LUND UNIVERSITY

Reconstruction of a nonlinear source term in a semi-linear wave equation

Connolly, John; Wall, David

2002

Link to publication

Citation for published version (APA):
Connolly, J., & Wall, D. (2002). Reconstruction of a nonlinear source term in a semi-linear wave equation.
(Technical Report LUTEDX/(TEAT-7108)/1-28/(2002); Vol. TEAT-7108). [Publisher information missing].

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/51157664-2d6a-4e47-890e-b07b48691315

CODEN:LUTEDX/TEAT-7108)/1-28/(2002)

Reconstruction of a nonlinear source
term in a Semi-linear Wave Equation

T. John Connolly and David J. N. Wall

Electromagnetic Theory

Department of Electrical and Information Technology
Lund University

Sweden




T. John Connolly (J.Connolly@math.canterbury.ac.nz)

Department of Mathematics and Statistics
University of Canterbury

Private Bag 4800

Christchurch

New Zealand

David J. N. Wall (D.Wall@math.canterbury.ac.nz)

Biomathematics Research Centre
Department of Mathematics & Statistics
University of Canterbury

Christchurch, 1

New Zealand

Editor: Gerhard Kristensson
© T. John Connolly and David J. N. Wall, Lund, July 12, 2002



Abstract

An inverse source problem associated with a semi-linear transport or one-way
wave equation in one spatial dimension is considered. It is shown an ana-
lytic solution to the inverse problem can be given and furthermore, that this
inverse problem of determination of a source function is ill-posed, and must
be regularised. A novel regularisation scheme which combines least squares
monotone approximation and mollification of the noisy data is used to pro-
vide this regularisation. Proof of convergence of this regularisation scheme of
monotone smoothing is given. Numerical solutions from the inverse problems
are presented showing that the method is robust to noisy signals.

The solution of this inverse problem is also shown to illustrate the behaviour
of more complex problems from electromagnetism and nonlinear optics. The
mathematical techniques that are developed are therefore applicable to other
sets of nonlinear first order equations. The method is therefore model inde-
pendent.

1 Introduction

A form of the one-way wave equation or transport equation occurs in many areas of
applied mathematics describing wave motion. Many wave phenomema are modelled
by nonlinear second-order partial differential equations. For such difficult problems
any simplification possible will aid the advancement of the problem. For many
such nonlinear problems reduction to a lower order partial differential equation is
often employed. Scalar one-way wave equations are obtained through multiple scale
perturbation analysis (see |25, 28| and [6]), for some phenomena described by non-
linear second-order equations. Equations such as the second order wave equation,
Uy — Uge — 0(ug, uy) = 0 which is of Klein-Gordon type ( [17], pp. 254 el. seq.),
( [18], pp. 562 et. seq.), and is often used in nonlinear optics, can be reduced into
a system of two one-way scalar wave equations. Under some conditions this system
can be further reduced to a single one-way equation [9]. The equation we study
in this paper is also similar to one used to study hyperbolic conservation laws for
reacting flows [12], namely it is a semi-linear one-way wave equation.

The linear second-order partial differential equations modelling physical wave
phenomena, can always be reduced to a first-order system, and by the technique
of wave splitting [1,8,36] these can be considered as a system of one-way wave
equations; albeit that they are frequently coupled. Such systems will generally
involve two-way wave propagation, and so cannot be treated as a scalar one-way
equation. Even for such problems, however, the results obtained from the scalar
one-way wave equation will often apply in the limit that the coupling reduces to
zero or is small. The source reconstruction problem for linear second-order partial
differential equations has been examined in several publications [34], [35], and [36].
Inverse source problems for a linear second order equation from electromagnetics
involving lightning strikes has also been examined by [21].

There has been little treatment of inverse problems for which the wave equation is
nonlinear as compared to the literature for linear wave equations. For other nonlinear



wave equations for which inverse problems have been tackled see |3, 6,13, 15]. Inverse
problems for nonlinear reaction diffusion and reaction advection diffusion equations
have been considered by [4, 14], for example. Another example for which the inverse
problem reduces from one of consideration of a nonlinear second order equation
to one of involving a scalar one-way wave equation occurs in an electromagnetic
problem for an optical Kerr medium |19, 33, 38|.

The inverse problem analysed in this paper also has applications to an equation
utilised in age dependent population dynamics, namely

up + ug = o(u),

where here u = u(a, t) is the population density, a represents the age of the popula-
tion, and ¢ is the time. The left-hand-side of this equation is the advective derivative
of the population when the advection velocity of the population c(a) = 1, i.e. the
population ages at the rate ¢, and o(u) describes a death (birth) rate of the pop-
ulation nonlinearly dependent on the population size. Side conditions appropriate
to this equation are the initial condition u(x,0) = f(x) and either of the boundary
conditions

u(0,t) = h(t), or (1.1)
u(O,t):/O w(z)u(z,t) de. (1.2)

Here (1.1) represents the simplest prescribed birth condition, and where (1.2) rep-
resents a more realistic renewal condition for the population birth as given at time
t by the weighted integral over the total population to the maximum age L, with
weighting function w. Inverse problems in this area have previously been considered
by [10,23, 24,26, 27|, and the inverse problem we analyse here has application to
this type of problem.

The solution method we utilise is based on a novel form of the solution of the
inverse problem to the semi-linear one-way equation that was first presented in [6].
This solution has not been used previously except in a simple application without the
addition of measurement noise and the consequent requirement of regularisation [38].
This paper considerably extends the analysis of the previous work, and uses a new
method of regularisation of this ill-posed inverse problem. We call this approach
monotone smoothing and it involves the sequential application to the measured
data of monotone approximation followed by a mollification scheme. It is shown in
§4 that our mollification scheme preserves the monotone property of the monotone
approximation. Furthermore it is shown that this regularisation leads to a well posed
problem.

In §2 we consider the prototype semi-linear one-way wave equation. In that
section we define the direct transmission problem and provide an implicit solu-
tion. The well-posedness of this forward problem is considered through study of
the monotonicity and regularity properties of the map from the inital/boundary
data to the transmission function. The inverse problem posed in §2, for a one-way
wave equation, is one of determination of a source function from measurement of



the transmitted wave. Similar inverse problems which measure transmitted waves
to reconstruct some medium properties have been posed to determine Kerr medium
properties [19], and for mechanical medium properties [13|, from nonlinear second
order equations. Inverse problems for source determination for the linear one-way
wave equation have been analysed in [39, 40].

