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Abstract

The Bremmer series is used to reduce a complex scattering problem to a
sequence of simpler single scattering problems. In the Bremmer series, the
wave equation is first decomposed into a coupled system of one-way wave
equations. The system is then decoupled into a sequence of one-way wave
equations with a fixed point iteration. In this paper, a left symbol represen-
tation of the decomposition operator and the vertical-propagation operator
are used. Time-domain convergence of the Bremmer series is shown for a
set of dispersive medium models. The non-dispersive case is treated with an
approximation procedure.

1 Introduction

We consider a multi-dimensional acoustic scattering problem [3]. An acoustic wave
in free space impinges on a region with spatially dependent medium parameters.
We use the Bremmer series to transform the problem of the continuously scattered
wave into a sequence of simpler scattering problems. Each of the terms in the
Bremmer series can be interpreted as the contribution that has been scattered a
finite number of times. The Bremmer series approach to a scattering problem starts
with a directional decomposition of the wave field into waves propagating in the
positive and negative direction. In free space, the decomposition separates the wave
equation into two separate one-way wave equations. In a general inhomogeneous
medium, the one-way wave equations are coupled via the reflection operator. The
Bremmer series decouples the system by a fixed-point iteration.

The advantages and beauty with directional decomposition, or splitting, of waves
are best understood in the one-dimensional direct and inverse scattering prob-
lems [2, 11]. In multi-dimensions, wave decomposition have been used in a variety
of large scale problems, e.g., exploration seismics, ocean acoustics and fiber op-
tics [17, 20]. In contrast to the one-dimensional case, it is difficult to use an exact
wave decomposition in multi-dimensions. Several papers consider the par-axial or
beam approximation [10, 13], where the one-way wave operator is approximated with
a local operator, asymptotically correct in the preferred direction and in the high fre-
quency limit. Here, we use a pseudo-differential approximation [5, 10, 15, 17]. This
gives a non-local one-way wave operator asymptotically correct in both the high
frequency and high wave number limit. A more careful decomposition is proposed
in [6–9].

The Bremmer series was introduced by Bremmer in [2] to solve and analyze a
one-dimensional scattering problem. Convergence of the one-dimensional Bremmer
series is considered in numerous papers, see e.g., Refs 1,14. The series converges in
the Fourier domain for sufficiently small and smooth parameters and in general in
the time domain. In multi-dimensions, Corones [4] considered the Bremmer series
as a correction to the paraxial approximation, the corresponding frequency-domain
convergence is analyzed in [18]. de Hoop [5] used pseudo-differential calculus to
define and show convergence of the Bremmer series in the Laplace domain for the
special case of real-valued values of the Laplace parameter, see also Ref. 20.
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A typical area of application for the decomposition of waves and the Bremmer
series is exploration geophysics. A typical marine survey uses an air gun as a source.
The air gun has a power spectra ranging up to a few kHz and has rather low
energy. In this frequency and energy range, the elastic wave propagation in solids is
reasonably well described with the non-dispersive acoustic wave equation. To get a
more accurate description in a larger frequency range, it is vital to include dispersive
properties. In principle, it is not difficult to compute the scattered field, e.g., with
a finite difference time-domain scheme [19]. The practical problem is the large scale
structure of the problem, that makes a finite difference time-domain computation
infeasible. Instead, it is common to use a temporal Fourier transform followed by
a wave decomposition and migration. The Fourier transform calls for the use of
parallel computations and the relatively few frequency components compared to the
number of time steps reduce the computations further. Also, observe that there are
no complications to include dispersive effects in the algorithm.

In this paper, we use left symbols, see Refs 12, to represent the operators used
in the decomposition of the wave field and in the dynamics of the one-way wave
equation. The symbols give well-behaved pseudo-differential operators if the Laplace
parameter, s, is restricted such that Re s ≥ α| Im s| for some α ≥ α0 > 0. To get
a good time-domain convergence it is important to consider more general values for
the Laplace parameter, e.g., Re s ≥ η0. To accomplish this, we consider passive
medium models that reduces to the free-space model in the high-frequency limit.
For this model, we show that the Bremmer series converges in the time domain
and explicit error estimates are given. The non-dispersive case is treated with an
approximation procedure and a weaker time-domain convergence where the field is
smoothed by a mollifier.

