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Doctoral Thesis

The thesis will be publicly defended on Thursday 4th of June 2009,
10.30 in lecture hall C, Center for Chemistry and Chemical

Engineering, Lund

The faculty opponent is Dr Alexey Kabalnov,
Hewlett Packard, San Diego, USA



c� Christoffer Åberg 2009
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Chapter 1

Introduction

A basic assumption of classical transport theory is that the flux is pro-
portional to the driving force for transport. This is reflected in Fourier’s
law of heat conduction, Ohm’s law of electric conduction, or — more
important for the present subject matter — Fick’s law of diffusion. This
assumption has been formulated in a systematic fashion within the frame-
work of the theory of irreversible thermodynamics.1–3 It also emerges
from kinetic theory based on the Boltzmann equation,4–6 or (at least
for the case of diffusion) from considerations based upon the theory of
stochastic processes.7,8

Classical transport theory is well established and has, from an ap-
plication point of view, found a solid existence as part of chemical en-
gineering.9 Within science the development, in contrast, has focused
on abstract mathematical models, describing e.g. self-organization and
pattern formation.10,11

The work described in this thesis concerns theoretical studies of mole-
cular transport due to diffusion. As such, it is also based upon the classi-
cal assumption of a proportionality between flux and driving force. The
novelty rather is to be found in the analysis of how the structure of the
system reacts to the presence of the transported molecular species. This
is included within the framework of the theory of irreversible thermody-
namics, with its assumption of a local thermodynamic equilibrium. How-
ever, the classical examples are often (implicitly) systems with a static
structure. In contrast, amphiphilic systems show an amazing diversity
in structure as a function of control parameters such as temperature,
solvent concentration and the presence of cosolvents or cosolutes.12–15

It is therefore expected that diffusive transport in amphiphilic systems
can have significant effects on the local structure. Furthermore, follow-
ing a structural change, the transport properties typically also changes.
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This provides a feedback mechanism, and effectively couples the local
structure with the diffusion process.

A case that can have particular striking effects is when the system
has a propensity of undergoing an internal phase separation. A phase
transformation can then be driven by the diffusion process, providing
a rather extreme example of structural changes due to transport. As
the transport properties often change dramatically with a phase change,
structure and transport is particularly strongly coupled for these systems.

The focus of the work described in this thesis is precisely on the
interplay between structure and transport, as exemplified by a number
of different amphiphilic systems. A background to, and discussion of, this
work is given in the following chapters. The exposition is incremental,
going from the simpler cases to the more complex, and involves some
specific applications. The appendices, finally, collect the papers on which
this thesis is based.



Chapter 2

Diffusion

This chapter starts the main text with a discussion of what is actually
meant with the term diffusion. For the expert reader we note that the
subject matter of this thesis concerns diffusive transport, rather than
the related concepts of self-diffusion and intradiffusion. The physical
picture is most transparent in the case of gases, and we illustrate the
mechanism with an example of gaseous diffusion. However, we have to
be a bit careful to distinguish the diffusive mode of transport from other
mechanisms, e.g. bulk flow.

We continue with the more complicated case of diffusion in liquids. In
contrast to the case of gaseous diffusion, there is as of yet no satisfactory
microscopic theory of liquid diffusion. This has implications for how
we formulate the basic laws of diffusion for the strongly heterogeneous
systems discussed in this thesis. Fortunately, it is possible to make an
educated ansatz on how to describe diffusion that covers the cases we
are interested in. We also spend some time discussing the concept of
permeability that will prove useful in the following.

This chapters finishes with a discussion of diffusion through the com-
plex structure found at the alveolar interface in the human lung (paper
I). This example illustrates many of the points in this chapter: the differ-
ence between diffusion and bulk flow, the diffusion law and permeabilities
in heterogeneous systems.

2.1 The Physical Mechanism

2.1.1 Qualitative Picture

A classical example of a diffusion process is the spreading of perfume
in a room where the air is still. For the purpose of our discussion it is
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not important whether the perfume emanates from an open bottle or a
person, but in the name of visualisation the reader is asked to imagine
the perfume spreading from the skin of a person of prefered gender.

Close to the skin, at the place of application of the perfume, there
are a certain amount of ‘perfume molecules’ present in the air. Like all
molecules in the room, they are in constant motion. Due to this motion,
they collide with each other and change direction often. A reasonabe
first description is that they change direction so often that the motion
of a molecule is essentially random. Therefore, every now and then a
molecule close to the skin moves a bit further away. The opposite process
also occurs, i.e. every now and then a molecule that happens to be a bit
further away from the person moves a bit closer. In many cases it is
reasonable to assume that it is equally likely for a given molecule to be
heading in either direction. However, there is a clear assymmetry in
the sense that there are initially many more perfume molecules close to
the skin than further away. The result is — even though all directions
are equally likely for a single molecule — a net transport of perfume
molecules away from the skin. Eventually the perfume molecules fill upp
the whole room with a uniform concentration. At this point, molecules
still move equally likely in either direction, but since the concentration
is uniform, no net transport occurs.

The net transport of molecules that occurs due to an assymmetrical
concentration distribution, exemplified above with the spreading of per-
fume, is what one refers to as diffusion. We emphasise the point that
there is no inherent ‘desire’ of a single molecule to move in the direc-
tion of transport. Rather individual molecules move in either direction
equally likely. It is simply the net effect of having more molecules in a
certain place initially that brings about a net transport.

2.1.2 Quantitative Picture

The picture of diffusion given above is essentially a description of a ran-
dom walk7,8 performed by an individual molecule. We can make this
description quantitative by dividing the room into small cubes and con-
sidering the probability, P (n� t), that a given molecule is within a certain
cube n at time t. For simplicity we only consider one dimension. The
probability that a molecule is found in cube n then changes due to four
processes: a molecule entering cube n from the left or the right, or a
molecule that already is in cube n exiting in either direction. The prob-
ability of entering cube n is proportional to the probability that there
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is a molecule in the neighbouring cube. Similarly, the probability of ex-
iting cube n is proportional to the probability that there is a molecule
in cube n. The assumption that a molecule moves equally likely in ei-
ther direction then implies that the change in probability during a small
time-interval dt is

dP (n� t+ dt) = wdt
�
P (n− 1� t)− 2P (n� t) + P (n+ 1� t)

�
(2.1)

where wdt is the probability of moving. The factor 2 in Eq. (2.1) comes
about since a molecule in cube n can either exit to the left or to the
right. Equation (2.1) can be rewritten

dP (n� t+ dt)

dt
= w(Δz)2

P (n− 1� t)− 2P (n� t) + P (n+ 1� t)

(Δz)2
.

where Δz is the size of the cubes. If the cubes are made sufficiently
small, the fraction in the right-hand side becomes an approximation of
the second order derivative ∂2P (z� t)/∂z2, and we find

∂P

∂t
= w(Δz)2

∂2P

∂z2
(2.2)

Equation (2.2) describes how the probability of finding a single mole-
cule at position z at time t evolves in space-time. We are more interested
in the concentration, ci(z� t), of the molecular species i at position z and
time t. We assume that the concentration is proportional to the proba-
bility of finding a single molecule, and Eq. (2.2) therefore implies

∂ci

∂t
= Di

∂2ci

∂z2
. (2.3)

Equation (2.3) is called the diffusion equation, and Di = w(Δz)2 the
diffusion coefficient.

A classical solution of the diffusion equation is for the case when the
diffusing substance is initially present within a very small region around
the origin, z = 0, and subsequently spreads throughout all space. This
solution is16

ci(z� t) =
const
√
Dit

exp
�
−z2/4Dit

�
. (2.4)

To return to our earlier example, this could describe the rather idealised
case of perfume spreading around an infinitely thin man seated at the
origin of an infinitely large room.

A characteristic of the diffusion equation, Eq. (2.3), is the first-order
temporal and second-order spatial dependence. This is also reflected
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in the argument to the exponential of the solution in Eq. (2.4). A
characteristic feature of diffusion is therefore that molecules spread such
that the distance is proportional to the square root of time

z ∝
�
Dit (2.5)

in contrast to classical applications of Newton’s second law to linear
motion or free fall due to gravity. Though being based on the idealised
solution in Eq. (2.4), Eq. (2.5) provides a good rule of thumb to estimate
the effect of diffusion. We will exemplify this in the next section.

2.2 Diffusion and Bulk Flow

Though there was no major emphasis on it, a fundamental assumption
in the discussion of perfume spreading, is that the air in the room is still.
In practice, it is utterly impossible to prevent small winds of air blowing
through a room of reasonable size. In fact, the major mode of molecular
transport for the case of perfume is via bulk flow, i.e. these air winds, and
diffusion is negligible. We reach this conclusion by using numerical values
in Eq. (2.5). The diffusion coefficient in gases at atmospheric pressures
is of the order of Di = 10�5 m2/s.17 Therefore the characteristic time for
a perfume molecule to reach a nose but one decimeter away from the skin
is of the order of t = 103 s, or around 15min� This time-scale is clearly in
opposition to practical experience, and we conclude that diffusion cannot
be the main mode of transport for this example.

This conclusion begs the question: when is diffusion important? One
example is respiration in small organisms.18 If the organism is sufficiently
small, O2 taken up from the air is transported within the organism suf-
ficiently rapid via diffusion. The same conclusion holds for CO2 being
transported in the opposite direction. We will get back to this in sec-
tion 2.4.3, when discussing diffusion across the alveolar interface in the
human lung.

The papers included in this thesis serve as other examples where
diffusion is important. In general, diffusion is an important mode of
transport at mesoscopic length-scales and below. We furthermore note
that even in the presence of bulk flow, mixing of two molecular species,
by definition (see below), occurs as a result of diffusion.
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2.2.1 The Equation of Continuity

In order to make the considerations quantitative, we have to be able
to separate transport due to diffusion from transport due to bulk flow.
The basis of such a separation is the equation of continuity (here in one
dimension) for the total mass density ρ

∂ρ

∂t
+

∂

∂z
(ρv) = 0. (2.6)

Here both ρ and v are, in general, functions of both position, z, and time,
t. The velocity v that enters Eq. (2.6) is the total momentum per unit
mass at the position z, and can be interpreted as the local velocity of the
system.19

An equation of continuity can also be written down for the mass
density, ρi, of each molecular species

∂ρi

∂t
+

∂JTot
i

∂z
= 0. (2.7)

where JTot
i is the total mass flux of component i, composed of contri-

butions due to bulk flow as well as diffusion. From the condition that
there is no mixing of the components in the absence of diffusion, the only
possible separation of bulk and diffusive flux is to write19

JTot
i = ρiv + Ji (2.8)

where Ji denotes the diffusive flux. Equation (2.7) then becomes

∂ρi

∂t
+

∂

∂z
(ρiv + Ji) = 0. (2.9)

We note that since the total mass flux, ρv, must be equal to the sum of
the total mass fluxes of the individual components, JTot

i , it follows that
the diffusive fluxes sum to zero

�

i

Ji = 0.