In §3 we consider the inverse problem of source function determination. We
show that the inverse problem, by linearisation, is Lipschitz continuous in appropri-
ate function spaces. In §4 it is shown that the inverse problem although ill-posed
in typical measurement function spaces can be made to be well-posed by monotone
smoothing of the data. The inverse problem is nonlinear for this transmission prob-
lem, which is in contrast with those we have studied in [29,39] and in the second
order advection diffusion inverse problem we consider in [31, 32].

Numerical simulation illustrating the effectiveness of our method of solving the
nonlinear inverse source problem and of the regularisation technique of monotone
smoothing is presented in §5.

In Appendix A we show that under suitable conditions the semi-linear one-way
wave equation studied here can be used to approximate semi-linear second order
equations. In Appendix B we find the Lipschitz continuity constant of the inverse
function operation — this is fundamental to our inversion technique.

2 Semi-linear Source Problem
Consider the semi-linear one-way wave equation, with a source term o,
u+c(2)u, =o(u), 0<z<oo, t>0, (2.1)

and with the dependent variable u(z,t), as an initial-boundary value problem with
the side conditions

u(0,t) = h(t), 0<t<oo, and u(z0)=f(z), 0<z<L (2.2)

Here we assume the wave speed parameter c, is only a function of the spatial variable
z. 'This will mean that the linear part of the equation is inhomogeneous but will
produce only non-dispersive effects, however the nonlinear dependence of the source
term on u will cause dispersion. In this equation it is to be noted that the source
term maybe considered as a reaction term, which is a nonlinear function of only w.
As equation (2.1) only admits unilateral waves we need not consider wave motion
for z < 05 also as the equation is semi-linear shocks do not appear. For this problem
the characteristic traces can easily be straightened, via a transformation of the form

=)= [ sla)as 23)
0
with the slowness ¢ = 1/¢. This transformation converts (2.1) into the form

u+u, =o0(u), 0<z<oo, t>0, (2.4)



with the modified side conditions

u(0,t) = h(t), 0 <t < oo, and  u(z,0) = f(x) = (fo (') (x), 0 < < L=((0),

(2.5)

and the initial condition in the z-coordinates has been redefined by the f function®.
This reformulation is more convenient for our subsequent development.

An essential feature in the sequel is that ¢ # 0 for all v under consideration,

then an implicit solution to equation (2.4) can be found to be

Tu(z,t) —Tf(x—t)=t, 0<t<u,
(2.6)
Tu(z,t) —Th(t —z) =2z, 0<x<t,

with the definition of the linear functional

_ [ dg
T77/0 =7k (2.7)

It can be easily verified that (2.6), is a classical solution to (2.4), with the given side
conditions if h € C'[0,00), f € C'[0,00], and o integrable with o # 0. Observe
from (2.6) (see also (2.10)) unless h(0) = f(0) there is a presence of a discontinuity
in the solution u(z,t) at the time t =z = [ ((') da’.

In the sequel for convenience we assume that o is continuous. Furthermore with
¢ >0 and ¢ € C then (2.6) transformed via (2.3) is also a solution to (2.1).

The transmission problem under consideration in this paper is the direct prob-
lem that is described by (2.1), equivalently (2.4), and given o and side data (2.2),
equivalently (2.5), determine the transmitted signal w(t) = u(¢,t) = u(L,t).

For convenience in the sequel we define define the map, from the source term o,
and also the side conditions (2.2), to the measurement u, by the operator T, and
assume that the measurement function, the source function and the side conditions
are in appropriate function spaces represented by X, S, and F, respectively. Then

T:(S;F)— %, (2.8)

is the forward problem map. The solution (2.6) provides an implicit representation
of this map.

It is now possible to pose an inverse problem for reconstruction of the function
o(u) from (2.1), when the measured data is the time history of « down-stream, i.e.
u(f,t). In order to do this f, ¢, and h, must be known functions. Here the given
data are at location z = ¢, or equivalently at L = ((¢). If u(t) = u(¢,t) is the
measured function then an inverse reconstruction map is determined by the inverse
of the map T previously defined in (2.8). This inverse map can be written

T': =S, (2.9)

where we wish to have a one-to-one map, so we have only written the inverse operator
into the space S, assuming that f, ¢, and h are implicit and known. The main
objective of this paper is to provide computational algorithms that can be used to
implement this inverse map.

!Note ¢~ exists as ¢ > 0 because ¢ > 0.



2.1 Monotonicity of measured field u

Prior to looking at the regularity of the solution we show the conditions required to
ensure that @ is a monotone function. This is an essential feature for the numerical
algorithms which we develop.

For @ we have two cases to consider:

1. For t < L, by differentiation of (2.6)(a), with respect to t, it follows that

f'(L—1) )
O’( f(L— t))
where we have used the prime to denote differentiation with respect to the
function argument. So that a sufficiency condition for monotonicity in this

case is f be strictly monotone and also ¢ and f’ have opposite sign. It can
then can be seen that @'(¢) > 0, or @ (t) < 0, as required.

2. For t > L, from differentiation of (2.6)(b) with respect to ¢, it follows that

o(u))h'(t — L)
o(h(t—1L1))

(t) =

which is seen to be of one sign if h is strictly monotone and o is of one sign.

Lemma 2.1. A necessary and sufficient condition for the measurement function u
to be strictly monotone function, for t > L, is that o be of one sign and h to be
strictly increasing or decreasing.

A sufficient condition for the function u to be a strictly monotone function, for
t < L, is that o be of one sign and h to be strictly increasing or decreasing and that
both o and f' be of one sign, but of opposite signs to each other.

Corollary 2.1. When the initial condition f = 0 a necessary and sufficient condi-
tion for the measurement function u to be strictly monotone is that o be of one sign
and h to be strictly increasing or decreasing.

We note that our results are slightly more general than those quoted as Lemma
3.1 and Corollary 3.2 in [6].

2.2 Regularity of the Direct problem

In this section we examine the regularity of the semi-linear direct problem defined in
the last section via the implicit solution (2.6). We obtain results for the continuous
dependence of the measured function upon the side conditions, 7.e. the map T, :
F — ¥, with arbitrary source, as given by implicitly by (2.6); to distinguish this
map from T mapping the source to the measurement data, we add the subscript 1.