We follow ‘standard’ PDE notations as much as possible. Vectors in the Euclid-
ean space R

3 are denoted with a bold face, i.e., x = (x1, x2, x3) = (x, x3). The
vertical direction x3 is the preferred direction and x = (x1, x2) are the transverse
directions. The gradient and divergence operators in R

3 are denoted ∇ and ∇·, re-
spectively. For the corresponding transverse part, we use the operator D = (∂1, ∂2).
The norm ‖ · ‖ is the usual L2 norm in R

2, i.e., ‖u‖ =
∫

R2 |u(x)|2 dx. The corre-
sponding norm in R

3 is denoted by ‖ · ‖3. Furthermore, we suppress the coordinate
dependence in many expressions, in particular the dependence of x3 is often ignored.

2 Acoustic scattering

We consider the acoustic scattering problem depicted in Figure 1. An acoustic
wave field is generated by the sources, f(x, t) and q(x, t). The induced field is
scattered by the medium inhomogeneities. We assume that both the sources and
the inhomogeneities vanish outside some compact region. The region outside the
slab 0 ≤ x3 ≤ X3 is free space, see Figure 1. For simplicity, we also assume that
there are no sources inside the slab.
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x3 = 0

x3 = X3

κ(x)

κ(x) = κ0

f(x, t) q(x, t)

f(x, t) q(x, t)

Figure 1: The acoustic scattering geometry.

The acoustic wave equation

{
∂t[κp](x, t) + ∇ · v(x, t) = q(x, t),

ρ∂tv(x, t) + ∇p(x, t) = f(x, t),
(2.1)

models the evolution of the fields. The acoustic pressure is denoted by p(x, t) and
v(x, t) is the particle velocity. The medium properties are described by the com-
pressibility κ and the density ρ. The compressibility is temporally dispersive and
spatially dependent, whereas the density is assumed to be constant ρ = ρ0. The
temporal dispersion is defined in the Laplace plane (2.6), (2.8), and (2.9). In the
scattering problem, we assume that the sources are quiescent and that the fields
vanish before time t = 0. This give the initial conditions

p(x, 0) = 0 and v(x, 0) = 0, (2.2)

to the acoustic wave equation (2.1).
In this paper, we describe a method to solve the acoustic scattering problem (2.1)

in an iterative way—the Bremmer series. Let p and v be the solution of (2.1). We
want to find approximations

∑
p(k) and

∑
v(k) of p and v, respectively, such that

∫ T

t=0

∫ X3

x3=0

κ0‖
N∑

k=1

p(k)(·, x3, t) − p(·, x3, t)‖2

+ρ0‖
N∑

k=1

v(k)(·, x3, t) − v(·, x3, t)‖2 dx3 dt → 0 as N → ∞,

(2.3)

for finite times T .
Most of the analysis is performed in the Laplace domain. The Laplace trans-

formed wave-field quantities are denoted with a hat ·̂, i.e.,

p̂(x, s) =

∫ ∞

t=0−
e−stp(x, t) dt, (2.4)
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where the Laplace transform parameter s is restricted to a right half-plane s = η+iω,
with η ≥ 0. The time-domain wave-field quantities are recovered by the inverse
Laplace transform

p(x, t) =
1

2π

∫ ∞

ω=−∞
e(η+iω)tp̂(x, η + iω) dω. (2.5)

The Laplace transformed version of the acoustic equation (2.1) is
{

sκ(x, s)p̂(x, s) + ∇ · v̂(x, s) = q̂(x, s),

sρv̂(x, s) + ∇p̂(x, s) = f̂(x, s),
(2.6)

together with the radiation condition

√
ρ0v̂r −

√
κ0p̂ = o(|x|−1) = o(r−1), (2.7)

where v̂r stands for the radial component of the particle velocity. To ensure causality
the compressibility κ(x, s) is an analytic function of s in the right complex half-plane.
Furthermore, we restrict the analysis to passive dispersive models such that