It is obvious that an equation of continuity can equally well be written
down for a concentration (in, say, number of moles of a molecular species
per volume), rather than a mass density, viz

∂ci

∂t
+

∂

∂z
(civ + Ji) = 0 (2.10)
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where Ji in Eq. (2.10) is the molecular flux, rather than mass flux, per
unit area and time.

Equation (2.9) represents the separation of bulk flow and diffusive
transport that we sought. This separation is also apparent in Eq. (2.9)
and (2.10), which provides the starting point for considerations of com-
bined diffusive transport and bulk flow.

2.2.2 On Different Definitions of the Bulk Velocity

The separation between bulk flow and diffusion presented in the preceed-
ing section is, actually, often not the unique choice. The considerations
above are based on the equation of continuity, Eq. (2.6), for the total
mass density. The reason for this choice is that an equation of motion for
the total momentum per unit mass, v, can be derived as a continuum gen-
eralization of Newton’s second law. Depending on auxiliary assumptions
the resulting equation of motion could be the Euler equation for ideal
fluids, the Navier-Stokes equation for viscous fluids, or a more general
equation.19

In practical considerations it is instead not uncommon to define the
diffusive flux with respect to a different reference velocity, like e.g. the
total number of particles per unit volume, rather than the total momen-
tum per unit mass, v.9,17 A theorem, originally due to Prigogine, states
that such a redefinition does not cause any problem for many cases of
practical interest.1

2.3 The Driving Force for Diffusion

2.3.1 Fick’s First Law

In section 2.1.2 we derived an equation for the how the concentration
profile of a molecular species changes with time due to diffusion. Com-
paring this with the equation of continuity, Eq. (2.10), in the absence of
bulk flow (i.e. v = 0) we can identify the diffusive flux as

Ji = Di
∂ci

∂z
. (2.11)

Equation (2.11) was originally proposed by Fick,20 in analogy with Four-
ier’s law of heat conduction, and is known as Fick’s first law16,17 (the
diffusion equation, Eq. (2.3), is sometimes referred to as Fick’s second
law). It states that the diffusive flux is proportional to a gradient in
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concentration. The concentration gradient thus acts as a driving force
for diffusion, which in many cases is a reasonable first approximation.

In this text we have given a derivation of Fick’s first law, Eq. (2.11),
rather than postulating it. A derivation has the advantage that it might
easier to investigate its validity. The main assumptions used in the
derivation of Eq. (2.11) were that a molecule moves on the average
equally often in either direction, and that the concentration of a mole-
cular species can be found by studying the probability distribution of a
single molecule. It is clear that bulk flow is one occasion when molecules
has a bias to move in a particular direction, i.e. in the direction of the
bulk flow. This can actually be incorporated into the derivation, and
leads to an equation with the exact form of Fick’s first law, Eq. (2.11),
inserted into the equation of continuity, Eq. (2.10).

A more serious problem has to do with correctly accounting for in-
teractions among molecules. The random walk picture is based on colli-
sions, i.e. a form of intermolecular interaction, in order for a stochastic
treatment to be valid at all. However, both assumptions on which the
derivation was based breaks down in the presence of strong intermolecu-
lar interactions: a single molecule could potentially have a bias to move
in a particular direction, and the individual molecules do not move in-
dependently. It is not clear how to generalize the analysis for this case.

In a phenomenological approach, one can account for interactions
simply by letting the diffusion coefficient in Fick’s first law, Eq. (2.11),
depend on concentration, and using experimental data. Such a proce-
dure, however, obviously lacks some predictive power. The ideal situa-
tion would be a theory which can relate the diffusion coefficient to more
fundamental parameters. For gases, kinetic theory4–6 provides a such
a theory. At least for dilute gases it is possible to calculate diffusion
coefficients from the interaction potential between molecules.4 For com-
plicated potentials this likely has to be done numerically, but, at least
in principle, the diffusion coefficients can thereby be written in terms of
more fundamental interaction parameters. For liquids the situation is
worse. Reference 21 reviews numerous attempts at relating the diffusion
coefficient to more fundamental parameters, or to other parameters like
e.g. the viscosity or the self-diffusion or intradiffusion coefficients22 (see
section 2.3.3 below). However, no clear answer has emerged from these
studies.

In spite of the described difficulties, there exists limiting cases where
one can make reasonable assumptions. An important example is the di-
lute solution limit, when one component, the solute, is present in small
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amounts compared to another, the solvent. In that case, there are cer-
tainly interactions among molecules. However, due to the high dilution
solute-solute interactions are negligible, and the solute-solvent interac-
tions are essentially equal everywhere. It is therefore reasonable that Eq.
(2.11), with a constant diffusion coefficient, will prove valid in this limit.
On the other hand, we expect that the diffusion coefficient will be signif-
icantly altered due to solute-solvent interactions. Indeed, the diffusion
coefficient in liquids is around four orders of magnitude smaller than in
gases.17

2.3.2 A Generalised Fick’s First Law

A common theme of the work presented in this thesis is diffusive trans-
port between regions of profoundly different characteristics, like from a
gas phase to a liquid phase (paper I,II,V), or an aqueous phase to a sur-
factant (or lipid) bilayer (paper I-V). One quickly realises that Fick’s
first law of the form given in Eq. (2.11) is inadequate for these cases. As
an example, take the case of air and an aqueous solution. At equilibrium
the air is saturated with water. However, in terms of concentrations it
is clear that the water concentration in the gas phase is orders of mag-
nitude lower than the concentration of water in pure water. According
to Fick’s first law, Eq. (2.11), there would therefore be driving force for
diffusion of water from solution to a gas phase — even at equilibrium�

One possible solution to this problem is to explicitly deal with the
discontinuity of the concentration at an interface, and otherwise assume
the validity of Fick’s first law within each phase. At the interface one
assumes that the concentration in, say, a gas phase is related to the
concentration in a liquid phase by a solubility parameter/partition coef-
ficient, Ki

ci(gas) = Kici(aq). (2.12)

Another possibility is the recognition that the driving force for diffu-
sion is a gradient in chemical potential rather than a gradient in concen-
tration. This is also the approach taken within the theory of irreversible
thermodynamics.1–3 Within a phase, there is a gradient in chemical po-
tential if and only if there is a gradient in concentration, so for this case a
redefinition of the driving force does not matter. In contrast, the chemi-
cal potentials in two phases are equal at equilibrium, so formulating the
driving force as a gradient in chemical potential correctly predicts the
absence of diffusion across an interface at equilibrium.
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In the majority of the work presented in this thesis, a generalised
Fick’s first law on the form23

Ji = −
Di

RT
ci
∂µi

∂z
(2.13)

was used. The motivation for Eq. (2.13) is that the molecular flux ought
to depend on three factors: i) a driving force, the chemical potential
gradient ∂µ/∂z ii) the number of molecules able to diffusive, the local
concentration c iii) a molecular mobility, the diffusion coefficent D (the
denominator RT has to be added for reasons of dimensional consistency).
In the dilute solution limit, the chemical potential of the solute can be
approximated by the ideal solution contribution

µi = µθ
i +RT ln ci (2.14)

which inserted into the generalised Fick’s first law, Eq. (2.13)

Ji =
Di

RT
ci

∂

∂z
(RT ln ci) =

Di

RT
ci
RT

ci

∂ci

∂z
= Di

∂ci

∂z
�

shows that the generalised Fick’s first law, Eq. (2.13), reduces to the
classical Fick’s first law, Eq. (2.11), in the limit where we expect the
latter to be correct.

Formulating Fick’s first law in terms of a chemical potential gradient,
also makes the analogy between heat conduction and diffusion more clear.
Fourier’s law of heat conduction states that the heat flux is proportional
to a gradient in temperature. Just like chemical potential, temperature is
an intensive thermodynamic variable, and it is also continuous across an
interface at equilibrium (an intensive thermodynamic variable with these
properties is sometimes called a field variable,24 in contrast to intensive
variables like density or concentration). The fact that the concept of
chemical potential seems more elusive than temperature in everyday life
might be a factor behind this historical inconsistency.

2.3.3 SelfDiffusion and Intradiffusion

A somewhat particular case of diffusion is a single-component solution
containing a small amount of labelled, but otherwise identical, molecules.
It is possible to setup a concentration gradient in the labelled molecules.
The system can then be at thermodynamical equilibrium, but still show
a diffusive flux in the labelled molecules. (Following the nomenclature
of Albright and Mills21,25) this is refered to as the self-diffusion of that
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molecular species. The generalisation to multi-component systems, with
a concentration gradient in labelled molecules of one of the components,
is called intradiffusion.

In the dilute solution limit, the diffusion coefficient and the intradiffu-
sion coefficient of the solute approaches the same value.21 Intradiffusion
coefficients are therefore useful as estimates of the diffusion coefficient
for dilute solutions.

2.4 SteadyState Diffusion in Composite Systems

2.4.1 The Steady State

The concept of steady state prevails throughout the work described in
this thesis (and is consequently included in the title). The canonical
example is a membrane separating two solutions, as in Fig. 2.1. The
concentration (or, more generally, the chemical potential) of a solute is
different in the two solutions, and the solutions are mechanically stirred
so as to ensure a uniform concentration in each solution. The gradi-
ent drives diffusive transport across the membrane. Eventually trans-
port of the solute results in the concentration being equal in the two
solutions. However, if the two solutions are sufficiently large (in math-
ematical terms: infinite) compared to the membrane, asymptotically a
well-defined state is reached in which the concentration within the mem-
brane is constant in time. In this state, solute is continuously being
transported through the membrane, but as long as the same amount en-
ters that exits, the local concentration is constant. This state is referred
to as steady. A neccessary condition for its appearance is that the two
solutions are much larger than the membrane, and that the concentra-
tion is kept uniform within them; these properties are commonly implied
by usage of the word reservoir.

In mathematical terms, the steady state is characterized by a van-
ishing of the time-derivative. In the simplest case the diffusion equation,
Eq. (2.3), holds, and the steady state reads

0 =
∂ci

∂t
= Di

∂2ci

∂z2
(2.15)

i.e. the concentration profile within the membrane is linear at steady
state

ci(z) = ci0 + (ciL − ci0)z/L



2.4 Steady-State Diffusion in Composite Systems 13

Figure 2.1: A membrane separating two reservoirs of constant concen-
tration ci0 and ciL, respectively. The direction of diffusive transport is
along the z direction, and L denotes the thickness of the membrane.

where ci0 and ciL are the concentrations at either side of the membrane,
and L the membrane thickness. Clearly, a more complicated behaviour
is expected for a diffusion process not described by Fick’s first law, Eq.
(2.11), or if the diffusion constant depends on concentration. Either way,
the assumption of steady-state is an enormous simplification in that the
diffusion equation, Eq. (2.3), which is a partial differential equation, is
converted to an ordinary differential equation.

