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Properties of a Parameterized Model Reduction Method
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Department of Automatic Control,
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Abstract— In this contribution a recently proposed model
reduction method for a class of linear time-invariant (LTI)
parameterized models is investigated. The method is based on
matching of the frequency response samples using the semidefi-
nite programming methods. The main focus of this contribution
is the properties of the obtained approximations. Among those
properties is stability of individual LTI systems, continuity with
respect to parameters, error bounds on approximation quality.

I. INTRODUCTION

Model reduction is a well-established field of research.

The problem itself is non-convex and to authors best knowl-

edge there exists no polynomial time method to obtain

the optimal approximation. There does exist quite a few

suboptimal and heuristic techniques to obtain one. Among

them two families of methods are distinguished: singular

value decomposition (SVD) based and Krylov subspace

projection based methods. The methods are well-developed

and an interested reader may find their description in [1], [2]

and the references therein.

Model reduction as a tool is often required in modeling,

where simulating large-scale models may be computation-

ally overwhelming. Such models often arise in physical

modeling, in which linear integro-differential equations (e.g.

Maxwell’s, heat transfer equation) are discretized using

Petrov-Galerkin or finite element approach (see, [3], [4],

[5]) creating LTI systems. If a low-order model with a

similar behaviour was obtained, the simulation time would be

considerably reduced. A common reduction technique to use

is the Krylov subspace projection one (for general framework

description, see [6], for application to various problems, see

[7], [8], [9], [10]).

Parameterized model reduction is arguably a more im-

portant tool in modeling and design. Since the parameters

of the models are subject to change or tweaking over

time, it is often required to obtain a family of models that

describe a particular system in various settings. An extensive

research using the Krylov techniques was performed for

various applications, e.g. micro-electro-mechanical systems

or MEMS (see, [11]), radio-frequency (RF) inductors (see,

[12]), interconnects ([13], [14], [15], [16]), general linear

systems ([17], [18], [19], [20]) and nonlinear systems ([21]).

A major drawback of the Krylov techniques is the lack of

flexibility. Imposing extra properties on a reduced model

or preserving properties of the full one is generally a hard

task and requires a rigorous investigation in each case.

For example, if passivity can be preserved efficiently by

extending [22] to the parameterized case, preserving stability

can be done only for an extra cost.

In this contribution a different direction is taken. As a

basis a method for parameterized model reduction of single-

input-single-output (SISO) systems from [23] is considered.

The method performs matching of the frequency response

samples of the full model and its approximation. It exploits

a Hankel-type relaxation to obtain a semidefinite program.

The method can preserve stability, passivity of the individual

LTI models or any other property that can be parameterized

in a convex manner making this method a powerful tool. The

computational cost for the non-parameterized model reduc-

tion mainly consists of the frequency response calculation

and is equal to O(n3), where n is the order of the original

model. Using [24], [25], [26] or [27] for calculating the

frequency response the cost may be lowered to O(n log(n)),
which is valid for certain applications. For the parameterized

case the cost estimates are shown in [23], [28].

The main contribution of this paper is the theoretical error

bounds similar to the non-parameterized case shown in [29].

Such bounds are valid for the single-input case and were

not shown in the original work. Also a multi-input-multi-

output (MIMO) extension to a single-input model reduction

method from [23] is presented. Some modification to the

original SISO method were made in [30], [31] that may be

useful depending on an application. Investigation into the

applications was made in [32].

The paper is organized as follows. In Sec. II the problem

formulation is described and the main ideas of solution for

the non-parameterized case are shown. Sec. III presents the

model reduction method for parameter-dependent systems.

In Sec. IV the investigation into the properties of approxi-

mations is made and the continuity of the latter is proved.

Finally, in Sec. V an example is presented, which is the

modeling of a deformable telescope mirror.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a rational transfer function G(z, θ), where for

every fixed θ the function G(·, θ) is an LTI model. It is also

assumed that θ does not depend on time or the state-space

variables of G. Basically, all the coefficients of the transfer

function G(z, θ) depend on θ. The dependence of G on θ is

considered to be continuous, which is a common assumption

in many applications. The parameter is usually a vector θ =
(θ1, . . . , θn), where the individual entries θi are bounded:



θi ≤ θi ≤ θi for all i = 1, . . . , n, and θi, θi are known

constants. Also the infinity norm of G is uniformly bounded

with respect to θ, i.e. there exists κ such that ‖G(·, θ)‖∞ ≤ κ
for all θ.