Re{sκ(x, s)} ≥ κ0η, (2.8)

and
κ(x, s) − κ0 = O(s−2) as s → ∞. (2.9)

For simplicity, we assume that κ(x, s) depends smoothly on the spatial coordinate
x. It is convenient to write the compressibility (2.9) as a perturbation of free space,
i.e.,

κ(x, s) = κ0 + δψ(x, s)s−2, (2.10)

where ψ(x, s) is uniformly bounded in x and s for Re s ≥ β0 > 0. The parameter δ is
used to denote the size of the perturbation. Observe that the first order system (2.6)
corresponds to a dispersive velocity model for the second order wave equation.

3 Non-dispersive medium

We also consider the non-dispersive model

κ(x, s) = κ(x). (3.1)

i.e., the compressibility κ depends on the spatial coordinates x, but not on the
Laplace parameter s. The compressibility is assumed to be smooth and uniformly
bounded, i.e., 0 < κ0 ≤ κ(x) ≤ κ1. Outside some compact region it reduce to
the free-space value κ0. The density is assumed to be constant ρ = ρ0 everywhere.
We introduce a dispersive model (2.8) and (2.9) that resembles the non-dispersive
model (3.1) for low frequencies. The model is given by

κω0(x, s) = κ0 +
(κ(x) − κ0)ω

2
0

ω2
0 + s2

= κ(x) − (κ(x) − κ0)s
2

ω2
0 + s2

. (3.2)
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Observe that (3.2) is a mathematical construction and not an attempt to model
actual processes in the medium. This model satisfies the conditions (2.8) and (2.9).
The advantages with the dispersive model is that it removes the spatial dependence
in the principal part of the equation, and hence simplifies the analysis.

For low frequencies, |s| 	 ω0, the dispersive model (3.2) is a good approximation
to the non-dispersive model (3.1) and the corresponding error in the solution to the
acoustic equation (2.6) is small, see Appendix A. However, we can not expect the
error to be small in the time-domain, i.e., the high-frequency part of the constitutive
relations (3.1) and (3.2) are different and hence the wavefront set of the time-domain
solution will be different. To overcome this problem, we introduce a smoothed or
frequency filtered version of the time-domain fields p(t) and v(t) defined as

p̃(t) =

∫ t

0

p(t − t′)χτ (t
′) dt′ = (p ∗ χτ )(t) =

1

2π

∫ η+i∞

η−i∞
estp̂(s)χ̂τ (s) dω, (3.3)

where χ̂τ (s) is a suitable weight function and p̂ is the solution of the acoustic equa-
tion, (2.6), with the radiation condition, (2.7). The smoothed velocity field ṽ(t) is
defined in an analogous fashion. The weight function χτ (t) is a smooth, positive,
and causal function with unit integral and supported in [0, τ ], i.e., a mollifier. The
Laplace transformed version of the weight function χ̂τ (s) is analytic for Re s > 0
and decay exponentially, i.e., there are numbers CM such that

|χ̂τ (s)| ≤ CM(1 + |s|)−M for all M. (3.4)

Observe that the weight function approaches the Dirac delta distribution δ(t) for
small times, i.e., χτ (t) → δ(t) as τ → 0, and hence the frequency filtered fields
resemble the original fields for small times τ .