We assume that besides the conditions f,h € C! and o # 0, that ¢ € L™, and
the source function has a two-sided bound such as 0 < m < |o| < M, and that
it also does not change sign. We note the upper bound on ¢ is not too severe as



most physically realistic nonlinear problems have such a bound [19]. The choice
of the Banach space L*> for o would enable us to allow for the reconstruction of
discontinuous source functions, unlike classical theory which would require o to
be Lipschitz continuous. However we will restrict our numerical results in §5 to
continuous o. We there assume the function spaces IF, ¥ are in C' and

Suitable norms in the spaces we use are:

in the space C': || flloo = sup|f],
in L= ||f|lec = ess. sup|f],

s Il ={ [ |f|p}1/p,

p 1/p
and in the Sobolev space WP : || f|l,, = { Z ]]f(i)]\q} :
i=0

note that f() denotes the i-th derivative of f, for further details see e.g. [2,16]. It
should also be noted that the standard Sobolev space H? = W?2?2,

Returning now to determining the continuity of the direct map T;. An explicit
form of the map can be found from (2.6) by use of the inverse of the functional 7.
The inverse will exist as 7" is strictly monotone as shown in Lemma 2.1. By applying

T~ to (2.6) it is found
T—l(Tf(L—t)+t), 0<t<L
a(t) = (2.10)
71 (Th(t y L), t> L.

Now as T is given explicitly by (2.7), and as we have assumed that m < |o(t)| < M,
it is clear that

IN

Tn| <

Y

3=

n
M
and mé < |T'€| < M,

where the second inequality follows from the first, on the definition Tn = £. It
therefore follows that

. SM(maX[”fHomHhHOO] +L). (2.11)

This result therefore demonstrates the continuous dependence of the solution w(t)
on the initial/boundary data. By utilising the source term o = M it is readily seen
that the bounds we have obtained are strict. Continuous dependence on the source
function may be shown in a similar manner to Fréchet differentiability of the forward
map, i.e. via the implicit function theorem [7]. We do not pursue this here.



We observe from (2.10) unless f(0) = h(0) then w(t) will have a discontinuity
at t = L. Looking ahead at (3.1) and after some manipulation it can be seen that
u'(t) will also have a discontinuity at ¢t = L, unless h'(0)/c(h(0)) = 1.

We have chosen to show this continuity for , it is straightforward to extend this
to u(x,t), the solution of (2.1).

To show C* regularity of the forward map from the data, again consider first the
problem for ¢ < x, so that

Tw)=T(f(x—1t) +t, 0<t<uz, (2.12)

and then by differentiating this equation with respect to ¢ we obtain
/ —
O’( flz— t))

Similarly by differentiation of (2.12) with respect to x it is seen that

"z —t
o(f(z—1t))
By use of (2.6)(b) and by similar differentiation to the above the u; and u, depen-

dence upon h, for t > x, can be found. It then follows from all these, and similar
procedures to those used to get (2.11), that

! . M
t<z ||ugleo < <1 + 177l >M, and t>z, ||lue < ( )Hh’”oo,

m m

t<m, ||Uulloo < <—> £ 1o and t>x, ||uzlloo < (1 + (Ll )M
m m

We therefore have the result:

Theorem 2.2. With o € L*>, and o of one sign together with the bounds 0 < m <
lo| < M, and with (h,h') € L>[0,00), (f, f') € L>|0, L], and the conditions required
in Lemma 2.1, the solution of (2.1) and its first derivative, with respect to x ort,
depends continuously upon the inital/boundary conditions, except possibly across the
characteristic trace x = t. Across this line the solution and/or its derivatives may
have a jump discontinuity.

We note that this continuous dependence can be straightforwardly moved to the
case when o € C and this theorem shows the map T; is bounded.

3 Inverse Source Problem with measured transmis-
sion data

It is now possible to pose an inverse problem for reconstruction of the functional
o(u) from (2.1), when the measured data is the time history of « down-stream, i.e.



u(t) = u(¢,t). In order to do this f, ¢, and h, must be known functions. What is
required for the resolution of the inverse problem is an inverse operator map T1.

Equations (2.6) are functional equations, the solution of which defines T~ and
yields the o function.

3.1 Reconstruction of the source functional with an applied
boundary condition

We consider the problem of reconstruction of o(u) from measurement of u(¢,t) =
u(t) when the initial value f = 0. The operator mapping o to @ is implicitly
defined by (2.6). By differentiation of this equation with respect to ¢, and after
some manipulation an explicit formula maybe found for the source functional as

o(@(t)) = (8), 0<t<I,
 w(olh(t - L) (31)
o)) = AL,

t> 1L,

where use has been made of the fact that 7"(¢) = 1/0(§). Now with & = w(t) we
may define ¢t = u ~!(£) when w is strictly monotone and the conditions on f, h, and
o to achieve this are prescribed in Lemma 2.1. It can be further shown that w is a
homeomorphism; hence u ! exists. It now follows (3.1) may be rewritten as

o(§) =u'(@=(g)), u(0) <& <u(L),
e . (3.2)
u'(u—"(§)o(h(@—"(§) — L))
W -
First restricting our considerations to the first of these formula, we note with
¢ =w(t) it may also be written as

o(§) = u(L) <¢.

_
[@ ()"

This formula can be readily found from the use of the chain rule on the composite

function. Equation (3.2) along with (3.3) now provides the basis of an inverse source

reconstruction algorithm, when h(t) is known and is used in §5 for the reconstruction.
It is readily seen that from equation (2.6) that when ¢t =0

%(0) dé B
[ g

and this implies that u(0) = 0, as 0 # 0. We shall now for illustrative purposes
assume that h(0) = 0 and h(t) — oo as t — oo. Hence provided u € C*, the first
part of (3.2) provides a functional solution for o (), with £ € [0,w(L)]. Now with £ €
[w(L),u(L+h~'(u(L)))] it is seen that the argument of the term o (h(u ~'(§) — L)),

o(€) = a(0) < € < a(L). (3.3)



on the right-hand-side of the second part of (3.2), is in the range [0,%(L)]. Hence
it is now possible to reconstruct o(§), with & € [@(L),u(L + h~'(u(L)))]. Then for
¢>u(L+h ' (u(L))) we may continue to reconstruct o(£) in a similar manner. It
is therefore seen that o can therefore be completely reconstructed from the inverse
map equations (3.2). It follows that the source functional o(u) can be uniquely
reconstructed, from transmission data w, with an appropriately chosen boundary
function h.

We see that the resolution of this inverse problem is ill-posed, and this follows as
it requires a differentiation operation on the measurement function. If w is mollified
(see [22,37]), it will follow that the resultant regularised differentiation operation
will depend continuously on the measurement data, and so be well-posed. However
the constraint that @ be strictly monotone is not conserved by mollification and
the inverse function @ ~! may therefore not exist after mollification . We therefore
smooth the noisy data u,, with a monotone approximant and subsequently apply
mollification; we call this regularisation technique monotone smoothing. 1t is shown
in §4 that the posterior application of mollification does not destroy the monotonicity
of w. The differentiation nature of the ill-conditioning is also in accordance with the
results obtained for the source reconstruction problem associated with a linear one-
way equation [39].