For simplicity the case with a scalar θ is considered. The

generalization to an arbitrary dimension n can be performed

in a similar manner with the same theoretical results. Since

θ is bounded it is assumed that θ ∈ [0, π]. If the bounds are

different, one can always map θ to this interval. It is done

for a convenient notation: ω = {ω, θ} ∈ [0, π]2. Denote

G(ω) = G(ω, θ) the frequency response of G(·, θ) for every

fixed θ. A similar notation is used for all transfer functions.

The reduction problem is formulated as:

γmin−max = min
P,Q

max
θ

∥∥G(ω) − P (ω)Q(ω)−1
∥∥
∞
,

where P and Q are polynomials in e−ω with coefficients

Pi, Qi depending on θ :

P (ω, θ) =

k∑

i=0

Pi(θ)e
−iω Q(ω, θ) =

k∑

i=0

Qi(θ)e
−iω

where  is a complex identity. The dependence of Pi and

Qi on θ is continuous in order to achieve a continuous

dependence of PQ−1 on θ. For every fixed θ the inverse

of polynomial Q should provide a stable transfer function.

Hence, Q is a minimum phase transfer function (all the poles

and the zeros are inside the unit disc D = {z
∣∣|z| ≤ 1}, where

the variable z is an analytic extension of ω to the complex

plane such that z = eω if |z| = 1) and the feedthrough term

(Q0) has to be invertible for all values θ.

Note that the min-max problem is preferred to a max-min,

which is formulated as:

γmax−min = max
θ

min
P,Q

∥∥G(ω) − P (ω)Q(ω)−1
∥∥
∞
,

Generally γmax−min ≤ γmin−max, and in this case the

equality may not be achieved since the objective function is

not convex in decision variables. However, a convex formula-

tion for max-min problem with a polynomial time algorithm

has not be obtained, hence it will not be considered.

A. Sketch of the Solution for the Non-Parameterized Case.

In the non-parameterized case, the coefficients Pi and Qi
are constant matrices.

First consider the scalar case, i.e. G,P,Q are scalar valued

functions. In the scalar case denote the numerator and the

denominator with the small letters:

p =

k∑

i=0

pie
−iω q =

k∑

i=0

qie
−iω

The infinity norm is reformulated as a minimization with an

infinite number of constraints (for every frequency ω):

min
p,q

γ subject to

∣∣∣∣G(ω) −
p(ω)

q(ω)

∣∣∣∣ < γ ∀ω,

Here G(ω) denotes the frequency response of G. Multi-

plication of both sides of the inequality with |q(ω)|2 =
q(ω)q∼(ω) yields:

min
p,q

γ subject to

∣∣G(ω)|q(ω)|2 − p(ω)q∼(ω)
∣∣ < γ|q(ω)|2 ∀ω

where operator ∼ denotes an adjoint in H∞ space, i.e.

q∼(z) = qT (1/z). Using the Schur complement properties,

obtain an equivalent formulation:

min
p,q

γ subject to

(
γ|q(ω)|2 G(ω)|q(ω)|2 − p(ω)q∼(ω)

∗ γ|q(ω)|2

)
> 0 ∀ω

where the asterisk denotes the Hermitian transpose of the

upper right element. This program is still not convex in

variables p, q. Denote a = |q|2 and relax the structure of the

polynomial pq∼, i.e. replace pq∼ with b =
∑k

i=−k biz
−i.

Now the program becomes convex in the variables a, b for

any given value of γ, i.e. quasiconvex:

min
γ>0,a,b

γ s.t.

(
γa(ω) G(ω)a(ω) − b(ω)

∗ γa(ω)

)
> 0 ∀ω

(1)

The denominator q∗ is obtained from the spectral factor-

ization problem a∗ = q∗q
∼

∗
as a minimum-phase factor.

If the polynomial a∗ is positive then such a factor exists.

