a

prior restriction on the reduced controller matrices.

5) In [13] the controller order/accuracy tradeoff is mostly

determined by a matrix. This is not very intuitive. On

the other hand, in this paper the tradeoff comes very

naturally as the H∞ norm upper bound γ.

VIII. CONCLUSION

In this paper a modification of the SVD based controller

reduction method in [13] is described. Compared with the

method in [13], the current method fixes some lack of

symmetry issues listed in Sec. VII (i.e. 3) and 4)) and allows

a more natural order/accuracy tradeoff. With the introduction

of the proposed method in this paper, the connection between

the SVD based methods and the ones in [9], [10] can now

be better understood. This is because the proposed method

in this paper can be interpreted as a local search step of the

global search of the optimal reduced order controller in [9],

[10]. Furthermore, the result presented in this paper suggests

that the local search can be performed efficiently by solving

a generalized matrix approximation problem in the form of

(19). Whether (19) comes from a H∞ norm description as in

(8a), (8b) (8c) or a H2 norm description as in [13] depends

on the application. Finally, numerical examples demonstrate

the practical value of the proposed reduction method.
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