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Abstract

This paper develops an hourly forward curve for power markets where the intra-day and

intra-week shapes (profiles) depend on the level of the hydrological balance. The shaping

model is based on a feed-forward Artificial Neural Network (ANN), which is trained on a

historical data set of hourly electricity spot prices from the Nord Pool market and weekly

measurements of the Nordic hydrological balance. The yearly seasonal cycle is estimated

with historical electricity forward prices from the Nasdaq OMX Commodities exchange. We

calibrate the shaping model to prevailing electricity forward prices and proceed to demon-

strate its most important properties. By using comparative static analysis we particulary

focus on the hydro dependence of the shapes. We conclude the paper with a real world

valuation task. By combining our proposed forward curve with a simple Ornstein-Uhlenbeck

process we price a strip of hourly call options on the electricity spot price under different

hydrological scenarios.
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1 Introduction

Electricity is a flow commodity which means that it has to be delivered over a period of time.

Consequently, exchange traded forward contracts are based on averages of the underlying

electricity spot price for different delivery periods (weekly, monthly, quarterly and yearly).

The traded term structure is piecewise constant over the quoted delivery periods and it re-

flects the market participants’ believes on the future risk-adjusted average spot price. In

this sense the traded term structure is somewhat indistinct and market participants com-

monly depend on models to get a more informative representation of the term structure. The

relevant class of models is given by continuous term structure forward curves and they are

designed so that the term structure reflects seasonal shaping patterns while simultaneously

being consistent with traded forward prices. In electricity markets such curves are repre-

sented at hourly granularity and they are hence known as hourly forward curves. The hourly

forward curve is a crucial and fundamental tool in any valuation task and it enables the

electricity trader to value any forward position regardless if the delivery period is standard

or non-standard. It also serves as an essential input to stochastic price models with appli-

cations to risk-management and derivative valuation, where it represents the initial value to

express today’s forward prices. We argue that the hourly forward curve is an instrument of

fundamental importance in the modern energy trading business.

The literature has made several contributions to the field of continuous term structure

forward curve models. The general method for constructing a continuous forward curve

can be decomposed into two steps, where the first step performs estimation of the seasonal

shapes (intra-day, intra-week and intra year) and the second step calibrates the estimated

seasonal vector to prevailing forward prices. In this paper we use the terms seasonal shapes

and seasonal patterns interchangeably. Most studies have focused on the calibration scheme

(second step) while estimation of the seasonal shapes has been left aside. An early study by

Fleten and Lemming (2003) proposed an optimization based calibration method to construct

a smooth daily forward curve for electricity markets. The discussion on estimation of seasonal

shapes was secondary, and the authors used an exogenous fundamental bottom-up model to

account for these effects. Another relevant study was carried out by Benth, Koekebakker

and Ollmar (2007) where the authors suggested a method to compute a smooth curve from

observed forward prices with delivery periods. The curve was decomposed into a seasonal

component and a correction term and the model was calibrated to two simplistic seasonal

specifications and a fundamental bottom-up model. Again, the study was primarily directed

towards the calibration procedure. A simple and practically viable calibration procedure was

suggested in Burger, Graeber and Schindlmayr (2008) who employ a linear scaling method

to calibrate the estimated seasonal shapes to traded forward prices. The authors note in

passing that estimation of the seasonal shapes should be carried out from historical spot

prices using forecasting methods similar to those for load forecasting. We argue that neither

of the mentioned studies have presented a serviceable approach to model the seasonal shapes.
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However, the important connection between seasonality and fundamental factors was pointed

out in both Fleten and Lemming (2003) and Benth et al. (2007).

In this paper we suggest a model to estimate the seasonal shapes that provides the basis

for an hourly forward curve. Our approach is based on Artificial Neural Networks (ANN) and

it is related to the methodology suggested in Crispin and Jacobsson (2007) where the authors

compute a smooth daily forward curve for electricity markets using a seasonal model based

on ANNs. The main contribution of this paper is that we expand the approach in Crispin

and Jacobsson (2007) to include a connection between the seasonal specification and the

hydrological balance, which is a fundamental factor related to the supply side of the power

system. This extension is in agreement with the observations in Fleten and Lemming (2003)

and Benth et al. (2007) that point out the connection between seasonality and fundamental

factors. We define the hydrological balance as a measure of the amount of available and

potential production resources used for hydro power production. In a power system with a

high proportion of hydro generation, such as the Nordic market, the hydrological balance is

connected to the production behavior of hydro power producers, which in turn impacts the

intra-day and intra-week seasonal shapes. Our model accounts for this connection and by

analyzing the estimated model we verify that the intra-day and intra-week seasonal shapes

indeed have an impact from changes in the hydrological balance. The proposed ANN-model

is trained on a data set of hourly electricity spot prices from the Nord Pool market. We

use weekly data for the Nordic hydrological balance for the same time period. In order to

estimate the intra-year seasonal shape we use Nordic forward data from the Nasdaq OMX

Commodities Exchange. We analyze the seasonality vector given by the model and we pay

special attention to the sensitivity between the seasonal shapes and the hydrological balance.

In order to calibrate the estimated shaping vector to current forward prices we use the linear

scaling method suggested in Burger et al. (2008).

We conclude the paper with a pricing application. By combing our proposed hourly

forward curve with a simple stochastic Ornstein-Uhlenbeck model we calculate the price of a

strip of hourly call options on the electricity spot price under different hydrological scenarios.

The contract specification is a real world example of an OTC product and we therefore employ

a pricing approach similar to what is used by practitioners. In a comparative static analysis

we conclude that changes in the hydrological balance has a clear effect on the intra-day and

intra-week seasonal shapes, which in turn impacts the price of the OTC product.