Therefore the positivity of a∗ guarantees the stability of q∗.
The numerator is obtained with a given denominator as:

min
p

‖G− pq−1
∗

‖∞

One could impose the conditions in one LMI using the

KYP lemma ([33]), for example. In this case the number of

constraint will depend on the order of the transfer functionG.
The resulting LMI will therefore provoke heavy calculations,

which will be comparable to solving the Lyapunov equations.

Therefore the norm constraints in (1) will be imposed only

in the finite number of points. The positivity constraint a > 0
should be imposed for all the frequencies, since it guarantees

the existence of a stable approximation.

Note also that the proposed relaxed problem has a follow-

ing property:

(1) = min
a>0,b

‖G− ba−1‖∞ ≥ min
p,q

‖G− pq−1‖H

Since a > 0 the minimization is performed both in stable and

antistable transfer functions, the second inequality follows.

It means that the proposed algorithm is a restricted version

of the Hankel model reduction.

Assume now that G is a m-input m-output model, then

Pi, Qi ∈ R
m×m. Note, that if G is a m1-input m2-output

model, where m1 6= m2, the method is still applicable. The

same scheme as in the single variable case is used. Consider

the problem:

min γ subject to

(G(ω) − P (ω)Q−1(ω))∼(G(ω) − P (ω)Q−1(ω)) < γ2I



Rewrite the matrix inequality in the minimization problem

as:

(G(ω)A(ω)−B(ω))∼(G(ω)A(ω)−B(ω)) < γ2A2(ω) (2)

where a similar to the SISO case variables are introduced

A = QQ∼ and B as a substitute to PQ∼, (i.e. relax the

structure of the latter polynomial). Unlike the single variable

case, here a convex LMI condition can not be derived directly

from (2).

Our goal is to obtain an LMI similar to:

(
γA(ω) G(ω)A(ω) − B(ω)

∗ γA(ω)

)
> 0 (3)

Note, that (3) is convex in the variables A,B, and is always

equivalent to

(G(ω)A(ω)−B(ω))∼A−1(ω)(G(ω)A(ω)−B(ω)) < γ2A(ω)
(4)

due to the Schur complement properties. The difference

between (4) and (2) is the right-hand side polynomial A
in (4). It can not be carried to the left-hand side in order

to obtain (2) due to its matrix structure. The main idea is

to replace one of the matrices A with a scalar bounded

function f(ω), which is obtained by means of optimization.

Also f(ω)I ≤ A(ω) will be valid for all ω’s. The relaxed

matrix inequalities are:

(G(ω)A(ω) −B(ω))∼(f(ω)γ)−1·

· (G(ω)A(ω) −B(ω)) < γA(ω) (5)

f(ω)I ≤ A(ω) (6)

Now the inequality (4) follows after multiplying both sides

of (5) by γf(ω) and then using (6). Also using the Schur

complement from (5) a convex LMI can be obtained.

Finally the relaxed problem is formulated as:

min
f,A,B

γ subject to: A ≥ µI ∀ω ∈ [0, π] (7)

(
γfiI G(ωi)A(ωi) −B(ωi)
∗ γA(ωi)

)
≥ 0

µI ≤ fiI ≤ A(ωi) ∀i = 1, . . . , N

where fi are decision variables and µ is a positive pre-defined

scalar. The reduced model PQ−1 is obtained in a similar

manner to the SISO case.

The error bounds are guaranteed using the following result

in [34]:

Theorem 2.1: Assume γ∗, A∗, B∗, P∗ and Q∗ are obtained

from the reduction algorithm described above with the full

sampling (i.e. the constraints are enforced for all the frequen-

cies ω ∈ [0, π]), then:

1) γ∗ ≥ σkm+1(G)
2) γ∗ ≤ ‖G− P∗Q

−1
∗

‖∞ ≤ (km+ 1)γ∗

σkm+1(G) is the (km+ 1)-th largest Hankel singular value

of G, k is the order of matrix polynomials P,Q and m is

the number of inputs of G.