For the non-dispersive medium, we show that the sum of the frequency filtered
Bremmer series fields p̃(k)

ω0
and ṽ(k)

ω0
converge to the original frequency filtered fields

p̃ and ṽ as the number of Bremmer terms increase and ω0 → ∞. It is advantageous
to show the convergence in two steps. First, we let the Bremmer iteration limit
N → ∞, and then separately, the frequency limit ω0 → ∞. Let p̂ω0 and v̂ω0 be
the solution to (2.6) with the approximate compressibility (3.2). Assume that the
Bremmer iteration (2.3) converges, then

N∑

k=1

p(k)

ω0
→ pω0 and

N∑

k=1

v(k)

ω0
→ vω0 as N → ∞, (3.5)

and according to (A.6)

p̃ω0 → p̃ and ṽω0 → ṽ as ω0 → ∞. (3.6)

So totally, we have convergence. However, observe that the constants in the disper-
sive approximation (3.2) increase with ω0 and hence the convergence properties of
the Bremmer series deteriorate.
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4 Approximate wave decomposition

The acoustic wave equation (2.1) is usually solved by a time stepping procedure.
However, this is computationally inefficient for large problems. In order to get a
more numerically efficient solution, we decompose the acoustic wave equation into
its up- and down-going parts [5].

Write the Laplace transformed system (2.6) as a formal evolution problem in the
preferred direction x3

(∂3 + A)ŵ = ĝ. (4.1)

The system matrix A is

A =

(
0 sρ

−D ·(s−1ρ−1 D ) + sκ(x, x3, s) 0

)

, (4.2)

and the field vector ŵ and source vector ĝ are

ŵ =

(
p̂
v̂3

)

and ĝ =

(
f̂3

q̂ + D ·(ρ−1s−1f̂)

)

, (4.3)

respectively. The problem (4.1) is not well-posed for marching in the x3 direction,
but it is possible to decompose the system (4.1) into two parts, one propagating
in the positive x3 direction and the other propagation in the negative x3 direction.
We decompose the system by formally diagonalizing the system matrix (4.2). The
diagonalization operator is only determined up to a normalization, here we use the
acoustic-pressure normalization [5]. The diagonal elements are the square-root of
the characteristic operator

A = −∂2
1 − ∂2

2 + s2κ(x, x3, s)ρ = −D2 +s2c−2(x, x3, s)

= −D2 +s2c−2
0 + δψ(x, x3, s).

(4.4)

In general, it is difficult to define an exact square-root, so instead, we determine an
approximate square-root of A. Let Γ be an operator such that the difference A−Γ2

is small. We call Γ the vertical-propagation operator for the acoustic wave equation.
Let Ξ denote the error in the approximation of the square-root operator, i.e.,

Ξ = (Γ − Γ−1A)/2. (4.5)

We construct approximations of A1/2, such that Ξ is small in a general medium and
vanishes identically in a homogeneous medium. In the acoustic-pressure normaliza-
tion, the composition operator L and the decomposition operator L−1 are defined
as

L =

(
ρ ρ

s−1Γ −s−1Γ

)

and L−1 =
1

2

(
ρ−1 sΓ−1

ρ−1 −sΓ−1

)

, (4.6)

respectively. The decomposition operator L−1 defines the down- and up-going
components û = (û+, û−)T of the wave field, see Figure 2 . We substitute ŵ = Lû
into the dynamics (4.1) to get

(∂3L + AL)û = ĝ. (4.7)
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x3 = 0

x3 = X3

κ(x)

κ(x) = κ0

û+

û−

û(0)

+ (x, s)

û(0)

− (x, s)

û+

û+
û− û−û+

Figure 2: The one-way acoustic scattering geometry.

Next we multiply with the decomposition operator and use the relation ∂3L =
(∂3L) + L∂3. This gives

(∂3 + L−1AL)û = −L−1(∂3L)û + L−1ĝ. (4.8)

The principal part of the equation decouples

L−1AL =
1

2

(
Γ + Γ−1A −Γ + Γ−1A
Γ − Γ−1A −Γ − Γ−1A

)

=

(
Γ 0
0 −Γ

)

+

(
−Ξ −Ξ
Ξ Ξ

)

, (4.9)

if Ξ is of lower order than Γ. In the region 0 ≤ x3 ≤ X3, the decomposed fields û
satisfy the source-free one-way system of equations

(
∂3 + Γ 0

0 ∂3 − Γ

) (
û+

û−

)

=

(
R1,1 R1,2

R2,1 R2,2

) (
û+

û−

)