This paper is organized as follows. Section 2 overviews the data and presents a series

of stylized facts. Section 3 describes the shaping model, the calibration method and the

stochastic price model used in the application. In Section 4 we analyze the estimated hourly

forward curve. Section 5 is devoted to pricing of an OTC product. Finally, we sum up and

state our conclusions in Section 6.
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2 The Data

In the current section we present the historical data and perform a statistical analysis to

establish a series of stylized facts that we require our seasonal shaping model to account for.

2.1 Overview of Data

Electricity spot prices exhibit a complex combination of simultaneous seasonal patterns at

different frequencies. In order to robustly estimate these patterns we use a rich historical data

set of hourly system spot prices from the Nord Pool market between January 7, 2002 and

December 25, 2011. Spot data is a natural source to estimate intra-daily and intra-weekly

seasonal shapes but to estimate the yearly seasonal cycle we argue that it is better to use data

from the forward market. Spot prices strongly depend on the current state of fundamental

factors which might cloud the intra-yearly seasonal cycle. This stands in contrast to the

forward market which always displays a clear (expected) yearly seasonal shape in its term

structure. We estimate this shape using historical forward price quotes (monthly, quarterly

and yearly) from the Nasdaq OMX Commodities Exchange between 2008-2009. Finally,

since our model connects the seasonal shapes to the hydrological state we use a historical

time series of weekly measurements of the Nordic hydrological balance stretching between

2002-2011.2 The hydrological balance is defined as the sum of the Nordic snow reservoir and

hydro reservoir.

2.2 Stylized Facts

Day types

Hourly spot prices show distinct intra-day seasonal patterns with variations for different

day types (Monday-Sunday). In Figure 1 we have used our spot data set to calculate the

average normalized intra-day hourly weights for each day type and it is clear that Mondays-

Thursdays display quite similar behavior, while Fridays are somewhat different with a less

pronounced evening peak.3 Saturdays and Sundays both exhibit a different pattern with

delayed morning and evening peaks. We finally note that Sundays show a more protracted

evening hump compared to Saturdays.

INSERT FIGURE 1 AROUND HERE

In addition to the intra-daily effects there is a clear intra-weekly pattern with Fridays

and weekends displaying lower levels than weekdays. These effects are displayed in Figure 2

2The time series measures the deviation of the hydrological balance from its normal state in units of TWh.

This measure is commonly used by market participants.

3The hourly weights have been normalized to sum to unity for any given day.
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which shows the averaged normalized daily weights for each day type.4 Clearly, Fridays and

weekends show lower weights than weekdays. The intra-daily and intra-weekly effects must

crucially be accounted for in a shaping model.

INSERT FIGURE 2 AROUND HERE

Season

It is a well established fact that Nordic electricity prices display annual seasonality distin-

guished by a slowly varying trend due to seasonal changes in temperatures. This is clearly

visible in Figure 3, which shows prices for quarterly contracts (settlement period 2013) traded

at Nasdaq OMX Commodities on November 25, 2011.

INSERT FIGURE 3 AROUND HERE

In fact, these seasonal changes also affect the appearance of the intra-day and intra-week

shapes over the course of the calendar year. This effect is demonstrated in Figure 4 where we

display an example of two normalized intra-day shapes for average Wednesdays in February

and June respectively. We note that the shape in February carries distinct morning and

evening peaks while the corresponding shape in June has a deep trough for the early morning

hours while lacking the evening peak. A general notion is that warmer seasons typically show

larger differences between peak and off-peak than colder seasons, which is clear from Figure

4.

INSERT FIGURE 4 AROUND HERE

Hence, intra-day shapes for the same day type might be completely different depending on

the season. The same line of argumentation holds for the weekly shapes where we typically

see larger spreads between weekends and weekdays in warmer seasons. We require our model

to reflect (i) the slow annual seasonality due to changes in temperatures and (ii) the seasonal

changes in intra-day and intra-week shapes.

Holidays and bridge days

Public holidays, bridge days and school breaks all have major impact on electricity prices.

The limited amount of historical data makes it challenging to estimate the size of the impact

and simplistic dummy methods are commonly applied, which is also the case in this paper.

To account for this information in an hourly forward curve one must keep track of calendar

data for all regions/countries affecting the price. The Nordic power market is multinational

market and calendar information from Sweden, Norway, Denmark and Finland need to be

incorporated into the model.

4The daily weights have been normalized to sum to unity for any given week.
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Hydrology

The hydrological balance is an important price driver in the Nordic power market. More

than 50 percent of the Nordic generation capacity consists of hydro power which makes price

levels (and shapes) highly sensitive to changes in the hydrological balance. In situations

with considerable hydrological oversupply hydro producers might run into difficulties with

managing the water for off-peak hours, resulting in lower prices. This especially holds true

during warmer seasons when the power consumption is low to start with. For peak hours,

the consumption is higher and the price formation occurs further up the bid-stack making it

easier for hydro producers to control the water, and prices will bounce upwards to adequate

levels. Hence, ceteris paribus, a situation with hydrological oversupply likely gives a wider

price spread between peak and off-peak hours. The same line of argumentation holds for the

opposite case, i.e. in situations with hydrological undersupply we generally observe tighter

spreads between peak and off-peak prices. We confirm this argument in Figure 5, which

displays average normalized intra-day hourly weights for Wednesdays in April, under two

different hydrological situations; wet and dry.

INSERT FIGURE 5 AROUND HERE

The calculations are based on data from the years 2006 and 2008, where the average hydro-

logical balance (deviation from normal state) in April was -19.43 TWh and +13.41 TWh,

respectively. The wet situation (depicted with circles) displays a pattern with a large spread

between off-peak and peak hours, which is in accordance with our argumentation. The dry

situation (depicted with triangles) shows a tighter profile. The proposed shaping model will

account for the connection between shapes and the hydrological state.