Note, that for the SISO case γ∗ is also a lower bound for the

general reduction problem (shown in [29]). The variables of

the relaxed problem are chosen as:

A =
k∑

i=1

Aie
iω + A0 +

k∑

i=1

ATi e
−iω, cI ≥ A0 ≥ I

B =

k∑

i=−k

Bie
iω

This form of A polynomial together with positivity of A
guarantees the existence of solution to the spectral factoriza-

tion problem (see, [35]). A0 > I instead of A0 > 0 is used

in order to normalize the calculations. One also may bound

A0 < cI, where c is a constant.

III. MULTIVARIABLE PARAMETERIZED QUASI-CONVEX

OPTIMIZATION APPROACH.

According to the notation in the multivariable reduction

framework, introduce polynomials A and B :

A(ω) =

k0∑

i=−k0

k1∑

l=−k1

Ai,l cos(lθ)e−i ω

B(ω) =

k0∑

i=−k0

k1∑

l=−k1

Bi,l cos(lθ)e−iω

The input data to the algorithm is again a finite number of

samples G(ωi), where i = 1, . . . , N. The relaxed minimiza-

tion problem is set up in the similar to the non-parameterized

case:

min
f,A,B

γ subject to A ≥ µI ∀ω ∈ [0, π]2, (8)

(
γfiI G(ωi)A(ωi) −B(ωi)
∗ γA(ωi)

)
≥ 0, (9)

fiI ≤ A(ωi) i = 1, . . . , N (10)

where fi are also decision variables and µ is a positive scalar.

γNfreq will denote the optimal solution to the problem. In the

case when N = ∞ the optimal solution will be denoted as

γrel.

The next step in the non-parameterized case would be

the spectral factorization of A. However, if there is two or

more frequency variables, the factorization has much stricter

conditions. For a general case such conditions are described

in [36] and for the two dimensional case (one parameter

in our notation) in [37]. The conditions are not convex

in the chosen variables (the coefficients of A and B) and

author was not able to obtain a reasonable relaxation. An

approximate solution to the multivariate spectral factorization

may be found in, for example, [38]. In this contribution the

multivariate spectral factorization problem is avoided and the

obtained approximation is a look-up table of some values of

parameters.

Obtaining a stable approximation can be done in a number

of ways. For a fixed θ, denote A∗ = A(·, θ) and B∗ =



B(·, θ). In both cases it is considered that

P (ω) =

k0∑

i=0

Pi(θ)e
−i ω

• Obtain the denominator Q∗ from the spectral factoriza-

tion problem A∗ = Q∗Q
∼

∗
.

• 1) Obtain the numerator P∗ as the following mini-

mization for every θ :

min
P

‖B∗A
−1
∗

− PQ−1
∗

‖∞

2) Consider the numerator P with Pi continuous with

respect to θ. Obtain the numerator P∗ as:

min
P

max
θ

‖B∗A
−1
∗

− PQ−1
∗

‖∞

Case (1) is equivalent to solving the problem:

δmax−min = max
θ

min
P

‖B∗A
−1
∗

− PQ−1
∗

‖∞ (11)

The cheapest solution is provided by imposing the norm

constraint on a finite number of frequencies ω and solving

the minimization for a finite number of parameter values θ.
Imposing the dependence in the coefficients Pi on parameter

is not possible to authors best knowledge.

Case (2) is equivalent to:

δmin−max = min
P

max
θ

‖B∗A
−1
∗

− PQ−1
∗

‖∞ (12)

Here again the cheapest solution is provided by imposing the

norm constraint for a finite number of frequencies ω and for

a finite number of parameter values θ. Also one may enforce

the coefficients Pi to depend on θ in a particular manner.

As the output of the algorithm two maps are obtained.

In realization mappings Pθ, Qθ can be stored as look-up

tables for required values of θ or one can store polynomials

A and B, and obtain the required Pθ, Qθ when needed.