We next wish to show the continuous dependence of source on the measurement
function and the data f and h, i.e. to prove the continuity of the inverse map T~!.

3.2 Lipschitz continuity of the inverse problem

We prove this result in two norms for full generality, although only the L? norm is
used in our numerical procedures discussed in §5. We consider the L> norm first as
this is the norm we used for obtaining regularity of the forward problem.

3.2.1 Lipschitz continuity of the inverse problem in the L*>° norm

To obtain a Lipschitz constant for continuity of the inverse map it is necessary to
find the norm of the Fréchet derivative of the map T~'(zw ~',u’) — o. Now the the
explicit form of this map is seen in (3.2), and T~ is the Fréchet derivative, with
respect to u of this map.

To find the Fréchet differential examine the change in ¢ namely do, to a pertur-
bation in the data u, namely éu. To first order terms, when ¢ < L, this can be
shown to be

6o (§) + o'(§)o¢ = ou' (1),
or d0(§) = —0'(£)0& + du’(t).

Alternatively the Fréchet differential for the map T~ may be written

do(u(t)) = —o'(u(t))ou(t) + du'(t),
do (&) = =o' (§)su(@="(§)) + ou' (@' (€)). (3.4)
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So by taking the L> norm of (3.4)

160 [c <ll0"lloo 10Tlloc + 116l oc
il

a7/

167l oo =+ 1107 ]|

oo

:

The first term on the right-hand-side of the second form of this equation has been
found from differentiation of the first of (3.1), to get o’(u(t))u’(t) = u"(t) when t <
L. As expected, from (3.2), we have shown that the solution depends continuously
on the derivative of the data, but the Lipschitz constant is also dependent upon the
second derivative of the data and 1/inf |@’|.

The inverse problem solution, for t < L, can then be seen to be well-posed, if
u € C? ae., sup|u’| < C and inf|a’| > ¢ > 0, and it then depends Lipschitz
continuously on the data w, with

Cor e
16100 <1157l + 167
<5 . (3.5)

As discussed above this would require the measurement data @ to be in the Sobolev
function space W j.e. ¥ € W2,

We now consider the recursive part of the solution in order to get the Lipschitz
constant for t > L. Observe that the formula (3.1), or equivalently (3.2), provides
a recursion over the interval 0 < ¢t < oo; d.e. for 0 < t < L use (3.2)(a), then
use (3.2)(b) over the interval L < t < L + h~'(u(L)). Continue to use (3.2)(b)
in increasing ¢ intervals in recursion; ¢.e. recursion over the interval L < t < oo is

provided by:
_oy B @H(E)o(h(m—t(§) — L))
) = —Ee -0

Now, again examining the change in ¢ namely do, to a perturbation in the data w,
namely 0u. To first order terms this can be shown to be

o(h(t = L)) (1) + 7 ()00 (h(t — L))

50(€) + 0 (€)5€ = =
Hence the Fréchet differential for the map T~! is
_ o(h(t—1L)) ., w'(t)
60(§) = —0'(£)0€ + méu (t) + méa(h(t — L)),

where the first and second terms on the right-hand-side of this equation depend
upon éu and its derivatives, but the third term depends on the perturbation of do
in the previous equation in the recursion scheme. On taking norms of this formula
we obtain

k

n
SKfH(sﬂ”LOO +K§||5Uk_1||oov (3'7)

100" () llse <llo™lloc 107l oo + 160" oo, (3.6)

_ u'
oo+ |
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where the superscript k on the source function, as o*, denotes the source on the
k-th interval in the recursion and the superscript on K denotes the k-th constant.
To obtain this formula we have assumed that o*' is bounded. To prove Lipschitz
continuity we need now to relate the terms o and ¢* in terms of u and its deriva-
tives. For the next interval differentiate (3.2)(b) with respect to ¢ to obtain, after
some rearrangement

[@'(t)o(h(t — L)) — h"(t — L)o(§) +u'(t)o’ (h(t — L)) W' (t — L))

78 = Wt — Lya'(t) ’

(3.8)

which is again recursive. We must bound ||o||, as we observe from (3.8) that o’
depends on o in earlier intervals. From (3.2)(a)

lot oo < llT'lloc, ¢ < L,
and from (3.2)(b), i.e. in the next interval,

[llsollo™ oo

inf |p/|

lo*]]oc <

which is bounded, from a recursive argument, if @ € C', inf |[h/| > 0. We may
continue to bound ¢ from a recursive argument, in the subsequent intervals.

It can be seen that the terms on the right-hand-side of equation (3.8) will be
bounded provided h,u € C? a.e., inf |I/| > 0 and inf |u’| > C. We may continue to
bound ¢’ for subsequent intervals in a similar manner.

To recap we have shown on the first interval that

1600 () [loo <K (|67 |1,00,
and on the k-th interval that
160" ()lloo <ETN0T1,00 + K3 [160" [,
it follows we have proven that

—k .
105" () lloe < K1 07l]1,00,

where K is dependent upon ||l|2,00, |7 ||co, |2 ||co together with inf [@'|, and inf |A/|.
We can now state the well-posedness result for the inverse problem.

Theorem 3.1. With the conditions of Lemma 2.1, u € W?™ a.e., and 0 € L®
the solution of the inverse problem of determination of o from the measured data
u 1s well conditioned and is Lipschitz continuous in u; except possibly across the
characteristic trace t = L.

Note that the Lipschitz constant is larger when ¢, where inf [@’| > ¢, is small, this
is as expected by knowledge of the behaviour of an inverse function c.f. Appendix B.
Hence we can expect the conditioning of the numerical solution to be poor when [@/|
is very small.
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3.2.2 Lipschitz continuity of the inverse problem in the L? norm

We only explicitly show the result for the first part of the recursion as the proof then
proceeds similar to that in the L* norm. The corresponding result for the inverse
function operation alone is considered in Appendix B.

With the variation in do given by (3.4) take the 2-norm and use the triangle
inequality to yield

" 113

801 <9513 + g e Nl + 2007l ol o

M

<= g3

for some constant M. Observe as noted in §2.2 the equivalence of the Sobolev spaces
H? = W22, The result for the recursive part of the formula (3.2)(b) follows in a
similar manner to that used in the last section.

Theorem 3.2. With the conditions of Lemma 2.1, uw € H?, and o € L?, the solution
of the inverse problem of determination of o from the measured data u is well posed,
and is Lipschitz continuous on u except possibly across the linet = L.

This result is the basis of our numerical procedures, and in §4 it is used in
the regularisation result. Note that the proof requires the existence of the inverse
function u ~!; which is assured by Lemma 2.1.