3 The Model

The method of construction of an hourly forward curve for electricity markets is typically

subdivided into two steps where the first step concerns shape estimation and the second step

calibrates the estimated shape vector to current forward prices. We are primarily concerned

with estimation of the seasonal shapes. This section presents the architecture of the Artificial

Neural Network (ANN) which is used to estimate the shaping model. A simple empirical

approach for monthly shaping is also outlined. We furthermore describe the calibration

procedure from Burger et al. (2008) that we employ to calibrate our estimated shapes to

traded forward prices. The section is concluded with an overview of a simple stochastic

model for the electricity spot price. We utilize this model in conjunction with the proposed

hourly forward curve to price a strip of hourly call options on the electricity spot price. The

pricing application is done in section 5.
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3.1 The Shaping Model

In order to estimate the shaping vector containing all seasonal effects we employ an approach

based on Artificial Neural Networks (ANN). For an excellent overview of neural networks

see e.g. Ripley (2008). Our approach is a straightforward generalization of the previous

work in Crispin and Jacobsson (2007). In fact, our main contribution is that we expand the

approach by the previous authors to include dependence between the seasonal specification

and the hydrological balance, which according to the analysis in section 2.2 is an important

determinant of the seasonal shapes. In addition to the ANN specification for the hourly

and daily patterns, we employ a purely empirical method to estimate the annual seasonality

(monthly weights). In the end, we combine the results (hours, days and months) to obtain

a single vector containing all shaping information.

The hourly and daily seasonal patterns are modeled separately in two unattached net-

works. The separation into two different models is advantageous since it eliminates the risk

of confusing the different patterns.

3.1.1 The Hourly Network

The hourly model is a 6-60-24 feed-forward network. We let {(sht ,xh
t )|t = 1, ..., T } be the

available data for training of the network, where xh
t denotes the input data and sht is the

target data. The first two columns of the input data matrix are given by a sinus-function and

a cosine-function with yearly periodicity, which jointly serve as a clock to inform the model

on the time of year. Note, that we need two coordinates to represent a unique point in time

of the calendar year. By keeping track of the time of year we enable the model to account

for potential seasonal changes in the intra-day pattern. In section 2.2 we confirmed the

presence of such effects in our data set. Columns three and four of the input matrix serve

as a weekly clock, and similar to the previous case they are specified as a sinus-function

and a cosine-function however with weekly periodicity. The weekly clock informs the model

on the different day types, and enables identification of different shapes for each day type.

The analysis in section 2.2 indeed showed that intra-day patterns vary for different day

types. The fifth column of the input matrix is a vector of pre-estimated factors to scale

down holidays and bridge days. The factors are unit valued for working days and < 1 for

holidays or bridge days. Note, for the given historical period the system price is a joint price

for Sweden, Norway, Denmark and Finland, and in order to estimate the weights we have

utilized calendar information from all countries. The last column of the input data matrix

consists of weekly measurements of the hydrological balance from the Nordic market. To

obtain daily data points we have interpolated the original data. The original time series

measures the deviation of the hydrological balance from its normal state in units of TWh.

According to common practice for network training we have standardized the hydrological

data to have mean zero and standard deviation one. The target data vector consists of

historical hourly spot prices normalized such that the hourly weights for any given day sum
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to unity.

The network is restricted (guided) in the sense that the neurons governing the yearly/weekly

clocks, the holidays and bridge days, and the hydrology, are respectively disconnected from

each other. The illustration in Figure 6 shows the essential architecture of the restricted

network.

INSERT FIGURE 6 AROUND HERE

Since we require the output of the network to be interpreted as positive weights summing

to unity, we employ the softmax activation function. The network is trained using a quasi

Newton optimization algorithm available in our software package.5 In order to avoid over-

fitting and improve generalization of the network we make use of regularization techniques.

We have implemented regularization by Gaussian priors on each network parameter (acting

as a decay factor on the weights). To determine the size of the decay factor we retrained

several networks using different decay factors and we performed out-of-sample predictions to

find a network with good generalization. Specifically, we divided our data set into a design

set (90 percent of the observations) and a validation set (10 percent of the observations). We

trained three different networks with initial randomized weights, and for each network we

forecasted the validation set and calculated the average forecast error. We then re-divided

the data set into a new design set and validation set, where the data points in the validation

set are non-overlapping with the points in the previous validation set. With randomized

initial weights we again trained three networks and calculated the average forecast error.

This procedure was iterated 10 times (until all data points in the original data set had been

forecasted). According to this method a decay factor of 0.05 proved to be suitable.

3.1.2 The Daily Network

The weekly model is a 10-60-7 feed-forward network. We let {(sdt ,xd
t )|t = 1, ..., T } be the

available data, where xd
t denote the input data and sdt is the target data. The weekly model

has a similar structure compared to the hourly model. The first two columns of the input

data matrix are yearly sinus- and cosine-functions to measure the time of year. Columns

three to nine are pre-estimated factors to account for holidays and bridge days. The final

column contains weekly measurements of the hydrological balance standardized with mean

zero and standard deviation one. The target data vector consists of historical daily spot

prices normalized such that the daily weights for any given week sum to unity. The network

is trained using the same approach as for the hourly model, with a decay factor of 0.05.

3.1.3 Empirical Monthly Shaping

Spot prices strongly depend the current fundamental situation and for this reason historical

price data might cloud the annual seasonal cycle. For estimation of the annual seasonality

5We use the Netlab library which is built on top of the Matlab system.
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we instead turn to the forward market, which typically displays a clear (expected) yearly

seasonal shape in the term structure. We employ a simple empirical method to estimate the

seasonal cycle from historical forward price quotes (yearly, quarterly and monthly products).