Some of the properties of the obtained maps are listed in

the next statements. Note, that the results are valid only if

the algorithms are implemented with the full sampling (the

constraints are enforced for all the frequencies ω ∈ [0, π])
Proposition 3.1: Given A and B from the reduction algo-

rithm, then

a) B,A and BA−1 are continuous with respect to the

variable θ.
b) The spectral factor Q(θ) of A is continuous with respect

to θ.
c) Function f(P, θ) = ‖BA−1 − PQ−1‖∞ is continuous

in both P and θ.
d) P (θ) is continuous with respect to θ

Proof:

a) Since B and A are trigonometric polynomials in vari-

able θ the continuity of A,B is trivial. Also A ≥ µI
where scalar µ is predefined, therefore A−1 is continu-

ous in θ. Multiplication of two continuous maps B and

A−1 will also give a continuous map BA−1.
b) Here Theorem 6.2 can be applied. The conditions are

fulfilled, since A ≥ µI and A is a trigonometric

polynomial in ω.

c) Follows directly from the parameterization of P and

statements a) and b).

d) See, Lemma 6.4 in Appendix.

Proposition 3.2: Recall the defined above minimization

programs:

δmax−min = max
θ

min
P

‖B∗A
−1
∗

− PQ−1
∗

‖∞

δmin−max = min
P

max
θ

‖B∗A
−1
∗

− PQ−1
∗

‖∞

Then δmin−max = δmax−min.
Proof: In general min

x
max
y

f(x, y) ≥ max
y

min
x
f(x, y),

hence δmin−max ≥ δmax−min To prove δmin−max ≤
δmax−min take a solution of

δmax−min = max
θ

min
P

‖BA−1 − PQ−1‖∞

denote it as P∗. By Proposition 3.1 every coefficient of

the transfer function P∗ is continuous with respect to θ.
Therefore the transfer function P∗ is continuous with respect

to θ. The conditions ‖B∗A
−1
∗

− PQ−1
∗

‖∞ ≤ δmax−min are

also satisfied for every θ as a solution to max-min problem.

Therefore P∗ lies in the set of variables of min-max problem

and δmax−min ≥ max
θ

‖B∗A
−1
∗

− PQ−1
∗

‖∞ ≥ δmin−max.

IV. ERROR BOUNDS AND CONTINUITY

The main result of this contribution are the theoretical

properties of the approximations.

Theorem 4.1 (Error Bounds and Continuity of Solution):

Consider the algorithm described in the previous section

with the full sampling (the constraints are enforced for all

the frequencies ω ∈ [0, π]). The following statements hold:

1) The reduced model PQ−1 is a continuous with respect

to θ map.

2) γmax−min ≤ γmin−max
γNfreq ≤ γrel ≤ γmin−max

3) max
θ
σkm+1(G) ≤ γrel ≤ max

θ
‖G − P∗Q

−1
∗

‖∞ ≤

(km+ 1)γrel

where σkm+1(G) is the (km+1)-th largest Hankel singular

value of G, k is the order of matrix polynomials P,Q and

m is the number of inputs of G.
Proof:

1) Maps P,Q are continuous with respect to θ as shown in

Proposition 3.1. Since Q(ω, θ) does not have zeros, it is

invertible and its inverse is also continuous. Therefore

the PQ−1 is continuous.

2) Shown by construction.

3) σkm+1(G) ≤ γrel is satisfied for every θ since γrel is

the solution to a restricted Hankel model reduction.

Therefore by taking the maximum over all θ the

inequality is achieved.

As Theorem 2.1 states γrel ≤ ‖G − P∗Q
−1
∗

‖∞ ≤
(km + 1)γrel for every parameter value θ, where

P∗, Q∗ are obtained using the proposed algorithm.



Denote Ĝ− the antistable part of B∗A
−1
∗
. Since ‖G−

B∗A
−1
∗

‖∞ ≤ γ, by the celebrated AAK theorem:

‖Ĝ−‖H ≤ γ ⇒ ‖Ĝ− +K‖∞ ≤ kmγ

There exists a matrix K(θ) such that the infinity norm

bound is also satisfied. By triangular inequality:

‖G− P∗Q
−1
∗

‖∞ ≤ ‖G− P∗Q
−1
∗

−G− −K‖∞+

+ ‖G− −K‖∞ ≤ (km+ 1)γrel

Since

‖G− P∗Q
−1
∗

−G− −K‖∞ ≤ ‖G−B∗A
−1
∗

‖∞

After taking the maximum over θ and using Proposi-

tion 3.2 the result follows.

Note, that for the case m = 1 the value γrel is a lower bound

for the model reduction, i.e. γrel ≤ γmin−max.