, (4.10)

where the matrix-valued interaction operator R is

R =

(
R1,1 R1,2

R2,1 R2,2

)

= Γ−1∂3Γ/2

(
1 −1
−1 1

)

+ Ξ

(
1 1
−1 −1

)

. (4.11)

Notice that the first part of the interaction operator reduce to the classical reflection
operator for a layered media, i.e.,

R = Γ−1∂3Γ/2 = (Γa + Γb)
−1(Γa − Γb), (4.12)

where Γa and Γb are the vertical-propagation operators in two adjacent layers. The
boundary conditions for the one-way wave system of equations (4.10) are

û+(x, 0) = û(0)

+ (x) and û−(x, X3) = û(0)

− (x), (4.13)

where the boundary terms are obtained from the solution of the one-way prob-
lem (4.10) in free space. In free space, the vertical-propagation operator Γ reduces
to multiplication with the free space vertical-propagation symbol

γ0(ξ, s) =

√
c−2
0 s2 + ξ2, (4.14)
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in the spatial Fourier domain, i.e.,

Γ0û(x) = (2π)−2

∫

y∈R2

∫

ξ∈R2

γ0(ξ, s)e
iξ·(x−y)û(y) dy dξ. (4.15)

The solution is





û(0)

+ (x) = (2π)−2

∫ 0

x3=−∞

∫

ξ∈R2

∫

y∈R2

eiξ·(x−y)eγ0x3 ĝ+(y, x3) dy dξ dx3,

û(0)

− (x) = (2π)−2

∫ ∞

x3=X3

∫

ξ∈R2

∫

y∈R2

eiξ·(x−y)e−γ0x3 ĝ−(y, x3) dy dξ dx3,

where ĝ+ and ĝ− are the down- and up-going part of the source, i.e.,

ĝ+ = (ρ−1ĝ1 + sΓ−1
0 ĝ2)/2 and ĝ− = (ρ−1ĝ1 − sΓ−1

0 ĝ2)/2, (4.16)

respectively.

5 The vertical-propagation operator

The vertical-propagation operator Γ can be represented in a variety of ways, e.g.,
left-, right-, Weyl-symbols and spectral theory, see [5, 7, 9]. Here, we use a left-
symbol representation, i.e., the operator is defined as the action of the integral

(Γû)(x, s) = (2π)−2

∫

ξ∈R2

∫

y∈R2

γ(x, ξ, s)ei(x−y)·ξû(y, s) dy dξ, (5.1)

where γ(x, ξ, s) is the vertical-propagation symbol (or coefficient)

γ(x, ξ, s) =
√

c−2(x, s)s2 + ξ2 =
√

c−2
0 s2 + ξ2 + δψ(x, s). (5.2)

We use the dispersive property (2.9) to analyze Γ and to get uniform estimates of
Γ for s in a half-plane Re s ≥ η0 > 0.

We start with some properties of the free-space vertical-propagation operator,
Γ0, defined in (4.15). The real-valued part of s is a lower bound of the real-valued
part of γ0, i.e., Re γ ≥ c−1

0 η. Fourier calculus give a similar lower bound on the
symmetric part of the free space vertical-propagation operator

Re Γ0 ≥ c−1
0 η, (5.3)

and an upper bound on the inverse

‖Γ−1
0 ‖ ≤ c0η

−1. (5.4)

We expand the vertical-propagation operator Γ in the free space vertical-propa-
gation operator Γ0. Extract the free space symbol from the symbol (5.2)

γ(x, ξ, s) = γ0(ξ, s)
√

1 + δγ−2
0 (ξ, s)ψ(x, s). (5.5)
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The symbol ψ contains all inhomogeneous and dispersive parts and it is uniformly
bounded in x, x3, and s. For sufficiently large values of η, we can expand the symbol
in the binomial series

γ(x, ξ, s) = γ0(ξ, s) +
∞∑

n=1

(
1/2
n

)

δnψn(x, s)γ1−2n
0 (ξ, s). (5.6)