For any given month contained in a certain quarter, and year, let FM
t , FQ

t and FM
t be the

respective forward price quotes at time t. We estimate the series of quarter-to-year ratios,

R
Q/Y
t , and month-to-quarter ratios, R

M/Q
t , simply be calculating

R
Q/Y
t =

FQ
t

FY
t

for all t = 1, ..., T (1)

R
M/Q
t =

FM
t

FQ
t

for all t = 1, ..., T (2)

In order to obtain stable estimates we average the ratios over the entire historical time period

(years 2008-2009). The average ratios are computed as

R̂
Q/Y
t =

1

T

T∑
t=1

R
Q/Y
t (3)

R̂
M/Q
t =

1

T

T∑
t=1

R
M/Q
t (4)

We finally calculate the average monthly weights (month-to-year) from

R̂
M/Y
t = R̂

Q/Y
t × R̂

M/Q
t (5)

By repeating this operation for all months we end up with a vector of monthly weights,

which after normalization, will sum to unity over the calendar year. The vector reflects the

annual seasonal cycle as it was perceived by the market during the historical time period.

Figure 7 displays the estimated monthly shape vector.

INSERT FIGURE 7 AROUND HERE

The annual seasonal cycle is clearly visible. In particular, we note the drop between June

and July, and the corresponding sharp increase between July and August, which is due to

the holiday season.

3.2 The Calibration Procedure

There are several available approaches to calibrate an estimated shaping vector to prevailing

forward prices. In general, such methods are formulated as constrained optimization prob-

lems where the constraints ensure that the curve reflects traded forward prices. The most

well known examples are found in Fleten and Lemming (2003) and Benth et al. (2007). In

this paper, however, we employ a considerably simpler calibration approach from Burger

et al. (2008) which is based on a linear scaling method. This method turns out to be a

straightforward and robust alternative sufficient for our purposes.
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The method builds on the assumption that the hourly forward prices are given by

F (t, Ti) =

Nb∑
m=1

αmemiSi (6)

where F (t, Ti) denotes the forward curve at time t with delivery at Ti and where Si is the

previously estimated shaping vector containing all shaping information. The coefficients αm

are scaling factors chosen such that the forward curve is arbitrage-free against the traded

forward contracts F b
m. The quantity Nb denotes the number of traded forward contracts and

emi is an indicator function that gives the delivery structure of all traded instruments, which

is defined as

emi =

{
1 for i ∈ Jb

m,

0 otherwise
(7)

where Jb
m is the set of hours corresponding to the delivery period in the traded forward

contract F b
m. By definition we require our forward curve to re-price the traded forward

contracts (absence of arbitrage). This property is ensured by setting

1

|Jb
k|
∑
i∈Jb

k

F (t, Ti) = F b
k for all k = 1, ..., Nb (8)

Substituting the assumed hourly model from equation (6) into the above condition for absence

of arbitrage we end up with the following expression.

1

|Jb
k|
∑
i∈Jb

k

[
Nb∑

m=1

αmemiSi

]
= F b

k for all k = 1, ..., Nb (9)

Rearranging terms allows us to write these equations as

1

|Jb
k|

Nb∑
m=1

αm

⎛⎝∑
i∈Jb

k

emiSi

⎞⎠ = F b
k for all k = 1, ..., Nb (10)

We now have a system of Nb equations for the same number of variables αm. Absence of

arbitrage opportunities in the forward prices implies the existence of a unique solution to

this linear system of equations. However, closing prices for Nordic power at Nasdaq OMX

Commodities are typically not entirely arbitrage-free, e.g. the price of a yearly contract

might be slightly inconsistent with the quarterly contracts for the same delivery year. Since

one cannot trade closing prices this is merely a theoretical arbitrage, which does not give

rise to real arbitrage opportunities. But from a model point of view we need to handle this

by removing redundant forward prices from the system of equations, which makes it possible

to still obtain an exact solution. For any given situation with entire overlap of forward

products we always remove most granular product furthest out on the term structure. E.g.

in a situation where we have a quarterly product being traded simultaneously with the three

corresponding monthly products, we remove the last monthly product.
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3.3 A Simple Stochastic Model for the Spot Price

Let (Ω,F ,P) be the objective probability space on which we introduce a one-dimensional

Wiener processes W (t) on the time interval [0, T ], where T is a constant. By letting F(t),

t ≥ 0 denote the filtration on our space, we interpret it as the information available to

agents at time t. Denoting the de-seasonalized electricity spot price by S(t), we assume that

lnS(t) = X(t) where

dX(t) = −αX(t)dt+ σW (t) (11)

X(0) = x0 (12)

where σ is the volatility, α > 0 is the speed of mean-reversion and where the level of mean-

reversion is equal to zero. This type of model is commonly known as an Ornstein-Uhlenbeck

process and was first introduced in finance in the context of interest-rate markets, see Vasicek

(1977), but has later been frequently employed in the commodity literature, see e.g. Schwartz

(1997). We establish the risk-neutral dynamics by standard Girsanov theory, see e.g. Shreve

(2004). The risk-neutral specification will have level of mean reversion μ(t) = −λ(t)σ/α,

where the function λ(t) denotes the time-dependant market price of risk, which is used to

calibrate the spot model to the hourly forward curve in the subsequent application (section

5).