V. NUMERICAL EXAMPLE

Implementation issues and numerical complexity estimates

are presented in [23], [28]. Few more numerical examples

are presented in [32]

A. Deformable Mirror Modeling

The following model was studied in [39] and obtained by

means of a finite element modeling approach that resulted in

a system of second-order differential equations:

Iẍ+ Λ2ẋ+ ψΛ = Fu, y = FTu

where a model has 420 sensors and actuators, 2000 states,

and the friction coefficient ψ is chosen as a modeling

parameter. The model is discretized in order to apply the

described method.

The control problem in [39] is solved in a decentralized

fashion. Based on the actuator and sensor topology it is

assumed that a 2 input 8 output model is decoupled from

the rest of the system. The objective is to obtain a family of

low-order models that depend on ψ ∈ Ψ = [0.01, 0.06]. The

frequency response samples are calculated for ψ = 0.01,
0.02, 0.03, 0.04, 0.05, 0.06 (the training grid). The order

of polynomials is chosen to k = (8, 2), i.e. the frequency

component would have a rational dependence of order 8,
and ψ would enter with order 2 in to the reduced model. The

validation grid is chosen to ψ = 0.015, 0.025, 0.035, 0.045,
0.055. The approximation error on the training grid is 2.06%
of max

ψ∈Ψ
‖G‖∞ and on the validation grid is 7.14%. The

frequency responses of the approximations and the original

models for one entry on the training and the validation grid

are shown in Fig. 1.
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VI. CONCLUSION

A multivariable extension of a known method have been

presented. The properties of approximations were investi-

gated. The continuity of the approximations with respect to

the parameter is shown. Also the error bounds for the method

are presented, which are valid for the scalar valued transfer

function approximations, as well. A numerical example is

presented in order to validate the theoretical results.

APPENDIX

The following two theorems will be used in this section:

Theorem 6.1 (Weisstrass’ theorem [40]): Consider a

closed proper function f : R
n → (−∞,∞], and assume that

there exist a scalar α such that the level set {x
∣∣ f(x) < α}

is nonempty and bounded. Then the set of minima of f
over R

n is nonempty and compact.

Theorem 6.2 (Continuity of spectral factorization [41]):

Let Ai(e
ω) = I + Mi(e

ω), i = 1, 2 be two positive

definite Hermitian matrices defined on −π ≤ ω ≤ π with

‖Mi(e
ω)‖∞ ≤ q < 1

Let Q1, Q2 be the associated normalized, minimum

phase, stable spectral factors. Assume in addition that

dMi(e
ω)/deω ∈ Ln×n2 for i = 1, 2. Then there exists some

K̃ dependent only on q and ‖dMi(e
ω)/dω‖2 such that:

‖Q1 −Q2‖∞ ≤ K̃‖M1 −M2‖
1/2
∞



The next lemma is a generalization from the scalar case.

Lemma 6.3: If A,B,Q are obtained from the program (8-

10) and P is obtained from min
P

‖BA−1−PQ−1‖∞ for given

A,B,Q then for every i the coefficients Pi are uniformly

bounded on θ.
Proof: First show that for a fixed θ the coefficients Ai

are bounded. Consider the positivity constraint:

k∑

i=1

Ai(cos(iω) +  sin(iω)) +A0+

+
k∑

i=1

ATi (cos(iω) −  sin(iω)) > 0 ∀ω

Now multiply both sides with 1 + cos(lω) for l ≤ k, and

integrate on the interval [0, π]. All the terms will cancel

themselves out except:

2π∫

0

(Al +ATl ) cos2(lω)dω > 2πA0

and for any l :

Al +ATl ≥ −2cI

Here cI ≥ A0 is a constraint on A. In a similar way (just

by multiplying with 1 − cos(lω) or 1 ± sin(lω)) it can be

shown that:

2cI ≥ Al +ATl ≥ −2cI

2cI ≥ (Al −ATl ) ≥ −2cI

and hence σ(Al) ≤ 2c. Therefore Al is bounded for all l,
and the bound does not depend on θ, hence it is uniform.