Use the linearity of the left symbol and the left-symbol composition rule

(ΨΓ0û)(x, s) = (2π)−2

∫

ξ∈R2

∫

y∈R2

eiξ·(x−y)ψ(x, s)γ0(ξ, s)û(y) dy dξ, (5.7)

where Ψ is the multiplicative operator associated with the symbol ψ, i.e., Ψ = ψ.
The vertical-propagation operator is

Γ = Γ0 +
∞∑

n=1

(
1/2
n

)

δnΨnΓ1−2n
0 = Γ0 +

δ

2
ΨΓ−1

0 + O(δ2/η3) (5.8)

where O(δk/ηl) denotes an operator of the size δkΨkΓ−l
0 , i.e., there is a constant C ′

such that
‖O(δk/ηl)‖ ≤ C ′δkη−l. (5.9)

Use (5.8) and the coercivity, (5.3), to get the estimate

Re Γ ≥ c−1
0 η/2, (5.10)

for sufficiently large values of η. The inverse of the vertical-propagation operator
Γ−1 is

Γ−1 =
(
1 + Γ−1

0 ΨΓ−1
0 δ/2 + O(δ2/η4)

)−1
Γ−1

0

= Γ−1
0 − Γ−1

0 ΨΓ−2
0 δ/2 + O(δ2/η5).

(5.11)

Notice that the vertical-propagation operator is a perturbation of the free space
vertical-propagation operator, i.e., Γ ∼ Γ0 for large η.

The representations (5.8) and (5.11) are used to derive uniform estimates on the
operators in Section 4. The error term Ξ of the square-root approximation (4.5) is

Ξ = (Γ − Γ−1A)/2 = δ(ΨΓ−1
0 − Γ−1

0 Ψ)/4 + O(δ2/η3). (5.12)

The reflection operator (4.11) is estimated as

Γ−1∂3Γ =
(
Γ−1

0 − Γ−1
0 ΨΓ−2

0 δ/2 + O(δ2/η4)
) (

∂3ΨΓ0δ + O(δ2/η3)
)

= δΓ−1
0 ∂3ΨΓ−1

0 + O(δ2/η3).
(5.13)

Totally, we get a uniform bound on the interaction operator R, i.e., there is a
constant C such that

‖R‖ ≤ Cδη−1 for all x3 and s such that Re s ≥ η0 (5.14)
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with η0 sufficiently large. Notice that it would be sufficient to use the free space
vertical-propagation operator in the approximate wave decomposition to get esti-
mates (5.10) and (5.14).

It is interesting to compare the analysis above with the classical pseudo-differen-
tial calculus. The vertical-propagation operator Γ is a classical pseudo-differential
operator for fixed s. Pseudo-differential calculus can be used to show uniform es-
timates of the Γ operator provided that the Laplace parameter s is restricted to
regions such that Re s ≥ η0 + α| Im s| for some α ≥ α0 > 0. Due to the hyperbolic
nature of the characteristic operator it is difficult to derive uniform estimates in
a half-plane with classical pseudo-differential calculus. In [5], a similar analysis is
performed with pseudo-differential calculus to analyze the square-root operator A1/2

for s = η > η0.

6 Bremmer Series

In Section 4, we decomposed the scattering problem, (2.1), into the one-way system,
(4.10), together with the boundary conditions, (4.13), and in Section 5 we used the
symbol representation to find a-priori estimates on the one-way wave operators. In
the Bremmer series, we solve the scattering problem (4.10) in an iterative fashion,
i.e., fixed point iterations, Neumann series or successive approximations. The initial
step and the succeeding iterations are






(∂3 + Γ − R1,1)û
(1)

+ = 0

(∂3 − Γ − R2,2)û
(1)

− = 0

û(1)

+ (x, 0) = û(0)

+ (x)

û(1)

− (x, X3) = û(0)

− (x),

0 ≤ x3 ≤ X3, (6.1)

and





(∂3 + Γ − R1,1)û
(k)

+ = R1,2û
(k − 1)