Of course, assumption of a steady state should not be done purely
of mathematical convenience, if the physical situation does not justify
it. In many cases, however, this assumption is justified. Reference 16
discusses this in more detail. However, already Eq. (2.5) provides a
simple estimate of the time-scale, by using the size of the membrane for
z. We also note that one can explicitly ensure steady-state conditions
in an experimental setup (as done in the experimental work reported in
paper III and IV).

2.4.2 The Permeability

For steady-state transport, the concept of permeability proves particu-
larly advantageous. In the simplest case, the permeability of a membrane
to a diffusing component is defined as the diffusive flux divided by the
concentration difference17

Ji = −Pi(ciL − ci0). (2.16)
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From Fick’s first law, Eq. (2.11), the permeability of the diffusion process
described in the preceeding section therefore is

Pi = Di/L

The advantage of utilizing the concept of permeability is that for a com-
posite membrane made up of different layers of permeability Pi, the total
permeability can be written16

1

Pi

=
�

j

1

Pij
(2.17)

as is easily shown from its definition.
Above we discussed how Fick’s first law in its classical form, Eq.

(2.11), is inadequate in many cases, as e.g. for diffusion across two phases,
or for diffusion between an aqueous phase and a surfactant (or lipid) bi-
layer. In particular, Eq. (2.16) is formulated in terms of a concentration
difference, rather than the real driving force, the chemical potential gra-
dient. In spite of this, it is often convenient to keep a description in
terms of concentrations. This is possible if one is a bit careful, as we will
now exemplify.

We consider for definiteness diffusion across a surfactant bilayer and
an aqueous film, as in Fig. 2.2. This case does not only serve as an il-
lustration, but will also be important for us in the following. In defining
the permeability we have to make a definite choice of a reference con-
centration. We choose to use aqueous concentrations, which is an actual
concentration within the aqueous film, b < z < b + w. This is not case
within the bilayer region, 0 < z < b. However, there exists a well-defined
hypothetical aqueous concentration, related to the actual concentration
by a partition coefficient (cf. Eq. (2.12))

ci(bilayer) = Ki(bilayer,aq)ci(aq). (2.18)

For a dilute solution the partition coefficient is given in terms of the
standard chemical potentials µθ

i by

RT lnKi(bilayer,aq) = µθ
i (aq)− µθ

i (bilayer).

The permeability is then defined in terms of aqueous concentrations,
viz

Ji = −PiΔci(aq).



2.4 Steady-State Diffusion in Composite Systems 15

Figure 2.2: A bilayer and an aqueous film, of thickness b and w, respec-
tively. This could be the repeat unit of a lamellar phase, but for now we
view it simply as it is.

From the generalised Fick’s first law, Eq. (2.13), it then follows in the
dilute solution limit that the permeability can be written

1

Pi

=
w

Di(aq)
+

b

Ki(bilayer,aq)Di(bilayer)
. (2.19)

in analogy with Eq. (2.17). Equation (2.19) has a simple interpreta-
tion in the limit when the diffusing molecule is strongly hydrophilic,
Ki(bilayer,aq)� 1, and prefers the aqueous region. In that case the first
term of the right-hand side of Eq. (2.19) is negligible in comparison with
the second, and the total permeability is dominated by the effect of the
bilayer. An analogous conclusion can be reached for the opposite case
when the diffusing molecule is strongly lipophilic, Ki(bilayer,aq) � 1,
and prefers the bilayer.

For a general composite system, the permeability of an individual
layer is given by Pi = KiDi/l, with respect to a certain reference con-
centration. The total permeability then conveniently fulfills Eq. (2.17).
However, it should be obvious that the permeabilities of individual layers
has to be defined with respect to the same reference system.

2.4.3 Diffusion in the Human Lung

In section 2.2 we discussed how the metabolic gases O2 and CO2 can
be transported efficiently enough by diffusion in smaller organisms. In
contrast, for a larger organism, diffusion is inadequate and a system, like
e.g. the human cardiovascular system, has to be developed in order to
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Figure 2.3: A comparison of two structures for the lipid region of the
alveolar interface. In both cases, the left side represents the gas phase in
the lungs. O2 is transported from the gas phase towards the capillaries,
whereas CO2 follows the opposite direction. (a) Lamellar arrangement
of stacked bilayers, with a monolayer facing the gas phase. (b) Tubular
network, where the monolayer is connected to a bilayer reservoir.

transport the metabolic gases to and from all cells.18 In humans, O2 and
CO2 are transported by bulk flow in both the lungs and the blood vessels.
However, across the thin interface between the gas phase in the lungs and
the liquid phase in the blood vessels, transport occurs via diffusion. This
interface is located in the smallest constituents of the lung, the alveoli.
The smallest blood vessels, the capillaries, intersperse around the alveoli,
more in the form of a net than individual tubes.26

The alveolar interface in contact with the gas phase is covered by a
fluid layer composed mainly of lipids, but also some proteins.27 Closest
to the gas phase a lipid monolayer is found,27 whose main function is the
reduction of the surface tension of the alveolar interface. This is phys-
iologically beneficial since it reduces the work of changing the alveolar
volume during respiration.26,28 There are also other benefits of the lipid
monolayer (see paper I).

Beneath the lipid monolayer, there is a reservoir of lipids that serves
as a depot for the lipid monolayer. The structure of this lipid reservoir is
refered to as tubular myelin.27,29 A recent suggestion, based on observa-
tions using electron microscopy, is that the lipid reservoir forms a struc-
ture where the bilayers are draped on a tetragonal minimal surface.30

Paper I describes a calculation of the permeability of this structure, as
well as a comparison with the permeability of a stack of bilayers. Figure
2.3 shows a schematic of the two cases.

It turns out that the major part of the gradient in the chemical po-
tential of CO2 from the atmospheric air to the blood vessels is in the gas
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phase of the lung. In contrast, for O2 the major part of the gradient is
located across the alveolar interface.26 Therefore a structure that facili-
tates transport of O2 across the interface would potentially constitute a
physiological advantage.

The oil/water partition coefficient for O2 is Ki = 4.41,31 which means
that O2 is slightly lipophilic. The hydrocarbon chains of the lipids are
likely in a melted state with low order, refered to as a liquid-crystalline
phase. For this case the diffusion coefficient in the bilayer and the aque-
ous film are similar. From the discussion following Eq. (2.19), we there-
fore reach the conclusion that the structure shown in Fig. 2.3a slows
down diffusive transport of O2, and increasingly so for each aqueous film.
The structure in Fig. 2.3a also slows diffusive transport of a hydrophilic
molecule, but in this case the bilayers provide the main resistance.

The structure in Fig. 2.3b, however, facilitates transport of lipophilic
molecules, due to a continuous diffusion path within the bilayers through-
out the structure. In contrast, for a hydrophilic molecule diffusive trans-
port through the structure shown in Fig. 2.3b is even slower than through
the structure shown in Fig. 2.3a.

The conclusion therefore is that both structures provide a protection
against diffusive transport of hydrophilic molecules. The structure in Fig.
2.3b, however, facilitates transport of lipophilic compounds compared to
the structure in Fig. 2.3a. In this sense, the structure could play a
functional role for respiration.





Chapter 3

Diffusion in Responding

Membranes

At the end of the previous chapter we discussed and exemplified dif-
fusion in systems with a complex structure. It is clear that the local
structure within the system affects transport, and that it can have im-
portant practical consequences. An example of this was given in section
2.4.3 for diffusion across the alveolar interface. The analysis of how the
structure of a specific system affects transport is complicated by the fact
that for all but the most simple cases, it is (in general) impossible to
find an analytical solution. In other words, one has to resort to approxi-
mations and/or numerical solutions. Fortunately, nowadays there exists
powerful numerical techniques, like e.g. the finite element method,32,33

and software packages that aid such computations.

A different aspect of the relationship between structure and diffu-
sional transport is when the membrane is able to respond by structural
changes due to the presence of the diffusing component. A gradient in
concentration (chemical potential) then implies a gradient in the struc-
ture of the membrane. In the example of section 2.4.3, the structure was
assumed static, and the diffusion equation was solved in order to find
how the flux of the diffusing molecule(s) reacted to this structure. In
many cases this is a relevant model. However, amphiphilic systems show
an amazing diversity in structure, and, furthermore, the particular struc-
ture can be quite sensitive to variations in thermodynamic variables such
as temperature, the chemical potential of the solvent, and the presence
of cosolvents or cosolutes.12–15 One therefore expects the possibility of
an interplay between structure and diffusive transport in such systems.
We call a membrane that is able to react with structural changes to the
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diffusion process a responding membrane.34,35 The current chapter aims
to provide, by example, a rather general discussion of such systems.

3.1 The Responding Lamellar Phase

A rather simple example of a responding membrane is a lamellar phase
that is exposed to a gradient in the chemical potential of water. The
responding lamellar phase is not only interesting for illustrative purposes,
but also as a crude model of diffusive transport through human skin
(paper II). This will application will be discussed in more detail in section
4.2. The gradient in the chemical potential of water drives diffusive
transport of water across the lamellar phase. It also affects the local
structure, as we will shortly describe.