3.3 Reconstruction of the source function with only initial
conditions

If h=0 and f # 0 then the operator T is defined implicitly by

Tu(t)—Tf(L—t)=t, 0<t<L,
(3.9)
Tu(t) = L, t> L,

By differentiation of the formulae in (3.9) with respect to ¢, and after some manip-
ulation, the source functional may be written as

u'(t)o(f(L—1))
(e(f(L—1) = f(t—L))

For this case @’(t) = 0, when ¢ > L, as the initial condition function has completely
propagated past the point x = L after a time ¢ = L. Therefore the only information
on ¢ is obtained from the measurement for 0 < ¢t < L. We see that the resolution
of this inverse problem is ill-posed, and this follows as it requires a differentiation
operation on the measurement function. The functional equation (3.10) does not
admit an explicit solution.

The monotonicity of w proven in Lemma 2.1 would however enable a numerical
algorithm for solution of this inverse problem to be formulated; through a basis

o(u(t)) =

0<t<L. (3.10)
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function expansion and collocation of (3.10). This would result in a system of
nonlinear algebraic equations to be solved numerically to reconstruct o. This inverse
problem is the relevant problem for solution of the population model discussed in
§1. However, this inverse problem is not considered further here.

4 Problem regularization

In this section we use a new method of regularisation called monotone smooth-
ing. This method utilises the techniques of monotone approximation in addition to
mollification [22, 37].

As we have seen in section §3.2, the ill-posed nature of reconstructing the source
function from noisy transmission measurements is in part equivalent to differentia-
tion. Because the measured data lie in function spaces where differentiation opera-
tors are unbounded it is therefore necessary to restore continuity with respect to the
data to solve the problem. The regularization procedure for solution of (3.2) is to
compute ' in a stable manner. It is well known that numerical differentiation can
be made a well-posed problem, and there are a number of regularization methods
available. Any of these regularization methods can be used to yield stable solutions
to the numerical differentiation required in (3.2). However, more is required of the
solution in order to stably reconstruct o. The inverse problem also requires a stable
resolution of the inverse function operation. This is well known to be ill-conditioned
if the derivative of the data function approaches zero. It is shown in Appendix B
that the inverse function will only be well conditioned if the approximation to @
is strictly monotone. The algorithm must therefore maintain the strict monotone
property? of U else the inverse map for % is not defined. We do this through the use
of a least squares monotone approximation scheme to u,,, the noisy measured data
and then we mollify the resultant approximation to form %/, in a stable manner. It
is shown in Theorem 4.1 that the final approximation to u is both monotone and
depends continuously upon the data. We call the resultant approximation monotone
smoothing and it is the result of performing monotone approrimation in addition to
mollification. We do this in a sequential manner.

We only illustrate our results in L? however it is possible to proceed in the space
L.

4.1 Monotone approximation by B-splines

The regularized solution to the inverse problem consists of first fitting a monotone
B-spline through the noisy data ,,.

Define the natural numbers 4, j, M, N € N, and then a mesh {#;}Y, is established
on the time axis. This is a mesh with possibly a non-uniform mesh interval, £, = 0,
and ty = T is the maximum time used to collect data. The time intervals correspond
to the N +1 time measurements of ; namely %,,. Define another mesh {¢;},, with

2As shown in Lemma 2.1.
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a uniform mesh interval h = T/M, and to =0, t; = t;_1 + h, 1 < i < M, which is
also established on the time axis.

The measured signal function @,,(t) is to be approximated in a least squares
sense by a B-spline of degree n, denoted by S,,, such that

Sn(t) = Z a;bi(t), (4.1)

where M + 1 is the cardinality of the B-spline basis, {b;(t)}}, € S,[0,T] and the
knots are at the uniform ¢;. Here &, is the space of polynomial splines of degree n
on the interval [0, 7).

We now require a least squares fit to the w,, at the ¢;; where it is assumed that
N > M. To ensure that the least squares B-spline is a monotone approximate
to u we are required to include the constraint that the derivative of S is bounded
from zero. In general if we make this restriction over 0 < ¢t < T this will lead to a
semi-infinite programming problem. These problems are computationally expense
and more difficult to solve, and this technique applied here would be excessive.
So we use the constraint to be that the derivative has one sign at the {Z;}M,.
Therefore on restricting consideration, without loss of generality, to the case where
the monotonicity of u is strictly nondecreasing, this leads to the constrained least
squares problem:

min ||@,, (¢;)— S, (t:)||2,  subject to the constraint S (¢;) >¢€, €>0, 0<i<N,
(a7

(4.2)
with the discrete 2-norm being used. The parameter € is used to ensure that the
spline is strictly monotone. The existence of the inverse function map provided by
the approximating B-spline .S, is then assured.

The convergence of the monotone approximation scheme is now discussed. When
we wish to denote the solution of (4.2) to an appropriate function @, (t) = f(t) we
use S, (f). For treatment of unconstrained least squares approximation by splines
see [11]. What we require is in the form of a Jackson type estimate for the consistency
result [5]

[z = Sn(@)l2 = { min /OT [a(t) - Sn(t)|2dt}%7

a s.t. S >e

< C(e)w(h),

provided @ > ¢, and w is the modulus of continuity of @, i.e. if w € C' then
w(h) = maxo<i<r |@'(t)|h. Given a higher regularity on @ the power of h and the
order of the derivative can be raised to n + 1.

A continuity result to the monotone approximation is of the form

HSn(ﬂ) - Sn(ﬂm)H? < OIHU - UmHQv

and this states that approximation depends continuously on the function being ap-
proximated. It is to be observed that only the data is being changed on the left-hand-
side, and that C; depends on the degree of the spline, the knots and the regularity
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of w,w,,. Now if the noise level between the measured u,, and the exact u is k, i.e.

k= [|nllz = ([T = Unll2,
then the convergence result
Hﬂ o Sn(ﬂm)lb SHG o Sn(ﬂ)HQ + ”Sn(ﬂ) - Sn(ﬂm)H% (4-3)
< Cik+ Cle)w(h), (4.4)

as Kk — 0 and h — 0, follows by the triangle inequality.

4.2 Mollification in L2

We secondly discuss the technique of mollification to provide a numerical stable
algorithm to approximate u,, .

Suppose that due to measurement difficulties an ideal continuous data function
¢ has been corrupted by noise n and is measured as g,,. That is g,,(t) = g(t) + n(t),
t € I, where the functions are defined on some interval I = [0, 7], for some 7" > 0.
Let the extension of the data function g, to the interval Is = [—3d, T+ 3] be defined
from an appropriate extrapolation extension of g,, to I5. Consider the mollification,
or Gaussian function

1 2 /52
= _——e " /° R 4.5
pls (5\/%6 ) VIS ) ( )

and define the convolution, or mollification of g by

o0

Jsg(t) = (ps x g)(t) = / ps(t — 8)g(s) ds,
t+35 e (4.6)
/t36 ps(t — s)g(s)ds,

12

where ¢ is the radius of mollification. Then the following results can be obtained
from Fourier transform theory and Parseval’s equality; see ( [22], pp. 62 ef. seq.)