4 Analysis of the Trained Model

We continue to employ the trained networks to generate hourly and daily shapes for the out-

of-sample period January 1, 2013 to December 31, 2013. By combining the results from the

hourly and daily models with the estimated monthly seasonal vector, we proceed to construct

a single hourly vector containing all shaping information. Let ŜH
hdm be the estimated hourly

weight for a given hour h, in a given day d, for a given month, m. Similar notation goes for

the estimated daily and monthly weights respectively; ŜD
dm and ŜM

m . We let Ŝ denote the

combined shaping vector for a single calendar year and compute

Ŝ = ŜH
hdm × ŜD

dm × ŜM
m (13)

It is now straightforward to calibrate the estimated seasonal vector Ŝ to prevailing forward

prices using the calibration procedure from section 3.2. The model is calibrated to for-

ward closing prices from the Nordic power market traded at Nasdaq OMX Commodities per

November 20, 2012. Using monthly, quarterly and yearly base products we calibrate the

curve for the out-of-sample period January 1, 2013 to December 31, 2013. We deal with

arbitrage inconsistencies between closing prices by utilizing the product selection methodol-

ogy described in section 3.2. The products and input prices used for calibration are given in

Table 1. The objective of the forthcoming analysis is to establish that the modeled forward

curve reflects the stylized facts outlined in section 2.2.
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INSERT TABLE 1 AROUND HERE

Figure 8 displays the calibrated forward curve for the full calendar year 2013. The model

is calibrated under the assumption of a normal hydrological balance. The dotted line displays

hourly prices and the solid line shows the corresponding monthly averages. Obviously, it is

impossible to distinguish the hourly profiles from the figure, but we note that the slow

monthly seasonal cycle is present in the model.

INSERT FIGURE 8 AROUND HERE

We emphasize that the monthly shaping only takes place in the absence of traded products.

E.g. in the case where we input monthly products to the calibration scheme they will

overwrite the monthly shaping from the model. Only in the case where we lack monthly

input products will the model perform the monthly shaping. We note from Figure 8 that the

out-of-sample monthly shapes for July-December (where no monthly products are available

in the model) show a nice seasonal pattern in agreement with the historically estimated

monthly shape vector (showed in Figure 7).

We continue to take a closer look at the modeled daily profiles. Figure 9 shows daily

averages of the hourly curve for three consecutive weeks starting on a Monday (April 8,

2013) and ending on a Sunday (April 28, 2013).

INSERT FIGURE 9 AROUND HERE

The daily shaping (within the weeks) are in line with the stylized facts pointed out in section

2.2. Indeed, the intra-weekly out-of-sample pattern from the model is very similar to the

average historical daily weights displayed in Figure 2. It is clear that Fridays and weekends

display lower price levels than weekdays. Adjustments for holidays and bridge days are

accounted for internally in the model and they are generated automatically by the networks.

In Figure 10 we give an example of a single week containing the Swedish National holiday

on June 6th.

INSERT FIGURE 10 AROUND HERE

We now turn to the hourly (intra-daily) pattern generated by the model. In section 2.2 we

established that historical hourly spot prices show distinct intra-day seasonal patterns with

variations for different day types (Monday-Sunday). These effects are included in the model.

In Figure 11 we display an example of the hourly prices in the curve between November 4

and November 24, 2013.

INSERT FIGURE 11 AROUND HERE

It is clear that the hourly profiles are present and that they vary for different day types.

We confirm that Mondays-Thursdays exhibit quite similar behavior, while Fridays show

a less pronounced evening peak. Saturdays and Sundays both display a different pattern

with delayed morning and evening peaks. In section 2.2 we moreover pointed out that

intra-daily profiles change appearance over the course of the calendar year. We noted that
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warmer seasons typically show larger differences between peak and off-peak compared to

colder seasons. We will now confirm this property in the model. In Figure 12 we have

plotted three consecutive weeks in January next to three consecutive weeks in June.

INSERT FIGURE 12 AROUND HERE

The two series are at different price levels (June obviously at the lower level) but it is clear

from the figure that the difference between peak and off-peak prices is larger in June. We

calculated the average price difference between peak and off-peak in the curve to be 7.28

EUR/MWh in June vs 5.68 EUR/MWh in January. A final notion is that the evening peak

present in January is very modest in June.

The previous analysis is based on a single calibration of the hourly forward curve under

the assumption of a normal hydrological state. Let us now change the assumption on the

hydrology and generate two additional shape vectors where the first case is for a wet scenario

(26 TWh above the normal level), and the second case for a dry scenario (26 TWh below the

normal level). Both shape vectors are generated according to the same approach as before,

however, now we explicitly inform the model on the hydrological balance for the future time

period covering the term-structure of the curve (January 1, 2013 to December 31, 2013).

In a practical setting this would typically be a forecast of the hydrological balance. We

calibrate the curve to the same input prices as before (see Table 1). The purpose of this

comparative static analysis is to study how the shape of the curve is affected by changes

in the hydrological balance keeping all other conditions unchanged. Naturally, in a real

world setting a wet (dry) scenario would decrease (increase) the price level of the curve,

but in this analysis we disregard that effect and focus solely on the changes in the shapes.

In fact, in a real world setting the input forward prices would reflect information on the

expected hydrological balance. In Figure 13 we show three hourly forward curves (wet, dry

and normal) for the time period between September 9 and September 29, 2013.

INSERT FIGURE 13 AROUND HERE

The curves are comparable since they have been calibrated to the same input prices. Compar-

ing the wet scenario to the normal scenario we note that the curve displays a more stretched

intra-daily profile with a larger difference between peak and off-peak prices. This is con-

sistent with the reasoning in section 2.2 where we argued that a considerable hydrological

oversupply results in a situation where hydro producers might run into difficulties managing

the water for off-peak hours, which results in lower prices (in relation to the peak hours).