3.1.1 Osmotic Pressure and Interbilayer Forces

It is customary and convenient to phrase a theoretical discussion of the
structure of a lamellar phase in terms of the osmotic pressure, Πosm,
rather than the chemical potential of water, µw. The concept of osmotic
pressure comes from a discussion of osmosis, which is the transport of
the solvent from a dilute solution separated from a concentrated solution
by a membrane permeable only to the solvent. The transport of the
solvent can be prevented by increasing the pressure on the concentrated
solution; an increase in pressure increases the chemical potential of the
solvent, and a change in pressure is therefore one way of reducing the
driving force for transport of the solvent. This is another example where
it is crucial to formulate the driving force for diffusion in terms of the
chemical potential rather than the concentration (cf. section 2.3.2). If
the pressure is large enough, the driving force is completely eliminated.
For this case, the osmotic pressure of the concentrated solution is defined
as the difference in pressure between the concentrated solution and the
pure solvent. For an incompressible fluid this definition implies for an
aqueous solution

ΠosmV̄w = µ0
w − µw (3.1)

where V̄w is the (molar) volume, and µ0
w the chemical potential, of pure

water.
An advantage with using the osmotic pressure, rather than the chem-

ical potential, is that the osmotic pressure can be identified with the force
per area between two interacting bilayers,23 and so lends a direct physical
interpretation. With this physical picture in mind, the osmotic pressure
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Figure 3.1: The contribution to the osmotic pressure from electrostatic
interactions (dashed line), the dispersion interaction (dotted line) and
short-range repulsive force (dot-dashed line) for a given model (see paper
II for details). The total osmotic pressure (solid line) is clearly dominated
by the short-range repulsive force at short range.

is written as a sum of forces (per area) due to different mechanisms (in
the hope that the latter are separable and additative). The most general
case that has been relevant for the work described in this thesis is a sum
of three contributions

Πosm = Πel +Πdisp +Πrep. (3.2)

Πel is the contribution from electrostatic interactions if the bilayers of the
lamellar phase are charged, Πdisp is an attractive dispersion interaction
and Πrep is a short-ranged repulsive force.23,36 The quantitative expres-
sions are not important for us at the moment (though we will come back
to the electrostatic interaction in section 4.2.2). Instead the main point
is the dependence on the interbilayer separation. This is illustrated in
Fig. 3.1, which shows the forces for the particular model used in paper
II. In this way, one can predict the interbilayer separation corresponding
to a given osmotic pressure, and gain a quantitative description of the
effect of osmotic pressure (chemical potential of water) on the structure
of a lamellar phase.

In our discussion of the responding lamellar phase in the current
section, we will assume that the bilayers are in a liquid crystalline state,
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Figure 3.2: A membrane composed of a lamellar phase exposed to a
gradient in the chemical potential of water. The gradient drives diffusive
transport of water across the lamellar phase. It also causes the lamellar
phase to respond by a heterogeneous swelling (a decreasing interbilayer
distance) in the direction of the gradient.

and that the structure within the bilayer does not change due to a change
in osmotic pressure. There is the possibility of a phase change from a
liquid crystalline state to a gel state, in which the conformational state of
the hydrocarbon chains of the surfactant changes.23 However, we delay
a discussion of the effect of a phase change until section 3.2.

3.1.2 The Swelling of a Lamellar Phase

When a membrane composed of a lamellar phase is exposed to a gradient
in the chemical potential of water, or equivalently a gradient in osmotic
pressure, water diffuses through it. At steady state, the spatial variation
of the osmotic pressure along the gradient is constant in time. The actual
variation is dependent on the details of the interplay between structure
and diffusive transport of water, as we will discuss shortly. However,
already now we can anticipate the qualitative trend. The assumption
that the structure within each bilayer is independent of the local osmotic
pressure allows a great simplification. It implies that the lamellar phase
simply responds by a variation in the interbilayer distance due to the
local osmotic pressure, according to Eq. (3.2). In this way, there will
be a heterogeneous swelling of the lamellar phase, in the sense that the
interbilayer distance varies along the gradient. With the osmotic pressure
at the boundaries given, the interbilayer distance at either boundary is
known. If we assume a monotonic variation we already have a fair idea
of the structure, and expect something similar to what is depicted in Fig.
3.2.
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A quantitative analysis of the swelling of a lamellar phase has been
given previously,35 and shows that the picture in Fig. 3.2 is qualitatively
correct. Furthermore, as the gradient is increased the heterogeneity in
swelling also increases. An interesting feature is that the variation in
swelling is most pronounced for the part of the lamellar phase at the
boundary corresponding to a lower value of osmotic pressure. The in-
terbilayer distance plateaus quickly. This result can be explained by the
fact that for lower values of the osmotic pressure, a small increase in os-
motic pressure corresponds to a rather large increase in the interbilayer
separation, as seen in Fig. 3.1. In contrast, for higher values of the os-
motic pressure, a finite change in interbilayer separation corresponds to a
large change in osmotic pressure, due to the steep force curve at smaller
separations. As we will see in section 4.2, this effect has interesting
consequences for a model of the pH gradient across human skin.

3.1.3 Transport Properties

For a strongly hydrophilic molecule, the total permeability of a bilayer
followed by an aqueous film is dominated by the permeability of the
bilayer (see section 2.4.2) Water is (of course) a hydrophilic molecule,
and the bilayer/water partition coefficient in Eq. (2.18) is very low,37

and, indeed, the permeability of a lipid bilayer is only of the order of
10�5 m/s.38,39 It is therefore clear that water transport across a lamellar
phase in the direction perpendicular to the bilayer normal is significantly
hindered by the bilayers. On the other hand, for bilayers in a liquid-
crystalline state, the local diffusion coefficient is not significantly different
from that in water. The low permeability is therefore due to the low
solubility — there are simply not enough water molecules within the
bilayer to give an efficient transport. We encountered a similar situation
(though in the opposite direction, and not as extreme) for the transport
of O2 in the lipid structure of the alveoli in section 2.4.3.

The very low solubility of water in a bilayer implies that it is an
excellent approximation to neglect the gradient in the chemical potential
of water across the aqueous films of the lamellar phase. In this limit,
transport through the lamellar phase is therefore independent of the
swelling, and exactly equivalent to transport through a lipid phase with
the same thickness as the total thickness of the bilayers in the lamellar
phase. Therefore, even though there is a clear response of the lamellar
phase due to the gradient in the chemical potential of water, this does
not affect the transport of water. In other words, there is no interplay
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between structure and transport, and transport remains linear. This is
obviously due to the low solubility of water in the bilayers. A different
scenario would occur if the partition coefficient would be more moderate.

3.2 Phase Changes in Responding Membranes

A membrane that has the propensity of undergoing an internal phase
separation can give rise to a more intimate coupling between structure
and transport. The phase change can give rise to a strongly non-linear
response in the membrane, as we will exemplify with a monoolein mem-
brane responding to a gradient in water chemical potential (paper III
and IV). This work was carried out in close contact with experimental
work on the same system.

3.2.1 The Responding Monoolein Membrane

The reason for studying a monoolein membrane is that the monoolein-
water system has a well-characterized phase behaviour and structure.40–44

In particular, it is known to form an inverted bicontinuous cubic Ia3d
phase at lower osmotic pressures, followed by a liquid-crystalline lamel-
lar phase at higher osmotic pressures. The water permeability of the
lamellar phase is low, as was discussed above. In contrast, water trans-
port is not significantly hindered through the cubic phase, since there
are continuous water channels through it.45

In the experimental setup, the monoolein membrane was exposed
to a gradient in osmotic pressure. The osmotic pressure in one of the
reservoirs was kept constant throughout all experiments. This osmotic
pressure was chosen such that it corresponds to the cubic phase of the
monoolein-water system. The osmotic pressure of the other reservoir
was increased in successive experiments, from being equal to the osmotic
pressure in the first reservoir, to being well past the cubic to lamellar
phase transition.

3.2.2 Structure and Phase Behaviour

Due to the large body of reference literature available, it is possible to
theoretically model the structure of the responding monoolein membrane
explictly. The description is physical rather than analytical, and follows
the experimental setup closely. The interested reader can find the full
mathematical model stated in paper IV.
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We start by considering the monoolein membrane equilibrated be-
tween the two reservoirs of the same osmotic pressure. In other words,
there is no gradient, and hence no diffusive transport of water. Under
these conditions the membrane forms a homogeneous cubic phase.

We now imagine increasing the osmotic pressure in the second reser-
voir, but not enough to cross the cubic to lamellar phase transition. In
a similar fashion as the responding lamellar phase, the cubic phase re-
sponds by a heterogeneous swelling. An increase in osmotic pressure has
the effect that the unit cell size of the cubic phase decreases. As the
thickness of the lipid bilayers of the cubic phase are essentially deter-
mined by the size of the monoolein molecule, the effect of an increase in
osmotic pressure is mainly a decrease in the size of the aqueous channels.
This is analogous to the responding lamellar phase, though in this case
the swelling occurs in three dimensions rather than just one. The steady-
state structure therefore has more, but smaller, unit cells of the cubic
phase close to the reservoir with a higher value of the osmotic pressure.
The quantitative analysis has to deal with both the redistribution of the
lipids as well as the water.

For even higher values of the osmotic pressure in the second reser-
voir, eventually the cubic to lamellar phase transition is crossed. We
then expect that the part of the membrane exposed to the higher os-
motic pressure will form the lamellar phase. In the opposite end of the
membrane, the membrane is still in a cubic phase. If the gradient is
increased even further, the part of the membrane that is in the lamel-
lar phase grows. Due to the osmotic gradient, the lamellar phase in
itself also responds by a heterogeneous swelling. The thickness of the
lamellar phase is determined by the gradient in osmotic pressure, but
is also strongly dependent on the respective transport properties of the
two phases. The theoretical model shows that the higher permeability of
a phase, the thicker it is at steady state. Since the permeability of the
lamellar phase is very low compared to the cubic phase, in actuality only
a few bilayers of the lamellar phase forms.

We note that this analysis has neglected the free-energy cost of cre-
ating the new interface when the lamellar phase is induced. This is likely
negligible for this particular system (and is not seen in the experiments),
but in general would have to be taken into account. See paper V for a
discussion of this effect for a slightly different case.
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Figure 3.3: The water flux through a monoolein membrane exposed to an
osmotic gradient as a function of gradient. The osmotic pressure in one
of the reservoirs is kept constant at 1.11MPa. In the second reservoir the
osmotic pressure, shown on the x-axis, is progressively increased from
1.11MPa upto 4.5MPa. For lower gradients, the whole membrane forms
the cubic phase, but at 2.78MPa, the lamellar phase is induced.

3.2.3 Coupling between Transport and Structure

Above we have described how the monoolein membrane responds to the
osmotic gradient in terms of structural changes as well as phase changes.
We have taken the liberty of describing the structure of the membrane
before discussing transport. This was done only for ease of presentation;
in actuality the two are intimately coupled, and one cannot be separated
from the other.

Figure 3.3 shows the water flux as a function of the osmotic gradient.
For lower osmotic pressures, when the whole membrane is in the cubic
phase, there is an essentially linear relation between driving force and
flux. It is not completely linear, due to the heterogeneous swelling of
the cubic phase, but very nearly so. As soon as the cubic to lamellar
phase transition is crossed, there is a dramatic change in the water flux.
This is due to the introduction of the lamellar phase with its significantly
lower permeability. It is amazing that this large change is due to only a
handful of bilayers.

The same qualitative behaviour as seen in Fig. 3.3 is also seen in
a theoretical model for water transport in a two-component DLPC (di-



3.3 Spontaneously-Formed Membranes 27

lauroyl phosphatidyle choline)-DMPC (dimyristoyl phosphatidyl choline)
responding lamellar phase.46 It has been shown experimentally that
the liquid-crystalline phases of the DLPC-water and DMPC-water sys-
tems undergoe a phase transformation to a gel phase at higher values of
the osmotic pressure.47 This phase transformation gives rise to qualita-
tively similar results as the cubic to lamellar phase transformation in the
monoolein-water system.