Lemma 4.1. If ||¢'||o < M; then

1(Js9) — gll2 < 6My /2.

This lemma shows that (J(;g) — g as 0 — 0, we also need this behaviour for the
derivative.

Lemma 4.2. If ||¢"||s < M, then
1(J59) = 'l < 6My/2,

This consistency result shows that (Jgg)/ — ¢ as § — 0. The following continuity
result also follows in a straight-forward manner by Fourier transform theory ( [22],
pp. 62 et. seq.)
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Lemma 4.3. With the extended noisy measurement function g,, € L*(Is)

—-1/2

1(739)' = (Jogm) Il < 5= llgm = o1l

Therefore the mollification method provides the differentiation operator with a Lip-
schitz continuity result provided that the data g,, € L?, and the mollification radius
d > 0 is fixed. Furthermore as ||g,, — g|| — 0, ¢ can be reduced, and the consistency
error then decreases provided that ¢” € L2.

4.3 Monotone Smoothing

By combining the monotone approximation and the mollification in a sequential
manner we will have the continuous dependence of the solution of the inverse problem
on the measured data.

Theorem 4.1. The source function reconstruction problem, as stated in §3.1, with
monotone smoothed measurement data JsS,(U,,), has a well-posed solution and the
solution converges to the true o as the noise and mesh interval is reduced to zero.

Proof. This result follows directly from Theorem 3.2, the monotone spline approx-
imation property (4.4), Lemma 4.2 —4.3 and the existence of the inverse map of the
monotone B-spline approximating .

As the monotone smoothing technique is sequential the inverse map existence
will be true provided the mollification does not destroy the monotone behaviour of
the B-spline. We show this is true with a suitable choice of the mollification kernel.
Now as

Jsg(t) = (ps * g)(t), it follows (J(;g),(t) = (ps* ¢')(t),

and if ¢ > 0 and ps > 0, as follows from our definition (4.5), it is determined
that (J(;g)/(t) > 0, and we have that mollification preserves monotonicity. What
we require for our algorithm is that the condition ¢’ > € is preserved; where €
corresponds to inf [@(¢)|. Tt is straightforward to show this by applying the above
argument to g = g —€t, s0 g >0 = ¢ > 0, and also ps x € = ¢; so we the
result. We should note that if a non-positive mollification kernel is chosen, such as
the Dirichlet kernel, that this result is not obtained.

If g,, is the measured function, then from Lemmata 4.2 and 4.3 and the triangle
inequality, it follows

lg" = (Jsgm) Il2 <N’ = (J59) 2+ | (J59)" = (Jsgm) 2,
<5M e 1/2
<S5+ NG | gm — 9ll2,

which provides an error estimate for the mollified derivative.
First consider the reconstruction for 0 < ¢ < L, in this range T™! : w — o(¢)
has functional form 1/(u ~!(£))’ and is nonlinear, but maybe found from solving



17

the linear system o(u(t)) = @'(t), and then the convergence result we require is
straightforward. Denote by o, the value of o that has been reconstructed from w,,,
where here o,, = (J(;Sn(ﬂm))/, and it then follows that

o= 0lle = 17— (JiSu (@) llz

SHU/ - (Jdﬂm)/||2 + || (Jésn(ﬂm))/ - (Jéﬂm)/HQ)
S[<1||H - ﬂmH2 + K2Hsn(ﬂm) - ﬂmH%
<Kk + KyC(e)w(h),

where K7 = 6My/2 and Ky = %.

Now for t > L, it is not as straightforward as the operator T~! in this region is
more complicated, but is recursive as it relies on previous values of o; this is shown
in the discussion following (3.5). However, it is seen that following the argument
after (3.8) that the term |o(t — L)/ (t — L)| is therefore bounded, by say K3, so

that we can write from the above

||0' — O'mHQ SKgO(H) + K30(h)

We again observe convergence can only occur if € is not too big for a given 0. [
4 3
3.5F ,l “ /’a o5l .. |
[ ’/’ * . . ¢
37 1 1 ,/ () oo .
: l‘ . e ol . .
2.5F : ! . o/s
o . ,I'/' 1 w15
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1.5/ R || |
1 ’r” " ‘\ ,
05~ _ - . . .
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0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35
t t
(a) The time signal, u(t) —, and its deriva- (b) The time signal, u(t) —, and the relative,
tive u’ — - —, also shown is the applied bound- noisy measured time signal u,,(¢) * * *, with
ary condition h(t) - — — noise to signal ratio of 2.17% in the 2 norm;

this corresponds to a decibel rating of -33dB.

Figure 1: The exact simulated @, its derivative u’(t) and the applied boundary
condition h(t). Shown in (b) is the measured noisy signal u,, with relative noise
from which the reconstruction of o is attempted.
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(a) The error of the reconstruction, relative ¢5 (b) The error of the reconstruction, relative £o
error — — — and uniform error ___ , plotted error — — — and uniform error __ | plotted
against /T, for e = 0.15. against €, for §/T = 3.5%.

Figure 2: The reconstruction error plotted against § /7" and ¢; from the noisy signal
of Fig 1 which is a relatively noisy signal with a noise to signal ratio of 2.17% in the
(2 norm.
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0.2 0.2¢

0 05 1 15 2 25 % 05 1 15 2 25

§ g
(a) The reconstructed source term o(£) o o o, (b) The reconstructed source term o(£) o o o,
and the exact source term __ . Reconstruc- and the exact source term ___ . Reconstruc-
tion using monotone smoothing for uniform ¢ tion using monotone smoothing for uniform ¢
intervals. intervals.

Figure 3: Contrasting the reconstructed source term o(§) for uniform &, and uni-
form t from the noisy signal of Fig 1. Monotone smoothing used with mollification
parameter §/T = 3.5%, monotone constraint parameter ¢ = 0.15. Also shown in
(a), but not discernible from the true o is the reconstruction from noise free data
with no regularisation.

5 Numerical methods and Results

The basis of the uniform & algorithm is implemented by the formula

1 — —
o(§) = T u(0) < € < u(L),

(5 1)
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(a) The time signal, w(¢t) —, and the uniform (b) The reconstructed source term o(£) — _ and
noisy measured time signal %,, (t) * * with noise the exact source term __. Using monotone
to signal ratio of 2.17% in the ¢? norm. smoothing with e = 0.15, §/T = 4.7%.