−

(∂3 − Γ − R2,2)û
(k)

− = R2,1û
(k − 1)

+

û(k)

+ (x, 0) = 0

û(k)

− (x, X3) = 0,

0 ≤ x3 ≤ X3, k = 2, 3, . . . , (6.2)

respectively. The fields outside the strip [0, X3] are determined with the free space
vertical-propagation operator Γ0. Observe that there is an ambiguity in the defin-
ition of the Bremmer series regarding the position of the transmission part of the
interaction operator. In approaches based on integral equations it is common to
include the transmission part in the right hand-side of the iteration [5]. Here, we
choose to update the fields as much as possible and hence include the transmission
part in the left-hand side. The convergence proof is essentially independent of this
choice.

The total wave field is the sum of the Bremmer terms in (6.1) and (6.2)

û =
∞∑

k=1

û(k). (6.3)
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The sequence converges, if the iteration is a contraction. We use energy estimates
to get an L2 bound, see [16]. The equations (6.2) are multiplied with û+ and û−,
respectively, and the estimates (5.10) and (5.14) are used to get

{
∂3‖û(k)

+ (·, x3)‖2 + (ηc−1
0 − 3Cδη−1)‖û(k)

+ (·, x3)‖2 ≤ Cδη−1‖û(k − 1)

− (·, x3)‖2,

−∂3‖û(k)

− (·, x3)‖2 + (ηc−1
0 − 3Cδη−1)‖û(k)

− (·, x3)‖2 ≤ Cδη−1‖û(k − 1)

+ (·, x3)‖2.

Next we integrate the inequalities over [0, X3]. This gives the bounds





∫ X3

0

‖û(k)

+ (·, x3)‖2 dx3 ≤
Cδ

η2c−1
0 − 3Cδ

∫ X3

0

‖û(k − 1)

− (·, x3)‖2 dx3,

∫ X3

0

‖û(k)

− (·, x3)‖2 dx3 ≤
Cδ

η2c−1
0 − 3Cδ

∫ X3

0

‖û(k − 1)

+ (·, x3)‖2 dx3.

(6.4)

The final bound is obtained by adding the two inequalities
∫ X3

0

‖û(k)(·, x3)‖2 dx3 ≤
Cδ

η2c−1
0 − 3Cδ

∫ X3

0

‖û(k − 1)(·, x3)‖2 dx3. (6.5)

For η sufficiently large, i.e., η2 ≥ 4Cδc0, the map is a contraction and the Bremmer
series (6.2) converges. The initial step in (6.1) gives, in a similar way, a bound on
the first term ∫ X3

0

‖û(1)(·, x3)‖2 dx3 ≤ ‖û(0)(·)‖2, (6.6)

for η2 ≥ 4Cδc0.
To show that there exists a solution to the one-way systems (6.1) and (6.2), we

can use the free space representations (5.8), (5.10), and (5.11). The one-way system
is iterated with the free space solution (existence of the free space solution follows
from Fourier calculus). The iteration converges for sufficiently large values of η0.

6.1 Convergence rate

In the Bremmer series, the real-valued part of the Laplace parameter is fixed at the
value, Re s = η. We iterate the series N times and subsequently go back to the time-
domain trough the inverse Laplace transform (2.5). If the parameter η is increased
the series converge faster. However, the error has to be smaller due to multiplication
with eηt in the inverse Laplace transformation. For a fixed time t = T , the series can
be iterated until the error is small enough (assume no numerical truncation errors)
and the inverse Laplace transformation gives time-domain convergence.

A rough estimate of the error is
∫ T

t=0

∫ X3

x3=0

‖
N∑

k=1

u(k)(·, x3, t) − u(·, x3, t)‖2 dx3 dt

≤ e2ηT

2π

∫ ∞

ω=−∞

∫ X3

x3=0

‖
N∑

k=1

û(k)(·, x3, η + iω) − û(·, x3, η + iω)‖2 dx3 dω

≤ e2ηT

∫ T

t=0

‖u(0)(·, t)‖2 dt

∞∑

k=N

(
Cδ

η2c−1
0 − 3Cδ

)k

.