This is moreover in agreement with the previous example from our historical data set showed

in Figure 5. Next, we compare the dry scenario to the normal scenario, and we conclude that

the intra-daily shape shows a more compressed profile with a smaller difference between the

peak and off-peak prices. Again, this is in line with the reasoning in section 2.2. We finally

note that the wet scenario has a larger impact on the profiles in the curve compared to the

dry scenario. I.e. the hourly profiles appear to have greater sensitivity to wet scenarios. This

can be visually verified in Figure 13.
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5 Application: Pricing a Strip of Hourly Call Options

5.1 Background

In 2001 the French electricity producer EDF acquired a controlling interest in the German

electricity utility EnBW. For reasons of competition the European Commission ruled that

EDF was obliged to auction Virtual Power Plant (VPP) capacity in the French electricity

market. The auctions took place on a quarterly basis for several years coming to an end

in 2011 when EDF was released from the commitment. A similar situation took place in

Denmark in 2004, where the Danish Competition Council approved a merger between two

major electricity producers under certain conditions, including the commitment to regularly

auction VPP capacity. The Danish auctions are still ongoing.

In both of these situations the auctioned contracts are constructed so that the buyer

has the right, but not the obligation to purchase hourly power at a fixed price during a

pre-defined settlement period. The contract is therefore equivalent to a series of independent

call options on the hourly electricity spot price. Contracts of this type are moreover traded

in secondary OTC markets where the main players are major energy trading houses and

investment banks.

5.2 Valuation Method

Valuation of hourly electricity derivatives is a complicated matter since it involves stochastic

modeling of hourly prices that have very complex dynamics. Similar to the approach in

Branger, Reichmann and Wobben (2010) we argue that an hourly forward curve is a natural

starting point in the valuation of an hourly VPP. An hourly forward curve supplies us with

an hourly structure containing all relevant seasonal patterns while simultaneously being

consistent with traded forward prices. Hence, it will successfully capture the intrinsic value

of the strip of call options that makes the VPP, but being a deterministic object it will not

capture the time value. In order to estimate the time value we need to make use of a dynamic

stochastic price process for the electricity spot price. In this paper we employ the simple

model specified in section 3.3. Admittedly, this price process is not a realistic alternative

since it is normally distributed and has no jump component, but it’s good enough for our

purposes, which is to study how the value of the VPP reacts to changes in the hydrological

state. Specification of a realistic model for hourly electricity prices lies outside the scope of

this paper.

Since physical electricity is non-storable (it has to be consumed instantly after produc-

tion) we cannot apply the traditional derivative valuation methods based on the results in

Black and Scholes (1973). From a theoretical point of view non-storability of the underlying

asset creates a situation with infinitely many martingale measures, which stands in sharp

contrast to the Black and Scholes (1973) economy that has one single unique martingale

measure. In order to price derivative assets we therefore need to employ methods originally

14



developed in the context of interest rate markets where the situation is similar. These meth-

ods are based on calibration of the spot model to the hourly forward curve via the market

price of risk. Motivated by Benth, Ekeland, Hauge and Nielsen (2003) we consider a pa-

rameterization of the market price of risk which is very flexible when fitting to the hourly

forward curve. Specifically, we use the risk-neutral specification of equation (11) and param-

eterize the market price of risk λ(t) to be piecewise constant for each hour. We then pick

the equivalent martingale measure Q by calibrating the market price of risk such that the

following arbitrage-free price relation is fulfilled

F (t, T ) = EQ[S(T )|Ft] for all hours T = 1, ..., T (14)

where S(T ) is the de-seasonalized spot price, F (t, T ) is the hourly forward curve and T
denotes the last hour on the forward term structure. Within the class of equivalent martingale

measures we have picked the probability measure Q which is closest to the hourly forward

curve (which in turn is consistent with the market). This approach is similar to what is used

in interest markets, see e.g. Björk (2004). We furthermore note that the our choice of Q
re-introduces all seasonal patterns through the hourly forward curve. With this setup it is

now possible to estimate the price of any derivative using standard Monte Carlo methods.

In this paper we simulate the process in equation (11) using the exact simulation algorithm

(i.e. without any discretization error) outlined in Glasserman (2004).

Before putting the above pricing scheme to work we need to estimate the speed of mean-

reversion (α) and the volatility (σ) in equation (11). In order to do this we must first create

a de-seasonalized hourly price series that could be used for estimation. We denote the hourly

spot price (including all seasonal patterns) as S∗(T ) and assume that

S(T ) =
S∗(T )
Λ(T )

(15)

where S(T ) is the de-seasonalized price and Λ(T ) is the seasonal pattern. We estimate Λ(T )

by calibrating the full shaping model from section 3.1 to yearly historical spot prices. More

precisely, we apply the trained shape model (the hourly and daily networks in combination

with the empirical monthly shape) to generate a shape vector for the historical time period

January 7, 2002 to December 25, 2011. This is the same time period as used in our data

set. Each yearly segment of the shape vector is now calibrated (using the method in section

3.2) to the corresponding historical yearly average prices. In this way, we have created a

series of historical hourly spot prices, containing all seasonal patterns and holidays/bridge

days, which at the same time reflects the correct historical yearly average prices. We regard

this series to be an estimate of the function Λ(T ). It is now straightforward to estimate the

de-seasonalized hourly historical (log-)prices X(t) from

X̂(T ) = ln Ŝ(T ) = ln

(
S∗(T )

Λ̂(T )

)
(16)

With the estimated process X̂(t) we may proceed to estimate the parameters in equation

(11). Model estimation is carried out using Maximum Likelihood (ML), which is a well
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known method of estimation for processes of the type in equation (11). We estimate the

speed of mean-reversion to be α̂ = 181.95 and the volatility to be σ̂ = 5.94.