Figure 4: The measured noisy signal u,, for uniform noise and the reconstruction
of o with monotone smoothing.

We now describe the numerical algorithm used to solve the inverse problem. We
use the two mesh structures on ¢ € [0,7] as described in §4. As explained in that
section the signal function %(t) is to be approximated by a B-spline from the spline
spaces S; or 83, so that the spline is linear or cubic, respectively. This B-spline is to
be constrained to be monotone, so that when the derivative operator is applied to
(4.1) this results in an equation of constraints which is equivalent to Ga > €. Here
G is a bi-diagonal lower triangular matrix when n = 1, and a quad-diagonal matrix
when n = 3, and where « is a column vector of the spline coefficients «;, and € is
a column vector of scalars e. The equation (4.2) is thereby converted into a least
squares problem with linear inequality constraints, namely

min ||, (¢;) — S(t;)||2,  subject to the constraint Ga >€, 0<i<N, (5.2)
(a3

where € is a priori chosen for our algorithm. A higher value on e will reduce the
Lipschitz constant on T~!, but this must be chosen consistent with z’. Our method
of solution for this problem follows the techniques discussed by ( [20], pp. 158 et.
seq.), who call the (5.2), Problem LSI (least squares inequality constraints). Their
method is to reduce the problem LSI into the nonnegative least squares problem
(NNLS)

min || Ex—f]|2, subject to the constraint x >0, F € (R™,R"), x € R", fe&R™.

Our implementation of the NNLS algorithm is the one supplied in MATLAB. In fact

our LSI problem is first reduced to the least distance programming problem (LDP)
of
min ||x||s,  subject to the constraint Gx >h, x&€ R" heR™.
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prior to being reduced to the NNLS problem. The requirement of the Theorem 4.1
has therefore been met.

After finding the monotone approximation to %,,, which we denote by S, (@,,),
this approximate is then mollified by forming J55,, (%@,,), and then solving the inverse
problem (3.2) with this regularised data. For a concrete implementation of the
algorithm, the mollified integral is approximated by the trapezoidal rule. Our use
of mollification is in a similar manner to |29, 30]. The derivative required in (5.1) is
formed by fitting another cubic spline to J5.S,,(@,,), which we call the reconstruction
spline, and then taking its derivative.

For the numerical experiments illustrated in this section the boundary function A
is a ramp function, this and the resultant transmission signal w are shown in Figure 1
where T' = 3.5. Observe that ¢ can only be reconstructed depending on the range of
u measured; namely o(&) for 0 < £ < @(T). The simulation data was formed from
(2.6) and was also checked from a finite difference solution of (2.4)—(2.5). It is seen
from Figure 1 that w(t) is strictly monotone, as is proven in §2.1. The derivative @
is also illustrated in this figure and it is important to note that @’ > 0.15 so that
this number will be an upper limit for € in the monotone algorithm as an any larger
value will degrade the solution for o; as is shown in Figure 2(b). Note that @ is
continuous and that @’ has a jump at t = 1, as expected. The source function o is
an oscillatory function that is used throughout the simulation and is shown as the
true source term in the reconstruction figures, e.g. Figures 3-6.

Throughout this section the number of measurement data points is N = 67 and
the number of constraint spline nodes is M = 25; so ensuring the least-squares
nature as required in §4. The degree of the constraint spline is 3, unless stated
otherwise. We always use L = 1 and a number of reconstruction nodes of 180;
this is for the reconstruction spline that we use for evaluation of the monotone
smoothed derivative for the solution o. A linear polynomial is fitted to the spline
monotone approximation in z € [0,h] where h is the interval described in §4.1,
and this polynomial is then used to extend the data to [—3d,0] as needed in the
mollification procedure. A similar extension is used at the end of the data at [T, T+
3d]. This technique ensures that the derivatives estimated at each end of the data
are superior to those obtained by simple extension of the data by zero.

To provide the noisy signal w,, the calculated data w was corrupted with white
noise having a normal distribution and zero mean. The quoted value of the noise
level, in our results, is a relative measure of ||n||2/||@|/2*, where n is the noise and
|| - ||l2 denotes the /5 sequence space norm. We utilise two types of noisy data in the
experiments. The first we denote by the term uniform noise and the noise is simply
added to the signal as u,, = w+ n. Whereas the relative noisy signal the noise is
relative to the signal amplitude and is formed by @, = u(1 + n); it is observed this
will mean that the signal to noise ratio is constant with this second type of noisy
signal. In the first type the noise can exceed the signal, in magnitude, for the first
part of the signal; e.g. see Figure 6(a).

We start our results with a low noise example and the noisy w,, signal with

3Equivalently here, the the standard deviation of the the noise to the £, norm of the signal.
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relative noise in the £ norm of 2.1% is shown in Figure 1(b) and the reconstruction
of the associated o when monotone smoothing is used is shown in Figure 3. It is seen
from comparing Figure 3(a) and (b) that the reconstruction with uniform ¢ intervals
is preferable to the uniform ¢ intervals, although the reconstruction is similar in
character. The /5 relative error is 0.08% and 0.1% for uniform ¢ and t spacing,
respectively. The uniform ¢ interval algorithm is based on equation (5.1) and is
one used for all remaining reconstructions in this section. The uniform ¢ interval
algorithm is based on equation (3.2) and is not as effective because of bunching of
the data points. It should be pointed out that if reconstruction is attempted, even
with this low noise problem, without regularisation, no approximation of the source
is obtained.

We use cubic splines throughout these results because we found they provide
a slightly smoother approximation to o than lower order splines; this is only a
very small effect on the reconstruction. More noticeable effects are obtained by
changing the number of spline nodes. The optimal choice should allow for accurate
approximation of the source function and is determined by the approximation error
estimate as given by higher order forms of (4.3). This is achieved for our experiments
here when M = 25. With M = 25 when the noise free u is used in the algorithm,
with no regularisation, it produces a reconstruction as shown in Figure 3(a), but is
not discernable from the exact ¢ in this figure; an almost exact replication as it has
a relative ¢y error of 0.02.

The amount of mollification utilised in our numerical reconstructions is stated
as a relative percentage of /7. In Figure 2(a) we show the reconstruction error as
d/T varies for the noisy signal of Figure 1(b). It is seen that the reconstruction error
is minimised when §/7 is about 3.5%. The minimum is fairly broad and it can be
shown through experimentation that it is more so when the noise level increases (not
shown). For the results shown in Figure 4 it is flatter and lies between 3%-6%, and
similarly for Figure 5. Methods of optimising 0, such as those in [22], do not apply to
the nonlinear and monotone smoothing technique used here. Our experience on this
problem indicates the choice of § is not too critical. The value of the mollification
parameter 0 /T, around 3.5% seems to produce reasonable results with the levels of
noise used here. It appears that the effect of the mollification parameter J is not
as dominant as in pure mollification, because of the smoothing produced by the
monotone approximation.