(6.7)
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The error estimate (6.7) gives the convergence rate

N ∼ ηT − ln(Error), (6.8)

for large values of η. The number of iterations grows linearly in time, and the
accuracy convergence is of exponential order, see Ref. 20 for corresponding numerical
results in one spatial dimension. The error can be made arbitrary small by iterating
the series enough number of times.

It is also interesting to consider the asymptotic convergence in week scattering.
Let the compressibility by a small perturbation of free space, i.e., δ is small. We get
the asymptotic convergence

∫ T

t=0

∫ X3

x3=0

‖
N∑

k=1

u(k)(·, x3, t) − u(·, x3, t)‖2 dx3 dt = O(δN). (6.9)

7 Discussion

In this paper, we have shown that the Bremmer series converges in the time-domain
for a multi-dimensional dispersive acoustic scattering problem. The analysis is re-
stricted to models with constant density and smooth temporally dispersive com-
pressibility. In many applications it is important to consider non-smooth models,
e.g., discontinuous media. To get an efficient numerical implementation it is vital
to approximate the vertical-propagation operator further, e.g., the split step, phase
screen, and the generalized screen method. This and some other generalizations
are under investigation. Here, it is interesting to observe the reminiscence between
the product expansion in (5.6) and the approximation employed in the generalized
screen approximation.
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Appendix A Energy estimates

We have the following energy identity for the acoustic equation, (2.6),

Re{sκ}|p̂|2 + Re{sρ}|v̂|2 + ∇ · Re{p̂∗v̂} = Re{p̂∗q̂ + v̂∗ · f̂}. (A.1)
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We integrate over R
3 and use the radiation conditions, (2.7), to get the energy

estimate,

κ0‖p̂‖2
3 + ρ0‖v̂‖2

3 ≤
κ−1

0 ‖q̂‖2
3 + ρ−1

0 ‖f̂‖2
3

4ε(η − ε)
, (A.2)

see Ref. 16 for a discussion of energy methods. We have restricted the analysis to
passive models, (2.8), so by letting η > ε > 0, we get an L2 bound of the fields.
Now, let p̂1 and v̂1 be the difference between the solution to the dispersive model,
(3.2), and the non-dispersive model, (3.1). The difference fields satisfy

{
sκp̂1 + ∇ · v̂1 = s(κ(s) − κ)p̂,

sρv̂1 + ∇p̂1 = 0.
(A.3)

We use the special structure of the approximate dispersive model (3.2) and the
energy estimate (A.2) to get the bound

κ0‖p̂1‖2
3 + ρ0‖v̂1‖2

3 ≤ Ca
|s|6κ0‖p̂‖2

3

|ω2
0 + s2|2ε(η − ε)

, (A.4)

where the constant Ca only depends on the medium parameters. For large values of
the approximation parameter ω0, the error fields vanish, i.e.,

p̂1 → 0 and v̂1 → 0 in L2(R3). (A.5)

For the time-domain convergence, we use the frequency filtered fields in (3.3).
The frequency filtered time-domain fields p1(t) and v1(t) are bounded as

(∫ T

0

κ0‖
∫ ∞

−∞
estp̂1(s)χ̂ωm(s) dω‖2

3 dt

)1/2

≤ Cb

∫ ∞

−∞
‖p̂1(s)‖3|χ̂ωm(s)| dω

≤ Cc

∫ ∞

−∞

∣
∣
∣
∣
s3χ̂ωm(s)

ω2
0 + s2

∣
∣
∣
∣ dω ≤ Cdω

−1
0 ,

(A.6)

where the constant Cd only depend on η, T, ωm and the norm of the sources. The
last inequality in (A.6) follows from the decay of the weight function (3.4). Hence,
the smoothed dispersive fields p̃ω0(t) and ṽω0(t) approach the non-dispersive fields
p̃(t) and ṽ(t) as ω0 → ∞.
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