The responding monoolein membrane has demonstrated how a cou-
pling between transport and structure can give rise to strongly non-linear
effects. These effects does not arise from a complicated transport pro-
cess. Rather, it is how the local thermodynamics depends on the local
chemical potential of the diffusing component (water in this case) that
gives rise to the non-linear effects. This leads to a fascinating interplay
between diffusive transport and structure, which is particularly strong
when the membrane has the propensity of undergoing an internal phase
separation.

3.3 SpontaneouslyFormed Membranes

The examples of systems given so far have been explicit membranes, in
the sense that they have been created — by nature (paper I and II), or the
experimental setup (paper III and IV) — to separate two environments
(cf. Fig. 2.1). We here consider a related case of film formation at
the air-liquid interface. There are numerous observations of such films
forming at the air-liquid interfaces of water-amphiphile,48–55 or water-
amphiphile-polymer systems.56–62 It is possible that these films form
due to diffusive transport across the interface, thereby spontaneously
creating, in some sense, a membrane. In the studies performed by Edler
et al., a key observation is that film formation is prevented by an increase
of the relative humidity in the gas phase.56–59 A possible explanantion
for this effect can be given within the conceptual framework of phase
changes in responding membranes.

3.3.1 SteadyState Diffusive Transport with Evaporation

We study evaporation of the solvent from a water-amphiphile solution
that is exposed to the ambient atmosphere. Due to the evaporation,
the solute concentration in the solution continuously increases, and the
location of the air-liquid interface changes with time. A steady-state in
the sense of section 2.4.1 does not exist for this case.
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In terms of a coordinate system in which the moving interface is fixed,
however, it is possible to define a steady state. As shown in paper V,
this results in the equation

−D
dXs

dz
= ṡXs (3.3)

where s denotes the solute, and ṡ the interface speed, which is constant
at steady-state. The formulation is done in terms of mass fractions for a
solution where the density of solvent and solute are equal. Furthermore,
Fick’s first law in its classical form, Eq. (2.11), (reformulated in terms
of mass fractions) has been used for simplicity. Equation (3.3) should
be compared with Eq. (2.15) for a ‘true’ steady state. An integration of
Eq. (3.3) yields

ṡ =
D

L
ln (Xs(0)/Xs(L)) (3.4)

from which we can identify the permeability of D/L of section 2.4.2.
The other factors are, however, radically different, and the concept of
permeability does not seem very useful for the problem at hand.

To complete the analysis we have to determine the boundary condi-
tions Xs(0) and Xs(L). In practice it is extremely difficult to prevent
bulk flow in a container of reasonable size (cf. the discussion of diffusive
flux and bulk flow in section 2.2). However, close to the air-liquid inter-
face there is boundary layer, refered to as an unstirred layer, where bulk
flow is not efficient, and transport occurs via diffusion. We therefore as-
sume that the concentration (chemical potential) is constant within the
solution, apart from the unstirred layer where the gradient is located.
Xs(L) in Eq. (3.4) is then equal to the bulk concentation, if the location
of the unstirred layer is z = L. The remaining boundary condition is
found by matching the solute concentration at the air-water interface to
the relative humidity

RH =
1−Xs(0)

1− (1−Mw/Ms)Xs(0)
(3.5)

according to Raoult’s law. Mw/Ms in Eq. (3.5) is the ratio of molecular
weight of solvent and solute.

3.3.2 The Formation of an Interfacial Phase

The analysis of the preceeding section presupposes a homogeneous en-
vironment along the direction of diffusive transport. If conditions are
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such that the bulk concentration of the solution, Xs(L), and the concen-
tration in (local) equilibrium with the atmosphere, Xs(0), correspond to
different phases, there is the possibility of forming a separate interfacial
phase at the air-liquid interface.

Assuming the existence of two phases, α and β, we can write down
the equation analogous to (3.4) for each phase. As shown in paper V,
this implies that the interface position, zint, is given by

zint

L
=

D(β) ln (Xs(0)/Xs(β))

D(α) ln (Xs(α)/Xs(L)) +D(β) ln (Xs(0)/Xs(β))
. (3.6)

where D(α) and D(β) are the diffusion coefficients in the α and β phase,
respectively. Furthermore, Xs(α) and Xs(β) denote the composition of
the α and β phase, respectively, on either side of the two-phase region of
the equilibrium phase diagram.

From Eq. (3.6) it is possible to predict the thickness of the interfacial
phase β as a function of the bulk concentration, ambient conditions or
the parameters of the system. The qualitative conclusions are that the
interfacial phase is more likely to form for lower relative humidities, for
a bulk solution close to phase separation, and when diffusion through
the interfacial phase is fast. The conclusion that no interfacial phase
is formed for more humid conditions is consistent with the observation
of Edler et al., that film formation in their systems was prevented by
increasing relative humidity.56–59

The effect of the interfacial energy, due to the creation of the new
α-β interface, has been neglected in the deriviation of Eq. (3.6). This
could make appearance of the interfacial phase less likely. See paper V
for details.

3.3.3 Film Formation in the AOTWater System

To arrive at Eq. (3.6), we used a rather crude model for the diffusional
process. A more realistic description is found in paper V for the specific
case of an aqueous AOT (sodium bis(2-ethylhexyl)sulfosuccinate) solu-
tion. The AOT-water system provides a good example, and ties in nicely
with the presentation here. AOT is a bit particular in the sense that it
readily forms a lamellar phase from an isotropic micellar solution at low
surfactant concentrations.63 Thus there is the possibility of forming a
lamellar interfacial phase at the air-liquid interface. The situation is
therefore similar to the responding lamellar phase described above, and
the conceptual understanding gained from this example proves benefi-
cial in the theoretical analysis. Furthermore, the swelling of the lamellar
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phase is well described by electrostatic theory,64,65 so modelling of the
interbilayer force is possible.

The theoretical analysis shows that film formation is not a likely
event for a bulk micellar solution. When the bulk solution instead is in
the micellar-lamellar coexistence region, the lamellar phase sinks to the
bottom of the container since AOT is heavier than water.66 In this case,
the formation of an interfacial film is most likely, and the film thickness
depends strongly on the ambient relative humidity. An interesting fea-
ture is that the evaporation rate, ṡ, shows a strong dependence on the
gradient for high values of the relative humidity (before film formation).
As soon as the film is formed, however, the evaporation rate is essentially
constant regardless of the gradient. This is a similar behaviour to the
one noted for the responding monoolein membrane (see Fig. 3.3).



Chapter 4

MultiComponent Diffusion

in Responding Membranes

So far we have treated the diffusion of a single component across ‘static’
(chapter 2) as well as responding membranes (chapter 3). We now pro-
ceed by considering multi-component diffusion. The effects vary depend-
ing upon if the membrane responds to the presence of the other compo-
nent(s) or not, and if the diffusional fluxes are coupled. We will treat
these different cases separately, starting with the simplest one of a sec-
ond component diffusing through a responding membrane whose struc-
ture and phase behaviour only depends on the chemical potential of the
first component. Next we extend the study of the responding lamellar
phase by considering the case when the swelling depends on the chemical
potentials of two components. This has a clear relevance for the pH gra-
dient over human skin. Finally we discuss some aspects of the analysis
of a responding membrane with the propensity of a phase change when
exposed to gradients in two chemical potentials.

We have previously noted the similarity between diffusion and heat
conduction. It is therefore not surprising that the analysis made here for
diffusion of two components could, in many cases, be directly translated
by a mere change of notation into a corresponding statement about dif-
fusion together with heat conduction. We will point this out specifically
in some cases, but the reader should keep in mind that it might be more
generally applicable.
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4.1 Diffusion of an ‘Inert’ Solute

Consider a membrane that responds to the gradient in the chemical po-
tential of one component. In the previous examples, this has been the
gradient in the chemical potential of water. In the general discussion
we will refer to this component as component 1. We now consider also
the diffusive transport of a second component, component 2, through
the same membrane. The simplest case is if component 2 is present in
very low concentrations, or if the structure and phase behaviour of the
membrane for other reasons is rather insensitive to variations in the con-
centration of component 2. In this case it is a good approximation to
view the structure of the membrane as solely determined by the gradi-
ent in the chemical potential of component 1. Through this structure
component 2 then diffuses, as if through a ‘static’ membrane (cf. section
2.4).

As an example, we consider the diffusion of a second component
through the responding monoolein membrane. A theoretical model for
how the monoolein membrane reacts to the gradient in the chemical po-
tential of water was described in section 3.2. The diffusion of a second
component, that does not affect the structure and phase behaviour of the
monoolein membrane, can easily be included in this model. As a result
one finds a theoretical expression for the permeability of the second com-
ponent as a function of the gradient in the chemical potential of water.
See paper III and IV for the detailed analysis.

There is a practical reason for discussing the diffusion of a second
component through the monoolein membrane. If this second component
has a low partition coefficient between an aqueous phase and the lipid
bilayer, then we expect that the flux shows a strong decrease as the lamel-
lar phase is induced. Experimentally, a second component can therefore
serve as indirect indicator of the internal structure of the membrane.
This was used in the studies reported in paper III and IV, where the flux
of a dye, present in low concentration, through the monoolein membrane
was measured. There is a good agreement between the theoretical de-
scription and the experimental results. We emphasise in particular, not
only the quantitative agreement, but the experimental verification that
a phase change can affect transport.
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4.2 The Responding Lamellar Phase Revisited

We now consider diffusion of two components through a membrane which
is sensitive to the local chemical potential of both components. This case
is somewhat more complicated to describe, and we start by disregarding
the possibility of phase changes along the membrane. We return to the
example of the responding lamellar phase. In this context, we discuss
diffusion of the two components water and CO2 across the responding
lamellar phase as a crude model for the pH gradient across human skin.