Now prove that the function A is uniformly bounded on

θ.
∥∥∥∥∥

k∑

i=1

(Ai +ATi ) cos(iω) +A0+

+

k∑

i=1

(Ai −ATi ) sin(iω)

∥∥∥∥∥
∞

≤

k∑

i=1

‖Ai +ATi ‖2 + ‖A0‖2 +

k∑

i=1

‖Ai −ATi ‖2 ≤

≤ 2ck + c+ 2ck = (4k + 1)c

From the inequality ‖G − BA−1‖∞ ≤ γ get a bound for

every frequency ω :

σ(BA−1) ≤ γ + σ(G) ≤ γ + κ

where max
θ

‖G(·, θ)‖∞ ≤ κ. The bound on P polynomial is

derived from the inequality ‖BA−1 − PQ−1‖∞ ≤ δ :

σ(P ) ≤ σ(Q)(δ + σ(BA−1)) ≤ σ(Q)(δ + γ + κ) ≤ ∆

Since A is uniformly bounded, then the spectral factor Q
will also be uniformly bounded on θ, therefore ∆ does not

depend on θ. Multiplying by 1± cos(lω) for 0 ≤ l ≤ k and

integrating on the interval [0, π] :

σ




2π∫

0

P (1 + cos(lω))dω



 ≤ 2π∆

σ




2π∫

0

P (1 − cos(lω))dω


 ≤ 2π∆

Performing the integration over ω and using the orthogonality

of cosines and sines gives:

σ (P0) ≤ ∆/2

σ (Pl) ≤ 2∆, for l ≥ 1

Note that ∆ does not depend on θ providing a uniform bound

on θ.

Lemma 6.4: Denote

x = vec ([P0, · · · , Pk]
T )T

P = x · vec ([I, Iz−1, · · · , Iz−k]T )

f(x, θ) = ‖B(ω, θ)A−1(ω, θ) − P (ω, x)Q−1(ω, θ)‖∞

γ(θ) = min
x
f(x, θ)

P(θ) = argmin
x

f(x, θ)

If A,B,Q are continuous with respect to θ and Q(·, θ) ∈
H∞ then:

a) P(θ) is a compact set for every θ. Also the level sets

Lα = {(x, θ)
∣∣ f(x, θ) ≤ α} are compact for a fixed α.

b) Consider a sequence {θk} with a limit θ∗ ∈ dom (γ),
then γ(θk) → γ(θ∗). Moreover for every sequence

{xk}, such that xk ∈ P(θk) for every k, all the limit

points x∗ lie in P(θ∗).
c) γ(θ) is continuous with respect to θ.

Proof: The proof and the statement itself are based on

ideas from [40, p. 158].

a) Note that Lα is bounded according to Lemma 6.3. The

fact that Lα is closed follows from the continuity of

f with respect to x and θ (shown in Proposition 3.1)

and the definition of Lα. Then using the Weierstrass

theorem (Theorem 6.1) yields that P(θ) are compact

for every θ. Note that the objective function satisfies

the conditions of the theorem.

b) Consider a sequence {θk} → θ∗ and a sequence xk ∈
P(θk). Consider a scalar α such that γ(θ∗) < α. Then

for a sufficiently big k : f(xk, uk) ≤ α. Hence the

sequence {xk} is bounded and there exist a limit point

x∗. The point:

{x∗, θ∗} ∈ Lα = {(x, θ)
∣∣ f(x, θ) ≤ α}

Since {xk, θk} ∈ Lα and Lα is compact. Since it is

true for an arbitrary number α such that γ(θ∗) < α, the

inequality is valid:

f(x∗, θ∗) ≤ α⇒ f(x∗, θ∗) ≤ γ(θ∗)



And finally by definition of γ(θ∗) the statement is

proved:

x∗ ∈ P(θ∗)

c) For any θk a convergent sequence xk ∈ P(θk) may

be chosen (as in the previous statement). Then for

sufficiently big k there exist ε > 0 such that:

|f(xk, θk) − f(x∗, θ∗)| < ε

Due to the continuity of f with respect to both variables

x and θ. Since γ(θk) = f(xk, θk), and γ(θ∗) =
f(x∗, θ∗) the continuity of γ is proved.
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