The choice of € is less difficult to see, as it can have a range of values with similar
reconstruction quality. Its upper value however must be less than the minimum
value of the exact u’. Smaller values of € enable the monotone approximation to
the noisy @,, to oscillate more. In Figure 2(b) the reconstruction error as € is varied
is shown. It can be readily seen that the upper limit of 0.15, which is the smallest
exact value of m' in this simulation, is where the error starts increasing.

Figure 4(a) shows a noisy u,, signal with uniform noise of 2.17% in the ¢, norm,
and the reconstruction of the associated ¢ when monotone smoothing is used is
shown in Figure 4(b). It is seen that the uniform noise signal provides a high level
of noise when the signal is low, so degrading the reconstruction for low ¢ values; c.f.
with Figure 1(b) and Figure 3.
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(a) The time signal, u(t) —, and the relative (b) The reconstructed source term o (&) — _ ,
noisy measured time signal %, (t) * * * when and the exact source term ___. Using mono-
the noise to signal level is 10% in the 2 norm; tone smoothing from the noisy signal of (a)
this corresponds to a decibel rating of -19dB. with € = 0.15, 6/T = 3.5%.

Figure 5: The reconstruction of o(§) with considerable relative noise; from the
noisy signal of (a), with monotone smoothing.
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(a) The time signal, w(¢t) —, and the uniform (b) The reconstructed source term o(§) — _
noisy measured time signal @,,(t) * * * when ,and the exact source term ___. Using mono-

the noise to signal ratio 10.0% in the ¢? norm. tone smoothing from the noisy signal of (a)
e=0.15,0/T = 3.5%

Figure 6: The reconstruction of o(§) with considerable uniform noise; from the
noisy signal of (a), with monotone smoothing.

Our numerical results for the reconstruction of o(§) for a large relative noisy
signal with 10% noise is illustrated in Fig. 5(b), and the signal @,, is illustrated in
Fig. 5(a). If an attempt is made to obtain a reconstruction with just mollification
from such a noisy signal, the reconstruction fails or produces a wildly oscillating
solution. It is often found for such noisy problems that if mollification alone is used
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the inverse function map fails to exist.

Finally in Figure 6 we illustrate a high noise example with a uniform noisy signal
with noise in the £2 norm of 10%. It is observed that for even this very noisy example
the monotone smoothing regularisation yields an acceptable solution.

6 Conclusions

It has been shown that an inverse problem associated with a semi-linear scalar one-
way wave equation has an analytic solution. A Lipschitz continuity result has been
proven for dependence of the inverse problem upon the derivative of the data. The
Lipschitz constant depends upon the lower bound of this derivative as an inverse
function operation is also required. A combination of monotone approximation and
mollification of the data is then applied to regularise the solution of the inverse
problem.

It has been established that our reconstruction algorithm, for the inverse problem
of unknown source reconstruction, is rendered well-posed by the method of monotone
smoothing. Numerical evaluation of this solution, for both low and high levels of
measurement noise, has been illustrated, and it has been shown that the method is
robust.

The monotone technique should be useful when applied to other inverse problems

that require an inverse function operation; such problems have been considered
by (6,19, 30].

Appendix A Reduction of second order equation
We consider here the second order semi-linear hyperbolic equation
Ut — Ugy = U(Ut)7 (Al)

and show its reduction to a semi-linear one-way wave equation as studied in the rest
of this paper. It is seen that we have chosen to have the source term ¢ depend upon
u; similar arguments to those made here can be performed for the case when the o
term depends solely on u,. This equation is now written in terms of the Riemann
invariants of the linear second order wave equation u; — u,, = 0. To this end,
introduce two new dependent variables u®(z,t) defined by

()= (2 () =2 ()

where the transformation matrix has an inverse

()56 2)6) ()



24

Substitution of these new dependent variables into (A.1) yields dynamics for the

new fields u*(z,t) as
ut+u—
w s = (7)), (A2)
o(*=*)

where ut = (u+ u’)T. It should be observed that the two component waves still
couple, through the nonlinear source term o. Note that this would not be the case
if the source term was a function of one of the invariants alone. In the special case
where ¢ = constant we also see the equations do uncouple. Therefore it is expected
that the system
u

u;t + ua:ct = 0-(7)7 (A3)

to approximate (A.2) when both of the following holds:

1. Both |o| and |o'| are small;

2. For small time, here we consider t < t < 1, if we specify u= = 0 for t = 0, so
implying u™ > u~ for t < 1.
To quantify this in the o(u;) case consider the identity
ut +u
+ ’ ' +
u U, ~ _uTouT tun
= 0(7) - 70’(u), u € [77 T],
with u time varying. Thus the error in the approximate source term of (A.3) is

o(u) = o

~ 1 —
|50/ @l < Sllu |,

where ||0’(%)|s < M.
We now need a bound on u~, but with the condition of small time we know
that w™ > u~ from item (2) above; so from the u~ equation of (A.3) we have the

following linear equation
o ut
Uy — Uy = 0—(7)
From an earlier nonlinear regularity result we obtained estimate (2.11), and this
result was sharp. As we now have a linear equation it is clear that the estimate
shows when ¢ < 1 that

lu [l < Mt,
where again ¢ is the maximum time under consideration. So that the error in the

right-hand-side of the equation in replacing (A.1) by the one-way wave equation

u—i—
uf +uf =),

is MMt/2.

In conclusion we have found that by bounding the maximum value o and ¢’ and
by restricting the maximum time of applicability, that one-way wave equations will
approximate these second order equations.
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Appendix B Lipschitz continuity of an inverse func-
tion operation

As this is used several times in the paper it is appropriate to illustrate it here. We
show here the continuity of the inverse of the function map to £ = w(t), namely
u (&) =t, and show it depends on inf [u/|.

Considering the change of 7 ~! from % to u + 6u and the corresponding change

du 1, it follows to first order terms that
0u~'(§) = —[@(§)]'ou(t),

and note that

mO) = o

' (t)’

by the chain rule. Hence the Fréchet differential of the inverse function can now be
written 5z

ou () = — e
On taking the L? norm it is found that

1
167 7|2 < —==—==Il0a(t)]2-
inf |@'(¢)]
Showing that the inverse function reconstruction from the measurement data is
potentially ill-posed unless |@'| is bounded below. Obviously this will not be true for
the noisy measurement |/, |, and this is why monotone approximation is required
for the measurement function in §4.
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