4.2.1 Relevance as a Model of the Stratum �orneum

The main function of the human skin is to serve as a barrier, keeping un-
wanted substances out of the body, and wanted substances inside. One
of the most important roles is to prevent uncontrolled water loss. The
chemical potential of water inside the body corresponds to a 150mM
NaCl solution, which implies an osmotic pressure of 0.8MPa. In the
surrounding gas phase, on the other hand, the relative humidity is com-
monly in the range of 30− 90%, corresponding to an osmotic pressure of
170 − 15MPa. There is therefore a rather extreme gradient in osmotic
pressure over the skin, driving transport of water out of the body. Even
more amazing is the fact that almost the full gradient in osmotic pres-
sure is located across the outermost part of the human skin, the stratum
corneum, which is only 10 − 20µm thick.67 This very thin structure
therefore provides the main protection against uncontrolled water loss.68

The stratum corneum is composed of dead keratin-filled cells, called
corneocytes, embedded in a multilamellar lipid matrix.69 Since the lipid
matrix is continuous throughout the structure, a molecule diffusing across
the stratum corneum by neccessity passes the lipid structure.70–72 A sim-
plified picture of diffusive transport across the stratum corneum is then
to view it as diffusion across a lamellar phase. This is obviously a crude
simplification that neglects the presence of the corneocytes. However,
the advantage is that it is possible to make a quantitative modelling. In
this way the responding lamellar phase is relevant for diffusive transport
across the stratum corneum.35,46

A case which is particularly relevant is the possibility of a phase
change within the responding lamellar phase, as we discussed briefly at
the end of section 3.2. It has been shown that water transport through
the stratum corneum is a linearly dependent on the water gradient for
high values of the relative humidity (low values of osmotic pressure), but
levels off at lower values of the relative humidity (high values of osmotic
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pressure).73 In other words, the water flux shows the same qualitative
behaviour as that shown in Fig. 3.3. It has been observed that extracted
stratum corneum lipids can undergo phase transformations in the same
region of relative humidities as where the water transport becomes non-
linear.74 It is therefore tempting to explain the non-linear behaviour
of transport through the stratum corneum with a phase transformation
within the lipid matrix.35,46

A second important case is the diffusion not only of water, but also of
CO2, across the responding lamellar phase. CO2 can react with water to
form ions. At the relevant conditions this is dominated by the reaction
equilibrium

CO2 +H2O�HCO�3 +H+. (4.1)

With a source of ions, the electrostatic interaction between two bilayers
change. Therefore we have a situation where both water and CO2 affects
the local structure in the responding lamellar phase. This is interesting
as a model for the pH gradient across the stratum corneum.

The gradient in pH across human skin is likely common knowledge
due to its appearance in many commercials for soaps and shampoos.
In spite of this, there is little consensus on the actual mechanism be-
hind it. The experimental observation is that the skin surface is acidic,
with a pH varying between 4 and 6.75 In contrast, the pH in the body
has a regulated value of about 7.4, close to neutral conditions. Also in
this case, the gradient is considered to be located across the stratum
corneum.76 Physiological conditions correspond to a partial pressure of
around pCO2

= 6kPa, whereas in the ambient atmosphere the partial
pressure is only around pCO2

= 40Pa.26 In other words, there is a gra-
dient in CO2 across the stratum corneum of more than two orders of
magnitude. The gradient drives transport of CO2 out of the body. In
the lung the gradient is equally large, but in this case the major part is
located in the gas phase in the lung, rather than in the condensed phase
(see section 2.4.3).

Due to the reaction described by Eq. (4.1), it is clear that the large
gradient in CO2 could potentially have a significant effect on the local
proton concentration between bilayers. It is perhaps less clear that also
the osmotic gradient plays a role. To understand this, we need to discuss
the electrostatic force between two charged bilayers in more detail.
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4.2.2 Electrostatic Interactions

The conventional (and easiest) way to describe the electrostatical interac-
tion between two charged surfaces is to consider the Poisson-Boltzmann
equation23,36 for the electrostatic potential, Φ; in one dimension

�r�0
d2Φ

dz2
=

�

i

(Zie)ci0 exp (ZieΦ(z)/kT )

where summation runs over all ions present. Here Zi is the valency and ci0

the concentration where Φ = 0 for the ionic species i, respectively. Fur-
thermore, e is the (absolute) electron charge, k the Boltzmann constant,
T the absolute temperature, � the dielectric constant of water and �0
the vacuum permittivity. The Poisson-Boltzmann includes interactions
among the ions, and a mean-field description of the ion distribution. The
interactions with the charges of the bilayer surface can be included by
the boundary condition

�r�0
dΦ

dz

�
�
�
�
bilayer surface

= −σ

where σ is the bilayer surface charge. For two bilayers with the same
charge, the electrostatic potential has to be symmetric around the mid-
plane between the surfaces, so a second boundary condition is

dΦ

dz

�
�
�
�
midplane

= 0.

The lipid matrix of the stratum corneum contains titrating fatty acids,
so the surface charge is determined by a chemical equilibrium. This is
referred to as charge regulation.77 We furthermore assume the presence
of only monovalent ions. In this case the mean-field description inherent
in the Poisson-Boltzmann equation is a good approximation.23

The presence of CO2 implies an additional source of ions from the
reaction equilibrium in Eq. (4.1). Therefore there is an indirect effect
of CO2 on the local electrostatics. This can rather easily be included in
the Poisson-Boltzmann description, though the resulting equations are
rather intricate to solve numerically (see paper II for details).

As the interbilayer distance decreases (due to an increase in osmotic
pressure), the ions are pushed closer together. The mean concentration
of the different ionic species within the aqueous film therefore increases.
However, the local concentration of an ionic species between the charged
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bilayers is not uniform; rather positive ions are attracted to the negative
surface, and negative ions expelled. To get the full quantitative result we
have to consider the actual solution of the Poisson-Boltzmann equation.

For the case when the partial pressure of CO2 corresponds to atmo-
spheric conditions, the result of such an analysis is the following: The
local concentration of protons at the bilayer surface is, to a very good
approximation, constant around −10 logcH�(surface) = 6.0, irregardless
of osmotic pressure. In contrast, the concentration of protons at the mid-
plane between the bilayer surfaces varies between−10 logcH�(midplane) =
7.4 and 6.4, due to a variation in osmotic pressure between 0.8MPa and
50MPa (corresponding to a variation in relative humidity between 100
and 70%). The variation follows the description of the swelling given in
section 3.1.2, with a strong variation for low osmotic pressures, and then
a plateau region for higher osmotic pressures. The cause is the strong
variation in the force between bilayers at short distances (cf. Fig. 3.1).

4.2.3 The H+ Profile

Let us now consider the actual gradient in proton concentration along
the responding lamellar phase. The permeability of a bilayer to ions is
very low.38,78 A reasonable (and simple) limit is therefore to consider
the case when the ions do not pass the individual bilayers. As a model
of the lipid matrix of the stratum corneum, we imagine that the aqueous
film that is closest to being in contact with the physiological environ-
ment is open to equilibrate with a solution containing 150mM NaCl and
having a pH of 7.4. This equilibrium provides a given number of ions,
that can be modelled within the Poisson-Boltzmann formalism. Due to
the continuous ageing of the skin, each repeat unit travels towards the
surface, loosing the contact with the bulk. In the limit when the ions do
not diffuse through the bilayers, the number of ions within an aqueous
film is constant, apart from those produced by the gradient in CO2 due
to the reaction described by Eq. (4.1).

When chemical reactions are possible, the equation of continuity, Eq.
(2.10), has to be generalised to include a term that describes the local
production (per unit volume), si, of species i

∂ci

∂t
+

∂Ji

∂z
+ si = 0. (4.2)

The reaction equilibrium described by Eq. (4.1) implies that these pro-
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duction terms satisfies the relations

sCO2
= sH2O = −sHCO�

3

= −sH� .

At steady state this means that the fluxes of CO2 and water must fullfill

d

dz
(Jw + Ji) = 0

d

dz
(JCO2

+ Ji) = 0. (4.3)

where i = HCO�3 �H
+. Hence the fluxes of water and CO2 are directly

coupled, even in the absence of the coupling to the local structure. In
principle, such a coupling complicates the analysis. However, for the
particular case described by Eq. (4.1), the equilibrium constant is small
(of the order of 10�7 M), and it is an excellent approximation to neglect
the direct transport of the ions, so that Eq. (4.3) reads

dJw

dz
= 0

dJCO2

dz
= 0. (4.4)

Within the approximation that the transport of ions can be neglected,
Eq. (4.4) shows a certain uncoupling of the fluxes of water and CO2. This
is not completely true, since the local structure still depends on the chem-
ical potential of both components. However, Eq. (4.4) relates directly
to the permeabilities as described in section 2.4. The main advantage
of Eq. (4.4) is therefore that we can use the concept of permeability as
before.

The result of the model is that there is hardly any variation in the
proton concentration at the bilayer surface along the lamellar phase, and
10 logcH�(surface) ≈ 6. In contrast, there can be a substantial gradient in
the proton concentration at the midplane between the bilayers. The ac-
tual gradient is strongly dependent on the ambient humidity conditions;
for a very humid environment there is essentially no gradient at all, and
−10 logcH�(midplane) = 7.4 throughout. On the other hand, already for
an atmospheric relative humidity of 90%, the part of the lamellar phase
that corresponds to the skin surface has 10 logcH�(midplane) = 6.6. For
a relative humidity of 60%, this value reaches 10 logcH�(midplane) = 6.4.

The conclusion is therefore that the combined effect of the gradient
in osmotic pressure and CO2 show a substantial effect on the proton
concentration at the midplane along the lamellar phase. The midplane
concentration close to what in the model corresponds to the skin surface,
is strongly dependent on the relative humidity. For humid conditions, it
is the same as physiological pH, whereas for dry conditions it is acidic.
This is consistent with experimental investigations that have shown an
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increase in skin surface pH after occlusion (covering of the skin),79,80 or
rinsing with tap water.81

We have deliberately been careful to phrase the results described
above in terms of (local) proton concentrations, rather than pH. The
reason for this is that it is not obvious how pH should be defined for
a system that is not at equilibrium, and, furthermore, is locally hetero-
geneous both when it comes to concentrations and charge distributions.
A natural definition can be given that takes these effects into account
within the given model. See paper II for details.

4.3 Phase Changes and MultiComponent Dif

fusion

We proceed with the case of a responding membrane with a propensity
of an internal phase transformation. The analysis for the case of gradi-
ents in two chemical potentials is somewhat mathematically complicated
— even with substantial simplifying assumptions. In order to cope with
this technicality we introduce a description based on generalised perme-
abilities.

4.3.1 Coupled Transport

If two components are involved in a reaction equilibrium, then the corre-
sponding diffusive fluxes are coupled, as was exemplified in section 4.2.3
above. In more general terms, the theory of irreversible thermodynam-
ics1–3 includes the coupling of two transport processes from the start, by
making the ansatz

J1 = −L11
∂µ1

∂z
− L12

∂µ2

∂z

J2 = −L21
∂µ1

∂z
− L22

∂µ2

∂z

(4.5)

for the case of two diffusion processes. Here Lij are transport coefficients
describing how the ith flow depends on the jth gradient. In the more
general case, one writes down all possible transport processes coupled to
the corresponding gradients. Sometimes one can infer from symmetry
arguments, within the theory of irreversible thermodynamics known as
the Curie principle, that a certain off-diagonal transport coefficient (i.e.
an Lij for which i �= j) must vanish; e.g. for an isotropic system vectorial
flows cannot couple to a tensor flow,1 so that diffusion and viscous flow
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are uncoupled. However, in the general case all transport coefficients are
non-zero.