5.3 Valuation Results

Once more we make use of the three hourly forward curves from section 4. We stress that

the curves have been calibrated to the same input prices (given in Table 1), but each shape

vector has been generated under a different hydrological scenario; (i) normal, (ii) wet (26

TWh above normal) and (iii) dry (26 TWh below normal). Using the method of valuation

outlined above we shall now price an hourly VPP with a yearly settlement period. Similar

to the exercise in section 4 we keep the price level of the curve fixed (in line with input

prices) and focus solely on the changes in the shapes, and how they impact the price of the

VPP. Assuming we stand at November 20, 2012 (which is the trading date for the input

prices of the curve) we price an hourly VPP with settlement period between January 1, 2013

to December 31, 2013. The strike price of the VPP is K = 37 EUR/MWh for each hour,

which roughly corresponds to the yearly average price. Hence, the strike is set at the average

at-the-money level. We assume that the risk-free interest rate is r = 0 in all calculations. In

Table 2 we give the intrinsic value (IV), the time value (TV) and the total option value for

the three scenarios. The intrinsic value is calculated according to

IV =
1

N

N∑
i=1

max(F (0, Ti)−K; 0) (17)

where F (0, T ) is the hourly forward curve at time t = 0 (November 20, 2012), and N is the

number of hours. In the normal scenario we report an IV of 2.24 EUR/MWh and a TV of

2.90 EUR/MWh, which gives a total option value of 5.15 EUR/MWh.

INSERT TABLES 2 and 3 AROUND HERE

In Table 3 we show the respective percentage contribution of the IV and TV to the total

option value. We see that the IV in the normal scenario accounts for about 43.58% of the

total option value, while the remaining contribution, 56.42%, consists of TV. If we instead

make the same calculation in the wet scenario we see from Tables 2 and 3 that the IV

increases to 2.85 EUR/MWh which corresponds to 52.66% of the total option value. The

reason for this increase is that a wet scenario gives a larger price spread between peak and

off-peak prices (see analysis in section 2.2), which means that the options (hours) that are

in-the-money will move even further in-the-money, and the options (hours) that are out-of-

the-money will move even further out-of-the-money. This obviously increases the IV. While

the wet scenario brings on an increasing IV we simultaneously observe a decreasing TV. From

the Tables 2 and 3 we see that the TV decreases to 2.56 EUR/MWh which corresponds to

47.34% of the total option value. The reason for this decrease lies in the nature of options.

According to option pricing theory the TV of a given option is at its maximum when it is at-

the-money. Any change in the moneyness (away from the at-the-money level) will hence lead

16



to a decrease in the TV. We also note that the total option value in the wet scenario (5.41

EUR/MWh) is higher compared to the premium in the normal scenario (5.15 EUR/MWh).

This means that the net effect of the changes in the IV and the TV (due to the change in the

hydrological balance) brings on a total increase in the option premium, despite the fact that

all input prices have been kept unchanged. We finally make the same calculations for the dry

scenario. According to the Tables 2 and 3 we see that the IV in the dry scenario decreases

in comparison to the normal scenario to the level of 2.02 EUR/MWh, which corresponds to

40.04% of the total option value. The decrease is due to the shrinking spread between peak

and off-peak prices that occurs in dry situations (see analysis in section 2.2). The decreasing

price spread gives the consequence that in-the-money options (hours) become less in-the-

money, and out-of-the-money options (hours) move towards the at-the-money level. This

gives a lower IV. Opposite to the wet case the dry scenario brings on a decreasing IV while

simultaneously giving an increase in the TV. The TV increases (in relation to the normal

scenario) to 3.02 EUR/MWh which makes 59.96% of the total option value. We finally note

that the total option value in the dry scenario (5.04 EUR/MWh) is somewhat lower than

the premium in the normal scenario (5.15 EUR/MWh). Similar to the previous case this is

due to a positive net effect from the changes in the IV and the TV.

6 Conclusions

We have suggested a model to estimate the seasonal shapes that provides the basis for a

power market hourly forward curve. The approach is based on feed-forward Artificial Neural

Networks (ANN) in combination with an empirical monthly shaping method. We general-

ize the methodology suggested in Crispin and Jacobsson (2007) by including a connection

between the seasonal specification and a fundamental factor (the hydrological balance). In

the initial part of the paper we analyze hourly system price data from the Nordic electricity

market and establish a series of stylized facts that we require the trained shaping model

to account for. From the analysis we establish that the model is required to account for

realistic hourly (intra-daily) and daily (intra-weekly) profiles (including seasonal variations

in profiles), holidays and bridge days, annual seasonality in the price level, and finally we

want the profiles to depend on the hydrological balance, which is an important fundamental

factor in the Nordic power market with an impact on profiles and price levels.

The ANN shaping model consists of two separate networks, one for the hourly profiles

and one for the daily. Both networks have been trained on historical price data for the

Nordic system spot price between January 7, 2002 and December 25, 2011. We employ a

simple empirical method to estimate the annual seasonal cycle from historical forward prices

from the Nordic market (yearly, quarterly and monthly products). Estimates are based on

historical data between 2008-2009. Finally, we combine the results from the hourly/daily

networks and the empirical monthly method to obtain a single hourly vector containing all

shaping information. In order to finalize the hourly forward curve we calibrate the shape
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vector to Nordic forward prices from the Nasdaq OMX Commodities market using the linear

scaling method suggested in Burger et al. (2008).

In a subsequent analysis we conclude that the final model successfully accounts for all

stylized facts initially stated. In particular, we focus on how the hourly forward curve depends

on changes in the hydrological balance. We perform a comparative static analysis (with fixed

input prices) where we feed the curve with different hydrological scenarios (normal/wet/dry)

only to conclude that the model reacts in agreement with historical data and the expected

behavior of hydro producers. A wet scenario (compared to normal) increases the price spread

between peak and off-peak prices, while the dry scenario gives the opposite result.