There is a celebrated theorem due to Onsager82,83 that relates the off-
diagonal coefficients to each other, if the fundamental laws of nature obey
time-reversibility. In its simplest form, it states that the matrix of trans-
port coefficients is symmetric, i.e. Lij = Lji. This form is not applicable
in the presence of forces that depends on the velocity of a particle, such as
magnetic and centrifugal forces. In the latter case Onsager’s theorem in-
stead relates Lij to Lji with reversal of the velocity-dependent force(s).1

Strictly speaking there are forces that do not obey time-reversibility, but
this is completely negligible when dealing with molecular systems.

It might not be readily apparent that the ansatz in Eq. (4.5) covers
the case when transport of two components are coupled via a reaction
equilibrium, as e.g. that described by Eq. (4.1). To demonstrate this,
we take for convenience the simpler example of two components, A and
B, that can form the product AB

A + B�AB. (4.6)

In the limit that the reaction proceeds sufficiently fast compared to dif-
fusion, it is a good approximation to assume local chemical equilibrium
with respect to the reaction described by Eq. (4.6). Under that assump-
tion, the corresponding chemical potentials fullfill

µA + µB = µAB. (4.7)

We relate the transport of each of the three components individually
by a transport coefficient l

Ji = −li
∂µi

∂z
i = A�B�AB.

Then due to Eq. (4.7)

JAB = −lAB
∂µAB

∂z
= −lAB

∂(µA + µB)

∂z

so that the total flux of A and B are given by

JTot
A = JA + JAB = −(lA + lAB)

∂µA

∂z
− lAB

∂µB

∂z

JTot
B = JB + JAB = −lAB

∂µA

∂z
− (lAB + lB)

∂µB

∂z
.



40 Multi-Component Diffusion in Responding Membranes

This has the same form as Eq. (4.5), so that coupling of two diffusion
processes due to a reaction equilibrium like Eq. (4.6) fits well into the
formalism of the theory of irreversible thermodynamics. Also note that
Onsager’s theorem is explicitly satisfied in this simple model (though it
is not obvious that it is a result of time-reversibility).

If the diffusion of, say, component A is slow in a membrane, then the
transport of A can be significantly increased due to a chemical reaction
within the membrane. This happens if the equilibrium constant of the
reaction described by Eq. (4.6) is large, and if the diffusion of component
AB is faster than the diffusion of component A by itself. In that case,
A mainly exists as AB within the membrane, and is transported more
efficiently in this form. AB act as carrier for A.84

4.3.2 Generalised Permeabilities

Before we consider the full problem with a responding membrane, we
discuss a generalisation of the concept of permeability for a composite
membrane in the presence of two gradients. The main convenience of the
concept of permeability is that the permeability of a composite membrane
satisfies the simple relation in Eq. (2.17). It is not a priori obvious that
this relation remains valid in the presence of two gradients.

To generalise the concept of permeability, we consider a composite
membrane made up of two layers, denoted α and β. The two layers
occupies the regions z = 0 to zint and z = zint to L, respectively (cf.
Fig. 2.2). For simplicity we assume that the transport coefficients in Eq.
(4.5) are independent of the chemical potentials, but possibly different in
the two layers. As usual we assume steady-state conditions and that the
flux of either component is constant throughout the system. We then
have

−Lα
i1

(Δµ1)
α

zint
− Lα

i2

(Δµ2)
α

zint
= Ji = −L

β
i1

(Δµ1)
β

L− zint
− Lβ

i2

(Δµ2)
β

L− zint

(4.8)

in terms of

(Δµi)
α = µiint − µi0 (Δµi)

β = µiL − µiint

where µiint are the chemical potentials at the interface between α and
β, and µi0 and µiL the chemical potentials at z = 0 and L, respectively.
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One can show that Eq. (4.8) implies

(Δµ1)
α =

(P β + P βα)(µ1L − µ10) + P �2)(µ2L − µ20)

Pα + Pαβ + P βα + P β

(Δµ2)
α =

P �1)(µ1L − µ10) + (P β + Pαβ)(µ2L − µ20)

Pα + Pαβ + P βα + P β

(4.9)

in terms of

Pα =
Lα

11L
α
22 − Lα

12L
α
21

zint
2

P β =
Lβ

11L
β
22 − Lβ

12L
β
21

(L− zint)2

Pαβ =
Lα

11L
β
22 − Lβ

12L
α
21

zint(L− zint)
P βα =

Lβ
11L

α
22 − Lα

12L
β
21

zint(L− zint)

P �1) =
Lα

11L
β
21 − Lβ

11L
α
21

zint(L− zint)
P �2) =

Lα
22L

β
12 − Lα

12L
β
22

zint(L− zint)
.

(4.10)

Equation (4.10) shows that Pα and P β remain the same under an in-
terchange of the two components. Pαβ and P �1) are interchanged with
P βα and P �2), respectively. According to Eq. (4.9), (Δµ1)

α is then in-
terchanged with (Δµ2)

α, as it should. Similarly, Eq. (4.9) and (4.10)
show the correct symmetry with respect to an interchange of α and β.

By inserting Eq. (4.9) and (4.10) into Eq. (4.8) one can finally show
that

Ji = −Pi1(µ1L − µ10)− Pi2(µ2L − µ20)

in terms of

Pij =

Lα
ij

zint
P β +

L
β
ij

L�zint
Pα

Pα + Pαβ + P βα + P β
. (4.11)

Pij in Eq. (4.11) are the generalised permeabilities we aimed to find.

4.3.3 Phase Changes in the Presence of Two Gradients

We are now ready to tackle how the possibility of phase changes affect
a responding membrane in the presence of two gradients. In contrast to
the case of a single component, the chemical potential(s) at which the
phase change takes place are not known a priori, but rather have to be
determined as part of the solution.

For this purpose we have to consider the equilibrium phase diagram
corresponding to the membrane. Fig. 4.1 shows an examplar phase
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µ1

µ2

α β

µ1�� µ2�

µ1�� µ2�

µ
1int� µ2int

Ψ

Figure 4.1: A schematic phase diagram of two phases, α and β, sepa-
rated by a two-phase coexistence line, Ψ (dotted line). The boundary
values, µi0 and µiL, on either side of the membrane correspond to differ-
ent phases. The projection (see text) of the chemical potential profiles
within the membrane is also shown (solid line).

diagram, upon which our discussion will be based. In terms of chem-
ical potentials, one- and two-phase regions of the phase diagram are
areas and lines, respectively. The advantage of using chemical potentials
rather than concentrations, is therefore even more apparent for multi-
component diffusion. This is also true for the case of heat conduction
and diffusion, since temperature is also a thermodynamical ‘field vari-
able’.24 The example in Fig. 4.1 has two one-phase regions, α and β,
separated by a two-phase line, Ψ. For the case we are interested in, the
boundary values are on opposite sides of the two-phase line. We therefore
expect that the membrane will be made up of two phases.

Even though the case of two gradients is complicated by the fact
that the chemical potentials at the α-β interface are unknown, there is
a fortunate simplification: by solving for the gradients in Eq. (4.5), and
dividing one by the other, we find

dµ2

dµ1
=
−L21J1 + L11J2

L22J1 − L12J2
=

L11 − L21J1/J2

L22J1/J2 − L12
(4.12)

The great simplification inherent in Eq. (4.12) is that the dependence
on the spatial coordinate, z, does not appear. This means that we do
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not have to find both the position of, and the chemical potentials at,
the interface simultaneously. This fact comes about since Ji are constant
throughout the membrane. Therefore Eq. (4.12) is a differential equation
for µ2 as a function of µ1, with one unknown J2/J1. The equation is
different for the two phases, but the two boundary conditions and the
condition that the chemical potentials at the interface must lie on the
two-phase line, ensures a solution. This solution, i.e. µ2 as a function of
µ1, can be interpreted as a projection of the ‘full solution’ µi(z) onto the
phase diagram.

Under the simplifying assumption that the transport coefficients are
independent of the chemical potentials, Eq. (4.12) shows that µ2 is a
linear function of µ1. The solution projected onto the phase diagram is
therefore a straight line with, in general, different slopes within the two
phases. Such a projection is shown in Fig. 4.1.

We note that even for transport coefficients Lij that do depend on the
chemical potentials, Eq. (4.12) implies an independence on the spatial
coordinate. However, for this more general case, the projected solution is
not a straight line in the phase diagram, and most probably a numerical
solution has to be employed.

For transport coefficients independent of chemical potential, Eq. (4.12)
can readily be integrated

(Δµ2)
α

(Δµ1)α
=

Lα
11 − Lα

21J1/J2

Lα
22J1/J2 − Lα

12

(Δµ2)
β

(Δµ1)β
=

Lβ
11 − Lβ

21J1/J2

Lβ
22J1/J2 − Lβ

12

.

Solving for J1/J2 one finds

Lα
11(Δµ1)

α + Lα
12(Δµ2)

α

Lα
21(Δµ1)α + Lα

22(Δµ2)α
=

J1

J2
=

Lβ
11(Δµ1)

β + Lβ
12(Δµ2)

β

Lβ
21(Δµ1)β + Lβ

22(Δµ2)β

so that

P �2)
�
Ψ(µ1int)− µ20

�2
−

−
�
Pαβ(µ1int − µ10) + P βα(µ1L − µ1int)

��
Ψ(µ1int)− µ20

�
+

+ P �1)(µ1int − µ10)(µ1L − µ1int) = 0

(4.13)

in terms of the parameters defined by Eq. (4.10).
Equation (4.13) is an equation for the chemical potential at the in-

terface, µ1int. Depending on the two-phase line Ψ, it generally has to
be solved numerically. Once solved, the chemical potentials at the inter-
face, µ1int and µ2int = Ψ(µ1int) are known. From µiint, the position of
the interface, zint, easily follows from Eq. (4.8).
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We briefly note that once again we have neglected the effect of the
surface free energy of the new interface. See paper V for a discussion of
this for a slightly different case.

4.3.4 The Case of a Single Gradient

Instead of illustrating the solution of Eq. (4.13) and (4.8) in some gener-
ality, we consider the particular case when the chemical potential gradient
for component 2 vanishes. One might expect that this corresponds to the
case treated already (chapter 3, in particular section 3.2). However, if
one considers the possibility that transport of component 2 can be driven
by the gradient in the chemical potential of component 1, this is not true.

To justify this statement, consider the indirect transport of com-
ponent 2, i.e. transport due to a gradient in the chemical potental of
component 1, before the steady state is attained. If the indirect trans-
port of component 2 through, say, the α phase is faster than through
the β phase, there will be an accumulation of component 2 at the α-β
interface. In the opposite case, there will instead be a depletion at the
interface. This will help drive the phase change. The result is that, at
steady state, there can be opposing gradients in the chemical potential of
component 2 in phase α and β, such that they add up to the vanishing of
an overall gradient. Furthermore, there will also be a shift in coexistence
along the two-phase line.

This reasoning leads us to conclude that whenever there is coupling
between two transport processes, the vanishing of an overall gradient
does not imply that the case can be treated as a single transport pro-
cess. However, this is only true for a membrane composed of two phases,
and when transport is different in the two phases. For some numerical
examples, see paper VI.

This effect also has corresponding consequences for coupled diffusive
transport and heat conduction through a responding membrane. For ex-
ample, even though the temperature on either side of the membrane are
kept equal, there can still be a different temperature within the mem-
brane. Therefore, the phase change within the membrane can be at a
different temperature compared to the (equal) temperature at the bound-
aries.



Chapter 5

Conclusions and Outlook

5.1 Diffusion through the Alveolar Interface

The main resistance to transport of O2 in the human lung, from the in-
haled air to the capillary vessels, is located across the alveolar interface.
A structure that facilitates the diffusion of O2 is therefore physiologically
beneficial. The structure depicted in Fig. 2.3b has previously been pro-
posed as a model for lipid reservoir covering the alveolar interface. In
paper I it was shown how diffusive transport of O2 is faster through this
structure than through a bilayer arrangement (Fig. 2.3a).

5.2 Phase Changes in Responding Membranes

A significant part of the work presented in this thesis (paper III-VI)
concerns diffusive transport through a membrane with the propensity of
an internal phase transformation. Even a diffusion process that in itself
is uncomplicated then becomes highly non-linear. This is especially the
case if the transport properties of the two phases differ significantly.
In this case, the general qualitative behaviour for diffusion of a single
component is similar to what is shown in Fig. 3.3.

There is a concomitant change in the transport of a second component
that itself does not change the structure of the membrane material. In
this way, the membrane can act as a ‘switch’ for diffusion, regulated by
a primary transport process that determines the structure.

In the work presented in paper III and IV a specific model system was
investigated, experimentally as well as theoretically. A good agreement
was found, lending support to the proposed mechanism.

The behaviour shown in Fig. 3.3 is not the only possibility in the
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presence of two diffusional processes that both affect the local phase
behaviour. An interesting special case is when the gradient in chemical
potential of one of the two components vanishes (paper VI). Due to
coupling of the two processes, there might still be a gradient within the
membrane. This also affects the position of the interface between the two
phases, as well as the flux. Interestingly, this effect is rather general, and
implies that one must take into account all possible transport processes,
even the onces for which there is no (direct) driving force.

Apart from a basic interest in how a phase change affects diffusional
transport, the studies have implications for diffusive transport through
the outmost layer of human skin, the stratum corneum (see below). An-
other example with similarities to the stratum corneum from the point
of view of this thesis, is the plant cuticle, which is the outmost part of
the membrane that separates the aerial parts of all higher plants.85–87

A related application is for film formation at a non-equilibrium in-
terface. The case of water evaporation from an open aqueous surfactant
solution was treated in paper V. The evaporation of water is due to
a diffusive transport of water from the bulk solution to the gas phase.
Hence there is also a gradient in the chemical potential of water, and the
possibility of a phase transformation close to the interface. Compared to
a membrane the film forms spontaneously, but the general concepts are
very similar.

5.3 Implications for the Stratum �orneum

The outmost part of the human skin, the stratum corneum, is main bar-
rier against uncontrolled water loss. The response in water flux through
the stratum corneum is a non-linear function of the driving force, with
the same general behaviour as that shown in Fig. 3.3. Furthermore, it
has been shown that extracted stratum corneum lipids can undergo phase
transformations due to variations in the chemical potential of water.74

It is possible that the non-linear response of the stratum corneum is due
to phase changes among the stratum corneum lipids, in a similar fashion
as the response shown for a model system in paper III and IV.

The gradient in pH across the stratum corneum is well-established,
but its origin remains obscure. A very simple model for the lipid matrix
found in the stratum corneum is in terms of a stack of bilayers. The
response of the stack to diffusion of water and CO2 has been calculated
(paper II). In particular, the local proton concentration between bilayers
was investigated along the stack, and as a function of relative humidity.
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A main result is that the transport of water and CO2 can give rise to a
significant gradient in proton concentration along the bilayer stack. Fur-
thermore, the experimental observation that the skin surface pH depends
on the relative humidity could be correlated with the model.

5.4 Outlook

The study presented in paper V drew inspiration from the studies of
Edler et al. concerning film formation in surfactant-polymer-water sys-
tems, but for simplicity only treated the case of a binary system. The
work reported in paper VI, on the other hand, concerns the effect of
multi-component transport on the phase behaviour of a membrane. It is
intriguing to combine these studies, and treat film formation in a ternary
system. There are also several other phenomena that are possibly related
to the problem of film formation, e.g. the formation of liquid crystalline
phases when spin or dip coating surfactant solutions,88–90 or surfactant
dissolution in water.91,92

Furthermore, a study of the effect of two coupled transport processes
on a specific system would be interesting. Preferably such a study would
be combined with experimental work on the same system.

All the analysis reported in this thesis has been based on an assump-
tion of local equilibrium, in the sense that it presupposes the existence
of a local entropy which is the same function of the local extensive vari-
ables as at equilibrium. This is the approach taken within the theory
of irreversible thermodynamics, and leads to the introduction of a local
temperature, local temperature and local chemical potentials. Within
this framework, the phase change within a membrane with a propen-
sity for phase transformations occurs at the same chemical potential as
it does at equilibrium. However, there exists several thermodynamical
formalism that go beyond the local equilibrium formulation.93,94 It is
conceivable that such an approach can predict a change in the phase
coexistence.





Populärvetenskaplig

sammanfattning p̊a svenska

Huden är v̊art största organ, och utgör den barriär som avgränsar oss fr̊an
v̊ar omgivning. En av dess främsta uppgifter är att skydda oss fr̊an giftiga
ämnen, bakterier och virus, men minst lika viktigt är att den förhindrar
att önskade ämnen lämnar kroppen. Ett ämne som måste beh̊allas inom
kroppen är naturligtvis vatten. I regnskogen eller n̊agot annat fuktigt
klimat är detta kanske inget större problem, eftersom omgivningen d̊a
kan vara nästan lika ‘blöt’ som kroppens inre. I torrare miljöer är en väl
fungerande barriär däremot livsnödvändig.

Vi kan se luftens torrhet som en kraft som f̊ar vattnet att lämna
kroppen. Desto torrare luft, desto större kraft. I experiment har man
visat att mängden vatten som förloras genom huden inte beror p̊a denna
kraft riktigt som man förväntar sig. Vi kan jämföra med att dra en
kärra med muskelkraft. I detta fall gäller att ju kraftigare vi drar i
kärran, desto snabbare g̊ar den. Detsamma gäller för huden om kraften
är relativt liten; om vi ökar kraften, s̊a ökar vattenförlusten. Vid en
viss kraft upphör dock detta enkla samband att gälla. Även om vi ökar
kraften, s̊a ökar inte vattenförlusten. Man skulle kunna säga att huden
beter sig som om en illmarig unge sitter p̊a kärran och bromsar med
fötterna s̊a fort en viss hastighet uppn̊atts.

Fördelen med ett s̊adant uppförande är uppenbar: Oavsett hur torr
luften är (d v s oavsett hur stor kraften är), s̊a finns det en maximal
vattenförlust. P̊a s̊a sätt kan huden undvika att vi torkar ut. Men hur
lyckats huden med detta konststycke?

En möjlig förklaring till detta är en s k fasöverg̊ang hos (en del av)
molekylerna som huden best̊ar av. Ett exempel p̊a en fasöverg̊ang är när
flytande vatten fryser till fast is. Till skillnad fr̊an vatten som fryser d̊a
temperaturen sänks, s̊a överg̊ar istället molekylerna i huden i en fast fas
d̊a det blir torrt. V̊ar hypotes är att när luften blir för torr, s̊a bildas en
tät hinna av fasta molekyler ytterst p̊a huden. Denna täta hinna gör det



50 Populärvetenskaplig sammanfattning p̊a svenska

sv̊arare för en vattenmolekyl att ta sig igenom huden. När hinnan väl
bildats s̊a ökar inte vattenförlusten genom huden längre, även om luften
blir torrare. Desto torrare luft, desto tjockare hinna. Detta kompenserar
för den ökande kraften.

I denna avhandling har vi inspirerats av hur huden (eventuellt) lyckas
förhindra vatten att lämna kroppen med en fasöverg̊ang. Dock är huden
väldigt komplicerad, och det kan vara sv̊art att utföra välkontrollerade
experiment. Vi har därför istället studerat enklare system. En annan
anledning till att studera enklare system är att vi varit intresserade av
själva mekanismen i sig. Fr̊an denna synvinkel är huden ett specifikt fall
där ett mer allmänt uppförande exemplifieras.

Mer konkret s̊a p̊avisar vi att den allmänna mekanism vi beskrivit
verkligen kan ge ett uppförande som liknar hudens. Vi kombinerar ex-
periment p̊a ett enklare system än huden, med en teoretisk analys av
samma system. Den goda överenstämmelsen tyder p̊a att mekanismen
verkligen existerar. Vi diskuterar även en teoretisk modell för varför en
hinna ibland bildas p̊a ytan av lösningar av en viss grupp molekyler i vat-
ten. Det är troligt att samma allmänna mekanism exempliferas i detta
fall, och att idén med en fasöverg̊ang kan förklara även detta fenomen.
Vi behandlar ocks̊a möjliga uppförande d̊a det finns fler ämnen än vatten
som kan p̊averka ett system och dess fasöverg̊angar.

I denna avhandling diskuteras även en annan aspekt hos huden,
nämligen dess pH-värde, som i reklam för hudprodukter brukar anges
som 5� 5. Just själva värdet är kanske inte s̊a vetenskapligt väletablerat,
men det är ett experimentellt faktum att pH vid hudens yta skiljer sig
fr̊an kroppens inre där pH-värdet är 7� 4. Trots många förslag finns det å
andra sidan ingen allmänt accepterad förklaring till detta. En intressant
observation är att hudens pH faktiskt varierar med luftens torrhet. För
väldigt torr luft ligger värdet runt 4− 6, medan det i väldigt fuktig luft
närmar sig kroppens inre. Vi visar här i en enkel teoretiskt modell att
vattenförlusten genom huden kan ge upphov till ett liknande uppförande
och till liknande värden.
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