In the final section we combine the proposed hourly forward curve with a simple stochastic

Ornstein-Uhlenbeck model in order to calculate the price of a strip of hourly call options

on the electricity spot price under different hydrological scenarios. This type of contract is

commonly known as a Virtual Power Plant (VPP) and it makes a real world example of

and OTC product that depends on hourly profiles. In a comparative static analysis (with

fixed input prices) we conclude that changes in the hydrological balance impacts the intrinsic

value and the time value of the VPP. It turns out that the intrinsic value increases in the

wet scenario (compared to normal) while the time value decreases. The total option value

(which gives the net effect of the changes in the intrinsic value and the time value) also

increases although input prices are fixed. In the dry scenario we see the opposite effect with

decreasing intrinsic value (compared to normal) and increasing time value. The total option

value is somewhat lower compared to the normal scenario.
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Figures and Tables
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Figure 1: Average hourly weights for all day types (Monday-Sunday) based on historical system price data from

the Nordic power market between January 7, 2002 and December 25, 2011. The weights have been normalized to

sum to unity for all day types.
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Figure 2: Average daily weights for each day type (Monday-Sunday) based on historical system price data

from the Nordic power market between January 7, 2002 and December 25, 2011. The daily weights have been

normalized to sum to unity for the week.
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Figure 3: Prices for quarterly Nordic forward contracts (settlement period 2013) traded at the Nasdaq OMX

Commodities exchange on November 25, 2011. The annual seasonal cycle is clearly visible.
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Figure 4: Two normalized intra-day profiles for average Wednesdays in February and June respectively. It is

clear that the hourly profiles exhibit distinct differences depending on the season. The calculations are based

on data from the Nordic power market between January 7, 2002 and December 25, 2011. The hours have been

normalized to sum to unity for each day type.
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Figure 5: The average normalized intra-day hourly weights for Wednesdays in April for two hydrological sit-

uations; wet and dry. Calculations are based on system price data from the Nordic power market for the years

2006 and 2008, where the average hydrological balance (deviation from normal state) in April was -19.43 TWh

and +13.41 TWh, respectively. The hours have been normalized to sum to unity.
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Clocks: year-week Holidays Hydrology

Figure 6: A schematic description of the architecture of the Artificial Neural Networks used for hourly and daily

shape estimation. The networks are restricted (guided) since the neurons governing the yearly/weekly clocks, the

holidays and bridge days, and the hydrology, are respectively disconnected.
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Figure 7: The figure displays the monthly shape vector estimated according to the methodology in section 3.1.3.

Estimation is based on historical forward prices from the Nordic power market (monthly, quarterly and yearly

contracts) traded at the Nasdaq OMX Commodities exchange between 2008-2009. The monthly weights have

been normalized to sum to unity for the year.
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Figure 8: The calibrated hourly forward curve for the full calendar year 2013. Calibration date is November

20, 2012. The plot displays the curve at hourly granularity in combination with its monthly averages. The yearly

seasonal cycle is clearly present.
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Figure 9: Daily averages of the hourly forward curve to illustrate the daily shaping within a week. Calibration

date is November 20, 2012. The plotted time period is between April 8 and April 28, 2013.
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Figure 10: Daily averages of the hourly forward curve for the time period between June 3 and June 9, 2013.

Calibration date is November 20, 2012. The price on Sweden’s National holiday is scaled downwards according

to the pre-estimated weights entered into the networks.
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Figure 11: The hourly forward curve for the time period between November 4 and November 24, 2013. Cali-

bration date is November 20, 2012. The hourly profiles are clearly present and they vary for different day types.
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Figure 12: The hourly forward curve for three consecutive weeks in June (June 10 - June 30) vs dito in January

(Jan 7 - Jan 27). Calibration date is November 20, 2012. The difference between peak and off-peak prices is

evidently larger in June, in combination with a significantly less pronounced evening peak.
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Figure 13: The hourly forward curve for three consecutive weeks in September (September 09 - September 29)

generated for three different hydrological scenarios; (i) normal, (ii) wet (26 TWh above normal level) and (iii) dry

(26 TWh below normal level). Calibration date is November 20, 2012. The spread between peak and off-peak

prices is large (small) in the wet (dry) scenario.
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Contract Input price (EUR/MWh)

M1 41.25

M2 42.30

M4 36.55

M5 32.85

Q1 40.55

Q2 34.05

Q3 33.33

Y 1 37.15

Table 1: Contracts and input prices used for curve calibration. The prefix (M , Q and Y ) in the first column

respectively denote month, quarter and year, and the suffix (1, 2, 4 and 5) indicate the order of the contract in the

term-structure. Price quotes are closing prices for Nordic power forwards traded at Nasdaq OMX Commodities

per November 20, 2012.

EUR/MWh Normal Wet Dry

Intrinsic value 2.24 2.85 2.02

Time value 2.90 2.56 3.02

Option value 5.15 5.41 5.04

Table 2: The table shows intrinsic values, time values and total option values (in EUR/MWh) for an hourly

Virtual Power Plant (VPP) with settlement period between January 1, 2013 and December 31, 2013. All figures

are given for three different hydrological scenarios (normal/wet/dry). Valuation date is November 20, 2012. The

strike is set at K = 37 EUR/MWh, which is roughly the average at-the-money level for the given settlement

period. We assume that the risk-free interest rate is r = 0.

Percent of Option value Normal Wet Dry

Intrinsic value 43.58% 52.66% 40.04%

Time value 56.42% 47.34% 59.96%

Option value 100% 100% 100%

Table 3: The table shows the respective percentage contributions of the intrinsic values and the time values to

the total option value. The figures are given for the same scenarios and the same contract parameters given in

Table 2.
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